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In the simplest potentially realistic renormalizable variants of the flipped SUð5Þ unified model the right-
handed neutrino masses are conveniently generated by means of the Witten’s two-loop mechanism. As a
consequence, the compactness of the underlying scalar sector provides strong correlations between the low-
energy flavor observables such as neutrino masses and mixing and the flavor structure of the fermionic
currents governing the baryon and lepton number violating nucleon decays. In this study, the associated
two-loop Feynman integrals are fully evaluated and, subsequently, are used to draw quantitative
conclusions about the central observables of interest such as the proton decay branching ratios and the
absolute neutrino mass scale.
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I. INTRODUCTION

Though not a genuine grand unified theory (GUT), the
flipped SUð5Þ gauge theory [1–3] still attracts significant
attention [4–7] due to several rather unique features it
exhibits. In particular, one-stage symmetry breaking down
to the standard model (SM) can be achieved regardless of
whether or not a TeV-scale supersymmetry is assumed. The
corresponding Higgs sector can also be very small, as it is
sufficient to employ just a single 10-dimensional represen-
tation to accomplish the necessary symmetry breaking. This
is to be compared to the 24 of theGeorgi-Glashow SUð5Þ [8]
and/or 45 ⊕ 16 (or even 45 ⊕ 126) of the minimal SOð10Þ
GUTs (see, e.g., Refs. [9,10] and references therein).
Flipped SUð5Þ models also share several other nice

features with their truly unified cousins. From the point of
view of phenomenology, two such features stand out as
being particularly relevant due to their immediate exper-
imental consequences. First, as in the SOð10Þ GUTs, 3
right-handed (RH) neutrinos are enforced in the spectrum,
allowing for the use of a type-I seesaw mechanism to
generate the light neutrino masses. Additionally, as in
SUð5Þ there is only one heavy gauge boson, which
typically yields somewhat stronger correlations between
the flavor structure of the baryon and lepton number
violating (BLNV) currents and the low-energy flavor

observables, and hence one can often say quite a bit about,
e.g., the proton lifetime.
However, upon closer inspection one finds a certain level

of tension between the practical implications of these two
points. For example, in order to implement the standard
type-I seesaw with the RH neutrinos at hand, a 50-
dimensional four-index scalar 50S of SUð5Þ is typically
added [11] together with a 3 × 3 complex symmetric
Yukawa matrix Y50 in order to generate the desired RH
Majorana mass term via a renormalizable coupling such as
YIJ
5010

T
FIC

−110FJ50S. Besides enlarging the scalar sector
enormously (and, hence, disposing of the uniquely small
size of the “minimal” Higgs sector noted above as one of
the most attractive structural features of the framework), the
extra scalar and the associated Yukawa at play reduces the
value of the low-energy neutrino masses and the lepton
mixing data as constraints for the proton lifetime estimates
as it essentially leaves the neutrino sector on its own.
Remarkably enough, this dichotomy may be overcome

by noticing [12,13] that the RH neutrino masses in flipped
SUð5Þ models may be generated even without the unpleas-
ant extra 50S at the two-loop level by means of a variant of
the mechanism first identified by Witten in the SOð10Þ
context [14]. The two main features [13] of this scenario
are, first, a simple relation among the seesaw and the GUT
scales where the former is, roughly speaking, given by the
latter times an extra two-loop suppression and, second, a
rigid correlation between the flavor structures of the
neutrino and charged sectors, which in most cases may
be transformed into a set of strong constraints for, e.g., the
proton decay partial widths and branching ratios.
To this end, the Witten’s-loop-equipped flipped SUð5Þ

may even be viewed as the most economical renormaliz-
able theory of the BLNV nucleon decays, much simpler
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than, e.g., the potentially realistic variants of the SOð10Þ
and even the SUð5Þ GUTs.
From this perspective, it is interesting that in Ref. [13]

most of the basic features of this framework may have been
identified even without an explicit calculation of the graphs
involved in Witten’s mechanism. In this work we intend to
overcome this drawback by a careful inspection of the
Feynman graphs and their evaluation which, as we shall
see, will clarify several other points left unaddressed in the
preceding studies. In particular, the calculation will make it
very clear that the minimal potentially realistic and renor-
malizable incarnation of the scheme under consideration is
the variant featuring a pair of 5-dimensional scalars in the
Higgs sector (besides a single copy of the “obligatory” 10-
dimensional 10H scalar). Second, it will be shown that, in
this framework, the light neutrino spectrum is always
forced to be on the heavy side (actually, within the reach
of the KATRIN experiment [15]), which, among other
things, provides a clear smoking gun signal of the scheme.
In Sec. II we first provide a brief review of the flipped

SUð5Þ gauge theory context, identify the Feynman graphs
underpinning the radiative RH neutrino mass generation in
the minimal and next-to-minimal models, and exploit the
seesaw formula in order to get strong constraints on their
parameter space. Section III is devoted to a detailed
analysis of the relevant two-loop graphs in the scenario
with one copy of the 5-dimensional scalar in the Higgs
sector; this setting is simple enough to allow for a complete
analytic understanding of the results. In Sec. IV these
findings are used for the identification of the minimal
potentially realistic model of this kind, which is sub-
sequently shown to be strongly constrained and potentially
highly predictive. Most of the technical details of the
lengthy calculations are deferred to a set of Appendices.

II. FLIPPED SUð5Þ À LA WITTEN

The defining feature of the flipped SUð5Þ unifications is
the “nonstandard” embedding of the SM hypercharge
operator within its SUð5Þ ⊗ Uð1ÞX gauge symmetry alge-
bra, namely

Y ¼ 1

5
ðX − T24Þ; ð1Þ

where T24 stands for the usual hypercharge-like generator
of the standard SUð5Þ (normalized in such a way that the
electric charge obeys Q ¼ T3

L þ T24) and X is the unique
nontrivial anomaly-free generator of the additional Uð1Þ
normalized in such a way that it receives integer values over
the three basic irreps accommodating each generation of
the SM matter,

5̄M ≡ ð5̄;−3Þ; 10M ≡ ð10;þ1Þ; 1M ≡ ð1;þ5Þ;
ð2Þ

where the first number in brackets gives the SUð5Þ
representation and the second the charge under Uð1ÞX.
Compared to the standard SUð5Þ case, the SM matter fields
ucL and dcL are swapped with respect to their usual assign-
ments, i.e., the former is a member of 5̄M while the latter
resides in 10M. Similarly, ecL is found in the SUð5Þ singlet
and the compulsory RH neutrino νcL replaces it in the
10-plet.
As for the gauge fields, the ð24; 0Þ ⊕ ð1; 0Þ adjoint of

SUð5Þ ⊗ Uð1ÞX in this context contains a multiplet Xμ

transforming under SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY as
ð3; 2̄;þ 1

6
Þ, plus its Hermitian conjugate, rather than the

traditional hypercharge-5
6
gauge bosons of the standard

SUð5Þ. The remaining degrees of freedom account for the
12 SM gauge fields and one additional heavy singlet.
The minimal Higgs sector sufficient for breaking the

SUð5Þ ⊗ Uð1Þ symmetry down to the SM and, sub-
sequently, to the SUð3Þ ⊗ Uð1Þ of QCDþ QED consists
of 10H ¼ ð10;þ1Þ,1 in which the SM singlet occupies
the same position as the RH neutrino does in 10M, and
5H ¼ ð5;−2Þ containing the SM Higgs doublet. The
breakdown of SUð5Þ ⊗ Uð1ÞX to the SM gauge symmetry
takes place after the SM singlet present in 10H develops a
non-zero vacuum expectation value (VEV), VG, generating
masses

m2
X ¼ g25V

2
G

2
ð3Þ

for the gauge bosons Xμ, where g5 is the SUð5Þ gauge
coupling. The color triplet, SUð2ÞL singlet components of
10H and 5H also mix at this stage to form a pair of massive
color triplets Δ1;2 transforming under the SM gauge
symmetry as ð3; 1;− 1

3
Þ, with masses mΔ1;2

. Further details
regarding the tree-level scalar spectrum in this minimal
flipped SUð5Þ model are given in Appendix B.
For the above embedding of the SM matter content and

minimal set of Higgs scalars, one can readily write the most
general renormalizable2 Yukawa Lagrangian (suppressing
all flavor indices)

1Itmaybeworth pointing out here that, due to the nonzeroUð1ÞX
charge of 10H inherent to the flippedSUð5Þmodels, there is noway
to build a nonrenormalizable d ¼ 5 operator (presumably
Planck-scale suppressed) that might, in the broken phase, affect
the gauge-kinetic form and hence introduce significant theoretical
uncertainties in the high-scale gauge-matching conditions and the
determination of the GUT scale. As a result, one of the primary
sources of irreducible uncertainties hindering the predictive power
of the “standard”GUTs (such as the Georgi-Glashow SUð5Þ or the
nonminimal SOð10Þ models with either 54 or 210 breaking
the unified symmetry) is absent from this class of models.

