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Neutrinoless double beta decay can significantly help to shed light on the issue of nonzero neutrino
mass, as the observation of this lepton-number-violating process would imply that neutrinos are Majorana
particles. However, the underlying interaction does not have to be as simple as the standard neutrino mass
mechanism. The entire variety of neutrinoless double beta decay mechanisms can be approached
effectively. In this work, we focus on a theoretical description of short-range effective contributions to
neutrinoless double beta decay, which are equivalent to nine-dimensional effective operators incorporating
the appropriate field content. We give a detailed derivation of the nuclear matrix elements and phase-space
factors corresponding to individual terms of the effective Lagrangian. Using these, we provide general
formulas for the neutrinoless double beta decay half-life and angular correlation of the outgoing electrons.
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I. INTRODUCTION

While the Standard Model (SM) gauge group SUð3ÞC ×
SUð2ÞL ×Uð1ÞY perfectly explains the interactions we
observe, its breaking also provides masses to the charged
fermions via the Higgs mechanism. The discovery of the
Higgs at the Large Hadron Collider (LHC) [1,2] allows us
to probe and test this mass mechanism in the SM. Yet,
neutrinos continue to evade our understanding, as only left-
handed neutrinos exist in the SM and they therefore cannot
acquire a so-called Dirac mass like the other SM fermions.
Neutrino oscillation experiments [3] have unambiguously
shown, though, that at least two of the three known neutrino
species have finite masses and, while they are not sensitive
to the absolute neutrino masses, they point to mass scales of
the order of 10−2 to 5 × 10−2 eV. In addition, cosmological
observations set an upper limit on the sum of neutrino
masses Σmν ≲ 0.15 eV [4], assuming the standard cosmo-
logical model and with the exact value depending on the
observational data considered.

Neutrinos could be of the Dirac type, as the other SM
fermions are, but this requires a new right-handed neutrino
νR and tiny Yukawa couplings ≲10−12, which is rather
unnatural. Because the right-handed neutrinos would be
completely sterile with respect to the SM gauge inter-
actions, it is, on the other hand, theoretically indicated that
they acquire a Majorana massM of the formMν̄LCν̄TL. It is
generically expected to be of the order of a large new
physics scale ΛNP ≈M associated with the breaking of
lepton number L symmetry. Via the Yukawa couplings
between left- and right-handed neutrinos, it will induce an
effective dimension-5 operator, Λ−1

NPðLLHHÞ [5], where L
and H represent the SUð2ÞL left-handed lepton and the
Higgs doublets, respectively. After electroweak (EW)
symmetry breaking, a small effective Majorana mass mν ∼
m2

EW=ΛNP is generated for the active neutrinos. This
corresponds to the famous seesaw mechanism [6–10], with
a scale ΛNP naturally of the order of 1014 GeV to explain
the light neutrino masses mν ≈ 0.1 eV.
While the most prominent scenario, the high-scale seesaw

mechanism, is not the only possibility to generate light
neutrino masses, there are numerous other ways by incor-
porating lepton number violation (LNV) at low scales in
secluded sectors, at higher loop order, and when allowing
higher-dimensional effective interactions beyond the
Weinberg operator. If the L breaking occurs closer to the
EW scale, higher-dimensional L-breaking operators will be
important for phenomenology, and, specifically, they will
potentially induce neutrinoless double beta 0νββ decay.
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The search for 0νββ decay is the most sensitive approach
to probe Majorana neutrino masses. The experimentally
most stringent lower limit on the decay half-life T1=2 is
derived using the xenon isotope 136

54 Xe,

TXe
1=2 ≡ T1=2ð13654 Xe →

136
56 Baþ e−e−Þ≳ 1026 yr: ð1Þ

However, Majorana neutrino masses are not the only
element of beyond-the-SM physics which can induce it.
As hinted at above, other mechanisms of 0νββ decay where
the LNVoriginates from LNVmasses and couplings of new
particles appearing in various possible extensions of the
SM. The same couplings and states will also induce light
neutrino masses due to the Schechter-Valle black box
argument [11], but the resulting contribution will not be
necessarily dominant. Instead, we consider the 0νββ decay
rate by expressing high-scale new physics contributions in
terms of effective low-energy operators [12–15]. As a basis
of our subsequent discussion, we provide a brief overview
of the possible effective contact interactions at the Fermi
scale mF ≈ 100 MeV at which 0νββ decay occurs. These
are likewise triggered by effective SM invariant operators
violating ΔL ¼ 2 of dimension 5, 7, 9, 11, etc. Figure 1
schematically shows the contribution of such operators.
They can, in general, be categorized in two main classes:

(i) Long-range transitions proceeding through the
exchange of a light neutrino.—This includes the
so-called standard neutrino mass mechanism via
Majorana neutrinos in Fig. 1(a), for which the decay
rate can be estimated by dimensional analysis as
Γ0νββ
mν ∼m2

νG4
Fm

2
FQ

5
ββ ∼ ðmν=0.1 eVÞ2ð1026 yrÞ−1.

Here, GF is the Fermi coupling constant of the SM
charged current interaction, and the phase space
available to the two electrons scales as Q5

ββ with
Qββ ¼ Oð1 MeVÞ for typical double beta decay
nuclear transitions. Alternatively, in models with
exotic interactions incorporating right-chiral neutri-
nos, no mass insertion is required; cf. Fig. 1(b). In the
SM with only left-handed neutrinos, these operators
violate ΔL ¼ 2, and they incorporate a helicity flip
through the inclusion of a Higgs field. In this case, the
decay rate is estimated as Γ0νββ

LR ∼ v2Λ−6
O7
G2

Fm
4
FQ

5
ββ∼

ð105 GeV=ΛO7
Þ6ð1026 yrÞ−1, with the SM Higgs

vacuum expectation value v and the scale ΛO7
of

the dim-7 operator.
(ii) Short-range transitions with no mediating particle

lighter than ≈100 MeV.—As contact interactions
with six external fermions, they are of dimension 9
and higher odd dimensions. For a dim-9 operator,
the decay rate can be estimated as Γ0νββ

SR ∼
Λ−10
O9

m6
FQ

5
ββ ∼ ð5 TeV=ΛO9

Þ10ð1026 yrÞ−1, with the
associated operator scale ΛO9

. Thus, 0νββ decay
probes LNV physics around the TeV scale. The most
prominent scenario where such an operator is
generated is through the inclusion of heavy sterile
neutrinos [16]. In the above classification, we do not
include the case where additional light states are
either mediating the decay or are emitted in it (e.g.,
Majorons).

Probing exotic ΔL ¼ 2 transitions is crucial for our
understanding of how light neutrinos acquire their tiny
masses. As indicated above, if, for example, exotic short-
range contributions were to be observed in upcoming
experiments, it would indicate that the origin of light
neutrino masses is around the TeV scale. Likewise, the
nonobservation of 0νββ puts strong constraints on neutrino
mass mechanisms close to the EW scale. It is not just
neutrino physics that can be probed, though. Operators
violatingΔL ¼ 2, or the underlying physics responsible for
them, can also erase an asymmetry between the number of
leptons and antileptons throughout the thermal history of
the early Universe. Together with the sphaleron transitions
in the SM violating the sum of total baryon and lepton
numbers (Bþ L), this will also erase an asymmetry
between baryons and antibaryons. The rate of this washout
can be related to the half-life of 0νββ decay for a given
operator. The observation of nonstandard 0νββ decay
mechanisms can thus generally falsify baryogenesis mech-
anisms operating at scales above the EW scale [17,18]. A
similar argument applies to other process probing lepton
number violation around the TeV scale, such as searches for
same-sign dileptons at the LHC [19,20].
Before discussing the exotic short-range contributions of

our interest, we remind the reader that the mass mechanism
of 0νββ decay is sensitive to the effective Majorana
neutrino mass

(a) (b) (c)

FIG. 1. Contributions to 0νββ decay from effective higher-dimensional LNVoperators: (a) 5-dim Weinberg operator (standard mass
mechanism), (b) 7-dim operator leading to long-range contribution, and (c) 9-dim operator leading to short-range contribution. Adapted
from Ref. [17].
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mν ¼
X3
i¼1

U2
eimνi ≡mee; ð2Þ

where the sum is over all light neutrinos with masses mνi ,
weighted by the square of the charged-current leptonic
mixing matrix U. This quantity is equal to the ðeeÞ entry of
the Majorana neutrino mass matrix. The inverse 0νββ
decay half-life in a given isotope can then be expressed by

T−1
1=2 ¼

����mν

me

����2GνjMνj2; ð3Þ

where Gν is the phase-space factor (PSF) and Mν the
corresponding nuclear matrix element (NME) of the
process. The normalization with respect to the electron
mass me yields a small dimensionless parameter ϵν ¼
mν=me. The current experimental results lead to a limit
mν ≲ 0.06–0.17 eV [21], with an uncertainty due to the
different NMEs in various nuclear structure models. Future
experiments will probemν ≈ 0.02 eV, corresponding to the
lowest value for an inverse hierarchy of the light neutrino
states. A popular modification is through the inclusion
of light sterile neutrinos with masses in the range from eV
to MeV [22–25], in which case the half-life is still given by
Eq. (3) but with different masses mνi and couplings Uei

[26–29].
The NMEs of the nuclear 0νββ transitions are notori-

ously difficult to calculate, and limits derived from 0νββ
decay are affected for any contribution. Detailed treatments
using different nuclear structure model approaches can, for
example, be found in Refs. [30–39]. Despite tremendous
efforts to improve the nuclear theory calculation, the latest
matrix elements obtained using various approaches differ in
many cases by factors of ∼ð2–3Þ. Experimentally, the most
stringent bounds on 0νββ decay are currently from 76Ge
[40] and 136Xe [21]. The results presented below are using
the recent results in 76Ge of TGe

1=2 ≥ 5.3 × 1025 yr and in
136Xe of TXe

1=2 ≥ 1.07 × 1026 yr at 90% confidence level
(C.L.). Planned future experiments searching for 0νββ
decay are expected to reach sensitivities of the order of
T1=2 ≈ 1027 yr. For example, the recent comparative analy-
sis [41] quotes a discovery sensitivity at 3σ of TXe

1=2 ¼
4.1 × 1027 yr for the planned nEXO experiment [42]. For
more details on the effective 0νββ interaction, see, for
example, the review [43] and references therein. General
up-to-date reviews of 0νββ decay and associated physics
can be found in Ref. [44], while a more specific recent
review on 0νββ NMEs is available in Ref. [45].
Besides the light and heavy neutrino exchange, exotic

long-range mechanisms have received the most attention so
far [46–50]. This is reasonable, as the underlying SM
invariant operators already occur at dimension 7, and, as
mentioned above, 0νββ decay is sensitive to high scales of

the order ofΛO7
≈ 105 GeV. It is important to note, though,

that, due to the intrinsic helicity-flip involved, such
operators are typically strongly constrained by the small-
ness of the light neutrino masses. For example, in the
popular left-right symmetric model [51–54], the effective
dim-7 operator is constrained by the small Yukawa cou-
pling yν of the active neutrino to the heavy sterile neutrino
N, yνv ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mνMN
p

, due to neutrino mass generation via the
seesaw mechanism. If the right-handed neutrinos acquire
masses of the order of the left-right symmetry-breaking
scaleΛLR, this effectively changes the operator contribution
v=Λ3

