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Twisted and orbifold formulations of lattice N ¼ 4 super Yang-Mills theory which possess an exact
supersymmetry require a UðNÞ ¼ SUðNÞ ⊗ Uð1Þ gauge group. In the naive continuum limit, the Uð1Þ
modes trivially decouple and play no role in the theory. However, at nonzero lattice spacing they couple to
the SUðNÞ modes and can drive instabilities in the lattice theory. For example, it is well known that the
latticeUð1Þ theory undergoes a phase transition at strong coupling to a chirally broken phase. An improved
action that suppresses the fluctuations in the Uð1Þ sector was proposed in Catterall and Schaich [J. High
Energy Phys. 07 (2015) 057]. Here, we explore a more aggressive approach to the problem by adding a
term to the action which can entirely suppress the Uð1Þ mode. The penalty is that the new term breaks the
Q-exact lattice supersymmetry. However, we argue that the term is 1=N2 suppressed and the existence of a
supersymmetric fixed point in the planar limit ensures that any supersymmetry-violating terms induced in
the action possess couplings that also vanish in this limit. We present numerical results on supersymmetric
Ward identities consistent with this conclusion.
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I. INTRODUCTION

In recent years a great deal of effort has been devoted to
the construction and numerical studies of lattice formula-
tions of N ¼ 4 super Yang-Mills theory which retain one
exact supersymmetry at nonzero lattice spacing—see the
reviews [1–3] and references therein. These lattice theories
can be derived using either deconstruction [4–6] or topo-
logical field theory methods [7–10]. In this approach the
link fields appearing in the lattice theory take their values in
the algebra of the group, denoted by glðN;CÞ.1 This is
readily apparent from the (twisted) scalar supersymmetry
(SUSY) transformation

QUm ¼ ψm; ð1:1Þ

where ψm is a twist fermion that transforms as a link
variable. Since it is a fermion, it has an expansion in terms
of generators:

ψm ¼
XN2−1

A¼0

ψA
mtA: ð1:2Þ

Here, t0 is proportional to the unit matrix and must be
included if (1.1) is to hold, because the link field Um on the
left-hand side certainly has an expansion involving the unit
matrix, if it is to yield the usual a → 0 continuum limit

UmðxÞ ¼ 1þ aAmðxÞ þ � � � : ð1:3Þ
[Here, AmðxÞ is a complexification that contains both the
gauge fields and scalars.] On the other hand, SUSY should
not convert a group valued field into a Lie algebra valued
field, so in fact Um should also have the expansion

Um ¼
XN2−1

A¼0

UA
mtA ð1:4Þ

with the U(1) mode U0
m fully dynamical. The conclusion of

this argument is that the scalar SUSY Q requires the gauge
group to be U(N) and not SU(N), with the bosonic link
fields Lie algebra valued.
In the continuum limit the entire U(1) sector decouples

and becomes an uninteresting free theory—all fields are in
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1This restriction is not present for Sugino’s formulation—see
[11]. Other approaches to studying N ¼ 4 super Yang-Mills and
the AdS=CFT correspondence on a computer include [12–19].
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the adjoint representation and hence neutral for U(1).
However on the lattice this sector is coupled to the SU(N)
part through irrelevant operators, so we cannot completely
ignore it. In fact, it is these irrelevant couplings that can
cause various problems. The first of thesewas first identified
in [20] and is manifested in the appearance of a chirally
broken phase for ’t Hooft couplings λlat > 1 [see Eq. (2.2)
for the definition of the lattice coupling].
Another way to see that the Uð1Þ mode drives insta-

bilities is to examine the behavior of the theory under the
classical scaling transformation

Uμ → cUμ;

Ūμ → cŪμ;

ψμ → c
3
2ψμ;

η → c
3
2η;

χμν → c
3
2χμν: ð1:5Þ

It is trivial to see that the supersymmetric action given
in [20] (minus the soft Q-breaking mass term) is
invariant under this transformation if the Yang-Mills
coupling g2 → c4g2. This allows us to write down relations
between expectation values of gauge invariant operators.
For example,

�
Tr

YP
i¼1

U i

�
g2
¼ cP

�
Tr

YP
i¼1

U i

�
c4g2

; ð1:6Þ

in which we have suppressed spacetime coordinates and
indices and where U could be replaced by any other
appropriately chosen lattice field with a corresponding
change in the multiplicative factor on the rhs. Since the lhs
is independent of c this implies that the expectation value
on the rhs must vary as c−P. Note that this rescaling is not
allowed if the link variables Uμ are SLðN;CÞ valued,
corresponding to gauge group SU(N). Thus, it is the U(1)
sector that creates this instability.
In [21] a new supersymmetric termwas added to the lattice

