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Neutral diboson processes are precise probes of the Standard Model (SM) of particle physics, which
entails high sensitivity to new physics effects. We identify in terms of dimension-8 effective operators
the leading departures from the SM that survive in neutral diboson processes at high energy and
that interfere with the unsuppressed SM helicity contributions. We describe symmetries and selection
rules that single out those operators, both for weakly and strongly coupled physics beyond the SM.
Finally, we show that unitarity and causality enforce, via dispersion relations, positivity constraints on
the coefficients of these effective operators, reducing the parameter space which is theoretically
allowed.
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I. MOTIVATION

Standard Model (SM) precision tests constitute an
important part of the LHC physics program, in which
SM predictions are confronted against precise data from
proton-proton collisions. Beside testing our knowledge of
SM processes, this program can be thought of as a
searching tool for physics beyond the Standard Model
(BSM). Indeed, new heavy particles beyond the energy
reach of the collider might induce, via their virtual
exchange, departures from the SM expectations. The
well-established context in which SM precision tests are
studied is that of effective field theories (EFTs), in which
departures from the SM are organized as an expansion in
inverse powers of a scale Λ, associated with the physical
mass of putative new heavy resonances,

Leff ¼ LSM þ
X
i

cð6Þi
Oð6Þ

i
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þ
X
i
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Oð8Þ
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Λ4
þ � � � ; ð1Þ

with OðdÞ
i operators of increasing dimensionality d and

dimensionless coefficients cðdÞi .

In most cases, the leading departures from the scattering
amplitudes predicted by the SM stem from d ¼ 6 operators,
and the series can be truncated there. Natural exceptions
come in two kinds. First, there can be BSM scenarios that
imply selection rules (e.g., because of symmetries in the
underlying theory), such that all d ¼ 6 operators vanish; in
this case, the leading departures from the SM might arise at
d ¼ 8 [1–3] or even higher [4]. Second, given that the
number of d ¼ 6 operators is finite, there can be processes
which do not receive any contributions at order d ¼ 6, but
are affected only by operators of higher dimensionality.
Neutral diboson processes pp → ZV (V ¼ Z, γ) [5,6] are
one of the most interesting examples of the latter; they are
in fact traditionally interpreted as measurements of neutral
triple gauge couplings (nTGCs) [7], which correspond to
d ¼ 8 operators in the EFT language [8].1 There are other
observables that are first modified at d ¼ 8 but are more
difficult to identify [9,10] (some of these might in fact
be the unique probes of a Higgs as a pseudo–Nambu-
Goldstone boson [11]). Despite the high dimensionality of

the operator, the coefficient cð8Þi can be sizeable in theories
with a relatively strong underlying coupling, so much so as
to partly alleviate the E=Λ suppression that accompanies
the contribution of these operators to physical amplitudes.
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1There are also d ¼ 6 operators modifying these processes [for

instance, operators of the form ðψ̄γμψÞðiH†D
↔

μHÞ], but their
contribution is suppressed at high energy E by powers of mZ=E;
in addition, these operators are well constrained by resonant
single-Z-boson processes (e.g., at the large electron positron
collider), and their impact in ZZ; Zγ is negligible.
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For this reason, we can expect measurable effects even
from these higher-dimensional operators.
In this work, we discuss the dimension-8 operators that

affect ZZ and Zγ processes and propose an innovative way
of studying those, which is appealing both from an
experimental and from a theoretical point of view. On
the one hand, departures from the SM that are unsuppressed
at high energy, and possibly interfere with the SM in simple
analyses, have the highest chance of being detected; these
are the effects that are most interesting from an exper-
imental perspective. On the other hand, operators that
appear in well-motivated and well-structured BSM scenar-
ios are interesting from a more theoretical perspective
as well, as they represent entire classes of theories. The
most interesting operators are those that meet both these
properties.
In what follows (Sec. III), we propose a set of operators

of this kind. They modify ZZ and Zγ amplitudes at
OðE4=Λ4Þ (that is the unsuppressed behavior expected
from dimensional analysis), some of them contribute to
amplitudes with diboson þ−=−þ helicities (which happen
to be the dominant configurations in the SM; see Sec. II),
and, finally, most of these operators can be generated at tree
level in models with spin-2 resonances or arise in scenarios
with nonlinear supersymmetry, where the SM fermions are
pseudo-Goldstini [2], as we discuss in Sec. IV.
An interesting and curious aspect of certain effective