O7
→ m1=2

ν =Λ5=2
LR . The 0νββ decay rate then scales as

Γ0νββ
LR ∼ ðmν=0.1 eVÞð5 TeV=ΛLRÞ5ð1026 yrÞ−1, and the

long-range mechanism in fact probes the TeV scale as
well. While not all scenarios feature such a strong tree-level
suppression, it has been shown that it is not straightforward
to have a dim-7 operator for which the exotic long-range
contribution dominates over the standard mass mechanism
[55]. In our work, we instead focus on short-range
mechanisms that often do not suffer such a strong sup-
pression at a similar level. In the left-right symmetry
example, the short-range contribution originates from
two right-handed charged currents with Oð1Þ gauge
strength interactions. In both long- and short-range con-
tributions, the half-life triggered by a single mechanism
may be generically expressed similarly to Eq. (3):

T−1
1=2 ¼ jϵIj2GIjMIj2; ð4Þ

where GI is the nuclear PSF and MI the NME, both
generally depending on the Lorentz structure of the
effective operator in question. The coupling constant ϵI
parametrizes the underlying particle physics dynamics,
e.g., the couplings to and the masses of the heavy states
integrated out. NMEs and PSFs for dimension-6 operators
were given in Ref. [50]. In this paper, we present a detailed
derivation of NMEs and PSFs for dimension-9 effective
operators, and we try to clarify and improve various aspects
of the previous treatment [13]. In our calculation, we
include additional NMEs that become important when
the latest values of the nucleon form factors are taken into
account. Moreover, we provide more realistic PSFs calcu-
lated using the exact radial wave functions, and we present
the single electron energy and angular correlation distri-
butions for these exotic 0νββ decay mechanisms.
The paper is arranged as follows. After presenting the

general effective Lagrangian at the quark level in Sec. II, we
outline the calculation of the 0νββ differential decay rate in
Sec. III. We then give the derivation of the NMEs in
Sec. IV. Section V details the calculation of the leptonic
PSFs. The results of these calculations are then combined in
Sec. VI to give explicit expressions for the decay rate and
angular correlations. Limits on the effective couplings ϵI
are also derived therein, assuming one contribution is
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different from zero at a time. Section VII contains some
concluding remarks.

II. EFFECTIVE PARTICLE PHYSICS
LAGRANGIAN

The contributions to 0νββ decay can be parametrized by
effective operators of dimension 6 and 9 [12,13],

corresponding to short-range and long-range interactions,
respectively. The general Lagrangian of 0νββ decay con-
sists of long-range and short-range parts, corresponding to
pointlike vertices at the Fermi scale ≈100 MeV.
In this work, we concentrate on the short-range con-

tributions for which the general effective interaction
Lagrangian schematically reads [13]

LSR ¼ G2
F

2mp

X
chiralities

½ϵ•1J∘J∘j∘ þ ϵ•2J
μν∘ J∘μνj∘ þ ϵ•3J

μ∘J∘μj∘ þ ϵ•4J
μ∘J∘μνjν þ ϵ•5J

μ∘J∘jμ�; ð5Þ

where the sum and the place holders ∘ indicate that the
currents involved can have different chiralities and there is a
separate effective coupling ϵ•i for each such combination.
Specifically, the hadronic and leptonic currents in Eq. (5) are

JR=L ¼ ūð1� γ5Þd; JμR=L ¼ ūγμð1� γ5Þd;
JμνR=L ¼ ūσμνð1� γ5Þd; ð6Þ

jR=L ¼ ēð1� γ5Þec; jμ ¼ ēγμγ5ec; ð7Þ

with σμν ¼ i
2
½γμ; γν�. The fields u, d, and e are four-

componentDirac spinor operators representing the up quark,
down quark, and electron, respectively. The field ec ¼ Ce
denotes the charge conjugate, corresponding to the fact that
all lepton currents violate the electron lepton number by two
units. While the currents involved in Eq. (5) can have
different chiralities as denoted in Eq. (6), the results will
not depend on many of the specific choices.
As is convention, the Lagrangian Eq. (5) is normalized

by the factor G2
F=ð2mpÞ with the Fermi constant GF and

the proton mass mp. As a result, the effective coupling
constants ϵi are dimensionless.
In the Lagrangian Eq. (5) one does not have to consider

all possible combinations of the chiralities of the currents,
as some of them are redundant or vanish. In order to prevent
any confusion about the basis of low-energy dimension-9
operators we are considering, we spell these explicitly out
in Table I. Each operator is labeled in the same way as the
corresponding effective coupling in Eq. (5), i.e., O•

i ∼ ϵ•i,
where the superscript specifies the chiralities of the
particular bilinears in their respective order. We explicitly
identify the equivalent (and thus redundant) operators, and
we omit operators ORLL

2 , OLRL
2 , ORLR

2 , and OLRR
2 , which

trivially vanish, because of the identity

½ūσμνð1þ γ5Þd�½ūσμνð1 − γ5Þd�
≡ ½ūσμνð1 − γ5Þd�½ūσμνð1þ γ5Þd ¼ 0: ð8Þ

Similarly, the Lagrangian Eq. (5) does not contain any
terms with vector, tensor, or axial-tensor electron currents,

as ēγμec ¼ 0 and ēσμνð1� γ5Þec ¼ 0, due to the Pauli
exclusion principle.
The 24 operators in Table I are linearly independent and

form a complete basis of nine-dimensional operators
invariant under the gauge group SUð3ÞC ⊗ Uð1ÞQ and
contributing to 0νββ decay. We also show explicitly the
assumed contractions of the color indices i and j, although
these are trivial, as always the quarks within the same
Lorentz bilinear are contracted. The total number of
these operators agrees with the result we obtained as a
consistency check from a calculation using the Hilbert

TABLE I. Basis of low-scale, nine-dimensional operators
invariant under the SUð3ÞC ⊗ Uð1ÞQ gauge group contributing
to 0νββ decay.

ORRR
1 ½ūið1þ γ5Þdi�½ūjð1þ γ5Þdj�½ēð1þ γ5Þec�

ORRL
1 ½ūið1þ γ5Þdi�½ūjð1þ γ5Þdj�½ēð1 − γ5Þec�

OLRR
1 ≡ORLR

1 ½ūið1 − γ5Þdi�½ūjð1þ γ5Þdj�½ēð1þ γ5Þec�
OLRL

1 ≡ORLL
1 ½ūið1 − γ5Þdi�½ūjð1þ γ5Þdj�½ēð1 − γ5Þec�

OLLR
1 ½ūið1 − γ5Þdi�½ūjð1 − γ5Þdj�½ēð1þ γ5Þec�

OLLL
1 ½ūið1 − γ5Þdi�½ūjð1 − γ5Þdj�½ēð1 − γ5Þec�

ORRR
2 ½ūiσμνð1þ γ5Þdi�½ūjσμνð1þ γ5Þdj�½ēð1þ γ5Þec�

ORRL
2 ½ūiσμνð1þ γ5Þdi�½ūjσμνð1þ γ5Þdj�½ēð1 − γ5Þec�

OLLR
2 ½ūiσμνð1 − γ5Þdi�½ūjσμνð1 − γ5Þdj�½ēð1þ γ5Þec�

OLLL
2 ½ūiσμνð1 − γ5Þdi�½ūjσμνð1 − γ5Þdj�½ēð1 − γ5Þec�

ORRR
3 ½ūiγμð1þ γ5Þdi�½ūjγμð1þ γ5Þdj�½ēð1þ γ5Þec�

ORRL
3 ½ūiγμð1þ γ5Þdi�½ūjγμð1þ γ5Þdj�½ēð1 − γ5Þec�

OLRR
3 ≡ORLR

3 ½ūiγμð1 − γ5Þdi�½ūjγμð1þ γ5Þdj�½ēð1þ γ5Þec�
OLRL

3 ≡ORLL
3 ½ūiγμð1 − γ5Þdi�½ūjγμð1þ γ5Þdj�½ēð1 − γ5Þec�

OLLR
3 ½ūiγμð1 − γ5Þdi�½ūjγμð1 − γ5Þdj�½ēð1þ γ5Þec�

OLLL
3 ½ūiγμð1 − γ5Þdi�½ūjγμð1 − γ5Þdj�½ēð1 − γ5Þec�

ORR
4 ½ūiγμð1þ γ5Þdi�½ūjσμνð1þ γ5Þdj�½ēγνγ5ec�

ORL
4 ½ūiγμð1þ γ5Þdi�½ūjσμνð1 − γ5Þdj�½ēγνγ5ec�

OLR
4 ½ūiγμð1 − γ5Þdi�½ūjσμνð1þ γ5Þdj�½ēγνγ5ec�

OLL
4 ½ūiγμð1 − γ5Þdi�½ūjσμνð1 − γ5Þdj�½ēγνγ5ec�

ORR
5 ½ūiγμð1þ γ5Þdi�½ūjð1þ γ5Þdj�½ēγμγ5ec�

ORL
5 ½ūiγμð1þ γ5Þdi�½ūjð1 − γ5Þdj�½ēγμγ5ec�

OLR
5 ½ūiγμð1 − γ5Þdi�½ūjð1þ γ5Þdj�½ēγμγ5ec�

OLL
5 ½ūiγμð1 − γ5Þdi�½ūjð1 − γ5Þdj�½ēγμγ5ec�
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series method [56,57] and with the results in Ref. [58].
Despite comments in the latter reference, we do not see the
need to include operators containing quark bilinears trans-
forming as color octets. These can be shown to be related
by Fierz transformation to the herein presented operators
with tensor Lorentz structure. For example, for operator
OLLL

2 , one can find the following Fierz identity:

OLLL
2 ¼ ½ūiσμνð1 − γ5Þdi�½ūjσμνð1 − γ5Þdj�jL

¼ 2½ūið1 − γ5Þdj�½ūjð1 − γ5Þdi�jL
− ½ūið1 − γ5Þdi�½ūjð1 − γ5Þdj�jL: ð9Þ

If we further apply the SUð3ÞC color Fierz identity based on
the well-known group-theoretical formula for the Gell-
Mann matrices λa (a ¼ 1;…; 8),

δijδkl ¼
1

3
δilδkj þ

1

2
ðλaÞilðλaÞkj; ð10Þ

on the first term on the right-hand side of Eq. (9), we get

OLLL
2 ¼ ½ūið1 − γ5ÞðλaÞikdk�½ūjð1 − γ5ÞðλaÞjldl�jL

−
1

3
½ūið1 − γ5Þdi�½ūjð1 − γ5Þdj�jL

≡ ½ūið1 − γ5ÞðλaÞikdk�½ūjð1 − γ5ÞðλaÞjldl�jL
−
1

3
OLLL

1 : ð11Þ

Hence, we see that if the operator containing color octets
(the first term on the right-hand side of the above equation)
is neglected, for the fact that it does not contribute to 0νββ
decay as argued in Ref. [59], then the operator OLLL

2 is
equivalent to − 1

3
OLLL

1 and, thus, redundant. In a similar
way, all the operators with tensor quark bilinears can be
traded for operators containing color octets. If these are
neglected, then only the operators consisting of (both left-
and right-handed) scalar and vector color-singlet quark
bilinears are left. We will nevertheless report on the
direct limits on the tensor operators O•

2 for a comparison
with previous literature and to be independent of the
assumption that color nonsinglet currents do not contribute
to 0νββ decay.

