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We introduce vortex configurations with fractional topological charges where one unicolor or colorful
intersection of two perpendicular vortex pairs contributes to the topological charge of the configurations.
Using both the overlap and asqtad staggered fermion formulations, the lowest modes of the Dirac operator on
the noninteger Q configurations are studied in the fundamental and adjoint representations. We analyze the
behavior of the fundamental and adjoint fermions in the background of the topological charge contributions of
jQj ¼ 0.5.
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I. INTRODUCTION

Understanding quark confinement and spontaneous chiral
symmetry breaking (SCSB) and the dynamical mechanism
behind them are the big challenges in nonperturbative QCD.
Lattice simulations and infrared models have indicated that
the random fluctuations of the number of center vortices
which are quantized magnetic fluxes in terms of the non-
trivial center elements linked to the Wilson loop leads to
quark confinement [1–20]. In addition, lattice simulations
have shown that center vortices are also responsible for
topological charge and SCSB [21–38]. The vortex intersec-
tions could contribute to the topological charge density [14].
Moreover, the color structure of vortices could contribute to
the topological charge density too [15,34]. We studied
colorful vortex planes in Ref. [34], where the links of the
colorful region are distributed over the full SU(2) gauge
group. In addition to center vortices, the condensation of the
Abelian monopoles also leads to the quark confinement in
the dual superconductor scenario [39–46]. In addition,
although instantons which carry an integer topological
charge of modulus one fail to produce confinement (see
reviews in e.g., [47,48]), the idea of calorons which are
instantons at finite temperature is probably the most prom-
ising current version of monopole confinement in pure non-
Abelian gauge theories. The monopole constituents (dyons)
of the KvBLL calorons [49–52] are a source of both electric
andmagnetic fields which have fractional topological charge
Qdyon ¼ 1=N for the SUðNÞ gauge theory. Also, merons as
another monopole degree of freedom carrying fractional

topological charge may confine quarks [53–55]. Taken
together all this motivates analyzing the fractional topologi-
cal charges for the understanding of SCSB. An integer
topological charge attracts the fundamental zero modes
and would-be zero modes from opposite topological charges
via interactions contribute to near-zero modes. In this work,
we investigate the influence of fractional topological charges
from center vortices on fermions.
We study vortex fields with fractional topological charge

which are a combination of two antiparallel plane vortex
pairs intersecting at four points but only one of these points
contributes to the topological charge. The intersection points
are considered unicolor or colorful intersections. The links of
the unicolor intersection aredistributed over aU(1)-subgroup
and the colorful intersection is constructed through locating
the colorful region around the intersection point.
These special configurations provide an opportunity to

study the effect of the fractional topological charges on
fermions. We analyze the lowest fundamental and adjoint
modes of the overlap and asqtad staggered Dirac operator
[56–59] for the configurations with fractional topological
charge. According to the Atiyah-Singer index theorem
[60–62], the difference between the number of left- and
right-handed overlap fundamental zero modes in the back-
ground of a gauge fieldwith integer topological chargeQ ≠ 0
is jQj and theoneof the adjoint representation is2NjQjwhere
N ¼ 2 for SU(2) gauge group. In addition, the difference
between the number of left- and right-handed (asqtad)
staggered zero modes in the background of a gauge field
with the integer topological charge Q ≠ 0 is j2Qj for the
fundamental and j8Qj for the adjoint representation. We
check the index theorem for fractional topological charges
and study the lowest Dirac modes in the background of the
noninteger Q configurations.
This paper is organized as follows. In Sec. II, vortex

configurations with fractional topological charges are stud-
ied on the lattice. In Sec. III, we discuss the eigenmodes and
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eigenvalues of the Dirac operator in the fundamental and
adjoint representations for the noninteger Q configurations.
In Sec. IV, we summarize the main points of our study.