field theories is the notion of positivity, which follows, via
dispersion relations due to analyticity (causality), Lorentz
invariance, and locality, from the simple requirement that
the underlying microscopic theory be unitary; see e.g.,
Refs. [12,13] and references therein.2 These positivity
bounds do not hold generically, without further assump-
tions (see Refs. [18–20]) for dimension-6 operators; for this
reason, they have not received much attention in contem-
porary EFT LHC phenomenological studies. They do
imply, however, strict positivity of certain coefficients of
our dimension-8 operators, as we discuss in Sec. V. This
model-independent reasoning will provide an important
way to focus experimental searches to a smaller region of
parameter space.

II. STANDARD MODEL ANATOMY

A thorough understanding of the SM amplitude is
necessary to assess what is (and can be) measured at
colliders. We discuss here the partonic 2 → 2 amplitude,
which is the target of the simplest inclusive analyses. The
SM tree-level contribution to the ψ̄ψ → ZZ; Zγ processes
is characterised by a tðuÞ-channel singularity structure that
projects on states of arbitrary angular momentum J and is
dominated by the transverse-transverse (TT) þ−=−þ
helicity amplitudes. Final states with equal helicity

þþ=−− are suppressed by m2
Z=E

2 (E ¼ ffiffiffi
s

p
) at high

energies [21].3

The longitudinalþ transverse (LT) configuration is
instead always suppressed in the high-E limit by mZ=E.
This can be easily understood by noticing that, in the limit
of vanishing Yukawas (which makes sense for the type of
processes we are considering), a Z2 symmetry H → −H
characterizes the SM Lagrangian, implying that amplitudes
with an odd number of scalars (that include the Higgs or the
longitudinal components of vectors in the high-energy
limit) must be suppressed by a vacuum expectation value
v and, by dimensional analysis, lead to the above fac-
tor mZ=E.
Finally, for ZZ the longitudinal-longitudinal (LL) hel-

icity is very small in the tree-level SM, suppressed by
m2

Z=E
2. This follows from the tðuÞ-channel SM structure

that characterizes tree-level ZZ production in the SM,
where the direct coupling of scalars (equivalent to the
longitudinal Z polarizations at high energy) to light quarks
is suppressed by their small Yukawas.4

The amplitudes that do not vanish at high energy are

ASM
ψ̄þψ−→ZþZ− ¼ 2g2Zψ−

tan
ϕ

2
þ � � � ; ð2Þ

ASM
ψ̄þψ−→Zþγ− ¼ 2gZψ−

gγψ tan
ϕ

2
þ � � � ; ð3Þ

where dots denote terms suppressed by powers of mZ=E, ϕ
is the angle between the momentum of the incoming
h ¼ þ1=2 helicity fermion (or antifermion) and outgoing
h ¼ þ1 helicity vector (that can be a Z or γ), and the
subscript � denotes the sign of the helicity. Here, gZψ ¼
gðT3

ψ − sin2θWQψÞ=cos2θW , and gγψ ¼ eQψ . Amplitudes
with opposite vector helicity are simply related to those of
Eq. (2) by

ASM
ψ̄ψ→ZþV−ðϕÞ ¼ ASM

ψ̄ψ→Z−Vþðπ þ ϕÞ ð4Þ

(with V ¼ Z, γ) and similarly for ψþ ↔ ψ− interchange,
keeping in mind that the Z couplings to fermions are
chiral gZψþ ↔ gZψ−

.
A final important piece of information, is the fact that the

largest SM amplitude is associated with left-handed initial
state quarks, due to theknownsuppressionof the right-handed
quarks coupling to the Z boson: fgZdL ; gZuL ; gZuR ; gZdRg∼
f−0.32; 0.27;−0.10; 0.05g.

2For earlier applications in the QCD chiral Lagrangian, see
e.g., Refs. [14–17].

3In the SM, dibosons are dominantly produced by quark-
antiquark collisions with subleading quark-gluon and one-loop
gluon-induced gg → VV components [22]; we do not consider
these effects here.

4The situation is different at next-to-leading order, where a
gluon-initiated, top-loop mediated diagram contributes sizeably
to the LL final state.
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The content of this section is summarized in Fig. 1. This
can be trivially extended to ψ̄ψ → γγ processes, which we
do not discuss in detail, as it is not traditionally discussed
within the nTGCs framework.