2Note that in nonrenormalizable settings the benefits of the
scheme may be lost as the Witten’s loop contribution may be
swamped by the effects of, e.g., the d ¼ 5 nonrenormalizable
operators of the 10M10M10H10H type.
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L ∋ Y1010M10M5H þ Y 5̄10M5̄M5
�
H þ Y15̄M1M5H þ H:c:;

ð4Þ

with Y10, Y 5̄, and Y1 denoting the relevant 3 × 3 complex
Yukawa coupling matrices; note that the first of these,
unlike the latter two, is required to be symmetric in its
flavor indices, i.e., Y10 ¼ YT

10. In the broken phase, the
second term in Eq. (4) yields a strong correlation among the
Dirac neutrino mass matrixMD

ν and the up-type quark mass
matrix Mu, namely,

MD
ν ¼ MT

u ð5Þ

at the GUT scale. The flavor symmetric nature of Y10 also
means that the down-type quark mass matrix satisfies
Md ¼ MT

d , while the couplings in Eq. (4) say nothing
specific about the mass matrix Me of the charged leptons.
As we shall see, these correlations will turn out to be central
for the high degree of predictivity of this framework3

entertained in the following sections.

A. The RH neutrino masses and type-I seesaw

So far, we have left aside any discussion of the physical
light neutrino masses in the current scenario. Obviously,
Eq. (5) cannot be the whole story as it corresponds to overly
large Dirac neutrino masses; the only case when this may
be acceptable would be within a variant of the seesaw
mechanism.
At the tree level, this could be achieved in the most

natural way by employing a 50-dimensional scalar [11]
coupled to the 10TMC

−110M fermionic bilinear; the VEVof a
singlet therein then gives rise to the desired RH neutrino
mass term. However, as was noted in Sec. I, the associated
single-purpose extra Yukawa matrix does not bring any
additional insight into the flavor structure of the model, and
limits the extent to which low-energy data can be used in
constraining proton decay observables. Therefore we do
not adopt this option here; instead, we inspect the quantum
structure of the minimal model for the desired effect.
Remarkably enough, there is no way to generate the

desired RH neutrino mass in the current model [13] at the
one-loop level. This, however, does not mean that there is
no one-loop contribution to the neutrino masses generated
at all; indeed, in the presence of scalars with quantum
numbers ð3; 1;− 1

3
Þ and ð3; 2̄;þ 1

6
Þ the LH Majorana mass

can be devised via a “colored” variant of the notorious Zee
mechanism [16–19]. However, this does not bring any
relief to the Dirac mass issue above as, without additional

structure, one is still left with GeV-scale neutrinos, albeit
pseudo-Dirac instead of Dirac in nature.

1. The Witten’s loop structure

The simultaneous presence of the diquark-type of
interactions, mediated by the Xμ and Δ1;2 bosons, together
with their leptoquark counterparts (involving the same set
of fields) in the flipped SUð5Þ framework implies that
diagrams generating the desired RH Majorana neutrino
mass can be drawn at two loops. Let us note that the
corresponding pair of topologies depicted in Fig. 1 can be
viewed as reduced versions of Witten’s original SOð10Þ
graph(s) [14].
In what follows we shall work in the broken phase

perturbation theory with masses in the free Hamiltonian4

and in the unitary gauge so that there are no Goldstone
modes around. This reduces the number of relevant graphs
considerably, at the cost of making the Feynman integrals
somewhat more complicated compared to other cases.
Based on the graphs in Fig. 1 that remain in this

approach, it is immediately possible to make several
comments on both the flavor structure and overall scale
of the generated Majorana mass matrix MM

ν . The flavor
structure in particular plays a central role in what follows,
and is governed by the Yukawa couplings appearing in each
of the contributing graphs. In each of the two topologies
there is only a single Yukawa coupling present, associated
with the couplings of Δi to the fermions. These couplings
involve only the 5H components of Δi, since it is only these

FIG. 1. The two nonequivalent topologies of the two-loop
graphs contributing to the RH neutrino Majorana mass in the
minimal flipped SUð5Þ model under consideration. The vector
field X corresponds to the ð3; 2̄;þ 1

6
Þ component of the adjoint

while the pair ofΔ’s are the two mass eigenstates of the ð3; 1;− 1
3
Þ

colored scalars mixed from the relevant components of 10H and
5H , respectively.

3To this end, it is worth noting that these relations remain intact
even in models with more than a single copy of 5H in the scalar
sector; as we shall see, this (especially the symmetry of Md) will
be crucial for the construction of the minimal potentially realistic
scenario identified in Sec. IV B.

4Hence, we are avoiding the need to sum over an infinite tower
of graphs (like the one drawn in Witten’s original work [14]) with
increasing numbers of VEV insertions. On the other hand, the
explicit proportionality to the μ parameter governing the mixing
between the 10H and 5H multiplets (see Appendix B), which is
obvious in the massless perturbation theory, becomes more
involved in the massive case where μ emerges at the level of
the relevant mixing matrix in the scalar sector, Eq. (B8).
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components that couple to the fermions through the
Yukawa interactions in Eq. (4). Moreover, since all of
the fermions appearing in the two graphs in Fig. 1 reside in
10M, the single relevant Yukawa coupling matrix is the
symmetric Y10. Hence, in the minimal model there is a tight
correlation between the radiatively generated RH neutrino
Majorana mass matrix and the mass matrix of the down-
type quarks, making the scheme rather predictive.
The overall scale of MM

ν , on the other hand, depends on
both the Yukawa couplings in Y10 as well as the gauge
couplings and the sizes of the mass parameters entering into
each of the graphs. One can initially estimate it to be
proportional to the dominant mass entry in the relevant
graphs suppressed by the appropriate two-loop factor and
the combination of gauge (entering raised to the fourth
power) and Yukawa couplings.
Of the various mass parameters appearing in the evalu-

ation of the graphs, the fermionic massesmf should play no
role in the integrals as the singlet Majorana mass generation
does not rely on the electroweak symmetry breaking.
Hence, in dealing with the Feynman integration we shall
work in the chiral limit with all SM fermions massless.
This, in principle, may lead to spurious IR divergences
in the form of, e.g., logðmf=QÞ arising in individual
partial fractions of the integrands, where Q is the renorm-
alization scale, but as a whole MM

ν should be stable in the
mf → 0 limit.
Similarly, it is natural to expect that in the other extreme

case corresponding to one of the scalars Δi becoming
significantly lighter with respect to the Xμ boson masses
(and, hence, bringing about another practically massless
propagator) MM

ν should also remain regular; hence, the
only mass that can make it to the denominators in the final
result is mX. This also suggests that, barring the couplings,
each individual graph should be governed by powers of the
mΔi

=mX ratio which, in turn, makes it merely a function of
a single5 parameter.
One more comment concerning the relative size of the

aforementioned one-loop LH Majorana neutrino mass
contribution is worth making here. On purely dimensional
grounds, it is indeed expected to be significantly smaller
than the “standard” type-I contribution due toMM

ν andMD
ν .

First, the corresponding graphs will be inversely propor-
tional to the relevant scalar leptoquark masses,6 which are
well above the typical seesaw scale ballpark of
1012−13 GeV. Second, the loop factor of 1=16π2 will

further suppress this contribution placing it, eventually,
at the level of some 10−6 eV, which makes it negligible for
the current analysis.