III. NEUTRINOLESS DOUBLE
BETA DECAY RATE

The differential rate of 0νββ decay can be written as

dΓ ¼ 2πjRj2δðE1 þ E2 þ EF − EIÞ
d3p1

ð2πÞ3
d3p2

ð2πÞ3 ; ð12Þ

where jRj2 is the full matrix element of the 0νββ decay
process summed over the spin projections s1 and s2 of the
electrons and the final nuclear state SF. The 4-momenta of

the outgoing electrons are ðE1;p1Þ, ðE2;p2Þ, and EF and EI
are the energies of the final and initial nuclei, respectively.
The Qββ value of the transition, i.e., the kinetic energy
release of the electrons, is given by Qββ ¼ EI − EF − 2me,
with the electron mass me ¼ 0.511 MeV. Here, we neglect
the recoil energy of the final nucleus which is of the order
of Q2

ββ=ð2MAÞ ¼ Oð0.1 keVÞ for isotope masses MA of
interest. Because of the overall rotational invariance and
energy conservation, the differential rate can be expressed
in terms of the energy me < E1 < Qββ þme of one
of the electrons and the angle 0 ≤ θ ≤ π between the
two electrons, with cos θ ¼ p̂1 · p̂2.

1 The energy of the
other electron is then determined as E2 ¼ Qββ þ 2me − E1,
and the magnitudes of the electron 3-momenta are
pi ≡ jpij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i −m2

e

p
.

The full matrix element of the process can be formally
expressed as

R ¼ hOþ
Fep1s1ep2s2 jLSRjOþ

I i: ð13Þ

Here, hOþ
Fep1s1ep2s2 j denotes the final state composed of

the 0þ daughter nuclear state and the two emitted electrons
and jOþ

I i the initial nuclear state. It is understood that the
wave function of the two electrons in Eq. (13) is anti-
symmetrized; the same holds for the wave functions of the
Oþ

I and Oþ
F states in terms of their constituent nucleons.

In Eq. (13), we allow the most general form of the quark
level Lagrangian Eq. (5) for LSR, which we symbolically
express as

LSR ¼ G2
F

2mp

X
K;Ξ

εKjΞKJ
Ξ
KJ

0Ξ
K ; ð14Þ

where the summation overK and Ξ collectively denotes the
different electron-quark-quark current combinations jJJ0
(including different chiralities) and the Lorentz contrac-
tions, respectively.
The evaluation of the matrix element R is rather

complicated, since, in general, the leptonic part is nested
with the hadronic part. For the long-range case, a detailed
calculation was given by Doi et al. [46,47] and Tomoda
[60]. Since the hadronic part is the product of two currents,
a sum over a set of intermediate states jN > must be
performed. This is a daunting task, since for 0νββ decay all
states up to an energy E ≈ 100 MeV contribute. It is
therefore customary to treat the above summation in the
closure approximation, i.e., sum over a complete set of
states:

X
N

hOþ
F jJΞKjN ihN jJ0ΞK jOþ

I i ≈ hOþ
F jJΞKJ0ΞK jOþ

I i: ð15Þ

1Throughout, we denote normalized vectors by v̂≡ v=jvj.
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This approximation is very well justified in the case of
short-range operators, as the intermediate transition occurs
at very high energies jqj ≈ 100 MeV, corresponding to the
internucleon distance, compared to the nuclear transition
itself at Qββ ≈ 1 MeV.
Another problem is that the leptonic and hadronic parts

are entangled. In order to disentangle them, an approxi-
mation is made wherein the electron wave functions are
evaluated at the surface of the nucleus [46,61]. This
approximation can be improved by using simplified
nucleon wave functions and calculating the weighted
average electron position [61], but the approximation we
employ here does not introduce a sizable error.
Following this approach, the overall matrix elementR is

factorized into (i) the product of the leptonic matrix element
that will be integrated over the two-electron phase space
yielding the so-called PSF that depends only on the
leptonic current and the electron wave function at the
surface of the nucleus2 and (ii) the NME.
For the latter, we first reduce each nucleon current JΞK to

its nonrelativistic form by means of a Foldy-Wouthuysen
(FW) transformation, then take the product of the two
currents, and evaluate thematrix elements of the correspond-
ing two-body operator in the nuclear many-body wave
functions. In the FW transformation, we take terms to the
order of jqj=mp. This is a good approximation, since the
momentum transfer in the process is of the order of
jqj ∼ 100 MeV, and therefore jqj=mp ∼ 0.1. In certain cases
of enhanced form factors, higher-order terms in the products
of hadronic currents are also taken into account.
Altogether, this yields the full matrix element

R ¼ G2
F

2mp

X
K;Ξ

ϵKhep1s1 jjΞKjecp2s2ihOþ
F jJΞKJ0ΞK jOþ

I i: ð16Þ

The leptonic matrix elements will be evaluated using the
appropriate electron wave functions in Sec. V. The nucleon
matrix elements are evaluated as discussed above, includ-
ing appropriate q2-dependent form factors, in Secs. IVA
and IV B and the nuclear matrix elements in Sec. IV C.
Putting together the PSFs and NMEs, one can write the

fully differential rate for 0þ → 0þ 0νββ decay as [46–48]3

d2Γ
dE1d cos θ

¼ CwðE1ÞðaðE1Þ þ bðE1Þ cos θÞ; ð17Þ

with

C ¼ G4
Fm

2
e

16π5
; ð18Þ

wðE1Þ ¼ E1E2p1p2; ð19Þ

where E2, p1, and p2 are expressed as functions of E1.
Following the notation of Refs. [46–48], the coefficient

1=mp appearing in Eq. (16) is included in the calculation of
the nuclear matrix elements [see the following Eq. (55)],
and a mass me is added in the numerator to cancel the mass
me in the denominator of the so-called neutrino potential
in Eq. (55).
The total decay rate Γ and the decay half-life T1=2 are

then given by

Γ ¼ ln 2
T1=2

¼ 2C
Z

Qββþme

me

dE1wðE1ÞaðE1Þ: ð20Þ

From Eq. (17), one can calculate the single electron energy
distribution

dΓ
dE1

¼ 2CwðE1ÞaðE1Þ ð21Þ

and the energy-dependent angular correlation

αðE1Þ ¼
bðE1Þ
aðE1Þ

: ð22Þ

Introducing the integrated quantities

A ¼
Z

Qββþme

me

dE1wðE1ÞaðE1Þ;

B ¼
Z

Qββþme

me

dE1wðE1ÞbðE1Þ ð23Þ

and their ratio K ¼ B=A, one obtains the angular distri-
bution

dΓ
d cos θ

¼ Γ
2
ð1þ K cos θÞ: ð24Þ

Although both the single electron energy distribution and
the angular correlation require dedicated experimental
setups, we calculate them nonetheless, since they
contain important information on the underlying
mechanism.

IV. NUCLEAR MATRIX ELEMENTS

A. From quarks to nucleons

We are interested in matrix elements induced by the
quark bilinears appearing in the Lagrangian Eq. (5), i.e., by
the left- and right-handed scalar, vector, and tensor quark
currents. Considering the nucleon isodoublet N ¼ ðpnÞ, the
nucleon matrix elements of these color singlet quark
currents have according to [62] the following structure:

2In the associated 2νββ decay, it will also depend on
the outgoing neutrino wave functions.

3We note in passing that, for 0þ → 2þ 0νββ decay, there is an
additional term in Eq. (17) of the form cðE1Þðcos2 θ − 1=3Þ.
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hpjūð1� γ5Þdjni ¼ N̄τþ½FSðq2Þ � FPSðq2Þγ5�N0; ð25Þ

hpjūγμð1� γ5Þdjni

¼ N̄τþ
�
FVðq2Þγμ − i

FWðq2Þ
2mp

σμνqν

�
N0

� N̄τþ
�
FAðq2Þγμγ5 −

FPðq2Þ
2mp

γ5qμ
�
N0; ð26Þ

hpjūσμνð1� γ5Þdjni ¼ N̄τþ
�
Jμν � i

2
ϵμνρσJρσ

�
N0: ð27Þ

Here we define

Jμν ¼ FT1
ðq2Þσμν þ i

FT2
ðq2Þ

mp
ðγμqν − γνqμÞ

þ FT3
ðq2Þ

m2
p

ðσμρqρqν − σνρqρqμÞ; ð28Þ

and τþ is the isospin-raising operator, transforming a
neutron into a proton. The matrix elements are, in general,
functions of the neutron and proton momenta pn ¼ pN0 and
pp ¼ pN , respectively, and the momentum transfer enter-
ing the form factors is defined as q ¼ pp − pn. In Eq. (26),
we omit the induced scalar and axial-tensor terms; the
corresponding currents can be safely neglected, because
they vanish in the isospin-symmetric limit [63]. Moreover,
they are suppressed by a factor of 1=mp, and they are not
enhanced by a pion resonance.
Important ingredients in Eqs. (25)–(27) are the q2-

dependent form factors FXðq2Þ with X ∈ fS; PS; V;W; A;
P; T1; T2; T3g. We parametrize these except FPSðq2Þ and
FPðq2Þ in the so-called dipole form,

FXðq2Þ ¼
gX

ð1þ q2=m2
XÞ2

; ð29Þ

where the coupling constants gX give the value of the form
factor at zero momentum transfer, gX ¼ FXð0Þ.
For example, the vector form factor can be experimen-

tally determined from the electromagnetic form factor and
from the conserved vector current hypothesis:

FVðq2Þ¼
gV

ð1þq2=m2
VÞ2

;

gV ¼ 1; mV ¼ 0.84GeV: ð30Þ

This parametrization provides a good description of FVðq2Þ
in the range 0 ≤ jqj ≤ 200 MeV of interest in 0νββ decay.
A better parametrization, important for large q2 ≳ 1 GeV2,
is given in Ref. [64], but it is of no interest for the purposes
of the present paper.
The induced form factor FWðq2Þ can also be determined

from the experiment, since it is related to the Pauli form

factor F2ðq2Þ [64] and to the isovector anomalous magnetic
moment of the nucleon:

FWðq2Þ ¼
gW

ð1þ q2=m2
WÞ2

;

gW ¼ μp − μn ¼ 3.70; mW ¼ mV ¼ 0.84 GeV; ð31Þ

where μp − μn is the anomalous isovector magnetic
moment of the proton and neutron.
The axial-vector form factor can also be parametrized in

dipole form, and it is obtained from the experiment:

FAðq2Þ¼
gA

ð1þq2=m2
AÞ2

;

gA¼ 1.269; mA ¼ 1.09GeV: ð32Þ

The value of gA is determined in neutron decay [65], and
mA is obtained from neutrino scattering [66].
The induced form factor FPðq2Þ cannot be directly

obtained from the experiment. We use the parametrization
suggested in Ref. [16], based on the partially conserved
axial-vector current hypothesis:

FPðq2Þ¼
gA

ð1þq2=m2
AÞ2

1

1þq2=m2
π

4m2
p

m2
π

�
1−

m2
π

m2
A

�
; ð33Þ

with the pion mass mπ ¼ 0.138 GeV.
From Eq. (33), we have gP ≡ FPð0Þ ¼ 231. This formula

is consistent with a recent analysis in the chiral perturbation
theory [67], which gives gP ¼ 233, and with recent mea-

surements in muon capture, which give FPðq2Þ jq2j
2mp

at

jqj ¼ 0.88mμ, where mμ ¼ 0.105 GeV is the muon mass.
The calculated value is 8.0, while the measured value is
8.06� 0.55 [68].
A considerable amount of attention has been devoted

recently to the form factors FSðq2Þ and FPSðq2Þ, in
particular, to the values at zero momentum transfer, gS ¼
FSð0Þ and gPS ¼ FPSð0Þ. Quoted values are gS ¼ 1.02�
0.11 and gPS ¼ 349� 9 [69]. Not much is known about the
q2 dependence; for the scalar form factor, which, in the
Breit frame, is the Fourier transform of the matter distri-
bution, a reasonable parametrization is in the dipole form
with gS ¼ 1 and mS ¼ mV ¼ 0.84 GeV:

FSðq2Þ¼
gS

ð1þq2=m2
SÞ2

;

gS¼1; mS¼mV ¼0.84GeV: ð34Þ

The value of the pseudoscalar form factor FPSðq2Þ
diverges at q2 ¼ 0 in the chiral limit, and the results of
lattice calculations depend on the extrapolation procedure.
We take
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FPSðq2Þ ¼
gPS

ð1þ q2=m2
PSÞ2

1

1þ q2=m2
π
;

gPS ¼ 349; mPS ¼ mV ¼ 0.84 GeV: ð35Þ

The question of whether or not the value of gPS is enhanced
as in Ref. [69] is beyond the scope of this paper. The
parametrization (35) reduces to the simple monopole form
1=ð1þ q2=m2

πÞ used in the chiral perturbation theory, but it
includes the finite size of the nucleon.
No experimental information is available for the tensor

form factors. Reference [69] quotes a value of 0.987� 0.055
forFT1

ð0Þ≡ gT1
. An old calculation [62] estimates, from the

MIT bagmodel,FT1
ð0Þ≡gT1

¼1.38,FT2
ð0Þ≡gT2

¼−3.30,
and FT3

ð0Þ≡ gT3
¼ 1.34. In this paper, we take

FTi
ðq2Þ¼ gTi

ð1þq2=m2
Ti
Þ2 ;

mTi
¼mV ¼ 0.84GeV; ð36Þ

with gT1
¼ 1 (and gT2

¼ −3.30 and gT3
¼ 1.34 estimated

from Ref. [62]). The two form factors FT2
ðq2Þ and FT3

ðq2Þ
do not enter the results of this paper but are quoted here for
completeness.