action to suppress the Uð1Þ mode fluctuations. This allows
for simulations to be performed out to stronger coupling
λlat ≤ 2. However, it does not appear sufficient to explore the
regime of extreme strong coupling needed for studies of S
duality [22]. The reason for the ineffectiveness of this term at
very strong coupling is that it constrains only the real part of
the determinant of the plaquette operator averaged over all
plaquettes associated with a given lattice site.
In this paper, we have attempted to address this problem

in a different way by adding to the lattice action a term
which explicitly suppresses the Uð1Þ sector for each link
field (we call this the detlink term). We argue that this term
is 1=N2 suppressed and hence the exact scalar SUSY Q
should be recovered in the large N limit. Furthermore, we

show extensive numerical results that support this con-
clusion. The existence of this supersymmetry at large N
then guarantees that under renormalization anyQ-breaking
operators that are generated are 1=N2 suppressed, and the
scalar SUSY is restored without fine-tuning as N → ∞. In
addition, we show that even for modest values of N such as
SUð5Þ, Q invariance is a very good approximation. Early
results for this formulation have appeared in [23].
An alternate method to achieve the same result is by

truncating the theory completely to gauge group SUðNÞ by
having links valued in the group SLðN;CÞ rather than
algebra glðN;CÞ. However, the full truncation (bosonic and
fermionic) of the theory from UðNÞ to SUðNÞ does not
work. A simple way to see this is as follows: Assume a
traceless fermion ψa which lives on the link in the direction
of ea. The gauge invariance acts as

ψaðxÞ → GðxÞψaðxÞG†ðxþ eaÞ; ð1:7Þ

which yields a ψa which is not in general traceless. Thus we
cannot eliminate the Uð1Þ mode of the fermion, even under
the restriction to SUðNÞ gauge group.2 Note that this is a
lattice effect, since for a site fermion η, we would have

TrGðxÞηðxÞG†ðxÞ¼ ηAðxÞTrGðxÞtAG†ðxÞ¼ ηATrtA ¼ 0;

ð1:8Þ

assuming ηðxÞ only involved the generators tA of SUðNÞ,
which are traceless. The distinction between link fermions
and site fermions is only meaningful on the lattice. This
same argument does not apply to the link bosons, since they
are valued in the group and the gauge transformation
preserves that feature.
In summary, to maintain lattice gauge invariance, for this

hybrid action we only truncate the bosonic sector down to
SUðNÞ. This construction also restores Q supersymmetry
in the limit N → ∞. In Table I, we show the comparison

TABLE I. The comparison between the supersymmetry-
breaking observables using the detlink and the hybrid formula-
tions on 84 lattice for λlat ¼ 2. ΔSB denotes the deviation from the
supersymmetric value. See Fig. 3 for details.

λlat N ΔSB (detlink) W (detlink) ΔSB (hybrid) W (hybrid)

2.0 3 0.0606(1) 0.0373(8) 0.1238(4) 0.0684(1)
4 0.0426(2) 0.0273(7) 0.0753(2) 0.0491(0)
5 0.0311(1) 0.0204(4) 0.0505(1) 0.0328(0)
6 0.0239(1) 0.0159(4) 0.0362(1) 0.0233(0)
7 0.0192(1) 0.0131(4) 0.0276(1) 0.0184(0)
8 0.0159(1) 0.0110(3) 0.0218(1) 0.0141(0)

2This is to be contrasted with [24–26] where it was possible to
eliminate the Uð1Þ fermion mode. This has the benefit of
improving the condition of the fermion matrix.
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between these two approaches. This method of maintaining
exact lattice supersymmetry by truncating the U(1) sector
at large N was employed in [27,28] to initiate nonpertur-
bative checks of gauge-gravity duality at large N in two
dimensions. In this paper, we show detailed numerical
results in four dimensions consistent with the claimed 1=N2

suppression.

II. LATTICE ACTION

The Q-exact lattice action takes the form

S¼ N
4λlat

X
x

Tr

�
Q
�
χabD

ðþÞ
a UbþηD̄ð−Þ

a Ua−
1

2
ηd

��
þScl;

ð2:1Þ

Scl¼−
N

16λlat

×
X
x

Tr½ϵabcdeχdeðxþeaþebþecÞD̄ð−Þ
c χabðxþecÞ�;

ð2:2Þ

where the lattice difference operators take the form of
shifted commutators. For example,

DðþÞ
a UbðxÞ ¼ UaðxÞUbðxþ eaÞ − UbðxÞUaðxþ ebÞ

≡ F abðxÞ; ð2:3Þ
where ea are the principle lattice vectors of the A�

4 lattice.
TheQ-closed term is still lattice supersymmetric due to the
existence of an exact lattice Bianchi identity,