2. Seesaw as the key to the phenomenology

Before coming to the evaluation of the graphs in Fig. 1 it
is important to stress that this is not all just an academic
exercise; quite to the contrary, the information obtained in
Sec. III has a profound impact on the phenomenology of
the model.
The point is that, due to the seesaw formula, MM

ν is
correlated with the physical light neutrino mass matrixmLL

and the Dirac neutrino mass matrix MD
ν via

MD
ν ðmLLÞ−1ðMD

ν ÞT ¼ −MM
ν : ð6Þ

Using Eq. (5), this can be conveniently written as

Wν ≡DuU
†
νðmdiag

ν Þ−1U�
νDu ¼ −MM

ν ; ð7Þ

where Du is the diagonal form of the up-type quark mass
matrix and Uν is the matrix diagonalizing mLL, i.e.,
mLL ¼ UT

νm
diag
ν Uν. Note that in the derivation above we

have implicitly adopted the basis in which the up-type
quark mass matrix is real and diagonal, see Ref. [13] for
further information.
Hence, up to an a priori unknown unitary matrix and the

overall light neutrino mass scale, parametrized e.g., by the
mass of the heaviest of the light neutrinos mmax

ν , the matrix
Wν defined in Eq. (7) is completely determined by the low-
energy quark masses and neutrino oscillation data. This is
to be compared with MM

ν appearing as the right-hand side
of Eq. (7), which is set by the heavy spectrum of the model
(i.e., the masses of the heavy triplet scalars and gauge
bosons) and the gauge and Yukawa couplings, and is
therefore subject to other strong constraints. In particular,
mX, mΔi

and g5 must be such that the unification pattern is
consistent with the low-energy data and compatible with
the nonobservation of proton decay with at least 1034 years
of lifetime [20].
Hence, demanding consistency of Eq. (7) with the data

one can derive constraints on mmax
ν and, in particular, on

Uν, which is central to the BLNV phenomenology of the
model. Indeed, Uν drives all the proton decay branching
ratios into neutral mesons including the “golden channel”
p → π0eþ final state:

Γðp → π0eþα Þ
Γðp → πþν̄Þ ¼ 1

2
jðVCKMÞ11j2jðVPMNSUνÞα1j2;

Γðp → ηeþα Þ
Γðp → πþν̄Þ ¼

C2

C1

jðVCKMÞ11j2jðVPMNSUνÞα1j2;

Γðp → K0eþα Þ
Γðp → πþν̄Þ ¼ C3

C1

jðVCKMÞ12j2jðVPMNSUνÞα1j2; ð8Þ

5Assuming, implicitly, that the renormalization scale depend-
ence eventually disappears as a consequence of the assumed UV-
finiteness of the full result.

6It is perhaps worth mentioning that the scalar (S) with the SM
quantum numbers ð3; 2̄;þ 1

6
Þ is formally absent in the unitary

gauge as it is the would-be Goldstone mode giving mass to the Xμ

vector; however, the same effect is then generated via the
corresponding graphs with Xμ instead of S.
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where the Ci’s are various low-energy factors calculable
using chiral Lagrangian techniques (see, e.g., Ref. [21] and
references therein) and VCKM and VPMNS are the Cabibbo-
Kobayashi-Maskawa and the Pontecorvo-Maki-Nakagawa-
Sakata mixing matrices, respectively.
In this sense, the minimal flipped SUð5Þ unification

equipped with the Witten’s loop mechanism can be viewed
as a particularly simple (if not the most minimal of all)
theory of the absolute neutrino mass scale and, at the same
time, the two-body BLNV nucleon decays.

B. Consistency constraints and implications

Let us now work out the aforementioned consistency
constraints in more detail and give some basic examples of
their possible implications. First, it should be noted that
there is a lower limit on the largest entry ofWν that depends
on mmax

ν and the shape of Uν. Taking into account the
typical 50% reduction of the running top quark Yukawa
betweenMZ and the unification scale (at around 1016 GeV)
and taking, e.g., mmax

ν ¼ 1 eV and Uν ¼ 1 one finds that
the (3,3) entry of Wν is as large as about

jðWνÞ33j ∼ 6.4 × 1012 GeV: ð9Þ

The same magnitude, however, may not so easily be
achieved for the (3,3) entry of MM

ν as required by
Eq. (7) due to the generic 10−3 geometrical suppression
in the relevant two-loop graphs and a possible further
suppression associated with the Yukawa coupling Y10; the
latter may be especially problematic in the minimal
scenario (4) because then Y10 is fixed by the down-type
quark masses and, thus, brings about another suppression
of some 10−2 to ðMM

ν Þ33.
However, this correlation is loosened if there is more

than a single copy of 5H in the scalar sector. As was already
indicated in Ref. [13], the additional Y 0

10 associated to an
extra 50H can conspire with the original Y10 to do two things
at once: they may partially cancel in the down-type quark
mass formula to account for the moderate suppression of
Md=MZ yet their other combination governing MM

ν

(weighted by the appropriate scalar mixings) may still
remain large, thus avoiding the problematic additional 10−2

suppression. In what follows, we shall model this situation
by imposing a humble jyj≲ 4π perturbativity criterion on
all the Y10 and Y 0

10 entries.
However, even in such a case the ∼1013 GeV lower limit

on the largest entry ðWνÞ33, may still be problematic
because, for Uν ≠ 1, it may be further enhanced by the
admixture of the yet larger (2,2) and, in particular, the (1,1)
entry of ðmdiag

ν Þ−1; as a matter of fact the latter is not
constrained at all given that the lightest neutrino mass
eigenstate may still be extremely light. Thus, the lower
bound on the magnitude of the largest element of Wν gets
further boosted over the naïve estimate of 1013 GeV

whenever Uν departs significantly from unity, which in
turn constrains all of the partial widths, Eqs. (8).
Hence, a thorough evaluation of the graphs in Fig. 1 will

decide several important questions, namely:
(1) Can the elements of MM

ν ever be big enough to be
consistent (at least in the most optimistic scenario
with Uν ∼ 1) with Wν, as required by Eq. (7), in the
case of the single 5H scenario with its typical extra
10−2 suppression at play?

(2) If not, can the two-5H scenario work? What would
be then the corresponding lower limit for mmax

ν in
this scenario?

(3) In either case, what is the allowed domain for the
entries ofUν and, thus, for the corresponding BLNV
nucleon decay rates?

This is what we turn our attention to in the remainder of this
article.

III. WITTEN’S LOOP CALCULATION

The leading contribution to the radiatively generated RH
neutrino mass in the current scheme may be computed by
considering the graphs in Fig. 1 evaluated at zero external
momentum, see Appendix C, with the relevant interaction
terms given in Appendix A. In the minimal renormalizable
model containing only a single 10H and one or more 5H
representations, no one-loop contribution to the RH neu-
trino mass matrix can be generated, nor do there exist any
one-loop counterterm graphs. The resulting expression for
the RH Majorana neutrino mass matrix in the case of a
single 5H multiplet reads

ðMM
ν ÞIJ ¼−

3g45
ð4πÞ4VG

X2
i¼1

ð−8YIJ
10ÞðUΔÞi1ðU�

ΔÞi2I3ðsiÞ;

ð10Þ
where the scalar mixing matrix elements ðUΔÞij are given in
Appendix B, and I3ðsiÞ is the sum of the corresponding loop
integrals evaluated at zero external incoming momentum,

I3ðsiÞ ¼ −ð4πÞ4ðΣP
1 ð0Þ þ 2ΣP

2 ð0ÞÞ; ð11Þ
regarded as a function of si ¼ m2

Δi
=m2

X. Recall that there is an
overall extra factor of 2 included in Eq. (10) related to the
permutation of the two external neutral field lines (for I ¼ J)
or to the symmetry of Y10 (for I ≠ J). The integrals ΣP

1 ð0Þ
and ΣP

2 ð0Þ, corresponding to topology 1 and 2 respectively,
are given by

iΣP
1 ð0Þ ¼ i

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4 γρ

1

−q
1

p
γμ

×
1

ðpþ qÞ2 −m2
Δi

−gμν þ 1
m2

X
pμpν

p2 −m2
X

−gρν þ 1
m2

X
qνqρ

q2 −m2
X

;