B. Nonrelativistic expansion

To obtain the nuclear matrix elements of interest, we
have to calculate the nonrelativistic expansion of the above
nucleon matrix elements. This form is obtained by a Foldy-
Wouthuysen transformation [70,71], which is an expansion
in powers of the velocity v=c or, equivalently, in jpj=mp.
The resulting expressions are summarized in the following

section, where we use the spatial momentum difference q ¼
pp − pn andmomentum sumQ ¼ pp þ pn. Particular terms
will be listed according to the order in jqj=mp, where we
perform the expansion up to and including terms of the order
of jqj=mp, except for terms incorporating FPðq2Þ and
FPSðq2Þ, which are enhanced as discussed above. In these
cases, we retain terms of the order ofq2=m2

p and even higher.
Scalar bilinears.—The nonrelativistic expansion of the

scalar and pseudoscalar nucleon current corresponding to
JS�P ¼ ð1� γ5Þ can be written as

JS�P ¼ FSðq2ÞI �
FPSðq2Þ
2mp

σ · qþ � � � : ð37Þ

Here, I denotes the 2 × 2 identity matrix, and σ ¼
ðσ1; σ2; σ2ÞT is the vector of Pauli matrices, both operating
in the spin space of the nucleon.
Vector bilinears.—The vector currents corresponding to

JμV�A ¼ γμð1� γ5Þ have four different components (vector,
axial-vector, and induced pseudoscalar and weak magnet-
ism), which can be nonrelativistically expanded as follows:

JμV�A ¼ gμi
�
∓ FAðq2Þσi −

FVðq2Þ
2mp

QiI þ
FVðq2Þ þ FWðq2Þ

2mp
iðσ × qÞi �

FPðq2Þ
4m2

p
qiσ · q

�

þ gμ0
�
FVðq2ÞI �

FAðq2Þ
2mp

σ ·Q ∓ FPðq2Þ
4m2

p
q0σ · q

�
þ � � � : ð38Þ

Tensor bilinears.—The nonzero nuclear components corresponding to the tensor bilinears JμνT�T5
¼ σμνð1� γ5Þ are

JμνT�T5
¼ FT1

ðq2Þgμjgνkεijkσi þ ðgμigν0 − gμ0gνiÞTi �
i
2
εμνρσ½ðgρigσ0 − gρ0gσiÞTi þ FT1

ðq2Þgρmgσnεmniσi� þ � � � ; ð39Þ

where

Ti ¼ i
2mp

½ðFT1
ðq2Þ − 2FT2

ðq2ÞÞqiI þ FT1
ðq2Þðσa ×QÞi�:

ð40Þ

Terms containing the momentum sum Q are called recoil
terms [48].
The nuclear currents can be obtained from Eqs. (37)–

(40) by summing over all neutrons, located at positions ra,
in the initial nucleus as

J Ξ
KðxÞ ¼

X
a

τaþδðx − raÞJΞK;a; ð41Þ

where JΞK;a denotes any of the nucleon currents.4

The short-range 0νββ decay transition involves two such
currents, each transforming one neutron into a proton.
Having the five different terms in the effective Lagrangian
Eq. (5), we thus need to evaluate five different products
of nucleon currents in the nonrelativistic expansion.
Furthermore, we need to sum over all neutrons in the

4For positron emission, τþ is replaced by τ−, and the sum is
over protons.
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initial nucleus, and the corresponding nuclear transition
operators can be expressed as

HKðx; yÞ ¼
X
a≠b

τaþτbþδðx − raÞδðy − rbÞΠΞ
K;ab; ð42Þ

with the products of the relevant nucleon currents ΠΞ
K;ab

given in Appendix A. In the case of the terms 1, 2, and 3,
the nuclear transition operator has no free Lorentz index,
whereas for terms 4 and 5, there remains one free index that
is contracted with that of the electron current.

C. From nucleons to the nucleus

The final and most challenging step in the determination
of the 0νββ NMEs concerns the calculation of the matrix
elements at the nuclear level. This requires an under-
standing of nuclear structure, and, given the highly com-
plex nature of the many-body problem, it is not solvable
from first principles. Above, we have constructed the short-
range nuclear 0νββ transition operators using the general
nucleon operator with their q2 and, thus, distance depend-
ence parametrized by experimentally constrained form
functions. We now define the nuclear matrix elements as

MK ≡ hOþ
F jHKjOþ

I i; ð43Þ

with the transition operator given in Eq. (42) and where
hOþ

F j and hOþ
I j denote the wave functions of the final and

initial nuclear state under consideration, respectively. In
principle, we would also need the wave functions of the
intermediate states formed by a single beta-decay-like
transition from one nucleon current. Exploiting the com-
pleteness of all intermediate states, we instead use the
closure approximation in directly calculating the above
matrix element. This approximation is very well justified in
the case of short-range operators, as the intermediate
transition occurs at very high energies jqj ≈ 100 MeV,
corresponding to the internucleon distance, compared to the
nuclear transition itself at Qββ ≈ 1 MeV.
We concentrate on 0þ → 0þ transitions in this paper. In

this case, all terms containing an odd number of σ and/or an
odd number of q, Q occurrences in Πi vanish, due to
angular momentum and parity selection rules, when only
S1=2 − S1=2 wave approximation of the electron wave
functions is assumed. Using the results in Appendix A,
the matrix elements for the five short-range operators can
be collected. In each case, we keep track of signs
corresponding to different combinations of chiralities.
For the first three operators (i.e., those proportional to
ϵ1, ϵ2, and ϵ3), three sign possibilities are presented, and
they correspond to the following combinations of chiralities
(in this order): RR, LL, and ð1=2ÞðRLþ LRÞ. For the
fourth and fifth operators (those proportional to ϵ4 and ϵ5),
a row of four signs is shown, as in those cases the two
hadronic currents have different Lorentz structures, and

thus all four possible combinations of chiralities have to be
considered (in this order): RR, LL, RL, and LR. To keep
the expressions simple, when all three or four signs are the
same, we show only a single sign. Using this notation, the
matrix elements for the five different short-range operators
read

M1 ¼ g2SMFðþ þ −Þ g2PS
12m2

p
ðM0PP

GT −M0PP
T Þ; ð44Þ

M2 ¼ −2g2T1
MGT; ð45Þ

M3 ¼ g2VMFð− −þÞg2AMAA
GTðþ þ −Þ

×
gAgP
6m2

p
ðM0AP

GT −M0AP
T Þ

þ ðgV þ gWÞ2
12m2

p

�
M0

GT þ 1

2
M0

T

�

ð− −þÞ g2P
24m4

p
ðM00PP

GT −M00PP
T Þ; ð46Þ

Mμ
4 ¼ð− −þþÞigμ0gAgT1

MA
GT

ðþ þ −−Þigμ0 gPgT1

12m2
p
ðM0P

GT −M0P
T Þ; ð47Þ

Mμ
5 ¼ gμ0gSgVMF

ðþ þ −−Þgμ0 gAgPS
12m2

p
ðM̃AP

GT − M̃AP
T Þ

ð− −þþÞgμ0 gPgPS
24m3

p
ðM0q0PP

GT −M0q0PP
T Þ: ð48Þ

In these expressions, we have kept all terms to the order
of 1. InM3, we have retained also the term proportional to
ðFVðq2Þ þ FWðq2ÞÞ2, which is a bit smaller but may still
represent an important contribution of the respective
operator. We have also separated out from the form factors
FXðq2Þ the so-called charges, i.e., the values at q2 ¼ 0 and
FXð0Þ≡ gX. The q dependence is then given by (here
X ∈ fS; V;W; T1; T2; T3g)

h̃ðq2Þ ¼ 1

ð1þ q2=m2
VÞ4

: ð49Þ

We treat separately the A, P, and PS couplings which have
a different q dependence. If the axial-vector coupling A is
present in the first or second power, the q dependence reads

h̃Aðq2Þ ¼
1

ð1þ q2=m2
VÞ2

1

ð1þ q2=m2
AÞ2

; ð50Þ
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h̃AAðq2Þ ¼
1

ð1þ q2=m2
AÞ4

; ð51Þ

respectively.
Similarly, if a single power of pseudoscalar coupling in

combination with the axial-vector coupling A or some other
coupling X is present, then we have

h̃APðq2Þ ¼
1

ð1þ q2=m2
AÞ4

1

ð1þ q2=m2
πÞ
; ð52Þ

h̃Pðq2Þ ¼
1

ð1þ q2=m2
VÞ4

1

ð1þ q2=m2
πÞ
; ð53Þ

respectively, while in the case of the second power of
pseudoscalar coupling the q dependence has the form

h̃PPðq2Þ ¼
1

ð1þ q2=m2
VÞ4

1

ð1þ q2=m2
πÞ2

: ð54Þ

The Fermi (F), Gamow-Teller (GT), and tensor (T)
matrix elements appearing in Eqs. (44)–(48) can be
calculated in any nuclear structure model [31,33,72]. We
follow in this article the formulation of Refs. [16,31], where
the two-body transition operator H is constructed in
momentum space as the product of the so-called neutrino
potential vðqÞ times the form factors h̃ðq2Þ. Since we
consider short-range mechanisms with a δ function in
configuration space, the Fourier transform is a constant,
and the neutrino potential in momentum space is [16,31]

vðqÞ ¼ 2

π

1

memp
; ð55Þ

wherewe have used the standard normalization. Incidentally,
for the long-range mechanism, the neutrino potential is

vðqÞ ¼ 2

π

1

qðqþ ÃÞ ; ð56Þ

where Ã is the closure energy. This formulation allows one
therefore to calculate simultaneously all matrix elements,
short and long range, by simply specifying the neutrino
potential.
As a further aside, to do calculations in coordinate space,

one simply takes the Fourier-Bessel transforms of the
product of the neutrino potential v times the form factor h̃:

hðrÞ ¼ 2

π

Z
∞

0

jλðq2Þ
1

memp
h̃ðqÞq2dq; ð57Þ

where λ ¼ 0 for Fermi and Gamow-Teller contributions
and λ ¼ 2 for a tensor contribution.
Finally, an additional improvement is the introduction of

short-range correlations (SRCs) in the nuclear structure

calculation. These are of crucial importance for short-range
nonstandard mechanisms, and they can be taken into
account by multiplying the potential vðrÞ in coordinate
space by a correlation function fðrÞ squared. The most
commonly used correlation function is the Jastrow function

fJðrÞ ¼ 1 − ce−ar
2ð1 − br2Þ ð58Þ

with a ¼ 1.1 fm−2, b ¼ 0.68 fm−2, and c ¼ 1 for the
phenomenological Miller-Spencer parametrization [73]
and a ¼ 1.59 fm−2, b ¼ 1.45 fm−2, and c ¼ 0.92 for the
Argonne parametrization [74]. Since the formulation
described above is in momentum space, we take SRCs
into account by using the Fourier-Bessel transform
of fJðrÞ.
Introducing

h∘ðq2Þ ¼
2

π

1

memp
h̃∘ðq2Þ ð59Þ

(where the placeholder ∘ is used to note that the same
redefinition is used for all the above defined types of q
dependencies) and the notation

hHabi ¼ hOþ
F j
X
a≠b

τþa τþb HabjOþ
I i; ð60Þ

whereHab denotes any two-body operator, we can write the
Fermi (MF) and Gamow-Teller (MGT) matrix elements
appearing in Eqs. (44)–(48) as