II. VORTEX CONFIGURATIONS WITH
FRACTIONAL TOPOLOGICAL CHARGES

We investigate plane vortices as classical configurations for
SU(2) lattice gauge theory [14,63]. The plane vortices are
parallel to two of the coordinate axes and occur in pairs of
parallel sheets by using periodic boundary conditions (bcs) for
the gauge fields. We use two different arrangements of vortex
sheets, xy- and zt-planes. The nontrivial links of unicolor
plane vortices varying in a U(1) subgroup of SU(2) are

Uμ ¼ expðiασaÞ; ð2:1Þ
where σa (a ¼ x; y; z) are the Pauli matrices. For xy-vortices,
t-links in one t-slice t⊥ and for zt-vortices, y-links in one y-
slice y⊥ are nontrivial. The orientation of the planevortices are
determined by thegradient of the angleα. Vortex pairswith the
same vortex orientation are called parallel vortices and vortex

pairs of opposite flux direction are called antiparallel. For xy-
vortices, the angle α is chosen as a linear function of z, the
coordinate perpendicular to the vortex, as the following [14]

αðzÞ ¼

8
>>>>>>>><

>>>>>>>>:

0 0 < z ≤ z1 − d;
π
2d ½z − ðz1 − dÞ� z1 − d < z ≤ z1 þ d;

π z1 þ d < z ≤ z2 − d;

π

�

1 − z−ðz2−dÞ
2d

�

z2 − d < z ≤ z2 þ d;

0 z2 þ d < z ≤ Nz:

ð2:2Þ

The parallel sheets of plane pair, which are opposite vortex
orientations, have thickness of 2d around z1 and z2.
For zt-vortices, the angle α is chosen the same as xy-

vortices but a linear function of x. The gluonic topological
charge of these unicolor configurations is zero. The plane
vortices could contribute to the topological charge density
through the color structure and intersections.
The colorful xy-plane vortices are introduced in

Ref. [34]. The color structure is considered for the first
vortex sheet of the xy-plane vortices by the links [15,34]

UiðxÞ ¼

8
>><

>>:

½gðr⃗þ îÞgðr⃗Þ†�ðt−1Þ=Δt for 1 < t < 1þ Δt;

gðr⃗þ îÞgðr⃗Þ† for 1þ Δt ≤ t ≤ tg;

1 else;

; U4ðxÞ ¼
�
gðr⃗Þ† for t ¼ tg;

1 elsewhere:
ð2:3Þ

Δt is the duration of the transition between two vacua and

gðr⃗Þ ¼
�
e−iαðzÞn⃗·σ⃗ for z1 − d ≤ z ≤ z1 þ d and 0 ≤ ρ ≤ R;

e−iαðzÞσ3 else;
ð2:4Þ

where

n⃗ · σ⃗ ¼ σx sin θðρÞ cosϕðx; yÞ þ σy sin θðρÞ sinϕðx; yÞ þ σz cos θðρÞ;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − x0Þ2 þ ðy − y0Þ2
q

; θðρÞ ¼ π

�

1 −
ρ

R

�

HðR − ρÞ ∈ ½0; π�; ϕ ¼ arctan2
y − y0
x − x0

∈ ½0; 2πÞ: ð2:5Þ

H is the Heaviside step function and r⃗ denotes the spatial
components. The colorful region which is a cylindrical
region is located in the range 0 ≤ ρ ≤ R and z1 − d ≤ z ≤
z1 þ d with the center at (x0, y0) and its lattice links are
distributed over the full SU(2) gauge group. For Δt ¼ 1,
the colorful xy-vortices are not smoothed in temporal
direction and the topological charge is zero which is a
lattice artifact. Increasing the smoothing region Δt of
the colorful vortex, the topological charge approaches
Q ¼ −1. The colorful xy-vortex is a fast vacuum to vacuum
transition (Δt ¼ 1) which could be smoothed to show
instanton like behavior [15].
Now, we study configurations with fractional topological

charges. According to the topological charge definition:

Q ¼ −
1

32π2

Z

d4xϵμναβtr½F αβF μν� ¼
1

4π2

Z

d4xE⃗a · B⃗a;

ð2:6Þ

when a configuration in a region has both electric field (E⃗a)
and magnetic field (B⃗a) with the same spatial and color (σa)
directions, it contributes to the topological charge. On the
lattice, F μν is expressed in terms of the plaquette field
Pμν ¼ UμðxÞUνðxþ μÞU†