ð12Þ
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iΣP
2 ð0Þ ¼ i

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

1

−q
γρ

1

p
γμ

1

q2 −m2
Δi

×
−gμν þ 1

m2
X
pμpν

p2 −m2
X

−gρν þ 1
m2

X
ðpþ qÞνðpþ qÞρ

ðpþ qÞ2 −m2
X

:

ð13Þ
The integrals in Eqs. (12) and (13) are evaluated by reducing
them to expressions involving (variants of) the brackets by
Veltman and van der Bij [22], which may be evaluated
directly [22–27]. The details of this reduction, and the
resulting analytic expressions for the two-loop integrals,
are given inAppendixD. In particular, using the results given
in Ref. [22] and appropriate generalizations thereof, it is
found that the contributing brackets are free of potential IR
divergences in the limit of massless internal fermions, such
that the fermionmassesmay safely be allowed to vanish as in
Eqs. (12) and (13). On the other hand, each graph is
individually UV divergent. Setting ϵ ¼ 2 − D

2
, where D is

the spacetime dimensionality, the divergences are found
to be

−ð4πÞ4ΣP;div
1 ð0Þ ¼ 3

2ϵ
−

m4
Δi

2m4
X

�
1

2ϵ2
þ 3

2ϵ
−
1

ϵ
log

m2
Δi

Q2

�
;

ð14Þ

and

−ð4πÞ4ΣP;div
2 ð0Þ ¼ −

3

4ϵ
þ m4

Δi

4m4
X

�
1

2ϵ2
þ 3

2ϵ
−
1

ϵ
log

m2
Δi

Q2

�
:

ð15Þ

It follows from Eq. (11) that the total contribution I3ðsiÞ to
the RH neutrinomassmatrix is UV finite, asmust be the case
here due to the absence of the necessary counterterms.

IV. RESULTS

The behavior of the result for the purely kinematic piece
of the RH neutrino mass matrix, I3ðsÞ, is shown in Fig. 2.
Notably, the magnitude of I3ðsÞ is bounded for all s ≥ 0.
Indeed, from the analytic result given in Eq. (D31), one has
that for s → 0,

I3ðs → 0Þ ¼ 3þ s

�
3 log sþ π2 −

15

2

�
þOðs2 log2 sÞ;

ð16Þ

while in the opposite limit with s → ∞,

I3ðs → ∞Þ ¼ −3þOðs−1 log2 sÞ: ð17Þ

A. RH neutrino masses in the minimal model

With I3ðsÞ determined, we may proceed to evaluate the
size ofMM

ν in Eq. (10). Substituting in the explicit forms of
the mixing matrix elements in Eq. (B11) one obtains

MM
ν ¼ −

3g45
ð4πÞ4 ð−8Y10ÞVGĨ; ð18Þ

where

Ĩ ¼
X2
i¼1

2ν�ð2λ2 þ g25siÞ
4jνj2 þ ð2λ2 þ g25siÞ2

I3ðsiÞ; ð19Þ

and ν ¼ μ=VG. We note that Ĩ → 0 as μ → 0, reflecting the
fact that the graphs rely on the 10H − 5H mixing. It is also
clear from Eq. (19) that, since I3ðsÞ is bounded, Ĩ cannot be
made arbitrarily large to compensate for the suppression
factors noted in Sec. II. To develop some sense of the allowed
size of Ĩ, it is useful to substitute for si from Eq. (B7) and
inspect Ĩ as a function of ν, λ2, λ5, and g5, neglecting all terms
that are of the order of v2=V2

G, where v is the electroweak
VEV, see Eq. (B2). Requiring that the tree-level vacuum be
locally stable implies [13] λ2;5 < 0 and

jνj ≤
ffiffiffiffiffiffiffiffiffi
λ2λ5

p
: ð20Þ

When this bound is saturated, i.e., when jνj ¼ ffiffiffiffiffiffiffiffiffi
λ2λ5

p
, the

mass mΔ1
vanishes for all values of λ2, λ5 while

m2
Δ2

¼ −ðλ2 þ λ5ÞV2
G. The resulting value of Ĩ for this

special case is shown in the ðλ2; λ5Þ plane in Fig. 3. In
particular, it should be noted that the value of Ĩ is unchanged
under the interchange λ2 ↔ λ5, as can be easily verified from
Eqs. (19) and (B7), and jĨj ≤ 3 for all values of λ2 and λ5. The
maximal value of jĨj is achieved for λ2 ¼ λ5, with jĨj → 3
as λ2 ¼ λ5 → −∞.

FIG. 2. Plot of the function I3ðsÞ appearing in the RH neutrino
mass matrix.
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Qualitatively different behavior results in the more
general case that ν does not saturate the bound given in
Eq. (20). This is demonstrated in Fig. 4, in which the value
of Ĩ is plotted as a function of λ2 ¼ λ5 ¼ λ with

ν ¼ α
ffiffiffiffiffiffiffiffiffi
λ2λ5

p
; α ∈ ½0; 1�; ð21Þ

for several values of α. Although Ĩ remains invariant under
λ2 ↔ λ5, with the maximum value of jĨj still occurring for
λ2 ¼ λ5, for values of jαj < 1, jĨj now tends to zero for
large values of the scalar couplings λ2, λ5. This is due to the
fact that, for jαj ≠ 1, both s1, s2 grow with increasing jλj
such that I3ðs1Þ; I3ðs2Þ → −3, while the coefficients of

each in Eq. (19) are equal in magnitude but of opposite
sign, resulting in the two terms cancelling. Physically, this
corresponds to the expected dynamical decoupling of the
heavy scalar states in the mΔ1;2

→ ∞ limit. For α ¼ 1, at
least one color triplet scalar is massless at tree-level for all
values of λ2 and λ5. Consequently, this state never decou-
ples and Ĩ therefore does not vanish. Technically, this arises
because I3ðs1Þ ¼ 3 while I3ðs2Þ → −3, with the two
contributions still entering Ĩ with coefficients of equal
magnitude but opposite sign.
However, even in the most optimistic case with jĨj → 3,

the above results make it clear that there is little hope for a
viable prediction of the light neutrino spectrum in the
minimal scenario under consideration. For acceptable values
ofmX ∼ 1017 GeV, and taking g5 ≈ 0.5, the elements ofMM

ν

are found to be ≲1012 GeV after taking into account the
∼10−2 suppression associatedwith presence ofY10. This is to
be compared with the (optimistic) lower bound of
∼1013 GeV for the elements of the left-hand side of
Eq. (7). Evidently, in the case when only a single 5H is
present in the spectrum the answer to whether Eq. (7) can be
satisfied is negative. In fact, in this minimal model the
problem is exacerbated by the fact that Y10 ∝ Md, which
implies a far too hierarchical pattern of light neutrino masses
irrespective of their absolute size, as was previously noted in
Ref. [13]. Thus we are immediately led to consider the
remaining questions raised in Sec. II concerning the viability
of the model with an additional 5H representation instead.

B. Minimal potentially realistic model

As noted above, the addition of a second 5H multiplet in
principle allows both the Y10 suppression and the overly
hierarchical flavor structure to be avoided. At the same
time, the overall predictive power of the theory is not
significantly harmed by this addition; in particular, doing so
does not spoil the key Yukawa relations used in obtaining
Eq. (7). With a second 5H

0 multiplet, the Yukawa sector of
the model reads

L ∋ Y1010M10M5H þ Y 0
1010M10M5

0
H

þ Y 5̄10M5̄M5
�
H þ Y 0̄

5
10M5̄M5

0�
H

þ Y15̄M1M5H þ Y 0
15̄M1M5

0
H þ H:c:; ð22Þ

where Y 0
10 is of course also flavor symmetric. In this

scenario, the Dirac neutrino mass matrix still remains
tightly correlated with the up-type quark masses, with
the GUT scale relation

MD
ν ¼ MT

u ∝ Y 5̄vþ Y 0̄
5
v0 ð23Þ

holding at tree-level, where v0 is the VEV associated with
the electrically neutral component of 50H, see Appendix B 2.
By contrast, the analogous relationship between the

FIG. 3. Contour plot of Ĩ, as defined in Eq. (19), in the ðλ2; λ5Þ-
plane, with g5 ¼ 0.5 and ν ¼ α

ffiffiffiffiffiffiffiffiffi
λ2λ5

p
for α ¼ 1, corresponding to

the maximal value of jνj consistent with a locally stable SM
vacuum.