III. EFFECTS BEYOND THE STANDARD MODEL

The nTGCs parametrization of Ref. [7], and its EFT
counterpart [8],5 is based on the physical hypothesis that
the putative underlying new dynamics only modifies
interactions among three gauge bosons. Consequently,
new physics can enter ψ̄ψ → ZV only through an s-channel
diagram, or, more concretely, only the J ¼ 1 amplitude can
be modified. Because of angular momentum selection
rules, only a longitudinalþ transverse (LT) diboson final
state is then possible for the neutral SM gauge bosons [23].
This amplitude is suppressed bymZ=E also in BSM, and its
interference with the SM is even more suppressed, since the
SM LT piece is small.
Here, we take a step forward and ask ourselves how

� ∓ diboson helicities can be sourced. The first configu-
ration that allows for this is J ¼ 2 and is sourced, for initial
states involving fermions, by an operator containing
ðiψ̄γfμDνgψ þ H:c:Þ. From this, the leading CP even
operators that we can write and lead to a ZZ; Zγ final
state are

Oð8Þ
ψB ¼ −

1

4
ðiψ̄γfρDνgψ þ H:c:ÞBμνB

μ
ρ ð5Þ

Oð8Þ
ψW ¼ −

1

4
ðiψ̄γfρDνgψ þ H:c:ÞWa

μνW
aμ
ρ ð6Þ

Oð8Þ
ψH ¼ 1

2
ðiψ̄γfμDνgψ þ H:c:ÞDμH†DνH ð7Þ

in the neutral channel and

Ôð8Þ
QH ¼ 1

2
ðiQ̄σaγfμDνgQþ H:c:ÞDμH†σaDνH ð8Þ

Ôð8Þ
QBW ¼ −

1

4
ðiQ̄σaγfρDνgQþ H:c:ÞBμνW

aμ
ρ ð9Þ

in the isospin-charged channel; here, ψ ¼ QL; uR; dR
denotes the initial state fermion relevant for the LHC.
These operators are dimension 8; that is, they are of the
same order as effects that are tested at present as anomalous
nTGCs [8].
The interactions in Eqs. (5), (6), (9) modify the TT

amplitudes, contributing with different combinations to
ZTZT as well as ZTγ and γγ final states. For example, from
Eqs. (5), (6), at high energy, we find for ψ ¼ uR or dR

ABSM
ψ̄þψ−→ZþV− ¼ ctotV

4

ŝ2

Λ4
sinϕð1þ cosϕÞ; ð10Þ

where ctotZ ¼ sin2θWc
ð8Þ
ψB þ cos2θWc

ð8Þ
ψW and ctotγ ¼

sinð2θWÞðcð8ÞψB − cð8ÞψWÞ are the effective combinations that
enter in the two processes (θW the weak mixing angle).
Here, ŝ is the center-of-mass energy, and Eq. (10) exhibits
the unsuppressed energy growth that one expects from
dimension-8 effects. The associated differential cross
sections are shown in Fig. 1. Analogous expressions hold
for initial states with ψ ¼ Q, and γγ final states.
Similarly, Eqs. (7) and (8) contribute at high energy

E ≫ mZ to the production of two longitudinally polarized
Z bosons, as can be understood by the equivalence theorem
and dimensional analysis. From Eq. (7), we find at high
energy

ABSM
ψ̄þψ−→ZLZL

¼ cð8ÞΨH
8

ŝ2

Λ4
sinð2ϕÞ: ð11Þ

An important aspect of these precision SM tests is the
interference between the SM process and the BSM effect: a
sizeable interference enhances the sensitivity to these BSM
effects. As discussed in the previous section, the majority of
SM processes that we observe at the LHC have�∓ helicity
and left-handed initial state quarks. This amplitude is
modified by the operators of Eqs. (5), (6), and (9) with
ψ ¼ QL. Furthermore, as can be observed from Fig. 1, the
SM and BSM same-helicity polar-angle distributions have

FIG. 1. Differential ψ̄ψ → ZZ; Zγ cross section for different
helicities, in units of the γψ ; Zψ couplings, gγψ ; gZψ (nV ¼ 1 for
Zγ and nV ¼ 2 for ZZ). Dashed colored lines correspond to the
SM-only contribution (solid black, the sum over helicities), while
solid blue lines correspond to the BSM-only TT polarizations,
with an arbitrarily chosen normalization, to be shown in the same
plot as the SM.