MF ¼ hhðq2Þi; ð61Þ

MGT ¼ hhðq2Þðσa · σbÞi: ð62Þ

When the Gamow-Teller matrix element comes with one
or two powers of the axial-vector coupling, we define

MA
GT ¼ hhAðq2Þðσa · σbÞi; ð63Þ

MAA
GT ¼ hhAAðq2Þðσa · σbÞi: ð64Þ

In the third short-range operator, matrix elements M0
GT

and M0
T appear, which are defined as

1

m2
p
M0

GT ¼
�
q2

m2
p
hðq2Þðσa · σbÞ

	
; ð65Þ

1

m2
p
M0

T ¼
�

1

m2
p

�
q2 −

1

3
ðq · r̂abÞ2

�
hðq2ÞSab

	
: ð66Þ

Since q ∼ 100 MeV in 0νββ decay, these terms are sup-
pressed by a factor ofOð0.01Þ relative to the standard terms
MGT and MT . However, the enhancement of the corre-
sponding form factor partly compensates this; therefore,
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we include them. These matrix elements can be easily
calculated, since the neutrino potential is just a function
of q2.
Similarly, the matrix elements M0P

GT , M
0P
T and M0AP

GT ,
M0AP

T are given by

1

m2
p
M0P

GT ¼
�
q2

m2
p
hPðq2Þðσa · σbÞ

	
; ð67Þ

1

m2
p
M0P

T ¼
�

1

m2
p

�
q2 −

1

3
ðq · r̂abÞ2

�
hPðq2ÞSab

	
ð68Þ

and

1

m2
p
M0AP

GT ¼
�
q2

m2
p
hAPðq2Þðσa · σbÞ

	
; ð69Þ

1

m2
p
M0AP

T ¼
�

1

m2
p

�
q2 −

1

3
ðq · r̂abÞ2

�
hAPðq2ÞSab

	
; ð70Þ

respectively. These terms are also smaller by a factor of
Oð0.01Þ relative to the standard terms MGT and MT .
Nonetheless, this suppression is compensated by the
enhancement of the gP form factor.
Next, we have termsM0PP

GT andM0PP
T contributing to the

first short-range operator, which read

1

m2
p
M0PP

GT ¼
�
q2

m2
p
hPPðq2Þðσa · σbÞ

	
; ð71Þ

1

m2
p
M0PP

T ¼
�

1

m2
p

�
q2 −

1

3
ðq · r̂abÞ2

�
hPPðq2ÞSab

	
: ð72Þ

These matrix elements are smaller by a factor of Oð0.01Þ.
However, if the pseudoscalar coupling gPS is larger by 2
orders of magnitude as claimed in Ref. [69], these terms
become comparable to those with the Fermi and Gamow-
Teller matrix elements MF and MGT or even larger.
The matrix elements M00PP

GT and M00PP
T appearing in the

third short-range operator can be written as

1

m4
p
M00PP

GT ¼
�
q4

m4
p
hPPðq2Þðσa · σbÞ

	
; ð73Þ

1

m4
p
M00PP

T ¼
�
q2

m4
p

�
q2 −

1

3
ðq · r̂abÞ2

�
hPPðq2ÞSab

	
: ð74Þ

Again, since q ∼ 100 MeV in 0νββ decay, these terms are
smaller by a factor ofOð10−4Þ relative to the standard terms
MGT and MT . However, this suppression is again bal-
anced by the enhancement of the form factor gP, which
appears here in the second power. These terms can be easily
calculated, since the neutrino potential is just a function
of q2.

The terms M̃AP
GT and M̃AP

T , also called recoil terms, are
defined as

1

m2
p
M̃AP

GT ¼
�
Q · q
m2

p
hAPðq2Þðσa · σbÞ

	
; ð75Þ

1

m2
p
M̃AP

T ¼
�

1

m2
p

�
Q ·q−

1

3
ðQ · r̂abÞðq · r̂abÞ

�
hAPðq2ÞSab

	
:

ð76Þ

Although these terms are suppressed by a factor of
Oð0.01Þ, if the pseudoscalar coupling gPS is larger by 2
orders of magnitude, they will become important. These
matrix elements are difficult to calculate, since the operator
Q is not simply a function of q2. A good estimate can,
however, be obtained by replacing ðQ · qÞ=m2

p with the
expectation value in the state jOþ

I i, hQ · q=m2
pi ∼ 0.01, in

which case

1

m2
p
M̃AP

GT ¼
�
Q · q
m2

p

	
MAP

GT; ð77Þ

etc.
Finally, the terms M0q0PP

GT and M0q0PP
T appearing in the

fifth matrix element read

1

m3
p
M0q0PP

GT ¼
�
q0q2

m3
p
hPPðq2Þðσa · σbÞ

	
; ð78Þ

1

m3
p
M0q0PP

T ¼
�
q0
m3

p

�
q2 −

1

3
ðq · r̂abÞ2

�
hPPðq2ÞSab

	
: ð79Þ

Since q ∼ 100 MeV and q0 ∼ 10 MeV in 0νββ decay, these
terms are smaller by a factor of Oð10−4Þ relative to the
terms MGT and MT . However, this suppression is bal-
anced by the enhancement of the form factors gP and gPS.
The above basic building blocks are written in terms

of the Pauli spin operators σ, the nucleon momenta
difference q and sum Q, and the direction unit vector
between two nucleons, r̂ab ¼ rab=jrabj. Furthermore, we
use Sab ¼ 3ðσa · r̂abÞðσb · r̂abÞ − ðσa · σbÞ.
Let us remark that, in the case of the short-range operator

O1 incorporating scalar and pseudoscalar quark currents,
the enhancement of the pseudoscalar form factor gPS can
make the third-order term of the nonrelativistic expansion
of the pseudoscalar current important. We anticipate this
term to be of the order of FPSðq2ÞOðq3=m3

pÞ and its
product with the first-order pseudoscalar term of the
expansion would give a contribution F2

PSðq2ÞOðq4=m4
pÞ∼

Oð1Þ. This contribution is not listed in the above para-
graphs, because only terms up to the order of q=mp in the
currents are considered in this paper. However, we
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conjecture that it will always be subdominant to the terms
in Eqs. (71) and (72), which are larger by 2 orders of
magnitude. The exact relative size of these contributions
depends, of course, on the actual size of the corresponding
NMEs, but there is no reason to believe that the NME
involving the third-order term of the expansion should be
exceptionally large.

V. LEPTONIC PHASE-SPACE FACTORS

The leptonic phase-space factors describe the atomic part
of the physics involved in 0νββ decay. They quantify the
effect of the relativistic electrons emitted in the process.
The position-dependent wave function of each electron can
be expanded in terms of spherical waves,

epsðrÞ ¼ e
S1=2
ps ðrÞ þ e

P1=2
ps ðrÞ þ � � � ; ð80Þ

where p is the asymptotic momentum of the electron at a
long distance and s denotes its spin projection. The S1=2 and
the P1=2 waves on the right-hand side of the above
expansion are, respectively, given by [48]

e
S1=2
ps ðrÞ ¼

�
g−1ðE; rÞχs

f1ðE; rÞðσ · p̂Þχs

�
;

e
P1=2
ps ðrÞ ¼ i

�
g1ðE; rÞðσ · r̂Þðσ · p̂Þχs
−f−1ðE; rÞðσ · r̂Þχs

�
; ð81Þ

where gκðE; rÞ and fκðE; rÞ are the radial wave functions of
the “large” and “small” components, respectively. The
electron energy at asymptotically large distances is
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p
, and its spin state is described by the

two-dimensional spinor χs. The Pauli matrices σ here
operate in the electron spin space. The wave functions
satisfy the asymptotic boundary condition

�
gκðE; rÞ
fκðE; rÞ

�
⟶
r→∞ e−iΔ

c
κ

pr

0
BB@

ffiffiffiffiffiffiffiffiffi
Eþme
2E

q
sinðprþ y lnð2prÞ − 1

2
πlκ þ Δc

κÞffiffiffiffiffiffiffiffiffi
E−me
2E

q
cosðprþ y lnð2prÞ − 1

2
πlκ þ Δc

κÞ

1
CCA; ð82Þ

where κ ¼ �ðjþ 1
2
Þ, lκ ¼ j� 1

2
, y ¼ αZFE=p, and Δc

κ is a phase shift. Here, p ¼ jpj, α is the fine structure constant, and j
is the total angular momentum of the electron. Inside the nucleus, the radial wave functions Eq. (81) can be expanded in r
approximated by the leading terms as

�
g−1ðE; rÞ
f1ðE; rÞ

�
≈
�
A−1

Aþ1

�
;

�
g1ðE; rÞ

−f−1ðE; rÞ

�
≈

0
B@ Aþ1

h
1
2
αZF þ 1

3
ðEþmeÞRA

i
r
RA

−A−1

h
1
2
αZF þ 1

3
ðE −meÞRA

i
r
RA

1
CA; ð83Þ

for S1=2 and P1=2 waves, respectively. Here Aκ are nor-
malization constants, and RA is the radius of the daughter
nucleus. In the limit ZF → 0, the radial wave functions
acquire the form of spherical Bessel functions, while the
normalization constants become A�1 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE ∓ meÞ=ð2EÞ
p

.
In our calculations, however, the above shown approxima-
tions are not employed, as we derive the phase-space
factors using numerically calculated radial wave functions
as described in Ref. [61]. Therein, a numerical solution is
performed using a piecewise exact power series expansion
of the radial wave functions. On top of the Coulomb
potential of the daughter nucleus (with charge ZF),
VðrÞ ¼ −αZF=r, the nuclear size and electron cloud
screening corrections are taken into account. As a result,
the considered potential reads

VðrÞ ¼
(
−αZF

3−ðr=RAÞ2
2RA

× φðrÞ; r < R;

− αZF
r × φðrÞ; r ≥ R;