FIG. 4. Plot of the range of variation of Ĩ as a function of
λ2 ¼ λ5 ¼ λ, with g5 ¼ 0.5 and μ ¼ α

ffiffiffiffiffiffiffiffiffi
λ2λ5

p
VG, for α ∈ ½0; 1�.

The dashed vertical line denotes the naïve perturbativity limit
jλij ≤ 4π.
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down-type quark masses and the generated RH neutrino
Majorana masses, Md, MM

ν ∝ Y10, is no longer preserved.
While Md ∝ Y10vþ Y 0

10v
0, the appropriate generalization

of Eq. (10) reads

ðMM
ν ÞIJ ¼ −

3g45
ð4πÞ4 VG

X3
i¼1

X3
j¼2

ð−8YIJ
j ÞðUΔÞi1ðU�

ΔÞijI3ðsiÞ;

ð24Þ

where Yj ¼ Y10 when j ¼ 2 and Yj ¼ Y 0
10 when j ¼ 3,

with UΔ now a 3 × 3 mixing matrix as defined in
Eq. (B16). Thus, in general, Md and MM

ν are determined
by different linear combinations of the Yukawa couplings
Y10 and Y 0

10. In turn, this means that the generic suppression
of MM

ν by a factor ∝ Md may be avoided in the two-5H
scenario. On the other hand, it is still the case that the
elements ofMM

ν are bounded from above, at least so long as
it is required that all couplings remain perturbative.

1. Phenomenology of the minimal
potentially realistic model

As the ignorance of yet higher-order effects makes any
such perturbativity constraints somewhat arbitrary in gen-
eral, in what follows we shall give two examples of theMM

ν

estimates corresponding to two different choices of the
upper limits on the effective (running) SM down-quark
Yukawa couplings. These, according to Eq. (A3), obey
Yd ≡ 8Y10 and Y 0

d ≡ 8Y 0
10 at the matching scale. The two

cases to be considered are (i) jYdj, jY 0
dj≲ 1 and (ii) jYdj,

jY 0
dj≲ 4π. For the former case (motivated by the SM value

of the top Yukawa coupling) one has the following upper
limit on MM

ν calculated from Eq. (24)

case iÞ jMM
ν j≲ 6.4 × 1012

�
mX

1017 GeV

�
GeV; ð25Þ

while for the latter one obtains

case iiÞ jMM
ν j ≲ 8.0 × 1013

�
mX

1017 GeV

�
GeV: ð26Þ

Note that in both cases we have used the (numerical)
upper limit

����X3
i¼1

X3
j¼2

ðUΔÞi1ðU�
ΔÞijI3ðsiÞ

���� ≤ 3 ð27Þ

which is completely analogous to the limit discussed in
Sec. IVA for the single-5H case.
Remarkably, for the typical flipped SUð5Þ value ofmX ¼

1017 GeV (see, e.g., Ref. [13]) the case (i) limit, Eq. (25), is
just on the borderline of compatibility with the optimistic

lower limit in Eq. (9) on jWνj, while the latter case (ii) in
principle admits lower7 values of mX.
This, in turn, implies that there is generally not much

room for any significant admixture of the second neutrino
(inverse) mass within the element ðWνÞ33, hence, the only
allowed Uν’s in Eq. (7) are those for which ðUνÞ13 and
ðUνÞ23 are small.
To this end, the model clearly calls for a dedicated

numerical analysis including a detailed calculation of the
heavy spectrum that conforms to, among other things, the
requirement of a significant spread of the scalar triplets in
order to maximize jĨj. This, however, is beyond the scope
of the current study and will be elaborated on elsewhere.
At this point, let us just illustrate the typical situation by

evaluating the most significant proton-decay two-body
branching ratios (neglecting the kinematically suppressed
vector-meson channels for simplicity) in the ðUνÞ13 ¼
ðUνÞ23 ¼ 0 limit with the 1-2 mixing angle θ12 therein
chosen in such a way that Γðp → π0μþÞ is maximized (see
Ref. [13] for further details):

Brðp → πþν̄Þ ≈ 80.0%;

Brðp → π0eþÞ ≈ 14.2%;

Brðp → π0μþÞ ≈ 5.5%;

Brðp → K0eþÞ ≈ 0.1%: ð28Þ

Needless to say, for nonextremal values of θ12 these
branching ratios may vary; in particular, Brðp →
π0eþÞ=Brðp → π0μþÞ should increase.
Finally, let us say a few words about the lower limits on

the mass of the heaviest SM neutrino in the two cases (25)
and (26). As for the former, one obtains8

m3 ≳
�
1017 GeV

mX

�
eV ð29Þ

while for the latter one has

m3 ≳ 0.08

�
1017 GeV

mX

�
eV ð30Þ

which, actually, turns out to be independent on the specific
form of the Uν matrix as long as the 1-3 and 2-3 mixings
therein are small (see the discussion above). With this at
hand, any specific experimental upper limit on the absolute

7These, however, may not be that simple to get within
potentially realistic unification chains, see Appendix C of
Ref. [13].

8Given the structure of the seesaw formula in the current
context (7) together with the tight constraints on the structure of
the Uν matrix we generally assume the hierarchy of the light
neutrino mass eigenstates to be normal.
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neutrino mass scale may be readily translated into a lower
limit on mX and, subsequently, the proton lifetime.

V. CONCLUSIONS AND OUTLOOK

The two-loop radiative RH neutrino mass generation
mechanism originally identified by Witten in 1980s in the
SOð10Þ context finds a beautiful incarnation in the class of
renormalizable flipped SUð5Þ unified theories where,
among other effects, it avoids the need for the 50-
dimensional scalar representation. This, in turn, renders
the simplest potentially realistic scenarios perhaps the most
minimal (partially) unified gauge theories on the market,
with strong implications for some of the key beyond-
standard-model observables such as the absolute neutrino
mass scale and proton decay.
In this work we have focused on a thorough evaluation of

the relevant Feynman graphs in these scenarios paying
particular attention to their analytic properties and the
absolute size of the effect which turns out to be the key
to the consistency of the scenario as a whole. It has been
shown that there is no way to be consistent with the data
with only one 5-dimensional scalar multiplet at play and,
hence, the minimal potentially realistic setup must include
two such irreps in the scalar sector (along with the 10-
dimensional tensor).
As it turns out, such a minimal flipped SUð5Þ model is

subject to strong constraints on its allowed parameter space
that lead to rather stringent limits on the absolute light
neutrino mass scale as well as the BLNV two-body nucleon
decays. A thorough numerical analysis of the correspond-
ing correlations is deferred to a future study.
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APPENDIX A: THE INTERACTION
LAGRANGIAN

The radiative generation of the RH neutrino masses
involves only a small subset of the interactions associated
with the full flipped SUð5Þ Lagrangian. Working in the
SUð5Þ ⊗ Uð1ÞX broken phase, we extract the required
interactions from the kinetic terms and general Yukawa
Lagrangian, Eq. (4), making use of FEYNRULES [28,29]
and FEYNARTS [30,31] to verify that all terms and con-
tributing diagrams are accounted for. As discussed in
Sec. II, when the model contains only a single 5H
representation the relevant diagrams are found to be those
in Fig. 1, arising from the interaction Lagrangian

Lint ∋
g25
2
ϵijkϵ

βαVGX
μi
α X

j
μβD̄

†k þ g5ffiffiffi
2

p ϵijkXi
μα

¯dcLI

jγμQkα
LI

þ g5ffiffiffi
2

p ϵβαXi
μαðQ̄LI

ÞiβγμνcLI
− 8YIJ

10d
cT
LIi
C−1νcLJ

Ti

− 4YIJ
10ϵijkϵαβðQiβ

LI
ÞTC−1Qjα

LJ
Tk þ H:c: ðA1Þ

where i, j, k and α, β denote the SUð3ÞC and SUð2ÞL
indices, respectively, and ϵijk and ϵαβ are the relevant fully
antisymmetric tensors with ϵ123 ¼ −ϵ12 ¼ 1. In this expres-
sion, D̄ denotes the ð3̄; 1;þ 1

3
Þ components of the scalar

10H, T the ð3; 1;− 1
3
Þ components of 5H, QLI

the quark
doublet ð3; 2;þ 1

6
Þ ∈ 10M, dcLI

the down-type quark singlet
ð3̄; 1;þ 1

3
Þ ∈ 10M, and νcLI

the (1,1,0) components of 10M.
The charged vector bosons Xμ associated with the breaking
of SUð5Þ ⊗ Uð1ÞX have SM quantum numbers ð3; 2̄;þ 1

6
Þ.