5Notice that anomalous couplings always induce an energy
growth in some scattering process, which ultimately implies a
cutoff at energy E ∼ Λcutoff, above which the associated theory
ceases making sense; for this reason, anomalous coupling para-
metrizations can always be reformulated as EFTs with
Λ ≤ Λcutoff .
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an important overlap, implying that a sizeable SM-BSM
interference can be expected in fixed energy bins. Simple
analysis with standard selection criteria, including a small
cut in the very-forward region jcosϕj ≈ 1, shall be already
particularly sensitive to the deformations of Eqs. (5), (6),
and (9).
Interference of the LL channel is instead suppressed,

given the smallness of the LL SM amplitude (see the
previous section). So, this channel maintains its interest
mainly from its very-high-energy behavior and the BSM
connection with modified Higgs dynamics.
On the other hand, it is interesting to notice that analyses

based on the LT configurations (as implicitly assumed by
nTGCs analyses) imply that this majority of SM events
plays effectively the role of background, rather than signal.
Instead, the operators of Eqs. (5), (6), and (9) source the
right helicity amplitudes so that the situation is reversed and
all available experimental information is systematically
used and tested.
The final states we are interested in are not unique of the

J ¼ 2 angular momentum configuration and are also found
for J ≥ 3. However, states with larger angular momentum
are necessarily sourced by local operators with additional
powers of momenta/derivatives. That is, J ≥ 3 is associated
with operators of dimension > 8 that are, in this situation,
negligible.

IV. EXAMPLE BSM MODELS

In the previous sections, we have motivated, from an
experimental (bottom-up) point of view, a new class of
effects that appears at the same order in the EFT expansion
as effects in the new class are easier to detect (for a
comparable new physics scale) given their unsuppressed
nature and their interference with the SM. Now, we take a
more theoretical (top-bottom) perspective and argue that
these operators are also well motivated from a BSM point
of view; we discuss two BSM scenarios in which these
effects could arise with sizeable coefficients.
Here, it is perhaps worth pausing a moment to under-

stand whether dimension-8 operators can be relevant at all,
given that they appear to be subleading in the energy
expansion. A given BSM that generates sizeable d ¼ 6
effects as well as d ¼ 8 ones will probably be better
searched through those d ¼ 6 effects. So, we are interested
in whether it is possible that cð6Þ ≪ cð8Þ, that is, situations
where the coefficients of d ¼ 6 operators are suppressed
while d ¼ 8 are not. This is certainly possible in some
finely tuned region of parameter space, but this goes against
the perspective that EFTs capture broad BSM scenarios,
rather than specific points in parameter space. Symmetries
and other selection rules can instead induce natural sit-
uations for this hierarchy, as we now discuss with two
examples.
A first situation that leads to dimension-8 effects that are

larger than dimension-6 ones is the tree-level exchange of

weakly coupled massive spin-2 resonances, such as grav-
iton Kaluza-Klein excitations in models with extra dimen-
sions [24–26]. The massive graviton interacts (like its
massless version) with the stress-energy tensor Tμν; its
Lagrangian is

Lg ¼ −
m2

g

2
hμνPμνρσhρσ −

1

M̄p
hμνTμν ð12Þ

with Pμνρσ ¼ ðημρηνσ þ ημσηνρÞ=2 − ημνηρσ=3þ � � �, which
is equivalent to the propagator expanded at leading order in
momentum over the spin-2 mass p=mg, and M̄p the
reduced Planck mass in the extra dimension. Integrating
out h, one finds at leading order in 1=mg

Leff
g ¼ 1

2m2
gM̄2

p

h
ðTμνTμνÞ −

1

3
ðTμ

μÞ2
�
þ � � � : ð13Þ

The second piece only leads to effects with off-shell
fermions and is not relevant for our discussion (in fact,
via a field redefinition, it can be written as a dimension-10
effect), while the first one leads to

cψH ¼ cψB ¼ cψW ¼ m2
g

M̄2
p

ð14Þ

with Λ ¼ mg, in addition to a number of other d ¼ 8

operators involving four fermions, vectors, or scalars [24].
We have illustrated a model that singles out d ¼ 8

operators, and in particular the ones proposed in this paper.
This holds only in the limit where mg is much lighter than
other BSM resonances and moreover is weakly coupled,
meaning that the relevant coupling at the scalemg is≪ 4π.6