ð84Þ

where φðrÞ is the Thomas-Fermi function taking into
account the electron screening. The nontrivial r depend-
ence of the above potential for r < R is a result of the finite
nuclear size, when a uniform charge distribution in a sphere
of radius RA ¼ R0A1=2 with R0 ¼ 1.2 fm is considered. In
order to calculate the electron currents involved in 0νββ
decay, we in principle need to evaluate the wave functions
at the position of the corresponding transition. To be exact,
this would require the wave function of the nucleon
undergoing the respective decay, ideally from the nuclear
structure model, or using simplified harmonic oscillator
wave functions [61].
Instead, we follow Ref. [61] and adopt the approxima-

tion of evaluating the electron wave function at the nuclear
radius r ¼ RA:

f�1ðEÞ≡ f�1ðE;RAÞ;
g�1ðEÞ≡ g�1ðE;RAÞ: ð85Þ
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This choice reflects the fact that nucleons largely decay at
the surface of the nucleus due to Pauli blocking of inner
states.
For 0þ → 0þ transitions, parity-even nucleon operators

need to be combined with S1=2 − S1=2 and P1=2 − P1=2

electron wave functions, while parity-odd operators need to
be combined with S1=2 − P1=2 wave functions. The calcu-
lation of the leptonic squared matrix elements are outlined
in Appendix B, and the results for S1=2 − S1=2 wave
functions are

X
s1;s2

ðē1ð1þ γ5Þec2Þðē1ð1� γ5Þec2Þ†
1 − Pe1e2

2

¼ 2½fð0Þ11 þ fð1Þ11�ðp̂1 · p̂2Þ�; ð86Þ
X
s1;s2

ðē1γμγ5ec2Þðē1γνγ5ec2Þ†
1 − Pe1e2

2

¼ 1

8
½fð0Þ66 þ fð1Þ66 ðp̂1 · p̂2Þ� ðμ; ν ¼ 0Þ; ð87Þ

X
s1;s2

ðē1γμγ5ec2Þðē1ð1� γ5Þec2Þ†
1 − Pe1e2

2

¼∓ 1

2
fð0Þ16 ðμ ¼ 0Þ: ð88Þ

Here, p̂1 · p̂2 ¼ cos θ is the scalar product between the
asymptotic momentum vectors of the two electrons, yield-
ing the opening angle 0 ≤ θ ≤ π. In Eq. (86), if both the
involved scalar currents are left-handed, the same result as

for two right-handed currents holds. The quantities fð0Þij ¼
fð0Þij ðE1; E2Þ and fð1Þij ¼ fð1Þij ðE1; E2Þ are given by

fð0Þ11 ¼ jf−1−1j2 þ jf11j2 þ jf−11j2 þ jf1−1j2;
fð1Þ11� ¼ −2½f−11f1−1 � f−1−1f11�; ð89Þ

fð0Þ66 ¼ 16½jf−1−1j2þjf11j2�; fð1Þ66 ¼ 32½f−1−1f11�; ð90Þ

fð0Þ16 ¼ 4½jf11j2 − jf−1−1j2�; fð1Þ16 ¼ 0: ð91Þ

We note that our results agree with those of Päs et al. [13]
and Tomoda [48], except for the extra interference term

fð1Þ11− in Eq. (89) between the left- and right-handed scalar
electron currents and the fact that these authors use the
notation of Doi [46,47], while we have used that of Tomoda
[48]. The phase-space factors corresponding to μ ¼ j or
ν ¼ j in Eqs. (87) and (88) are not shown, as their
corresponding contributions to 0νββ decay do not trigger
a 0þ → 0þ transition, in the case of S1=2 − S1=2 approxi-
mation, we are interested in (although they are relevant
when general 0þ → Jþ transitions are considered). All the
above listed phase-space factors are given in terms of the

underlying energy-dependent wave functions of the two
electrons

f−1−1 ¼ g−1ðE1Þg−1ðE2Þ; ð92Þ

f11 ¼ f1ðE1Þf1ðE2Þ; ð93Þ

f−11 ¼ g−1ðE1Þf1ðE2Þ; ð94Þ

f1−1 ¼ f1ðE1Þg−1ðE2Þ: ð95Þ

VI. NUMERICAL RESULTS

A. Decay half-life and angular correlation

Combining the above results, the coefficients aðE1Þ and
bðE1Þ in the fully differential rate Eq. (17) for 0þ → 0þ
0νββ decay are given, respectively, by

aðE1Þ ¼ 2fð0Þ11

����X3
I¼1

ϵIMI

����
2

þ 1

8
fð0Þ66

����X5
I¼4

ϵIMI

����
2

∓ fð0Þ16 Re

��X3
I¼1

ϵIMI

��X5
I¼4

ϵIMI

���
; ð96Þ

bðE1Þ ¼ 2fð1Þ11�

����X3
I¼1

ϵIMI

����
2

�
þ 1

8
fð1Þ66

����X5
I¼4

ϵIMI

����
2

: ð97Þ

They are expressed in terms of the NMEs in Eqs. (44)–(48)
and the PSFs in Eqs. (89)–(91), where the summations as
indicated are over the different current types i ¼ 1, 2, 3, 4, 5
including their different chiralities, I ¼ ði; XYZÞwith X, Y,
Z ∈ fL;Rg. In Eq. (96), the sign in front of fð0Þ16 is negative
(positive) if the chirality of the electron scalar current
involved in the interference term is R (L). In Eq. (97), the�
in the subscript of the norm symbolically denotes that the
terms containing ϵI and ϵ�J corresponding to the same

electron chiralities are accompanied by fð1Þ11þ, while, for
terms with opposite electron chiralities, the respective PSF

is given by fð1Þ11−. The contribution of the interference term
between currents i ¼ 1, 2, 3 and i ¼ 4, 5 vanishes in bðE1Þ
due to fð1Þ16 ¼ 0 in Eq. (91).
The basic nuclear matrix elements MF, MGT , and MT

on which the NMEs MI are based are given in Table II
for selected nuclei. The values are taken from Table IV
of Ref. [32]. These matrix elements are given in dimen-
sionless units; that is, they are multiplied by the mass-
number-dependent radius RA ¼ R0A1=3 of the nucleus,
where R0 ¼ 1.2 fm.
We numerically calculate the electron wave functions

according to Ref. [61] and as described in the previous
section. Combining Eqs. (18), (19), (96), and (97), we then
determine the single electron distribution dΓ=dE1 and the
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angular correlation αðE1Þ for the three relevant phase-space
factors that can occur under the presence of short-range

operators: fðaÞ11 (for mechanisms i ¼ 1, 2, 3 with a scalar

electron current), fðaÞ66 (for mechanisms i ¼ 4, 5 with an

axial-vector electron current), and fð0Þ16 (for interference
between the two classes). In the latter case, the contribution

fð1Þ16 to the angular coefficient bðE1Þ vanishes identically.
The electron phase-space distribution f11 is identical to that
of the standard mass mechanism, calculated in the closure
approximation. The results are shown in Fig. 2 for the 0νββ
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FIG. 2. Left panel: Single electron energy distribution dΓ=dEkin
1 as a function of the kinetic energy Ekin

1 ¼ E1 −me for the three
different phase-space factors in Eq. (96), namely, f11, f66, and f16. Right panel: Energy-dependent angular correlation αðEkin

1 Þ between
the two electrons as a function of the kinetic energy Ekin

1 for the phase-space factors f11 and f66 (identically zero for f16). From top to
bottom, the plots show the results for the three 0νββ decay isotopes 76Ge, 130Te, and 136Xe.

TABLE II. Nuclear matrix elements MF, MGT , and MT for
selected nuclei, adopted from Ref. [32].

MF MGT MT

76Ge −42.8 104.0 −26.9
82Se −37.1 87.2 −27.3
100Mo −46.8 111.0 24.2
130Te −37.9 84.8 −16.6
136Xe −29.7 66.8 −12.7
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decay isotopes 76Ge, 130Te, and 136Xe. We plot both the
normalized single energy distributions and the angular
correlation as functions of the kinetic energy Ekin

1 ¼ E1 −
me of one of the electrons; i.e., the range is from zero up to
the Qββ value of the respective isotope.
In all scenarios, the single energy distribution dΓ=dEkin

1

is of a hill-like shape; i.e., the two electrons preferably share
the available kinetic energy equally. There is only a small
difference between the f11 and f66 case, with the latter
having a slightly flatter profile, that is unlikely to be
distinguishable experimentally. The term f16, correspond-
ing to an interference between i ¼ 1, 2, 3 and i ¼ 4, 5
mechanisms, has a more significantly flatter profile.
The angular correlation αðEkin

1 Þ is negative for f11 and
positive for f66; i.e., in the former case, the electrons are
preferably emitted back to back, whereas in the latter case
they preferably fly in a similar direction. This allows one to
potentially distinguish the scenarios resulting in f66 from
the standard mass mechanism as well as from scenarios
corresponding to f11.
Following Ref. [61], we define the integrated PSFs

GðaÞ
ij ¼ 2C

ln2

gðaÞij

4R2
A

Z
Qββþme

me

dE1wðE1ÞfðaÞij ðE1;Qββþ2me−E1Þ;

ð98Þ

with gð0Þ11 ¼ 2, gð1Þ11 ¼ 2, gð0Þ66 ¼ 1=8, gð1Þ66 ¼ 1=8, gð0Þ16 ¼ 1,

and gð1Þ16 ¼ 0 as well as C and wðE1Þ as defined in Eqs. (18)
and (19), respectively. The factor 1=R2

A has been introduced
in Eq. (98) to conform with standard notation to compen-
sate for the corresponding factor in the NMEs as discussed

above. The numerical values of the PSFsGðaÞ
ij , calculated in

analogy with Ref. [61], are given in Table III. As mentioned

before, the PSFGð1Þ
16 vanishes identically; in addition,Gð1Þ

11−,
corresponding to the interference between a right-handed
and left-handed scalar electron current, is also zero as
indicated in Table III.
With the above PSFs, the inverse 0νββ decay half-life is

then given by

T−1
1=2 ¼ Gð0Þ

11

����X3
I¼1

ϵIMI

����
2

þ Gð0Þ
66

����X5
I¼4

ϵIMI

����
2

∓ Gð0Þ
16 Re

��X3
I¼1

ϵIMI

��X5
I¼4

ϵIMI

���
: ð99Þ

Analogous to Eq. (96), the sign in front of Gð0Þ
16 is negative

(positive) if the chirality of the electron scalar current
involved in the interference term is R (L).
We can also calculate the integrated angular correlation

factors as

Kjk ¼
B
A
¼ Gð1Þ

jk

Gð0Þ
jk

; ð100Þ

in the three different cases jk ¼ 11, 66, and 16. The
numerical values of K11 and K66 are also listed in
Table III, whereas K16 ¼ 0 is always identically zero.
As already discussed, in view of the opposite sign for
11 and 66 in Table III, an eventual measurement of the
angular correlation will allow a discrimination of the two
types of nonstandard mechanisms.

B. Bounds on couplings

In principle, a given underlying particle physics model
may give rise to several contributions, and/or mixing
among the corresponding Wilson coefficients will induce
contributions through radiative effects from the scale of
new physics, through the electroweak scale and down to the
scale of QCD. The above formulas for the decay rate take
into account all possible short-range contributions where
the ϵI factors are to be understood to be effective at the
QCD scale. To determine the numerical sensitivity to the ϵI
factors, we here make the commonly considered simplify-
ing assumption that only one term ϵI is different from zero
and, thus, only one mechanism contributes at a time.
The resulting upper limits on the ϵI factors are estimated

in Table IV, based on the above calculation of the 0νββ half-
life and using the most stringent experimental bounds for
the isotopes 76Ge [75], 130Te [76], and 136Xe [77]. In

TABLE III. Phase-space factors GðiÞ
jk for selected nuclei, calculated in analogy with Ref. [61], and corresponding angular correlation

factors K11 and K66 (K16 ¼ 0 is always identically zero). All PSFs are given in units of 10−15 yr−1 as indicated.