Following the breakdown of the SUð5Þ ⊗ Uð1ÞX sym-
metry due to the non-zero VEV VG, the scalar states D̄ and
T mix to form the SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY eigenstates
Δ1;2, as described in Appendix B.
Let us note that in deriving the central formula Eq. (10),

especially the overall factor of 3 therein, the color and
isospin factors in Eq. (A1) play a crucial role. It is also
worth noting that the exact cancellation of the UV
divergences discussed in Sec. III, which relies on the extra
factor of 2 in Eq. (11), emerges from the difference of the
overall numerical factors in the last two terms in Eq. (A1).
After including an additional 50H to arrive at the minimal

realistic model discussed in Section IV B, the interaction
Lagrangian remains rather similar. The addition of Yukawa
couplings involving 50H leads to the set of interaction terms
(with color indices suppressed for simplicity)

LTH5M
int ¼ Lint − ½8ðY 0

10ÞIJdcTLI
C−1νcLJ

T 0

þ 4ðY 0
10ÞIJϵαβðQβ

LI
ÞTC−1Qα

LJ
T 0 þ H:c:�; ðA2Þ

where T 0 denotes the additional ð3; 1;− 1
3
Þ multiplet con-

tained in 50H, which mixes with the states D̄ and T to yield a
set of SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY eigenstates Δ1;2;3.
For the sake of completeness and matching to the SM

Yukawa couplings we also present the terms involving the
doublet Higgs interactions here:

−Lint ∋ 8YIJ
10ϵγδH

δdcTLI
C−1Qγ

LJ
þ YIJ

5̄
H†

γucTLJ
C−1Qγ

LI

þ YIJ
5̄
H†

γ νcTLI
C−1lγ

LJ
þ YIJ

1 ϵγδH
γecTLJ

C−1lδ
LI

þ H:c:; ðA3Þ

where the SM Higgs doublet H consists of the components
of 5H transforming under the SM gauge group as ð1; 2;− 1

2
Þ,

ucLI
and lLI

are the components of 5̄M transforming as
ð3̄; 1;− 2

3
Þ and ð1; 2;− 1

2
Þ respectively, and ecLI

denotes the
single component of 1M, transforming as ð1; 1;þ1Þ.
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APPENDIX B: TRIPLET SCALAR
SPECTRUM AND MIXING

1. Model with a single 5H representation

The tree-level scalar potential in the model with a single
5H may be written

V ¼ 1

2
m2

10Trð10†H10HÞ þm2
55

†
H5H

þ 1

8
ðμϵijklm10ijH10klH5mH þ H:c:Þ

þ 1

4
λ1½Trð10†H10HÞ�2 þ

1

4
λ2Trð10†H10H10†H10HÞ

þ λ3ð5†H5HÞ2 þ
1

2
λ4Trð10†H10HÞð5†H5HÞ

þ λ55
†
H10H10

†
H5H: ðB1Þ

The scalar basis is chosen such that the spontaneous
breaking of SUð5Þ ⊗ Uð1ÞX and the subsequent electro-
weak symmetry breaking takes place via the nonzero VEVs

h10Hi45 ¼ −h10Hi54 ¼ VG; h5Hi4 ¼ v: ðB2Þ
Requiring that this corresponds to a stationary point of the
scalar potential yields the conditions

VG½m2
10 þ V2

Gð2λ1 þ λ2Þ þ v2ðλ4 þ λ5Þ� ¼ 0; ðB3Þ
v½m2

5 þ 2λ3v2 þ V2
Gðλ4 þ λ5Þ� ¼ 0; ðB4Þ

which permit the parameters m2
5, m

2
10 to be eliminated in

favor of the VEVs.
After the breakdown of SUð5Þ ⊗ Uð1ÞX to SUð3ÞC ⊗

SUð2ÞL ⊗ Uð1ÞY , the charged vector bosons Xμ associated
with the broken generators acquire masses mX given by
Eq. (3). The scalar states T and D̄ of relevance to the
generation of the RH neutrino masses mix, with the mass
matrix (in the basis ðD̄†; TÞ)

M2
Δ ¼

�−λ2V2
G μVG

μ�VG m2
5 þ λ4V2

G

�
; ðB5Þ

where Eq. (B3) with v ¼ 0 has been used to eliminate m2
10.

This is diagonalized by a unitary matrix UΔ according to

UΔM2
ΔU

†
Δ ¼

�m2
Δ1

0

0 m2
Δ2

�
;

with

m2
Δ1;2

¼ 1

2
fm2

5 þ ðλ4 − λ2ÞV2
G

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

5 þ ðλ2 þ λ4ÞV2
G�2 þ 4jμj2V2

G

q
g; ðB6Þ

which, in the electroweak vacuum, simplifies into

m2
Δ1;2

¼ V2
G

2

�
−ðλ2 þ λ5Þ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − λ5Þ2 þ

4jμj2
V2
G

s �
: ðB7Þ

The elements of the mixing matrix UΔ read

ðUΔÞ11 ¼
μ�VGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jμj2V2
G þ ðm2

Δ1
þ λ2V2

GÞ2
q ;

ðUΔÞ12 ¼
m2

Δ1
þ λ2V2

Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2V2

G þ ðm2
Δ1

þ λ2V2
GÞ2

q ;

ðUΔÞ21 ¼
μ�VGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jμj2V2
G þ ðm2

Δ2
þ λ2V2

GÞ2
q ;

ðUΔÞ22 ¼
m2

Δ2
þ λ2V2

Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2V2

G þ ðm2
Δ2

þ λ2V2
GÞ2

q : ðB8Þ

2. Model with two 5H representations

In the minimal realistic model with two 5H representa-
tions, we take the tree-level scalar potential to be given by

V ¼ 1

2
m2

10Trð10†H10HÞ þm2
55

†
H5H þm2

505
0†
H5

0
H þ 1

4
λ1½Trð10†H10HÞ�2 þ

1

4
λ2Trð10†H10H10†H10HÞ

þ λ3ð5†H5HÞ2 þ λ̃3ð50†H50HÞ2 þ λ6ð5†H50HÞð50†H5HÞ þ λ̃6ð5†H5HÞð50†H50HÞ þ
1

2
λ45

†
H5HTrð10†H10HÞ

þ 1

2
λ̃45

0†
H5

0
HTrð10†H10HÞ þ λ55

†
H10H10

†
H5H þ λ̃55

0†
H10H10

†
H5

0
H

þ
�
m2

125
†
H5

0
H þ μ

8
ϵijklm10

ij
H10

kl
H5

m
H þ μ0

8
ϵijklm10

ij
H10

kl
H5

0m
H þ η1ð5†H5HÞð5†H50HÞ þ η2ð5†H50HÞ2

þ η3ð5†H50HÞð50†H50HÞ þ
1

2
λ75

†
H5

0
HTrð10†H10HÞ þ λ85

†
H10H10

†
H5

0
H þ H:c:

	
: ðB9Þ
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The field basis is again chosen such that the fields 10H and
5H acquire nonzero VEVs given by Eq. (B2), while

h50Hi4 ¼ v0: ðB10Þ

The corresponding conditions that must hold for this to be a
stationary point of the potential are

fi ¼ 0; i ¼ 1; 2; 3; ðB11Þ

where

f1 ¼ v1m2
5 þ v2m2

12 þ 3v21v2η1 þ v32η3

þ v2V2
Gðλ7 þ λ8Þ þ 2v31λ3 þ v1V2

Gðλ4 þ λ5Þ
þ v1v22ðλ6 þ λ̃6 þ 2η2Þ; ðB12Þ

f2 ¼ v2m2
50 þ v1m2

12 þ v31η1 þ 3v1v22η3

þ v1V2
Gðλ7 þ λ8Þ þ 2v32λ̃3 þ v2V2

Gðλ̃4 þ λ̃5Þ
þ v21v2ðλ6 þ λ̃6 þ 2η2Þ; ðB13Þ

f3 ¼ VGm2
10 þ V3

Gð2λ1 þ λ2Þ þ v21VGðλ4 þ λ5Þ
þ v22VGðλ̃4 þ λ̃5Þ þ 2v1v2VGðλ7 þ λ8Þ: ðB14Þ

In deriving the above, and in all expressions below, we
restrict our attention to the case where all couplings are real.
In the SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY symmetric phase,

i.e., for VG ≠ 0, v ¼ v0 ¼ 0, the set of scalar color triplets
that mix is extended to include the color triplet T 0
associated with 50H. The 3 × 3 mass matrix, in the basis
ðD̄†; T; T 0Þ, reads