μðxþ νÞU†
νðxÞ. The xy-vortices

with Ut links, given in Eq. (2.1), bear only nontrivial zt-
plaquettes (Pzt), i.e., an electric field Ea

z , while zt-vortices
with Uy links have nontrivial xy-plaquettes (Pxy) corre-
sponding to a magnetic field Ba

z . Crossing Ei
z-plaquettes
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(Pzt) of xy-vortices with color direction σi and Bi
z-

plaquettes (Pzt) of zt-vortices with color direction σj
(j ≠ i) do not contribute to the topological charge.
Now we intersect two antiparallel vortex pairs of the xy-

and zt-vortices with vortex centers z1;2 and x1;2 respec-
tively. When the vortex sheets of an intersection point have
the same color (σa) directions, the intersection point gives
rise to a lump of topological charge Q ¼ �0.5 [64]. We
choose the first (second) vortex sheet of the xy-vortices to
rotate α in σz (σx) and the first (second) vortex sheet of the
zt-vortices to rotate α in σz (σy). Therefore, intersection
point around (x1, z1) carries the topological chargeQ ¼ 0.5
while the other three intersection points have Q ¼ 0 and

therefore sum up to a total topological charge Q ¼ 0.5.
Now, for this configuration, the Q ¼ 0.5 configuration, the
unicolor region of the first vortex for the xy-vortices around
the point (x1, z1) is substituted by a colorful region.
Figure 1 shows the total topological charge of the con-
figuration as a function of Δt for two values of R and
increasing lattice sizes. As shown, the total topological
charge converges to Q ¼ −1.5 by increasing Δt as well as
increasing the radius R of the colorful region, called the
Q ¼ −1.5 configuration. Schematic diagrams for the inter-
section planes of theQ ¼ 0.5 andQ ¼ −1.5 configurations
are plotted in Fig. 2.
Now, we study in detail theQ ¼ −1.5 configuration. For

Δt ¼ 1, the total topological charge of this configuration
converges to Q ¼ −0.5.
In Ref. [34], we calculated the continuum action S for the

colorful cylindrical region of xy-vortices as

SðΔtÞ
SInst

¼ 0.51Δt
R

þ 1.37R
Δt

ð2:7Þ

where S is corresponding to the colorful region with
thickness d ¼ R ¼ 7 on a 283 × 40 lattice and the instanton
action SInst ¼ 8π2=g2. The minimum value of the action S
is reached around R ¼ Δt with 1.68 SInst. The first term in
the action S, given in Eq. (2.7), represents the magnetic and
the second term the electric contributions to the action. The
action is purely electric for Δt → 0. One gets the topo-
logical charge Q ¼ −1 in the continuum for the sharp xy-
vortices while the topological charge contribution for this
configuration is zero on the lattice [34]. Therefore, for the
fast transition in temporal direction, both electric and
magnetic fields of the colorful region are observed in

-1.5

-1.2

-0.9

-0.6

-0.3

 0

 0  2  4  6  8  10

Q

Δt

z1=x1=6,z2=x2=14,R=6,V=(16)4

z1=x1=9,z2=x2=24,R=8,V=(28)4

FIG. 1. The total topological charge Q of the vortex configu-
ration corresponding to Fig. 2(b). The gluonic topological charge
approaches Q ¼ −1.5 by increasing the smoothing region Δt of
the colorful vortex and the radius R of the colorful region through
increasing the lattice size.

FIG. 2. The geometry and the topological charge contribution of the intersection points of two antiparallel vortex pairs. σi on the
vortices (dashed lines) means the links of these vortices are distributed over the σi-generated U(1) subgroup of SU(2). In diagram (b), the
bold black line at the intersection point (x1, z1) indicates that the unicolor vortex is substituted in this region by a colorful region. n⃗ · σ⃗ on
the colorful region (bold black line) means the links belong to full SU(2) gauge group. In both diagrams, the intersection point around
(x1, z1) contributes to the topological charge while the other intersection points have Q ¼ 0.
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the continuum while on the lattice the electric field of the
colorful region is only observed. In the Q ¼ 0.5 configu-
ration, by substituting the colorful region within the circle
of radius R around the point (x1, z1), the orientation of the
electric field within the circle corresponding to the unicolor
vortex becomes opposite orientation due to the insertion of
a circular monopole line around the intersection point [37].
Therefore, combining the electric field of circular monop-
ole line of the xy-vortices and the magnetic field of the
zt-vortices contributesQ ¼ −0.5. Increasing the smoothing
region Δt of the colorful vortex, the monopole line which
changes its color along the circle in a nontrivial way
contributes itself with the value Q ¼ −1 to the total
topological charge. Therefore, increasing Δt as well as
increasing the radius R of the colorful region through
increasing the lattice size, the total topological charge
converges to Q ¼ −1.5, as shown in Fig. 1.
Topological charge densities of the Q ¼ 0.5 and Q ¼