Indeed, for strong coupling, graviton loops generate d ¼ 6
effects [27], and, moreover, one expects a richer spectrum
of states at the cutoff.
Symmetries provide instead a more robust context to

study the relevance of d ¼ 8 effects, which can also hold in
the strongly coupled limit. Consider for instance a real
scalar field ϕ, Nambu-Goldstone boson of a Uð1Þ sym-
metry, spontaneously broken at the physical scale Λ. The
Uð1Þ symmetry translates into a shift symmetry ϕ → ϕþ α
[α a global Uð1Þ phase[, which implies that the effective
Lagrangian respecting this (nonlinearly realized) symmetry
can only involve powers of ∂ϕ:

6Notice that most LHC processes are at present tested with
large statistical uncertainty at high energy, aiming at deviations
from the SM which are larger than Oð1Þ; in this situation, a
consistent EFT interpretation is possible only if the underlying
theory is coupled more strongly than the SM [3]. This suggest a
sizeable window of parameters where these models are repre-
sented by a d ¼ 8 EFT and are consistently testable.
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Leff
ϕ ¼ 1

2
∂μϕ∂μϕþ cϕ

Λ4
ð∂μϕ∂μϕÞ2 þ � � � ð15Þ

Clearly, in this theory, it is natural that the leading
interactions are dimension 8, a statement that is indepen-
dent of the coupling strength in the microscopic theory,
since the symmetry always protects against the generation
of d ¼ 6 terms. This remains true even if the Uð1Þ
symmetry is only approximate, broken explicitly by small
parameters, such as a mass term m2

ϕϕ
2=2, with mϕ ≪ Λ. In

this situation, dimension-6 operators [such as ð∂μjϕj2Þ2]
will be generated, but we can expect their coefficients to be
small and controlled by the small parameter m2

ϕ=Λ2 ≪ 1.
The very same reasoning has been applied to the SM

fields in Refs. [1,2,28]. In particular Ref. [2] discusses the
analog of the ϕ → ϕþ α shift symmetry in the context of
fermions: nonlinearly realized extended supersymmetry. If
the SM fermions are (pseudo-)Goldstini of spontaneously
broken (SB) supersymmetry, then their leading interactions
arise indeed at d ¼ 8 and provide an example where
dimension-8 effects can be well motivated from a BSM
perspective.
The low-energy physics of pseudo-Goldstini can be

captured by an effective theory for SB space-time sym-
metries so that the main couplings between pseudo-
Goldstini χ and matter arise effectively as a distortion of
the effective metric perceived by matter fields in the SB
background,

gμν ¼ ημν þ 1

2F2
ðiχ̄γμ∂νχ þ iχ̄γν∂μχ þ H:c:Þ þ � � � ; ð16Þ

whereF is the supersymmetry breaking scale. In this context,
if the SM fermions are pseudo-Goldstini ψ ¼ χ, then the
kinetic term for Higgs DμH†DνHgμν leads to Eq. (7), while
the V ¼ W, B kinetic terms −1=4VA

μνVA
ρσgμρgνσ lead to the

interactions of Eqs. (5) and (6), with

cψH ¼ cψB ¼ cψW ¼ Λ4

F2
; ð17Þ

with Λ the mass of the other supersymmetric particles.
The complete set of (approximate) symmetries that can

lead to cð8Þ ≫ cð6Þ has been discussed in Refs. [1,2]: while
nonlinear supersymmetry can protect Eqs. (6) and (7), there
is no known analog for other operators entering diboson
pair production. This puts the operators (6) and (7) on
privileged ground, also from a BSM perspective.

V. POSITIVITY CONSTRAINTS AND BEYOND

Dispersion relations, following from the fundamental
principles of causality (analyticity), locality (Froissart
bound [29,30]), and crossing symmetry, imply relations
between low energies (IR), where LHC experiments are

performed, and high energies (UV), where the SM and the
effects, Eqs. (5)–(9), are completed into a microscopic
unitary theory. This implies strict positivity constraints for
the coefficient of the s2 term in the Taylor expansion of
elastic scattering amplitudes at t; s → 0,

∂2A=∂s2js;t¼0 > 0: ð18Þ

This has important consequences for EFTs with unknown,
but unitary, UV completions [12,13]. By dimensional
analysis, it is clear that this is a unique feature of operators
of dimension d ¼ 8 [or d ≥ 8, via higher derivatives in
Eq. (18)] that is unparalleled in the more familiar frame-
work of d ¼ 6 operators (see, however, Refs. [18–20] for a
similar relation involving additional inputs from the UV).
Applied to the operators of Eqs. (5)–(7), appearing in the