M2
Δ ¼

0
BB@

−λ2V2
G μVG μ0VG

μVG m2
5 þ λ4V2

G m2
12 þ λ7V2

G

μ0VG m2
12 þ λ7V2

G m2
50 þ λ̃4V2

G

1
CCA; ðB15Þ

where Eq. (B14) with v ¼ v0 ¼ 0 has been used to
eliminate the dependence on m2

10. The resulting mass
eigenstates ðΔ1;Δ2;Δ3Þ are obtained through the rotation

0
B@

Δ1

Δ2

Δ3

1
CA ¼ UΔ

0
B@

D̄†

T

T 0

1
CA; ðB16Þ

where the unitary matrix UΔ diagonalizesM2
Δ according to

UΔM2
ΔU

†
Δ ¼ diagðm2

Δ1
; m2

Δ2
; m2

Δ3
Þ: ðB17Þ

APPENDIX C: RADIATIVE FERMION
MASS GENERATION

In general, the physical mass of a single spin-1=2
fermion is obtained as the value of m for which

ð=kþmÞΓð2ÞðkÞ ¼ 0 ∀ k such that k2 ¼ m2; ðC1Þ

where Γð2ÞðkÞ is the renormalized two-point 1PI Green’s
function,

Γð2ÞðkÞ ¼ ZðkÞ=k − Σð0Þ: ðC2Þ

In this expression, ZðkÞ corresponds to the wave function
renormalization and Σð0Þ is the zero incoming momentum
contribution to the appropriate sum of Feynman diagrams.
Taken together, Eq. (C1) and Eq. (C2) imply that

mZðm2Þ ¼ Σð0Þ; ðC3Þ

which generally amounts to a transcendental equation
to be solved for the physical mass m. An expression for
m may be obtained perturbatively by writing Zðm2Þ ¼
1þ ΔZðm2Þ, Σð0Þ ¼ m0 þ Δm0, where the first and sec-
ond term in each expression correspond to the tree-level
and loop corrections to each quantity, respectively. One
finds the result

m ¼ m0 þ ½Δm0 −m0ΔZðm2
0Þ� þ…; ðC4Þ

where we show only the leading part of the higher-order
contribution. Therefore, in the general case with m0 ≠ 0, a
calculation of the leading higher-order contribution to the
physical mass would require the evaluation of the loop
corrections to both Σð0Þ and Zðk2Þ.
However, for the case studied in this article in which the

RH neutrinos are massless at tree-level, Eq. (C4) reads
simply m ¼ Δm0 ¼ Σð0Þ at leading order.

APPENDIX D: EVALUATION OF THE
TWO LOOP FEYNMAN INTEGRALS

1. Veltman-Van der Bij brackets

Remarkably enough, there is an entire industry concern-
ing the evaluation methods for the zero-external-momen-
tum two-point 1PI graphs, see, e.g., Ref. [22] or Ref. [27]
and references therein.
The principal object in these methods are the so-called

Veltman-Van der Bij brackets. As the original paper uses an
Euclidean metric and a different choice of dimensional
regularization parameter ϵ, we give here all of the relevant
expressions in our particular convention, i.e., in Minkowski
metric g ¼ diagð1;−1;−1;−1Þ and with the number of
spacetime dimensions equal to D ¼ 4 − 2ϵ.
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We introduce the brackets in the following way

fM11;M12;…;M21;…;M31;…g ¼
Z

d4p
ð2πÞ4

Z
d4q
ð2πÞ4

1

ðp2 −M2
11Þðp2 −M2

12Þ…
1

ðq2 −M2
21Þ…

1

½ðpþ qÞ2 −M2
31�…

;

ðD1Þ

fM11;M12;…g ¼
Z

d4p
ð2πÞ4

1

ðp2 −M2
11Þðp2 −M2

12Þ…
; ðD2Þ

fM11;…;M21;…;M31;…g½Aðp; qÞ� ¼
Z

d4p
ð2πÞ4

Z
d4q
ð2πÞ4

1

ðp2 −M2
11Þ…

1

ðq2 −M2
21Þ…

1

½ðpþ qÞ2 −M2
31�…

Aðp; qÞ: ðD3Þ

With the last expression we have introduced a shorthand notation that simplifies the form of this Appendix.

Note that the brackets are invariant under the exchange
of positions of the individual groups of components, which
can be obtained by the change of variables (p ↔ q)
and ðpþ q → p;−q → qÞ.
By a partial cancellation of fractions we can derive

various reduction formulae of the type

fMA;ma;MB;mb;MCg½p2�
¼ fMA;MB;mb;MCg þm2

afMA;ma;MB;mb;MCg:
ðD4Þ

A similar trick using p2 −M2
B − ðp2 −M2

AÞ ¼ M2
A −M2

B
can be used for a simplification of brackets of the type9

fMA;MB; α; βg ¼ 1

M2
A −M2

B
ðfMA; α; βg − fMB; α; βgÞ:

ðD6Þ

It is also possible to show that

fMA;MB;MCg½ðpþ qÞ2�
¼ fMAgfMBg þM2

CfMA;MB;MCg: ðD7Þ

Using all of these methods we can express the
relevant two-loop integrals in terms of simple brackets
fMA;MB;MCg. It is of use to rewrite them further into
double brackets

f2MA;MB;MCg≡ fMA;MA;MB;MCg; ðD8Þ

which are dimensionless (cf. Ref. [22]). The operation
transcribing simple brackets into double brackets is ’t
Hooft’s p-operation [32]. In our notation it reads

fMA;MB;MCg ¼ 1

D − 3
ðM2

Af2MA;MB;MCg
þM2

Bf2MB;MC;MAg
þM2

Cf2MC;MA;MBgÞ: ðD9Þ

2. Topology 1

Topology 1 of Fig. 1 leads to the kinematic form (i.e.,
neglecting the specific form of the vertices) of the integral
given in Eq. (12). By using D-dimensional gamma matrix
gymnastics, it can be simplified into

ΣP
1 ð0Þ ¼ −fmX; 0;mX; 0;mΔi

g
�
ðD − 4Þqpþ 4p · q

−
p2 þ q2

m2
X

pqþ p2q2

m4
X

p · q

	
: ðD10Þ

The slashed product can be rewritten into p=q ¼ p · q−
ipμσμνqν. After performing the p integration the second
term would have to be of the form iqμσμνqν and, due to the
antisymmetry of σμν, such a term will not contribute. After
the operations given above, we obtain

ΣP
1 ð0Þ ¼ −

m2
Δi

2m4
X
f0; 0;mΔi

g − ðD − 1Þ
�

1

2m4
X
A0ðm2

XÞ2

þm2
Δi

2
fmX; 0;mX; 0;mΔi

g − fmX; 0;mX;mΔi
g
�
:

ðD11Þ

This may be rewritten in terms of the simple brackets using
relations similar to those in Eq. (D6).