ϵabcdeD̄
ð−Þ
c F̄ abðxþ ecÞ ¼ 0: ð2:4Þ

After we integrate out the auxiliary field d, we have

S ¼ N
4λlat

X
x

Tr

�
−F̄ abF ab þ

1

2
ðD̄ð−Þ

a UaÞ2

− χabD
ðþÞ
½a ψb� − ηD̄ð−Þ

a ψa

�
þ Scl: ð2:5Þ

The action also contains a single trace mass term, which
helps to lift the classical flat directions by giving a small
mass to the scalar fields:3

Smass ¼
N
4λlat

μ2
X
x;a

Tr½ðU†
aUa − INÞ2�: ð2:6Þ

To control the local fluctuations of the Uð1Þ sector we now
add a new term to the action:

ΔS ¼ N
4λlat

κlink
X
x;a

j detUaðxÞ − 1j2: ð2:7Þ

In the limit κlink → ∞ we can completely remove the Uð1Þ
modes—both gauge and scalar by restricting the links to
SLðN;CÞ. Notice that this term does not break the SUðNÞ
invariance of the action since detUaðxÞ is invariant under
such transformations. Using a polar decomposition of the
link field

UaðxÞ ¼ ðI þ haÞeiBa; ð2:8Þ
the determinant can be written for small ha and Ba as

detðUaÞ ¼
�
1þ 1ffiffiffiffi

N
p h0a

�
ei

1ffiffi
N

p B0
a ; ð2:9Þ

where the 1ffiffiffi
N

p factor arises from the generators which satisfy

the normalization TrðTaTbÞ ¼ −δab and the superscript
indicates that only the trace mode survives. To quadratic
order in the fluctuations the determinant term becomes

ΔS ¼ 1

4λlat
κlink

X
x;a

ððB0
aÞ2 þ ðh0aÞ2Þ: ð2:10Þ

The term thus serves to generate masses for the Uð1Þ
modes. Additionally, notice it carries no prefactor of N
which then guarantees that it will generate terms that are
Oð1=N2Þ suppressed relative to the leading terms in a
perturbative expansion.
This detlink term breaks both the Q supersymmetry and

the Uð1Þ gauge symmetry. Breaking the Uð1Þ symmetry is
likely harmless since the Uð1Þ sector plays no role in the
continuum limit. However breaking the exact supersym-
metry is more problematic since it invalidates the argu-
ments given in [30] devoted to the renormalizability of the
lattice theory and specifically the number of counterterms
needed to tune to a supersymmetric continuum limit.
To address this issue,we examine theN dependence of the

various terms in the action. It is clear that the new term being
a function of the trace modes only is suppressed by 1=N2 as
compared to all other terms in the actionwhich correspond to
a sum over all the generators of UðNÞ. If we treat this term
perturbatively, it will yield a subleading contribution to any
observable in the planar limit. Thus, we expect that the exact
supersymmetry will be restored in the large N limit. The
presence of an exact supersymmetry atN ¼ ∞ then ensures
that any SUSY-violating operators appearing at finiteN (and
finite κlink) are only multiplicatively renormalized with
couplings proportional to positive powers of 1=N2. In the
next section, we show that these truncated approaches yield
stable results for a range of values of the ’t Hooft coupling λlat
and measurements of appropriate Ward identities show the
expected 1=N2 behavior.
We perform the numerical simulations with the parallel

code presented in [31]. Since then, it has been extended to

3It also generates cubic and quartic terms that further stabilize
the flat directions. This mass term has been used for most of our
earlier works and also appears in [29].
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perform calculations for arbitrary gauge groups to access
the large N limit and will be presented in a future
publication [32]. We note that there is an earlier work that
develops a method to have SUðNÞ gauge group in super-
symmetric lattice gauge theory [33].

III. WARD IDENTITIES

We test the restoration of Q in the large N limit in two
ways.4 One is via a measurement of the expectation value of
the bosonic action SB, which is related to an exact lattice
Ward identity associated withQ in the original, unmodified
theory. The results on 84 latticewith three different values of
λlat ¼ 2, 3, 4 are shown in Fig. 1, with a normalization such
that SB ¼ 1 for exact Q. It can be seen that the restoration
is within 1% in the large N limit, where presumably the
small deviation from 1 is due to the mass term (2.6) (we take
μ ¼ 0.1 in our study) and thermal boundary conditions for
the fermions along the temporal direction.
Another check arises through the supersymmetric Ward

identity corresponding to

hQTrðηUaŪaÞi ¼ 0: ð3:1Þ

This yields

hTrðdUaŪaÞi − hTrηψaŪai ¼ 0: ð3:2Þ

Using the equations of motion to eliminate d we find

W ¼ hTrðD̄aUaUbŪbÞi − hTrηψaŪai ¼ 0: ð3:3Þ

We further normalize W by the fermion bilinear term
appearing on the right and take the magnitude