Lagrangian as in Eq. (1), given that Λ4 > 0, we find7

cð8ÞψH > 0; ctotZ > 0; ctotγγ > 0 ð19Þ

for ψ ¼ uR; dR, where ctotγγ ¼ cð8ÞψBcos
2θW þ cð8ÞψWsin

2θW .
That is, fundamental principles reduce the parameter space
that can be explored to half its size and help focus
experimental searches. These (strictly positive) constraints
also imply that these operators are necessarily there, and it
would not make sense to study, for instance, scenarios
where BSM starts with leading d > 8 operators (or J > 3
angular momentum) [13]. Scattering instead ψ ¼ Q ¼
ðuL; dLÞ states, the operators in (8) and (9) contribute to
the forward elastic amplitudes as well, the results varying
with the isospin σ3ii ¼ �1 associated to uL and dL,
respectively,

AQZL→QZL
ðs; t ¼ 0Þ ¼ ðcð8ÞQH ∓ ĉð8ÞQHÞ

s2

Λ4
; ð20Þ

AQV→QVðs; t ¼ 0Þ ¼ cð8Þ�QV
s2

Λ4
: ð21Þ

Here, V ¼ ZT; γ, and we defined cð8Þ�QZ ¼ sin2θWc
ð8Þ
QB þ

cos2θWc
ð8Þ
QW ∓ ĉð8ÞQBW sinð2θWÞ=2, cð8Þ�Qγ ¼ cð8ÞQBcos

2θW þ
cð8ÞQWsin

2θW � ĉð8ÞQBW sinð2θWÞ=2. Therefore, positivity
implies that

7The following positivity bounds are extracted at very small
energy, where the Wilson coefficients differ from those at the
scale Λ [e.g., Eqs. (14) and (17)]. Here, we assume that the rest of
the theory (i.e., the SM and possible dimension-6 operators) is
weakly coupled below Λ, so that (calculable) renormalisation
group evolution effects can be neglected, as long as cð8Þ is not
much larger than ð4πÞ2, because otherwise insertions of operators
with d < 8 and at least one dimension-8 operator with such a
large coefficient might generate large radiative corrections.
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cð8ÞQH ∓ ĉð8ÞQH > 0; cð8Þ�QV > 0 ð22Þ

and that ĉð8ÞQBW cannot appear without (equally large)

contributions from cð8Þ�QV .
The statement of Eq. (22) can be made even stronger if

the dynamics that generates these operators is insensitive
to the low-energy electroweak and electroweak symmetry
breaking physics, that is, if the new sector admits a
consistent UV completion irrespectively of the Weinberg
mixing angle θW which is determined by the external weak
gauge couplings.8 More explicitly, we are advocating for
the gedanken limit g → 0 and g0 → 0 while allowing the
ratio g0=g ¼ tan θW to be free and independent of the strong
sector. This means that the bounds (19) and (22) hold for
any θW, which in turn implies that

cð8ÞψH > 0; cð8ÞψW > 0; cð8ÞψB > 0; cð8ÞQH > jĉð8ÞQHj;
ð23Þ

with ψ ¼ Q, uR, and dR, and additionally

4cð8ÞQBc
ð8Þ
QW > ðĉð8ÞQBWÞ2: ð24Þ

The inequalities for ψ ¼ Q, which derive from Eq. (21)
using θW as a free parameter, define a one-branch cone in

the ðcð8ÞQB; c
ð8Þ
QW; ĉ

ð8Þ
QBWÞ space, which is obtained by revolv-

ing the triangle shown in Fig. 2 around the axis cð8ÞQB þ cð8ÞQW .
These generic results are of course compatible with the

specific models discussed above, Eqs. (14) and (17), where

ĉð8ÞQBW and ĉð8ÞQH are not generated, and all other operators are
generated with positive coefficients.
In addition to the above-mentioned lower bounds on the