9Note that this simplification relates together the Passarino-
Veltman integrals A0 and B0,

B0ð0; 0;M2
AÞ ¼ fMA; 0g ¼ 1

M2
A

fMAg ¼ 1

M2
A

A0ðM2
AÞ: ðD5Þ
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3. Topology 2

Neglecting the specific form of the vertices, Topology 2 of
Fig. 1 leads to the second integral in Eq. (12). It can be
simplified into (againmakinguse of the antisymmetry of σμν)

ΣP
2 ð0Þ ¼ −fmX; 0;mΔi

; 0;mXg
�
ð2 −DÞp · q

−
2p2q2

m2
X

−
2p2 þ q2

m2
X

p · qþ p4q2

m4
X

þ p2ðq2 þ p2Þ
m4

X
p · qþ p2

m4
X
ðp · qÞ2

	
: ðD12Þ

The result after simplification reads

ΣP
2 ð0Þ ¼

2 −D
2

f0;mΔi
; 0;mXg þ

3 −D
2

fmX; 0;mΔi
;mXg

þ m2
Δi

4m4
X
ð2fmX; 0;mΔi

g − fmX;mX;mΔi
gÞ

þ D − 2

2m2
Δi
m2

X
A0ðm2

XÞA0ðm2
Δi
Þ − 1

4m4
X
A0ðm2

XÞ2:

ðD13Þ

4. Integrals

For the reader’s convenience, we list here the results of
the integrals appearing in the expressions in our conven-
tion. As integrals A0ðM2

AÞ appear in the results in the
second power, we need to evaluate also the term linear in ϵ.
This gives

A0ðM2
AÞ ¼ Q4−D

Z
dDp
ð2πÞD

1

p2 −M2
A

¼ −i
M2

A

ð4πÞ2
�
−
1

ϵ
þ LA −

ϵ

2

�
L2
A þ 1þ π2

6

�	
þOðϵ2Þ; ðD14Þ

where

LA ¼ log
M2

A

Q2
− log 4π þ γ − 1; ðD15Þ

with Q being the renormalization scale and γ the Euler-
Mascheroni constant.
As was already stated, all of the simple brackets can be

obtained from the double brackets using Eq. (D9).
Therefore, we give here the result only for them. It reads

f2M;Ma;Mbg ¼ 1

ð4πÞ4 ðSðMÞ − fða; bÞÞ þOðϵÞ; ðD16Þ

where

SðMÞ ¼ −
1

2ϵ2
þ 1

ϵ

�
Lþ 1

2

�
−
�
L2 þ Lþ 1

2
þ π2

12

�
;

ðD17Þ

a ¼ M2
a

M2
; b ¼ M2

b

M2
; ðD18Þ

and the function fða; bÞ is given by

fða; bÞ ¼ −
1

2
log a logbþ 1 − a − b

2
ffiffiffi
q

p
�
Li2

�
−
x2
y1

�
þ Li2

�
−
y2
x1

�
− Li2

�
−
x1
y2

�
− Li2

�
−
y1
x2

�

þ Li2

�
b − a
x2

�
þ Li2

�
a − b
y2

�
− Li2

�
b − a
x1

�
− Li2

�
a − b
y1

�	
; ðD19Þ

fðb; bÞ ¼ −
ð2b − 1Þ



2Li2


 ffiffiffiffiffiffiffiffi
1−4b

p
−1ffiffiffiffiffiffiffiffi

1−4b
p þ1

�
þ π2

6
þ 1

2
log2



−

ffiffiffiffiffiffiffiffi
1−4b

p
−1ffiffiffiffiffiffiffiffi

1−4b
p þ1

��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4b

p −
1

2
log2ðbÞ: ðD20Þ

In Eq. (D19) and Eq. (D20) the quantities q, x1;2, and y1;2
are defined by

q≡ 1 − 2ðaþ bÞ þ ða − bÞ2; ðD21Þ

x1;2 ≡ 1

2
ð1þ b − a� ffiffiffi

q
p Þ; ðD22Þ

y1;2 ≡ 1

2
ð1þ a − b� ffiffiffi

q
p Þ: ðD23Þ

In addition to Eq. (D20) giving the value of fða; bÞ when
a ¼ b, it is helpful to note the other special cases

fð0; 0Þ ¼ π2

6
; ðD24Þ

fð0; bÞ ¼ Li2ð1 − bÞ; ðD25Þ

fð0; b−1Þ ¼ −
1

2
log2 b − fð0; bÞ: ðD26Þ
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5. The kinematic structure of the self-energies

Rewriting Eq. (D11) and Eq. (D13) yields the expressions in terms of double brackets,

ΣP
1 ð0Þ ¼ −

1

D − 3

m4
Δi

2m4
X
f2mΔi

; 0; 0g −D − 1

2m4
X
A0ðm2

XÞ2 þ
D − 1

D − 3
ð2f2mX;mX;mΔi

g − f2mX; 0;mΔi
gÞ

þD − 1

D − 3

m4
Δi

2m4
X
ð2f2mΔi

;mX; 0g − f2mΔi
;mX;mXg − f2mΔi

; 0; 0gÞ

þD − 1

D − 3

m2
Δi

m2
X
ðf2mX; 0;mΔi

g − f2mX;mX;mΔi
g þ f2mΔi

;mX;mXg − f2mΔi
;mX; 0gÞ; ðD27Þ

ΣP
2 ð0Þ ¼

D − 2

2m2
Δi
m2

X
A0ðm2

XÞA0ðm2
Δi
Þ − 1

4m4
X
A0ðm2

XÞ2 þ
D − 2

D − 3

m2
X

2m2
Δi

ðf2mX; 0; 0g − f2mX; 0;mΔi
gÞ

þ m2
Δi

2m2
X
ðf2mΔi

;mX; 0g − f2mΔi
;mX;mXgÞ þ

1

D − 3

m2
Δi

2m2
X
ðf2mX; 0;mΔi

g − f2mX;mX;mΔi
gÞ

−
D − 2

2ðD − 3Þ f2mΔi
;mX; 0g −

1

2
ð2f2mX;mX;mΔi

g − f2mX; 0;mΔi
gÞ

þ 1

D − 3

m4
Δi

4m4
X
ð2f2mΔi

;mX; 0g − f2mΔi
;mX;mXgÞ: ðD28Þ

Using the explicit expression for the double brackets, Eq. (D16), ΣP
1 ð0Þ and ΣP

2 ð0Þ are then finally found to be given by

(where si ¼
m2

Δi
m2

X
as above)

ð4πÞ4Σð0ÞP1 ¼ −
3

2ϵ
þ 3LX − 2þ s2i

2

�
1

2ϵ2
−
1

ϵ

�
LΔi

−
1

2

�
þ
�
L2
Δi
− LΔi

þ 3

2
þ π2

12

�	

þ 3ðfð0; siÞ − 2fð1; siÞÞ þ
3

2
s2i ½fðs−1i ; s−1i Þ − 2fð0; s−1i Þ�

þ 3si½fð1; siÞ − fð0; sÞ − fðs−1i ; s−1i Þ þ fð0; s−1i Þ� þ 2s2i fð0; 0Þ; ðD29Þ

ð4πÞ4Σð0ÞP2 ¼ 3

4ϵ
−
1

2
½LX þ 2LΔi

− ðLΔi
− LXÞ2 − 1� − s2i

4

�
1

2ϵ2
−
1

ϵ

�
LΔi

−
1

2

�
þ
�
L2
Δi
− LΔi

þ 3

2
þ π2

12

�	

− s−1i ½fð0; 0Þ − fð0; siÞ� þ fð0; s−1i Þ þ fð1; siÞ −
1

2
fð0; siÞ

−
si
2
½fðs−1i ; 0Þ − fðs−1i ; s−1i Þ þ fð0; siÞ − fð1; siÞ� −

s2i
4
½2fð0; s−1i Þ − fðs−1i ; s−1i Þ�: ðD30Þ

Note that the individual diagrams are UV divergent, with the divergent terms given by Eqs. (14) and (15). However, as noted
in Sec. III, their combination appearing in Eq. (11) yielding the total contribution to the RH neutrino mass matrix is finite
and compact,

I3ðsÞ ¼ 1þ 2 log sþ sð1 − 2sÞlog2sþ 2ðs−1 − 1Þ½fð0; 0Þð1þ sþ s2Þ þ 2sfð1; sÞ
þ fð0; sÞð1þ sÞð1þ 2sÞ þ s2fðs−1; s−1Þ�: ðD31Þ
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