−1.5 configurations in the intersection plane show the
details of the contribution to the topological charge.
Figure 3(a) shows characteristic charge density for theQ ¼
0.5 configuration with two intersecting antiparallel xy- and
zt-vortex pairs at (z1 ¼ 6, z2 ¼ 14) and (x1 ¼ 6, x2 ¼ 14)
at t⊥ ¼ y⊥ ¼ 6 with thickness d ¼ 2 on a 164-lattice. The
intersection point around (x1 ¼ 6, z1 ¼ 6) gives rise to a
lump of topological charge Q ¼ 0.5. Figure 3(b) shows
characteristic charge density for the Q ¼ −1.5 configura-
tion. The parameters of the configuration are the same as
those of the Fig. 3(a). The center of the colorful region with

radius R ¼ Δt ¼ 6 in the xy plane is located at
x0 ¼ x1 ¼ 6, y0 ¼ y⊥ ¼ 6. The intersection point around
(x1 ¼ 6, z1 ¼ 6) gives rise to a lump of topological
charge Q ¼ −1.5.
In the next section, we investigate the fundamental and

adjoint representations of the overlap and asqtad staggered
Dirac operator for these configurations with fractional
topological charges.

III. INFLUENCE OF FRACTIONAL
TOPOLOGICAL CHARGES ON DIRAC MODES

In the previous section, we defined two configurations
with the fractional topological charges which are combi-
nations of two antiparallel plane vortex pairs. For the Q ¼
0.5 configuration, one unicolor intersection contributes to
the topological charge while a colorful intersection con-
tributes to the charge for the Q ¼ −1.5 configuration. We
calculate the lowest eigenmodes of the overlap and asqtad
staggered Dirac operators in the fundamental and adjoint
representations in order to study the influence of the
fractional topological charges on fermions. According to
the Atiyah-Singer index theorem for the overlap fermions
in the fundamental representation, the integer topological
charge is related to the index by indD½A� ¼ n− − nþ ¼ Q
where n− and nþ denote the numbers of left- and right-
handed zero modes [60–62]. In a generic topologically
nontrivial configuration, one may never find nonzero
values for both n− as well as nþ, sometimes referred to

FIG. 3. (a) The topological charge density for the configuration in the xz-plane depicted in Fig. 2(a). Two antiparallel xy- and zt-vortex
pairs are combined with vortex centers (z1 ¼ 6, z2 ¼ 14) and (x1 ¼ 6, x2 ¼ 14) at t⊥ ¼ y⊥ ¼ 6 with thickness d ¼ 2 on a 164-lattice.
Intersecting vortex sheets related to the same color direction contribute to the topological charge. Therefore, only the intersection point
around (x1, z1), where the vortex sheets are related to σ3, contributes to the topological charge. The intersection point around (x1 ¼ 6,
z1 ¼ 6) gives rise to a lump of topological chargeQ ¼ 0.5. (b) the configuration, depicted in Fig. 2(b), is the same as the left diagram but
the unicolor region for the xy-vortices around the point (x1, z1) is substituted by a colorful region, negatively charged. The smoothing
region is Δt ¼ t2 − t1 ¼ 9 − 3 ¼ R ¼ 6. The intersection point around (x1 ¼ 6, z1 ¼ 6) gives rise to a lump of topological charge
Q ¼ −1.5.
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as absence of fine tuning. However, the difference between
these numbers agrees with the index theorem and further
zero modes which cancel each other in the index are
nontopological zero modes. Therefore, the overlap Dirac
operator in the fundamental representation for a configu-
ration with integer topological charge Q ≠ 0 has jQj
topological zero modes with chirality −signðQÞ.
In Figs. 4(a) and 4(b), we show the lowest eigenvalues of