W ¼
				 hTrðD̄aUaUbŪbÞi − hTrηψaŪai

hTrηψaŪai

				 ð3:4Þ

to obtain the quantity shown in Fig. 2. It can be seen that the
Ward identity, which is zero in the limit of exact Q, is
approximately 0.6% in the large N limit. Again, we
attribute this to the mass term (2.6).
We have also compared these results to the hybrid

formulation, where the U(1) sector is eliminated from
the link fields entirely. In Table I it can be seen that the
Q violation is more for the hybrid than in the detlink
formulation, but with the same 1=N2 dependence. The
results for the Ward identity are shown together in Fig. 3.
Thus we see that either approach will restoreQ in the large
N limit, up to the effects of the regulating mass term.

In Fig. 4 we show the dependence of the Ward identity
on the mass term parameter μ. It can be seen that there is an
appreciable decrease in the Ward identity as μ is decreased.
It is clear that our large N extrapolation will also exhibit the
same decrease with μ and it is reasonable to assume that the
Ward identity will ultimately vanish as N → ∞ and μ → 0.
For the latter limit it is important that the spacetime volume
is also taken to infinity, since removing μ at finite L will
lead to unstable results as the scalar modes will wander
without restriction.
A final question is the effect of finite volume, given that

antiperiodic boundary conditions are imposed on the
fermions. This also violates the Q scalar supersymmetry,

FIG. 1. The bosonic action, normalized such that it should be
equal to 1 if the Q symmetry is fully restored (exact). It can be
seen that the N dependence falls of as 1=N2, as expected. The
difference from 1 in the large N limit is anticipated from the
presence of the small mass term (2.6) with μ ¼ 0.1. Fits to Aþ
B=N2 are also shown in the plot. For these runs we take κlink ¼ 5,
5, 10 for the three values of λlat, respectively.

FIG. 2. The Ward identity (3.4) for the 84 lattice with detlink
action, λlat ¼ 2, 3, 4, μ ¼ 0.1 and κlink ¼ 5, 5, 10, respectively.
Fits to Aþ B=N2 are also shown.

4We note that while N ¼ 8 is sufficient for us to see the
large N limit in our four-dimensional lattices, much larger N are
both necessary and possible in the case of matrix quantum
mechanics [24–26].
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so we expect such effects to fall off with the volume. It can
be seen from Table II that most of the volume effects are
negligible. Indeed, only at the weakest coupling for the
smallest number of colors is the effect of any significance.

IV. CONCLUSIONS

We have shown that simulations of lattice N ¼ 4 super
Yang-Mills targeting the SUðNÞ rather than the UðNÞ
theory are possible at moderately strong coupling λlat ≤ 4.
This is a stronger coupling than has been achieved with the
improved action described in [21], where only λlat ≤ 3 was

possible. In the case of gauge group SUð2Þ simulations
have even been performed at λlat ¼ 6. However, unfortu-
nately so far, we have not been able to extend this to even
stronger couplings. Instead we observe the system appears
to undergo a crossover or phase transition to a regime in
which the fermion operator develops very many small
eigenvalues. We attribute this to the presence of residual
supersymmetry breaking associated with the determinant
term. Work is underway to develop a supersymmetric link-
based determinant term which may allow us to bypass these
problems and access yet stronger couplings. The improve-
ment that we do see is reflective of control over the
instabilities associated with the flat direction exhibited in
the scaling (1.6). The corresponding U(1) fluctuations are
much more dangerous than the SU(N) related flat directions
because they allow the theory to wander into regimes
associated with coarser lattice spacings, where confinement
is a generic feature. In the future, we will present results
where further improvements can be obtained by preserving
Q exactly while still controlling this U(1) sector in a rather
aggressive way.
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FIG. 4. Ward identity dependence on the mass parameter μ.

TABLE II. The comparison between supersymmetry-breaking
observables using the detlink code on 84 and 164 lattices. The
volume effects are small in comparison at fixed N.

84 164

λlat N ΔSB W ΔSB W

2.0 3 0.0606(1) 0.0373(8) 0.0407(18) 0.207(19)
4 0.0426(2) 0.0273(8) 0.0425(0) 0.0281(2)
5 0.0311(1) 0.0204(8) 0.0310(1) 0.0202(3)

3.0 4 0.0413(2) 0.0216(7) 0.0420(2) 0.0218(3)
5 0.0309(1) 0.0166(4) 0.0336(1) 0.0174(4)

4.0 3 0.0781(3) 0.0336(14) 0.0788(1) 0.0357(3)
4 0.0528(2) 0.0254(11) 0.0521(1) 0.0230(4)

FIG. 3. The comparison between the Ward identity results for
the hybrid and detlink cases on 84 lattice for λlat ¼ 2. In the large
N limit, the difference is negligible.
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