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We calculate the tree-level mass spectrum for a linear sigma model describing the scalar and pseudoscalar
mesons of a SUð3Þ local gauge theory with Dirac fermions in the fundamental representation. N1 fermions
have a mass m1 and N2 a mass m2. Using recent lattice data with m1 ¼ m2 and N1 þ N2 ¼ 8 or 12, we
predict the mass splittings for m2 ¼ m1 þ δm. At first order in δm, an interesting inverted pattern appears in
the 0þþ sector, where mesons with lighter fermions are heavier. This feature could be tested in ongoing
calculations provided that m1 and δm are sufficiently small. We discuss possible improvements of the
approach.
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I. INTRODUCTION

The idea that asymptotically free gauge theories with a
sufficiently large number of massless fermions (flavors)
have a nontrivial infrared fixed point (IRFP) has motivated
many lattice studies [1–3]. It is expected that in the
massless limit, conformal symmetry and gapless decon-
fined excitations are present. This limiting situation is
unlikely to be directly relevant for particle physics.
Nevertheless by introducing mass terms or reducing the
number of flavors slightly below a critical value, one can
obtain possibly interesting models in the context of
electroweak symmetry breaking. If an IRFP exists, fermion
masses provide relevant directions out of this IRFP which
are expected to drive the renormalization group (RG) flows
towards fixed points where a more conventional behavior
is expected. However, a consensus on a physical picture
supported by an effective theory is still lacking [1–3].
In this article we focus on the well-studied example of a

SUð3Þ gauge theory with Nf fundamental Dirac fermions.
In the massless limit, we have a clear physical picture
when the Nf is not too large, say for Nf ≤ 4, the clearly
QCD-like region: there are N2

f − 1 massless pions and the
other states (scalars with positive parity, baryons, …) are
massive. At the other end, for Nf ¼ 16, the last value
preserving asymptotic freedom, the two-loop beta function
has a nontrivial zero at αc ≃ 1=20 and perturbation theory
should be valid to describe weakly interacting massless

deconfined quarks and gluons. It is clear that as Nf is
increased between these two limits, the low energy degrees
of freedom change drastically, however a consensus on the
details of the changes is not available so far. One important
limitation is that lattice simulations with low fermion
masses are typically impractical and one has to rely on
models for the massless extrapolation. Nevertheless there is
a consensus on the fact that adding light flavors tend to
produce unexpectedly light states besides the pions.
Light σ masses were found for SUð3Þ gauge theories

with 8 [4–7] and 12 [6,8] fundamental flavors and also for
2 sextets [9]. Recent results [10,11] concerning the mass of
the η0 support the possibility [12] that the explicit breaking
of the axial Uð1ÞA symmetry, which depends in a distinct
way on Nf, can explain the fact that the σ becomes lighter
as Nf increases. One simple and interesting possibility
[13–15] is that at some point Nf reaches the boundary of
the conformal window which is signaled by the fact that
the σ and other states become massless. However, more
complex intermediate situations or phases are conceivable
when Nf is increased.
An interesting question is to figure out if unexpectedly

light states persist when a certain number of fermions have
a larger mass. In the following, we consider a linear sigma
model with N1 light hyperquarks of mass m1 and N2

heavier hyperquarks of mass m2. This model is an
extension of the single mass model discussed in
Ref. [12] and which was introduced and studied in QCD
context with several variations [16–26]. The case N1 ¼ 2,
N2 ≥ 4 could provide interesting extensions of the minimal
technicolor scenario [27] but it has not been studied on
the lattice so far because multiples of 4 are convenient
with staggered fermions. Part of the spectrum for N1 ¼ 4,
N2 ¼ 8 has been extracted from recent lattice simulations
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[28,29]. A possible phenomenological motivation for this
choice is given in Ref. [30].
The article is organized as follows. The linear sigma

model is presented in Sec. II. The tree-level spectrum is
calculated in Sec. III. In the one fermion mass case, 2N2

f

bosons are characterized by 4 masses (σ, a0, η0 and π).
With two fermion masses, the a0 and π each split into
four representations of the unbroken subgroup SUðN1ÞV ⊗
SUðN2ÞV . Section IV discusses the determination of the
parameters of the model in terms of the masses in the equal
mass case. We emphasize that if we want to fit the spectrum
using the tree level model, the quartic couplings depend on
the symmetry breaking term in a way that is only under-
stood empirically. In Sec. V we introduce a perturbative
approach where m2 ¼ m1 þ δm and calculate the mass
splitting at first order in δm. This allows us to use the
empirical unperturbed (single mass) results [6,11] to
estimate the mass splittings. We obtain simple ratios of
differences between masses squared which are identical for
scalars and pseudoscalars. However, the numerical results
of the LatKMI collaboration [6,11] indicate that at first
order there is an interesting inversion for the adjoint 0þþ
(the a0), namely the meson containing light hyperquarks
are heavier than those containing one or two heavy
hyperquarks. In the conclusions, we discuss how to test
these predictions in ongoing lattice simulations and how
additional effect could modify the results.