the overlap Dirac operator in the fundamental representa-
tion for the two configurations compared to the eigenvalues
of the free overlap Dirac operator for antiperiodic and
periodic bcs on a ð16Þ4-lattice. The parameters of the
configurations are the same as those in Fig. 3. As shown in
Fig. 4(a), using periodic bcs in spatial directions and
antiperiodic bcs in temporal directions for fermionic fields,
we find two fundamental zero modes of positive chirality
for the Q ¼ −1.5 configuration and no fundamental zero-
mode for the Q ¼ 0.5 configuration. Hence, the colorful
intersection with fractional topological charge, which has a
monopole loop, attracts two zero modes. Two fundamental
zero modes in the background of the sharp Q ¼ −1.5
configuration persist regardless of the bcs. But as shown in
Fig. 4(b), just one of them remains zero in the background
of the smooth Q ¼ −1.5 configuration using periodic bcs
in spatial and temporal directions. Therefore, there is one
exact topological zero mode for fundamental overlap ope-
rator on theQ ¼ −1.5 configuration. In Figs. 5(a)–5(c), the
chiral densities of zero modes for antiperiodic and periodic
bcs are depicted in the xz-plane at (y ¼ 6, t ¼ 6) which are
localized at the colorful region. For the sharp Q ¼ −1.5
configuration which two zero modes persist, we have
singularity in time direction (Δt ¼ 1) where vortices are
localized in a single time slice, but after smoothing over
several lattice slices i.e., increasing the smoothing region

Δt of the colorful vortex, just one fundamental zero mode
persist.
In Fig. 6, we show the lowest eigenvalues of the overlap

Dirac operator in the adjoint representation for the non-
integerQ configurations compared to the eigenvalues of the
free overlap Dirac operator on a ð16Þ4-lattice. The para-
meters of the configurations and fermionic fields are the
same as those in Fig. 4(a). The overlap Dirac operator in the
adjoint representation is sensitive to the topological charge
contributions of jQj ¼ 0.5 and attracts the zero modes
which allow identification of fractional topological charge.
According to the adjoint version of the Atiyah-Singer index
theorem for the overlap fermions, the topological charge is
related to the index by indD½A� ¼ n− − nþ ¼ 2NQ ¼ 4Q
where N ¼ 2 is the number of colors and the additional
factor 2 is due to the real representation of the fermion. As
shown in Fig. 6, we find six adjoint zero modes of positive
chirality for the Q ¼ −1.5 configuration which agrees with
the index theorem. All adjoint zero modes are localized
near to the colorful region. In Fig. 5(d), we show the
combination of the chiral densities of six adjoint zero
modes of the Q ¼ −1.5 configuration.
Next, we compare the number of left- and right-handed

overlap zero modes with those of the asqtad staggered
fermions. In Table I, the fundamental and adjoint zero
modes of the overlap and asqtad staggered Dirac operators
are summarized. The results are taken more care regarding
the continuum and infinite volume limits. There are two
length scales in the configurations the thickness d and the
lattice extent L. The continuum limit would presumably
correspond to taking L → ∞ at a fixed ζ ≡ d=L, and the
infinite volume limit would correspond to studying suc-
cessively smaller values of ζ after taking the continuum
limits. We used various lattice sizes up to ð28Þ4 and some

(a)

 0

 0.1

 0.2

 0  5  10  15  20

λ

mode #

sharp Q=-1.5
Q=-1.5
Q=0.5
trivial

(b)