coefficients cð8Þ, there are various arguments that suggest
upper bounds. These arguments include perturbativity,
beyond positivity [31], or simple naive dimensional analy-
sis [32,33] and indicate that for coefficients c ≫ ð4πÞ2 the
EFT description that we have proposed (where only d ¼ 8
operators are retained) may break down.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have provided a parametrization for
neutral diboson processes with initial state fermions, which
extends the traditional parametrization based on neutral
triple gauge couplings. The scope has been to provide a
framework for testing the precise SM predictions [34–39],
against the most interesting and well-motivated alternative
hypotheses. Our arguments have been exposed in terms of
an effective field theory (where they are naively of the same
order as nTGCs effects) but are based on the general
helicity properties of diboson amplitudes. In particular, we
point out J ¼ 2 effects that are unsuppressed at high
energy, both in the LL and TT final states, and highlight
effects that do interfere with the dominant SM amplitude
which have �∓ helicity. In this sense, our proposal goes
toward the goal of exploiting at best LHC data, providing a
way to present information about the high-energy SM
amplitudes in its completeness, and identifying the features
that can be tested most precisely.
We then approached these operators from a more theo-

retical perspective and argued that fundamental principles
based on unitarity imply generic and model-independent
constraints on the operator coefficients. This is per se a very
interesting result that has no general analog in the more
familiar context ofd ¼ 6operators.As a result, the parameter
space of the naive EFT is drastically reduced, thus focusing
experimental efforts to the relevant physical scenarios. We
find for instance that the operators of Eqs. (8) and (9), when
taken in isolation, cannot be completed into a unitary theory,
despite being allowed from a naive EFT point of view.
Finally, we motivated the proposed effects from a BSM

point of view. We have discussed a specific model where
the virtual tree-level exchange a massive spin-2 resonance
(KK graviton) generates the operators under scrutiny. In
this model, d ¼ 6 operators are loop-suppressed, while
d ¼ 8 operators are not. Therefore, in the weakly coupled
regime, this example produces its larger effects in our
d ¼ 8 operators. Moreover, we have identified a symmetry
(nonlinearly realized supersymmetry) that singles out the
operators, Eqs. (6) and (7), and holds also in the strongly
coupled regime. This puts the hierarchy cð8Þ ≫ cð6Þ of our
scenario on firm ground in the realm of both weakly and
strongly coupled models.

FIG. 2. Parameter space for the operators with ψ ¼ Q (we have
neglected superscripts for clarity). The blue region is allowed by
positivity constraints, Eqs. (23) and (24). The black segment
corresponds to the explicit scenarios of Sec. IV.

8Examples of this are the Kaluza-Klein graviton or Goldstini of
Sec. IV, where the transverse gauge bosons are also part of the
strongly interacting sector, as described in Ref. [1].

BRANDO BELLAZZINI and FRANCESCO RIVA PHYS. REV. D 98, 095021 (2018)

095021-6



This opens several interesting prospects for future
research. From an experimental point of view, it will be
interesting to asses the reach of LHC experiments to this
type of physics [in particular to the operators of Eqs. (6)
and (7) with ψ ¼ QL], with present and future data, and
eventually implement this strategy into present ZZ and Zγ
studies. Contrary to charged diboson processes, ZZ; Zγ
give easy access to the center-of-mass energy ŝ, facilitating
therefore a discussion of the EFT validity, along the lines of
Ref. [3]. Moreover, resonance searches for spin-2 (Kaluza-
Klein graviton) states are already performed at the LHC in
the ZZ, Zγ, or γγ channels [40–43]; it would be nice to
compare and combine these complementary modes of
exploration (resonant and EFT) into a single unified
picture. Finally, it would be interesting to discuss next-
to-leading-order effects and in particular their contribution
to the 00 amplitude to understand whether this can be
exploited to search for specific BSM scenarios, e.g.,
Refs. [44,45], in the gg → ZZ amplitude.
From a model-building point of view, it would be

interesting to put the pseudo-Goldstino models of
Ref. [2] on firmer ground, stressing their relation to the
hierarchy problem and providing additional motivation for
these searches. Finally, the reasoning we develop here
could be extended to charged diboson final states W�Z,

WþW−. Indeed, it has been shown on completely general
grounds that d ¼ 6 effects including transverse vectors
have suppressed SM-BSM interference in the high-energy
limit [21] for inclusive searches (see, however,
Refs. [46,47]); in these conditions, the effects discussed
here and those of the dimension-6 operator W3 would
appear at the same order, a feature that might deserve a
dedicated discussion in explicit scenarios.
Our proposal offers an innovative opportunity for experi-

ments transiting toward an EFT parametrization of non-SM
effects.
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