GðiÞ
jk [10−15 yr−1] Gð0Þ

11 Gð0Þ
66 Gð0Þ

16 Gð1Þ
11þ Gð1Þ

11− Gð1Þ
66 Gð1Þ

16
K11 K66

76Ge 4.72 2.64 1.7 −3.90 0 1.95 0 −0.83 0.74
82Se 20.4 10.8 5.9 −18.1 0 9.10 0 −0.89 0.84
100Mo 31.8 17.0 8.4 −28.6 0 14.2 0 −0.90 0.84
130Te 28.4 15.3 8.7 −24.8 0 12.4 0 −0.87 0.81
136Xe 29.2 15.7 9.0 −25.4 0 12.7 0 −0.87 0.81
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Table V, we then show the estimated reach with respect to
the effective couplings assuming a common future exper-
imental sensitivity of Tfuture

1=2 ¼ 1027 yr including two addi-

tional potentially interesting isotopes, 82Se and 100Mo. In
both tables, upper limits on the absolute values jϵXYi j of the
effective couplings are shown. Different chiralities of the
quark currents in the operators lead to different bounds as
indicated; here ϵXXi denotes the case where the chiralities of
the two quark currents are equal, i.e., XX ¼ LL and
XX ¼ RR. For ϵ2 and ϵ4, the bounds do not depend on
the choice of chiralities.
We would like to stress that, in constructing these tables,

we have used the values of MF, MGT , and MT given in
Table II and we estimate the values of the other NMEs
involved by replacing ðq=mpÞ2 ¼ 0.01 as a rough average
and by neglecting the effect of differently shaped q2

dependence of form factors. We do not attempt to assess
the resulting uncertainty, and more accurate results based
on the actual calculation of the additional NMEs will be
reported in a future work.

C. QCD running of couplings

The above limits on the effective couplings of exotic short-
range mechanisms have been so far implicitly assumed to
apply at theQCD scaleΛQCD ≈ 1 GeVwith one coupling set
different from zero. Following Ref. [78], it is possible to be
more accurate andassume eachof these couplings to exist at a
certain new physics scale ΛNP ≈ 1 TeV and run it down to

ΛQCD, where the appropriate bound can be set employing the
experimental limit on 0νββ decay half-life. Consequently,
the values obtained in this way can be compared with
constraints derived from collider experiments.
The renormalization group equation (RGE) for a set of

coupled Wilson coefficients c ¼ ðc1; c2;…; cnÞT reads

dcðμÞ
d log μ

¼ γT · cðμÞ; ð101Þ

where γ is the anomalous dimension matrix in the MS
scheme. At one-loop order, it is given by γ¼−2ðb−2CFIÞ,
with CF being the color factor and b a μ-independent
constant matrix. The solution to Eq. (101) is most con-
veniently written in matrix form:

cðμÞ ¼ Uðμ;ΛNPÞ · cðΛNPÞ; ð102Þ

where μ and ΛNP are the low- and high-energy scales,
respectively, between which the coefficients are evolved.
We apply the procedure sketched above to the case of the

effective couplings cI ≡ ϵIð1 TeVÞ of short-range opera-
tors triggering 0νββ decay at the scale ΛNP ¼ 1 TeV. In
this case, the evolution matrix U ¼ UðΛQCD;ΛNPÞ of
Wilson coefficients between ΛNP and ΛQCD is rather sparse;
its only nonzero elements read [78]

TABLE IV. Estimates of upper limits on the absolute values of the ϵI couplings (in units of 10−10) from current experimental bounds,
assuming only one contribution is different from zero at a time. The chiralities of the involved quark currents are specified, as the
corresponding bounds differ. The label XX stands for the case when both chiralities are the same, i.e., XX ¼ RR or XX ¼ LL. The
experimental bounds at 90% confidence level, reported by recent searches at KamLAND-Zen [77], GERDA [75], and CUORE [76] are
included.

Texp
1=2½y� jϵXX1 j jϵLR1 j jϵXX2 j jϵXX3 j jϵLR3 j jϵXX;LR4 j jϵXX5 j jϵRL;LR5 j

76Ge 5.3 × 1025 [75] 1.5 1.5 190 110 220 250 60 50
130Te 2.8 × 1024 [76] 3.5 3.4 420 240 490 550 140 120
136Xe 1.1 × 1026 [77] 0.57 0.57 84 50 110 110 23 19

TABLE V. Sensitivity estimates on the absolute values of the ϵI couplings (in units of 10−10) from a prospective future experimental
sensitivity Tfuture

1=2 ¼ 1027 yr, assuming only one contribution is different from zero at a time. The label XX stands for the case when both
chiralities are the same, i.e., XX ¼ RR or XX ¼ LL.

Texp
1=2 [y] jϵXX1 j jϵLR1 j jϵXX2 j jϵXX3 j jϵLR3 j jϵXX;LR4 j jϵXX5 j jϵRL;LR5 j

76Ge 1027 0.35 0.35 44 26 50 58 14 11
82Se 1027 0.19 0.19 25 15 30 34 7.8 6.5
100Mo 1027 0.2 0.2 16 8.9 16 20 8.7 6.5
130Te 1027 0.18 0.18 22 13 26 29 7.5 6.1
136Xe 1027 0.19 0.19 28 17 35 38 7.6 6.4

GRAF, DEPPISCH, IACHELLO, and KOTILA PHYS. REV. D 98, 095023 (2018)

095023-16



UXX
ð12Þ ¼

�
2.39 0.02

−3.83 0.35

�
; ULR

ð31Þ ¼
�
0.84 −2.19
0 4.13

�
;

UXX
ð45Þ ¼

�
0.35 −0.96i
−0.06i 2.39

�
;

UXX
ð3Þ ¼ 0.70; ULR

ð4Þ ¼ 0.62; ULR
ð5Þ ¼ 4.13; ð103Þ

where the subscripts denote the respective short-range
operator(s) and the superscripts the chiralities of the quark
currents involved. For example, the matrix UXX

ð12Þ describes
the mixing between the first and second short-range
operators involving quark currents with the same chiral-
ities. Using Eq. (103) and the approximated values of
NMEs Eqs. (44)–(48), the corresponding bounds on
couplings cI are obtained and shown in Table VI.
Analogous to Table IV, we take only one effective coupling
different from zero at a time. The difference is that we make
this assumption now at the scale ΛNP and we use the above
Wilson RGE solution to evolve the couplings to ΛQCD to
calculate the 0νββ decay rate, potentially with more than
one coupling active due to mixing.
The resulting bounds on the couplings jcIj at ΛNP,

including QCD running effects, displayed in Table VI
are weaker or more stringent than those in Table IV,
depending on the operator in question. It should be noted
that the limit on jϵ4j splits into two different values cXX4 and
cLR4 , since the running depends on the quark current
chiralities. As for the effects of operator mixing, the limits
on jc4j are, for example, less stringent due to the size of the
corresponding RG evolution matrix elements, which are
always smaller than 1. In the case of the mixing between
OXX

1 andOXX
2 , the limit on jcXX2 j is not much affected by the

mixing, because the relevant element of the evolution
matrix is small, ½UXX

ð12Þ�12 ¼ 0.02; hence, the expectedly

strong contribution from OXX
1 (large NMEs) to cXX2 is

suppressed. As a result, the bounds in Table VI are not
drastically different from those in Table IV, despite the
strong variation in sensitivity to the couplings ϵi.

VII. SUMMARY AND CONCLUSION

In this article, we have developed a general formalism for
short-range mechanisms contributing to neutrinoless dou-
ble beta decay in an effective operator approach. Such
contributions will arise when the lepton number is broken
at a new physics scale ΛNP much larger than the typical

energy scale of 0νββ decay q ≈ 100 MeV. We have
calculated the expected 0νββ half-lives by making use of
the phase-space factors calculated in the same way, as
described in Ref. [61] and the leading-order nuclear matrix
elements of Ref. [32], where we especially elucidate the
different contributions arising from general form factors
in the nucleon currents. Unlike, for example, Ref. [13], we
calculate all terms of the order of q2=m2

p in the non-
relativistic expansion of the combined nucleon currents.
Some of these terms play an important role, as, e.g., the
pseudoscalar terms which are enhanced by a large value of
gPS or gP. This consequently results in additional NMEs in
Eqs. (44)–(48) not accounted for in Ref. [13]. Furthermore,
we also evaluate new phase-space factors originating from
the electron currents, including interference effects of
different short-range contributions. The results of the
present paper complement those of Ali, Borisov, and
Zhuridov [50] for long-range neutrinoless double beta
decay. We also find that the angular correlation between
the two emitted electrons is different for different mech-
anisms, although in our case there are only two types of
angular correlations, one for terms 1, 2, and 3 and one for
terms 4 and 5 of the effective Lagrangian.
Using experimental bounds on half-lives and estimating

the novel matrix elements arising in short-range contribu-
tions, we have calculated the numerical limits on the
effective new physics parameters ϵI. To leading order,
only the standard Fermi, Gamow-Teller matrix elements
appear, but especially the enhanced values of the exotic and
induced pseudoscalar couplings in the form factor approach
necessitate the inclusion of higher-order terms in q=mp.
This then requires the determination of different nuclear
matrix elementsM0

F,M
0
GT ,M

0
T ,M

00
F,M

00
GT , andM

00
T , the

calculation of which is currently under way and will be
presented in a subsequent publication. They are crucially
important to accurately determine dominant contributions
to short-range 0νββ decay and to verify the strong limits we
obtain on the effective new physics parameters ranging
between ϵI ≈ 10−10 and 10−7, which correspond to new
physics scales in the multi-TeV region. Short-range con-
tributions scale as ϵ ∝ 1=Λ5

NP, and thus an increase in
sensitivity on ϵ by an order of magnitude will improve a
limit on ΛNP only by a factor of ≈1.6. Nevertheless,
accurate calculations of the limits and sensitivities are
crucially important, as they probe the phenomenologically
interesting TeV scale. A robust map of potential sources of
lepton number violation in this energy region will help us to

TABLE VI. As in Table IV but for the effective couplings defined at the average new physics scale ΛNP ¼ 1 TeV.

Texp
1=2½y� jcXX1 j jcLR1 j jcXX2 j jcXX3 j jcLR3 j jcXX4 j jcLR4 j jcXX5 j jcRL;LR5 j

76Ge 5.3 × 1025 [75] 0.62 0.36 88 160 260 580 400 25 12
130Te 2.8 × 1024 [76] 1.4 0.83 200 350 580 1300 880 59 28
136Xe 1.1 × 1026 [77] 0.24 0.14 32 72 130 250 190 9.6 4.7
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get a better understanding of the mechanism of neutrino
mass generation.
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Note added.—Recently, we noticed the preprint [79], which
discusses short-range contributions as well but using a
complementary approach based on the chiral effective field
theory.