 0

 0.1

 0.2

 0  5  10  15  20

λ

mode #

sharp Q=-1.5
Q=-1.5
Q=0.5
trivial

FIG. 4. (a) The lowest eigenvalues of the overlap Dirac operator on a 164 lattice in the fundamental representation for the vortex
configurations with fractional topological charges schematically displayed in Fig. 2 with Q ¼ 0.5 [Fig. 2(a)] and Q ¼ −1.5 [Fig. 2(b)],
using periodic bcs in spatial directions and antiperiodic bcs in temporal direction for fermionic fields. (b) the same as (a) but for periodic
bcs in temporal direction. There are two zero modes for fundamental overlap operator on the sharp Q ¼ −1.5 configuration which
persist through changing the bcs, but just one of them remains zero after increasing the smoothing regionΔt of the colorful vortex. In the
fundamental representation, we also get some low-lying eigenmodes for both configurations with smaller eigenvalues than the ones of
the lowest eigenvectors for the trivial gauge field. These low lying modes could not be removed by changing the bcs.
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fine thickness d for studying the lattice spacing and finite
volume effects to confirm the real numbers of zero modes.
We will analyze in detail both effects on the low-lying
modes of the overlap Dirac operator.
According to the index theorem for the (asqtad) stag-

gered fermions, the integer topological charge is related to
the index by indD½A� ¼ n− − nþ ¼ 2Q for the fundamental
and indD½A� ¼ n− − nþ ¼ 8Q for the adjoint fermions. For
the Q ¼ −1.5 configuration, we find four and two asqtad
staggered fundamental zero modes with positive chirality
for antiperiodic and periodic bcs, respectively. Therefore,
there are two exact topological zero modes for the
fundamental asqtad staggered operator on the Q ¼ −1.5
configuration. For the Q ¼ 0.5 configuration, there is no
asqtad staggered fundamental zero mode. Also, we find
twelve positive asqtad staggered adjoint zero modes for the
Q ¼ −1.5 configuration and four negative asqtad staggered
adjoint zero modes for the Q ¼ 0.5 configuration which
agree with the index theorem. For the Q ¼ −1.5 configu-
ration, the intersection and color structure contribute to the

FIG. 5. The chiral densities of a, b) two fundamental zero modes for antiperiodic bcs c) the zero mode for periodic bcs d) six adjoint
zero modes for the Q ¼ −1.5 configuration in the xz-plane on a 164 lattice. Therefore there is one exact topological zero mode for
fundamental overlap operator on theQ ¼ −1.5 configuration. The plot titles indicate the plane positions, the chirality (chi ¼ 0;�1), the
number n of plotted mode and the maximal density in the plotted area, “max ¼ …”.

 0

 0.1

 0.2

-5  0  5  10  15  20

λ

mode #

Q=-1.5
Q=0.5
trivial

FIG. 6. The lowest eigenvalues of the overlap Dirac operator on
a 164 lattice in the adjoint representation for the vortex configu-
rations with fractional topological charges schematically dis-
played in Fig. 2. We find six adjoint zero modes of positive
chirality for the Q ¼ −1.5 configuration and two adjoint zero-
modes of negative chirality for the Q ¼ 0.5 configuration which
persist regardless of the bcs.
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topological charge with −0.5 and −1. One overlap and two
asqtad staggered fundamental zero modes for theQ ¼ −1.5
configuration are related to the colorful contribution −1, as
could be confirmed by Refs. [15,34]. It seems that jQj ¼
0.5 contribution of the colorful intersection does not attract
any fundamental zero mode.
As a result, it seems that fractional topological charge

jQj ¼ 0.5 does not attract fundamental zero modes while
adjoint fermions on the other hand clearly identify the
fractional topological charges according to the index
theorem.
In the continuum, the relation of the index theorem takes

the form corresponding to the lattice overlap Dirac operator
while the one corresponding to the lattice staggered Dirac
operator has the additional factor 2. In Table I, the overlap
and asqtad zero modes are the same after taking away
staggered factor 2. If one takes the continuum limit of the
background configurations, one expect to see the same
spectrum for both the operators.
Further, we analyze the behavior of the low-lying