II. THE TWO MASS MODEL

The model considered here is introduced and motivated
in Refs. [12,16–19]. The only difference with Ref. [12]
is the explicit breaking of the chiral symmetry which
here corresponds to N1 hyperquarks of mass m1 and
N2 hyperquarks of mass m2, with N1 þ N2 ¼ Nf. For
the sake of self-containedness, some basic points are
repeated below.
The effective fields ϕij are Nf × Nf matrices trans-

forming as ψ̄RjψLi under UðNfÞL ⊗ UðNfÞR. We use the
parametrization:

ϕ ¼ ðSα þ iPαÞΓα; ð1Þ
with a summation over α ¼ 0; 1;…N2

f − 1 for a basis of
Nf × Nf Hermitian matrices Γα such that

TrðΓαΓβÞ ¼ ð1=2Þδαβ: ð2Þ

We use the convention that Γ0 ¼ 1Nf×Nf
=
ffiffiffiffiffiffiffiffiffi
2Nf

p
while the

remaining N2
f − 1 matrices are traceless. The S0 and P0

correspond to the σ and η0 respectively while the remaining
components transform like the adjoint representation and
are denoted a0 and π respectively. In addition, we define a
Nf × Nf matrix for which we use the short notation “Γ8” in
analogy with the 2þ 1 flavors case and which is defined as

Γ8≡ 1ffiffiffiffiffiffiffiffiffi
2Nf

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2=N1

p
1N1×N1

0

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1=N2

p
1N2×N2

!
ð3Þ

The effective Lagrangian has a canonical kinetic term

Lkin ¼ Tr∂μϕ∂μϕ†; ð4Þ

and a potential term consisting of three parts

V ¼ V0 þ Va þ Vm: ð5Þ

The first two terms are given as

V0 ≡ −μ2Trðϕ†ϕÞ þ ð1=2Þðλσ − λa0ÞðTrðϕ†ϕÞÞ2
þ ðNf=2Þλa0Trððϕ†ϕÞ2Þ; ð6Þ

and

Va ≡ −2ð2NfÞNf=2−2Xðdetϕþ detϕ†Þ: ð7Þ

The third term represent the effect of mass term with N1

flavors of mass m1 and N2 flavors of mass m2,

Vm ≡ −ðTrMϕþ H:c:Þ ¼ −b0S0 − b8S8: ð8Þ

The matrix M can be written as b0Γ0 þ b8Γ8 and Vm is
invariant under SUðN1ÞV ⊗ SUðN2ÞV. We assume that this
vector symmetry is not broken spontaneously and that the
vacuum expectation of ϕ has the form:

hϕi ¼ 1ffiffiffiffiffiffiffiffiffi
2Nf

p :
�
v11N1×N1

0

0 v21N2×N2

�
: ð9Þ

This means that hS0i ¼ v0 and hS8i ¼ v8 or equivalently

hϕi ¼ v0Γ0 þ v8Γ8: ð10Þ

The transformation between the two expressions is

v1 ¼ v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2=N1

p
v8 ð11Þ

v2 ¼ v0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1=N2

p
v8; ð12Þ

and its inverse

v0 ¼ ð1=NfÞðN1v1 þ N2v2Þ ð13Þ

v8 ¼ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
=NfÞðv1 − v2Þ: ð14Þ

The same transformation can be used to define b1 and b2 in
terms of b0 and b8. This implies that

b0S0 þ b8S8 ¼ ðN1=NfÞv1b1 þ ðN2=NfÞv2b2: ð15Þ
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The vacuum values v1 and v2 are given in terms of the
couplings using the minimization conditions that arise from
the requirement that:

∂V
∂Si
����
hϕi

¼ 0; i ¼ 0; 8 ð16Þ

which simplify to:

M2
πllv1 ¼ b1 ð17Þ

M2
πhhv2 ¼ b2; ð18Þ

with Mπll and Mπhh , the pseudo-Nambu-Goldstone boson
masses corresponding to light-light and heavy-heavy
hyperquarks and discussed in the next section. The rela-
tions (17) and (18) among Nambu-Goldstone bosons
masses, vacuum expectations and symmetry breaking terms
follow from general identities described in (19.3.3) in [31].
The full Lagrangian involves six constants (μ2, λσ , λa0,

X, b0, b8). The minimization of the potential determines v0
and v8 (or equivalently v1 and v2) and these two vacuum
expectations depend implicitly on the six constants. Before
we calculate the mass spectrum, it is important to under-
stand how numerical data can be used to determine the
unknown parameters.
In the unperturbed case (b8 ¼ 0) the spectrum has 4

independent masses (M2
π , M2

η0 , M
2
a0, M

2
σ) and 1 minimiza-

tion condition, while the Lagrangian has 5 parameters
(μ2, λσ, λa0, X, b0) and 1 vacuum expectation value. The
minimization condition essentially fixes the value of b0,
eliminating one of the parameters of the Lagrangian. The
vacuum expectation value (v in the unperturbed single mass
case) is related to the fπ; however it is not necessary to
know what the v.e.v.’s value is because the parameters λσ,
λa0 and X carry around factors of the v.e.v. (λσv2, λa0v2, and
XvN−2) and it is possible to write down simple linear
combinations of the masses to describe this phenomena.
However because the number of free parameters is equal to
the number of particles the model is not predictive.
However, some combinations of the quantities vary slowly
and interesting features appear [12]. In the case of two
different fermion masses that we investigate in this paper,
we add a sixth constant b8; this introduces one more
minimization condition. The Lagrangian still has 4 param-
eters to fit, however, the Lagrangian describes 10 different
mesons. This implies that the splitting of the quark masses
(or the splitting of the pions) fixes all the other meson mass
splittings and we can make predictions about what will
happen to the meson masses.

III. THE SPECTRUM

The spectrum of the model can be obtained from the
second derivatives of the potential at hϕi:

M2
Sαβ ≡ ∂2V=∂Sα∂Sβjhϕi

M2
Pαβ ≡ ∂2V=∂Pα∂Pβjhϕi: ð19Þ

When the two masses are equal each parity sector splits into
a singlet and the adjoint of SUðNfÞV . We now consider the
effect of having two masses with the convention m1 ≤ m2.
We call the N1 flavors of mass m1 “light” and the N2

flavors of mass m2 “heavy”. The adjoint of SUðNfÞV can
be decomposed into a representation of the SUðN1ÞV ⊗
SUðN2ÞV subgroup as follows:

ðN2
1 − 1;1Þ⨁ ð1;N2

2 − 1Þ⨁ ððN1; N̄2Þ þH:c:Þ⨁ ð1;1Þ:

We call the first three representations light-light (ll), heavy-
heavy (hh), heavy-light (hl). The last one is the singlet
associated with Γ8. Except for one mixing between the
indices 0 and 8, M2

Sαβ and M2
Pαβ are diagonal.

In order to clarify the meaning of the indices ll, hl and
hh, we can consider the almost physical example of 3 flavor
QCD in the isospin limit (mu ¼ md ≪ ms). This corre-
sponds to the case N1 ¼ 2 and N2 ¼ 1. The ll form the
pion triplet, the hl are the two Kaon doublets and the η is
the singlet denoted (1,1) above. Because N2

2 − 1 ¼ 0, there
are no hh in this example. In order to get hh states, we
could consider the fictitious case of one more flavor with
ms ¼ mc. The hh states would be the Ds, the D̄s and a
linear combination of the η, η0 and ηc.
All the diagonal terms have a common term:

C≡ −μ2 þ λσ − λa0
2Nf

ðN1v21 þ N2v22Þ: ð20Þ

We now proceed to give explicit expressions for the
second derivatives. For the nonsinglet pseudoscalars we
have