APPENDIX A: NUCLEON CURRENT PRODUCTS

In the following, we explicitly show the products of the
nonrelativistically approximated hadronic currents for each
of the five terms of the effective short-range Lagrangian
Eq. (5). Generally, we include all the terms up to linear
order in q=mp; from higher orders, only terms enhanced by
large form factors FPS and/or FP are kept. All the products
are symmetrized in indices a ↔ b labeling individual
nucleons in the nuclei. In the case of each term, we keep
track of signs corresponding to different combinations of
chiralities, and these signs we show as a row vector in
front of every single term of the expressions. In the case of
the first three products of hadronic currents (i.e., those
proportional to ϵ1, ϵ2, and ϵ3), three possibilities
are presented, and they correspond to the following
combinations of chiralities (in this ordering): RR, LL,

and ð1=2ÞðRLþ LRÞ. For the fourth and fifth products
(proportional to ϵ4 and ϵ5), a row of four signs is shown, as
in those cases the two hadronic currents have different
Lorentz structures; thus, all four possible combinations of
chiralities have to be considered (in this ordering): RR, LL,
RL, and LR.
Term 1: JJj.—The product of currents JJ is

Π1≡1

2
½J∘;aJ∘;bþJ∘;bJ∘;a�

¼ ðþþþÞF2
Sðq2ÞIaIb ½Oð1ÞS−S�

ðþþ−ÞF
2
PSðq2Þ
4m2

p
ðσa ·qÞðσb ·qÞþ �� � ; ½Oð100ÞS−S�

ðA1Þ

where the term proportional to F2
PSðq2Þ can be recoupled

using the following relation:

ðσa · qÞðσb · qÞ ¼
1

3
ðσa · σbÞq2 −

1

3
½q2 −

1

3
ðq · r̂abÞ2�Sab;

ðA2Þ

with Sab ¼ 3ðσa · r̂abÞðσb · r̂abÞ − ðσa · σbÞ.
Term 2: JμνJμνj.—For the second term of the short-range

part of the Lagrangian, we get the following approximation
of the nuclear currents:

Π2 ≡ 1

2
½Jμν∘;aJ∘μν;b þ Jμν∘;bJ∘μν;a�

¼ ð− − −Þ2F2
T1
ðq2Þðσa · σbÞ þ � � � : ½Oð1ÞS − S�

ðA3Þ

Term 3: JμJμj.—Approximating the nuclear currents for
the third term, we obtain

Π3 ≡ 1

2
½Jμ∘;aJ∘μ;b þ Jμ∘;bJ∘μ;a�

¼ ðþ þþÞF2
Vðq2ÞIaIb ½Oð1ÞS − S�

ð− −þÞF2
Aðq2Þðσa · σbÞ ½Oð1ÞS − S�

ðþ þ −Þ2FAðq2ÞFPðq2Þ
4m2

p
ðσa · qÞðσb · qÞ ½Oð1ÞS − S�

ðþ þ þÞ ðFVðq2Þ þ FWðq2ÞÞ2
4m2

p
ðσa × qÞðσb × qÞ ½Oð0.1ÞS − S�

ð− −þÞF
2
Pðq2Þ
16m4

p
q2ðσa · qÞðσb · qÞ þ � � � ; ½Oð1ÞS − S� ðA4Þ

where the term proportional to ðFVðq2Þ þ FWðq2ÞÞ2 can be recoupled as follows:
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ðσa × qÞðσb × qÞ ¼ −
1

3
ðσa · σbÞq2 −

1

6
½q2 −

1

3
ðq · r̂abÞ2�Sab; ðA5Þ

and as before Sab ¼ 3ðσa · r̂abÞðσb · r̂abÞ − ðσa · σbÞ.
Term 4: JμJμνjν.—The product of the tensor and vector nuclear current in the fourth term can be nonrelativistically

approximated as

Π4ν;ab ≡ 1

2
½Jμ∘;aJ∘μν;b þ Jμ∘;bJ∘μν;a�

≈ gν0


ð− −þþÞiFAðq2ÞFT1

ðq2Þðσa · σbÞ ½Oð1ÞS − S�

ðþ þ −−Þi FPðq2ÞFT1
ðq2Þ

4m2
p

ðσa · qÞðσb · qÞ
�

½Oð1ÞS − S�

þ gνi


ðþ − −þÞ i

2
FVðq2ÞFT1

ðq2ÞðIaσbi þ IbσaiÞ ½Oð1ÞS − P�

ð− − −−Þi FVðq2Þ½FT1
ðq2Þ − 2FT2

ðq2Þ�
2mp

qiIaIb ½Oð0.1ÞS − P�

ð− − −−ÞFVðq2ÞFT1
ðq2Þ

4mp

× ½Iaðσb ×QÞi þ Ibðσa ×QÞi� ½Oð0.1ÞS − P�

ð− − −−ÞFVðq2ÞFT1
ðq2Þ

4mp
× ½Iaðσb ×QÞi þ Ibðσa ×QÞi� ½Oð0.1ÞS − P�

ð− − −−Þi ½FVðq2Þ þ FWðq2Þ�FT1
ðq2Þ

4mp

× ½2qiðσa · σbÞ − σaiðq · σbÞ − σbiðq · σaÞ� ½Oð0.1ÞS − P�

ð− −þþÞFAðq2ÞFT1
ðq2Þ

4mp
½ðσa ·QÞσbi þ ðσb ·QÞσai� ½Oð0.1ÞS − P�

ðþ þ −−ÞFAðq2Þ½FT1
ðq2Þ − 2FT2

ðq2Þ�
4mp

× ½ðσa × qÞiIb þ ðσb × qÞiIa� ½Oð0.1ÞS − P�

ð− −þþÞi FAðq2ÞFT1
ðq2Þ

4mp

× ½σaiðQ · σbÞ þ σbiðQ · σaÞ − 2Qiðσa · σbÞ� ½Oð0.1ÞS − P�

ð− −þþÞi FPðq2ÞFT1
ðq2Þ

8m2
p

q0 × ½ðσa · qÞσbi þ ðσb · qÞσai� ½Oð0.1ÞS − P�

ðþ þ −−ÞFPðq2ÞFT1
ðq2Þ

16m3
p

½σaiðq ·QÞðq · σbÞ

þ σbiðq ·QÞðq · σaÞ − 2Qiðq · σbÞðq · σbÞ�
�
þ � � � : ½Oð0.1ÞS − P� ðA6Þ
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Term 5: JμJjμ.—Approximating the nuclear currents in this case, we obtain

Πμ
5 ≡ 1

2
½Jμ∘;aJ∘;b þ Jμ∘;bJ∘;a�

≈ gμ0



ðþ þ þþÞFSðq2ÞFVðq2ÞIaIb ½Oð1ÞS − S�

ðþ þ −−ÞFPSðq2ÞFAðq2Þ
8m2

p
½ðσa ·QÞðσb · qÞ þ ðσa · qÞðσb ·QÞ� ½Oð1ÞS − S�

ð− −þþÞFPSðq2ÞFPðq2Þ
8m3

p
q0ðσa · qÞðσb · qÞg ½Oð1ÞS − S�

þ gμi



ð−þ −þÞFSðq2ÞFAðq2Þ

2
ðσiaIb þ σibIaÞ ½Oð1ÞS − P�

ð− − −−ÞFSðq2ÞFVðq2Þ
2mp

QiIaIb ½Oð0.1ÞS − P�

ðþ þ þþÞi FSðq2Þ½FVðq2Þ þ FWðq2Þ�
4mp

× ½ðσa × qÞiIb þ ðσb × qÞiIa� ½Oð0.1ÞS − P�

ð− −þþÞFPSðq2ÞFAðq2Þ
4mp

½σiaðσb · qÞ þ σibðσa · qÞ� ½Oð10ÞS − P�

ð−þþ−ÞFPSðq2ÞFVðq2Þ
8m2

p
Qi½Iaðσb · qÞ þ Ibðσa · qÞ� ½Oð1ÞS − P�

ðþ −þ−ÞFSðq2ÞFPðq2Þ
8m2

p
qi½ðσa · qÞIb þ ðσb · qÞIa� ½Oð1ÞS − P�

ðþ þ −−ÞFPSðq2ÞFPðq2Þ
8m3

p
qiðσa · qÞðσb · qÞ

�
þ � � � : ½Oð10ÞS − P� ðA7Þ

APPENDIX B: LEPTONIC MATRIX ELEMENTS

Terms 1, 2, and 3.—The electron current for these terms is

j ¼ ē1ðxÞð1� γ5Þec2ðxÞ: ðB1Þ

Note that both the electron wave functions depend on the same coordinate variable, as a contact interaction is considered. In
the S1=2 − S1=2 wave approximation and using Tomoda’s notation, we obtain

ē1ð1� γ5Þec2 ≈ ðēp1sÞS1=2ð1� γ5Þðecp2s0
ÞS1=2

¼ ðeS1=2p1s Þ†γ0ð1� γ5Þiγ2ðeS1=2p2s0
Þ�

¼ ð g−1ðϵ1; rÞχ†s f1ðϵ1; rÞχ†sðσ · p̂1Þ Þγ0ð1� γ5Þiγ2
�

g−1ðϵ2; rÞχs0
f1ðϵ2; rÞðσ · p̂2Þχs0

�
; ðB2Þ

where all the matrices are considered in the standard Dirac representation,

γ0 ¼
�
1 0

0 −1

�
; γ ¼

�
0 σ

−σ 0

�
; γ5 ¼

�
0 1

1 0

�
; C ¼ iγ2γ0 ¼

�
0 −iσ2

−iσ2 0

�
: ðB3Þ

Next, we expand and square Eq. (B2). After summing over spins and using the properties of the spinors χs, we get
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X
s;s0

½ðf−11χ†sðσ · p̂2Þσ2χs0 þ f1−1χ
†
sðσ · p̂1Þσ2χs0 Þ

� ðf−1−1χ†sσ2χs0 þ f11χ
†
sðσ · p̂1Þðσ · p̂2Þσ2χs0 Þ�2

¼ 2½fð0Þ11 þ fð1Þ11þðp̂1 · p̂2Þ�; ðB4Þ

where fð0Þ11 and fð1Þ11þ are defined in Eq. (89). For the interference term combining a left-handed with a right-handed electron

current, the calculation is analogous to the procedure shown above, but the plus sign in the definition of fð1Þ11 would change
to a minus sign.
Terms 4 and 5.—The electron current for these terms is

jμ ≡ ē1ðxÞγμγ5ec2ðxÞ: ðB5Þ
In the S1=2 − S1=2 approximation, we have

ē1γμγ5ec2 ≈ ðēp1sÞS1=2γμγ5ðecp2s0
ÞS1=2

¼ ðeS1=2p1s Þ†γ0γμγ5iγ2ðe
S1=2
p2s0

Þ�

¼
�
g−1ðϵ1; rÞχ†s f1ðϵ1; rÞχ†sðσ · p̂1Þ

�
γ0γμγ5iγ2

�
g−1ðϵ2; rÞχs0

f1ðϵ2; rÞðσ · p̂2Þχs0
�
: ðB6Þ

For μ ¼ 0, after squaring, summing over spins, and using the properties of the spinors χs, we obtain

X
s;s0

½f−1−1χ†sσ2χs0 þ f11χ
†
sðσ · p̂1Þðσ · p̂2Þσ2χs0 �2 ¼

1

8
½fð0Þ66 þ fð1Þ66 ðp̂1 · p̂2Þ�; ðB7Þ

where fð0Þ66 and fð1Þ66 are defined in Eq. (90). A similar derivation is possible for spatial μ ¼ k; however, as stated in the main
text, it does not enter the contributions to 0þ → 0þ transition.
Interference between terms 1,2,3 and 4,5.—For the interference between terms 1,2,3 and terms 4,5, we use the same

procedure as before, and for μ ¼ 0 we obtainX
s;s0

½f−1−1χ†sσ2χs0 þ f11χ
†
sðσ · p̂1Þðσ · p̂2Þσ2χs0 �†½ðf−11χ†sðσ · p̂2Þσ2χs0 þ f1−1χ

†
sðσ · p̂1Þσ2χs0 Þ

� ðf−1−1χ†sσ2χs0 þ f11χ
†
sðσ · p̂1Þðσ · p̂2Þσ2χs0 Þ�

¼∓ 1

2
½fð0Þ16 þ fð1Þ16 ðp̂1 · p̂2Þ�; ðB8Þ

where fð0Þ16 and fð1Þ16 are defined in Eq. (91). As before, we do not present the phase-space factor for spatial μ ¼ k, as it does
not enter the calculation of 0þ → 0þ transitions.
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