(nonzero) modes of the overlap Dirac operator in the
background of these configurations. In the fundamental
representation, we get some lowest eigenmodes for both
configurations with smaller eigenvalues than the ones of the
lowest eigenvectors for the trivial gauge field. These low

lying modes could not be removed by changing the bcs. For
analyzing the behavior of these low-lying modes, the
results are taken more care regarding the continuum and
infinite volume limits. A systematic treatment of both the
lattice spacing and finite volume effects is necessary. If lph
is the length of the box in some physical unit, then the
lattice spacing is lph=L. The λ’s are the eigenvalues in
lattice units; so what is physical is λL ¼ λphlph, where λph
is the eigenvalue in physical units. In Figs. 7 and 8, λL of
low-lying modes for some values of ζ ≡ d=L are studied,
where the lattice volume V is defined to be V ¼ ðLÞ4. In
Fig. 7(a), we show the behavior of λL of the low-lying
modes for the Q ¼ −1.5 configuration through increasing
both length scales L and d at a fixed ζ for analyzing lattice
spacing effect. There is a very slight difference between
L ¼ 12 and L ¼ 16 data and therefore no lattice spacing
effect on the low lying eigenvalues.
In Fig. 7(b), for analyzing finite volume effect, the

largest L of Fig. 7(a) is fixed while d and therefore ζ
are decreased. As shown, the values of the eigenvalues stay
without changes. Therefore, there is no finite volume effect
(the effect of ζ) on the low lying eigenvalues.
Figure 8 is similar to Fig. 7 but for the Q ¼ 0.5

configuration. The lattice spacing and finite volume effects
on the fermions in the background of the Q ¼ 0.5

TABLE I. Number of positive and negative overlap and asqtad staggered zero modes in the fundamental and adjoint representations on
the Q ¼ −1.5 and Q ¼ 0.5 configurations. When the numbers of zero modes are different for periodic and antiperiodic bcs, they are
shown in the table. We compared the results of various lattice sizes up to ð28Þ4 at a fixed ζ as well as some fine thickness d with smaller
values of ζ to confirm the real numbers of zero modes.

Ovl. fund. ð16Þ4 Asq. stg. fund. ð28Þ4 Ovl. adj. ð16Þ4 Asq. stg. adj. ð28Þ4
Sharp Q ¼ −1.5 2þ 0− 4þ 0− 6þ 0− 12þ 0−
Q ¼ −1.5 apbc∶ 2þ 0 − pbc∶ 1þ 0− apbc∶ 4þ 0 − pbc∶ 2þ 0− 6þ 0− 12þ 0−
Q ¼ 0.5 0þ 0− 0þ 0− 0þ 2− 0þ 4−
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FIG. 7. λL of low-lying modes of the overlap Dirac operator in the fundamental representation for some values of ζ ≡ d=L for the
Q ¼ −1.5 configuration (a) through increasing both length scales L and d at a fixed ζ for analyzing the lattice spacing effect (b) for
analyzing the finite volume effect, the largest L of a) is fixed while d and therefore ζ are decreased. There is a very slight difference
between L ¼ 12 and L ¼ 16 data at fixed ζ. Also, by varying the values of ζ at fixed L, the data stay without changes.
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configuration are the same as those of the Q ¼ −1.5
configuration. Therefore, there is no lattice spacing and
finite volume effects on the low lying eigenvalues.
By the Banks-Casher formula, the chiral condensate,

an order parameter for chiral symmetry breaking, in a 4D
box of volume V, taking the infinite volume limit, is
proportional to density of near-zero modes of the Dirac
operator as

hψ̄ψi ¼ πρð0Þ
V

: ð3:1Þ

What causes the condensate is the inverse volume scaling
of the gap between the microscopic eigenvalues of the
Dirac operator [65,66]. To achieve SCSB, the eigenvalues
of the Dirac operator must accumulate, as the volume V is
taken to infinity, sufficiently fast near λ ¼ 0. A simple
scaling argument means that the accumulation must be such

that the average level spacing Δλ (gap) among the eigen-
values must be roughly constant near λ ¼ 0, and inversely
proportional to the volume V [66].
On the one hand, in Fig. 9, we show the behavior of λL

of lowest modes of the overlap Dirac operator in the
background of the noninteger Q configurations versus
1=L. As shown, there is no or a very slight difference
between L ¼ 12 and L ¼ 16 data. In fact, by increasing L,
the gap between some eigenvalues becomes a little more.
On the other hand, an inverse volume scaling means