M2
πll ¼ C þ λa0

2
v21 −

X
Nf

vN1−2
1 vN2

2

M2
πlh −M2

πll ¼
�
λa0
2

þ X
Nf

vN1−2
1 vN2−2

2

�
ðv2 − v1Þv2

M2
πhh −M2

πll ¼
�
λa0
2

þ X
Nf

vN1−2
1 vN2−2

2

�
ðv22 − v21Þ: ð21Þ

As explained above, the two singlets have a mixing
term and the spectrum in this sector is given by the
eigenvalues of a 2 × 2 matrix. The situation is similar to
having the physical η and η0 given as mixings of the
mathematical SUð3Þ and SUð2Þ ⊗ Uð1Þ singlets in three
flavor QCD.
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M2
P00

¼ C þ λa0
2Nf

ðN1v21 þ N2v22Þ þ
X
N2

f

vN1−2
1 vN2−2

2 ððN1v2 þ N2v1Þ2 − ðN1v22 þ N2v21ÞÞ

M2
P88

¼ C þ λa0
2Nf

ðN2v21 þ N1v22Þ þ
X
N2

f

vN1−2
1 vN2−2

2 ðN1N2ðv2 − v1Þ2 − ðN2v22 þ N1v21ÞÞ

M2
P08

¼ ðv2 − v1Þ
�
−

λa0
2Nf

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ðv1 þ v2Þ þ

X
N2

f

vN1−2
1 vN2−2

2

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ððN1v2 þ N2v1Þ − ðv2 þ v1ÞÞ

�
: ð22Þ

For the non-singlet scalars, we have

M2
a0ll

−M2
πll ¼ λa0v21 þ

2X
Nf

vN1−2
1 vN2

2 M2
a0lh

−M2
πlh ¼ λa0v1v2 þ

2X
Nf

vN1−1
1 vN2−1

2

M2
a0hh

−M2
πhh ¼ λa0v22 þ

2X
Nf

vN1

1 vN2−2
2 : ð23Þ

For the two singlets and their mixing

M2
S00

¼ C þ λσ − λa0
2Nf

�
2

Nf
ðN1v1 þ N2v2Þ2

�
þ 3λa0

2Nf
ðN1v21 þ N2v22Þ −

X
N2

f

vN1−2
1 vN2−2

2 ððN1v2 þ N2v1Þ2 − ðN1v22 þ N2v21ÞÞ

M2
S88

¼ C þ λσ − λa0
2Nf

�
2N1N2

Nf
ðv1 − v2Þ2

�
þ 3λa0

2Nf
ðN2v21 þ N1v22Þ −

X
N2

f

vN1−2
1 vN2−2

2 ðN1N2ðv2 − v1Þ2 − ðN2v22 þ N1v21ÞÞ

M2
S08

¼ ðv2 − v1Þ
�
−
λσ − λa0

N2
f

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ðN1v1 þ N2v2ÞÞ −

3λa0
2Nf

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ðv1 þ v2Þ

−
X
N2

f

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
vN1−2
1 vN2−2

2 ððN2v1 þ N1v2Þ − ðv2 þ v1ÞÞ
�
: ð24Þ

IV. REMARKS ABOUT THE UNPERTURBED
SPECTRUM

Before applying the equations given in Sec. III to
practical situations, we need to clarify some aspects of
our understanding of the unperturbed model, in other
words, with mf ¼ m1 ¼ m2 and Nf ¼ N1 þ N2 flavors.
In the context of QCD it is possible to use chiral
perturbation theory to calculate the way the masses of
mesons and couplings change when small quark masses are
modified by small amounts [32,33]. However, so far, this is
not the case for Nf ¼ 8 or 12.
It is commonly believed that forNf ¼ 8 chiral symmetry

is broken spontaneously, however the ratio M2
π=mf has

large nonlinear variations for 0.01 < amf < 0.05 com-
pared to Nf ¼ 4 in the same amf range, a being the
lattice spacing. This can be seen clearly by comparing
Figs. 22 and 23 in Ref. [6]. A detailed discussion of the
applicability of chiral perturbation theory for Nf ¼ 8 can
be found in Sec. IVof Ref. [6], where it is stated that there is
no numerical evidence for the predicted chiral logs. For
Nf ¼ 12, the situation is more controversial. It is clear that
if chiral symmetry is unbroken in the massless limit, the
conventional tools are not useful.

Given the lack of reliable ways to calculate the mass
dependence of the meson masses and coupling, we fol-
lowed a phenomenological approach for the unperturbed
spectrum [12]. In the limitm1 ¼ m2, v ¼ v1 ¼ v2, XvNf−2,
λσv2 and λa0v2 can be eliminated in terms of the zeroth-
order masses. Introducing the notations

Δσ ≡M2
σ −M2

π

Δa0 ≡M2
a0 −M2

π

Δη0 ≡M2
η0 −M2

π; ð25Þ

these relations can be written as

XvNf−2 ¼ Δη0

λσv2 ¼ Δσ þ ð1 − 2=NfÞΔη0

λa0v2 ¼ Δa0 − ð2=NfÞΔη0 : ð26Þ

We also introduced the dimensionless ratios [12]:

Rσ ≡ λσv2=M2
η0 ; ð27Þ

Ra0 ≡ λa0v2=M2
η0 : ð28Þ
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Numerically, dividing by M2
η0 has a small effect because

0.87 < aMη0 < 1.025 and it removes the explicit depend-
ance on the lattice spacing. This approach fixes the three
unknown quantities, X, λa0, λσ with three numerical inputs,
M2

π=M2
η0 ,M

2
a0=M

2
η0 andM

2
σ=M2

η0 . Interesting regularities are
found for Rσ and Ra0 . As an order of magnitude we found
that for small mf, Rσ ≃ 1–2=Nf and Ra0 ≃ −2=Nf with
small variations with the fermion mass. Figures 1 and 2.
indicate that mass dependence has regularities that one
should try to understand analytically. Rσ decreases with
ðMπ=Mη0 Þ2 while Ra0 increases. The order of magnitudes of
the changes in Rσ and Ra0 are roughly the same as those
of ðMπ=Mη0 Þ2.
This empirical data shows that in order to fit the

spectrum, the quartic couplings used in the tree-level mass
formulas need to be tuned as the symmetry breaking term

changes. In a similar way, if we change v1 and v2
significantly, we also need to adjust the quartic coupling.
For this reason, we will develop a perturbative approach
where these adjustments would appear at second order.

V. PERTURBATIVE SPLITTINGS

In this section we consider an infinitesimal perturbation
from the limit where v1 ¼ v2 ¼ v with v the vacuum
expectation of S0 for the one mass case. In the following,
we work at first order in v2 − v1 and the symbol ≃ denotes
equalities valid up to corrections of order ðv2 − v2Þ2. Notice
that the mixing terms M2

S08
and M2

P08
are of first order

and have effects of second order on the mass eigenstates of
the 2 by 2 matrix of singlets. Consequently mixing will be
ignored in this section.

A. Adjoint splittings

At first order in v2 − v1, it is possible to express the
splittings among the four masses of the scalars and
pseudoscalars corresponding to the decomposition of
the SUðNfÞV adjoint given in Eq. (20), in terms of the
unperturbed masses. For instance,

M2
πhh −M2

πll ¼ ðv22 − v21Þ
�
λa0
2

þ X
Nf

vN1−2
1 vN2−2

2

�

≃
ðv2 − v1Þ

v

�
λa0v2 þ

2X
Nf

vNf−2
�
: ð29Þ

Using these relations we obtain

M2
πhh −M2

πll ≃
ðv2 − v1Þ

v
Δa0: ð30Þ

Proceeding similarly, we obtain at first order:

M2
πlh −M2

πll ≃
1

2
ðM2

πhh −M2
πllÞ ð31Þ

M2
P88

−M2
πll ≃

N1

Nf
ðM2

πhh −M2
πllÞ: ð32Þ

It is possible to treat the scalar splittings in a completely
similar way. The results are

M2
a0hh

−M2
a0ll

≃
ðv2 − v1Þ

v

�
3Δa0 −

8

Nf
Δη0

�

M2
a0lh

−M2
a0ll

≃
1

2
ðM2

a0hh
−M2

a0ll
Þ

M2
S88

−M2
a0ll

≃
N1

Nf
ðM2

a0hh
−M2

a0ll
Þ: ð33Þ

In order to have the expected splittings forM2
π where the

pions containing lighter hyperfermions are lighter, we need

FIG. 1. Rσ for Nf ¼ 8 (squares) and 12 (circles) versus
ðMπ=Mη0 Þ2.