λL ∝ 1=l3
ph. But ζ ∝ 1=lph at fixed physical distance

between the vortices and therefore λL ∝ ζ3. As concluded
in Figs. 7(b) and 8(b), there is no dependence of λL on ζ at
fixed L. This clearly rules out any inverse volume scaling of
the microscopic eigenvalues. In addition, although the
lowest (nonzero) modes in the background of both con-
figurations are smaller than the corresponding free field
values, they are not extremely small. Therefore, it seems
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trivial

FIG. 8. The same as Fig. 7 but for the Q ¼ 0.5 configuration. The behavior of λL of low-lying modes are the same as those of the
Q ¼ −1.5 configuration, plotted in Fig. 7.
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FIG. 9. λL of low-lying (nonzero) modes of the overlap Dirac operator in the fundamental representation versus 1=L as the inverse
volume scaling of the eigenvalues (a) for theQ ¼ −1.5 configuration (b) for theQ ¼ 0.5 configuration. For both configurations, there is
no, or a very slight, difference between the L ¼ 12 and L ¼ 16 data. In fact, by increasing L, the gap between some eigenvalues
becomes a little more. It seems that the lowest modes for the nonintegerQ configurations could not be identified as the near-zero modes.
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that the lowest (nonzero) modes for the noninteger Q
configurations which their eigenvalues are smaller than the
free field values could not be identified as the near-zero
modes and therefore no role for SCSB.

IV. CONCLUSION

Our aim is to understand the dynamical mechanism of
nonperturbative phenomena of quark confinement and
SCSB in QCD. Topological objects such as dyons with
fractional topological charge could confine quarks and
break chiral symmetry. Motivated by this idea, the frac-
tional topological charge contributions from center vortices
are investigated. We studied configurations with topologi-
cal charges Q ¼ 0.5 and Q ¼ −1.5, which are combina-
tions of two antiparallel plane vortex pairs. For theQ ¼ 0.5
configuration, one unicolor intersection contributes to the
topological charge while one colorful intersection carries
the topological charge for theQ ¼ −1.5 configuration. The
colorful region in the configuration introduces a monopole
line on its vortex surface surrounding the intersection point.
We analyzed the low-lying modes of the Dirac operator

in the background of the fractional topological charges
through taking more care regarding the continuum and
infinite volume limits. For the Q ¼ −1.5 configuration, we
find two overlap fundamental zero modes of positive
chirality for the antiperiodic bcs. But using periodic bcs
just one of them remains zero. Therefore, there is one exact
topological zero mode for fundamental overlap operator on
the Q ¼ −1.5 configuration. Although, for the sharp Q ¼
−1.5 configuration where we have singularity in time
direction, two zero modes persist regardless of the bcs.
However, after smoothing over several lattice slices, just
one fundamental zero mode persist. In addition, for the

antiperiodic bcs, we find four asqtad staggered fundamental
zero modes of positive chirality, while for the periodic bcs
we get two zero modes. The adjoint zero modes allow
identification of fractional topological charge. For this
configuration, we get six overlap and twelve asqtad
staggered adjoint zero modes of positive chirality which
agree with the index theorem. For the Q ¼ 0.5 configura-
tion, we get no overlap and no asqtad staggered funda-
mental zero modes. Also, for this configuration, two
overlap and four asqtad staggered adjoint zero modes with
negative chirality are found which again agree with the
index theorem. As a result, it seems that fractional
topological charge jQj ¼ 0.5 does not attract fundamental
zero modes while adjoint fermions on the other hand
clearly identify this fractional topological charge according
to the index theorem.
There is no lattice spacing and finite volume effects on

the low lying eigenvalues in the background of the vortex
configurations with fractional topological charges. This
clearly rules out any inverse volume scaling of the micro-
scopic eigenvalues. In addition, although some lowest
(nonzero) modes in the background of both configurations
which are smaller than the corresponding free field values
could not be removed by changing the bcs, they are not
extremely small. Therefore, it seems that the lowest (non-
zero) modes for the noninteger Q configurations could not
be identified as the near-zero modes and, therefore, the
eigenvalues smaller than the free field values do not have a
role for SCSB.
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