FIG. 2. Ra0 for Nf ¼ 8 (squares) and 12 (circles) versus
ðMπ=Mη0 Þ2.
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to have v2 > v1 because Δa0 > 0 (see Table I). However,
this choice implies that the various a0 appear in the inverse

order (M2
a0hh

< M2
a0hl

< M2
a0ll

) because
3Δa0

−ð8=NfÞΔη0
M2

η0
< 0

(see Table I) for all the LatKMI datasets [6,11]. The
negative sign is clearly related to the lightness of the a0
compared to QCD.
The reasons for the inversion are clearly visible in

Eq. (23). Assuming v2 > v1 to get the standard ordering
for the pseudoscalars, we see that λa0 < 0 makes λa0v

2
2

more negative for M2
a0hh

. In addition, the anomaly term for
M2

a0hh
has larger powers of v1 and lower powers of v2 than

M2
a0ll

and the coupling is positive so again it inverts the
ordering. For the pseudoscalars, the coupling is negative so
it is in normal order.

B. Parametrization of v1 and v2
So far we have not discussed how v1 and v2 differ from v

and from each other. In general, it is possible to select a
path leaving the v1 ¼ v2 line in the ðv1; v2Þ plane in such
a way that some condition is satisfied. An example of
condition that we may like to impose is δM2

πll ¼ 0. In the
linear approximation this implies a linear relation between
the changes.
At first order, we will use the parametrization:

vi ¼ vð1þ ϵgiÞ; ð34Þ

for i ¼ 1, 2 and gi to be determined. At first order in ϵ, we
have the mass variations with respect to the unperturbed
case

δM2
mes ¼ ϵ

X2
i¼1

giv
∂M2

mes

∂vi
����
v1¼v2¼v

: ð35Þ

where mes is any of the 10 mesons states. This subscript
will be dropped in the following. The expressions

di ≡ v
∂M2

∂vi
����
v1¼v2¼v

; ð36Þ

are evaluated at zeroth-order and are functions of XvNf−2,
λσv2 and λa0v2. This implies that the gradients can be
expressed as

di ¼ diσΔσ þ dia0Δa0 þ diη0Δη0 : ð37Þ

The values of these coefficients are listed in Tables II and III
for each of the meson states.
For practical applications it may be useful to choose

the relation between g1 and g2 in such a way that some
mass stays constant. The case δM2

σ ¼ 0 is special because
d1=d2 ¼ N1=N2 and consequently we can take g1=g2 ¼
−N2=N1. This also implies that δM2

η0 ¼ 0. This choice is
illustrated in Fig. 3. We remind that at first order, mixings

TABLE I. Values
Δa0

M2

η0
and

3Δa0
−ð8=NfÞΔη0
M2

η0
using the LatKMI

data [6,11].

Nf ðamfÞ Δa0

M2

η0

3Δa0
−ð8=NfÞΔη0
M2

η0

8 0.012 0.0584(74) −0.669ð71Þ
8 0.015 0.0644(78) −0.724ð81Þ
8 0.02 0.0885(95) −0.640ð70Þ
8 0.03 0.160(41) −0.38ð16Þ
8 0.04 0.214(28) −0.22ð11Þ
12 0.04 0.0854(94) −0.225ð52Þ
12 0.05 0.1079(65) −0.163ð51Þ
12 0.06 0.1124(73) −0.261ð65Þ

TABLE III. Coefficients d2a0, d2σ and d2η0 .

d2a0 d2σ d2η0

δM2
πll − N2

Nf

N2

Nf
0

δM2
πlh

Nf−2N2

Nf2
N2

Nf
0

δM2
πhh

N1

Nf

N2

Nf
0

δM2
P88

N1−N2

Nf

N2

Nf
0

δM2
P00 0 N2

Nf

N2ðNf−2Þ
Nf

δM2
a0ll

− N2

Nf

N2

Nf

2N2

Nf

δM2
a0lh

3
2
− N2

Nf

N2

Nf

2ðN2−2Þ
Nf

δM2
a0hh

3 − N2

Nf

N2

Nf

2ðN2−4Þ
Nf

δM2
S88

3N1−N2

Nf

N2

Nf

2ðN2Nf−4N1Þ
N2

f

δM2
S00 0 3N2

Nf
−

N2ðN2
f−6Nfþ8Þ
N2

f

TABLE II. Coefficients d1a0, d1σ and d1η0 .

d1a0 d1σ d1η0

δM2
πll

N2

Nf

N1

Nf
0

δM2
πlh

Nf−2N1

Nf2
N1

Nf
0

δM2
πhh − N1

Nf

N1

Nf
0

δM2
P88

N2−N1

Nf

N1

Nf
0

δM2
P00 0 N1

Nf

N1ðNf−2Þ
Nf

δM2
a0ll

3 − N1

Nf

N1

Nf

2ðN1−4Þ
Nf

δM2
a0lh

3
2
− N1

Nf

N1

Nf

2ðN1−2Þ
Nf

δM2
a0hh

− N1

Nf

N1

Nf
2 N1

Nf

δM2
S88

4N2

Nf
− 1 N1

Nf

2ðN1Nf−4N2Þ
N2

f

δM2
S00 0 3N1

Nf
−

N1ðN2
f−6Nfþ8Þ
N2

f
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are neglected and so Mσ ≃MS00 and Mη0 ≃MP00. Another
interesting choice is δM2

πll ¼ 0. However in this case the
mass differences do not cancel in d1=d2 and the ratios of
g1=g2 needs to be adjusted separately for different data sets.
At this point, it is difficult to go beyond first order.

Figures 1 and 2 show that in order to fit the tree-level
spectra with a varying mass, the values of λa0 and λσ need to
be tuned accordingly. It is possible that radiative correc-
tions could account for the observed regularities in Figs. 1
and 2 and provide second-order effects. These effects
should be combined with the second-order effects in the
mass formulas at fixed λa0 and λσ provided above. These
nonlinear effects can be calculated easily from the explicit
formulas. In order to give an idea of the order of magnitude
of these effects, we have displayed M2

a0ll
, M2

a0lh
and M2

a0hh
from the complete (nonlinear) formulas Eq. (23) in Fig. 4.

This indicates that 20–40 percent corrections from higher
order effects should be expected in the range of perturba-
tions considered in the figure.

VI. CONCLUSIONS

In summary, we have calculated the tree level spectrum
for a linear model corresponding to a symmetry breaking
with two different masses with adjustable multiplicities. We
developed a perturbative expansion in the mass difference
(M2

πhh −M2
πll) which provides simple results for the ratios

of differences of masses squared (1=2 and N1=Nf) and
have similar structure for the adjoint of the scalar and
pseudoscalars. However, when we impose the familiar
ordering for the pseudoscalars (M2

πll < M2
πhh) we obtained

the inverse ordering for the scalars (M2
a0ll

> M2
a0hh

).
The two possible reasons for the inversion can be seen

in Eq. (23) and are λa0 < 0 and the relative sign of the
anomaly term in the spectrum. This inversion prediction
could be verified or falsified by ongoing multiflavors
simulations. The verification would be a surprising and
interesting result. Numerical disagreement with the inver-
sion would lead us to reconsider the two underlying reasons
for the inversion. It seems clear that ifm2 ≫ m1, the normal
order should be restored. It is possible that the connection
between the two regimes could be understood using the
radiative corrections or sudden vacuum changes. In [26],
additional degrees of freedom such as glueballs were
introduced in the model. This extended model has richer
mass formulas which could have implications for the a0
mass inversion.
The question of vacuum stability requires a more

detailed study. The negative sign in Eq. (7) makes clear
that the potential is not reliable for large values of vi. If we
set X ¼ 0, negative values of λa0 are compatible with the
stability requirement, if λσ ≥ ðNf − 1Þjλa0j [12]. This
bound is satisfied for the three data sets with Nf ¼ 12

and for the two more massive datasets withNf ¼ 8, but it is
violated for the three lightest data sets for Nf ¼ 8. If in
addition we set bi ¼ 0, negative values of λa0 produce a
different vacuum which is breaking the vector symmetry
SUðNfÞV [34,35]. However, for the values of b0 corre-
sponding to the five asymptotically stable data sets, the
proper SUðNfÞV-invariant vacuum is restored. These
results suggest that for low enough mass and at fixed
lattice size, some transition may take place [36].
The inversion could be tested for instance with N1 ¼ 2

and N2 ¼ 6 with am1 ¼ 0.012 and am2 ¼ 0.015 which are
mass parameters used by LatKMI. The masses are small
enough to have a clearly negative λa0 and the relative mass
difference seems small enough to avoid large nonlinear
corrections. It is interesting to notice that at first order in
δm, the Nussinov inequality [37]Mlh ≥ ð1=2ÞðMll þMhhÞ
is saturated despite the inversion.

FIG. 3. The spectrum of M2
meson in M2

η0 units, in the
linear approximation for N1 ¼ 2 and N2 ¼ 10 versus
ðM2

πhh −M2
πllÞ=M2

π . The unperturbed spectrum, which includes
the values of M2

η0 and M2
π used in the graph come from the

LatKMI data discussed in the text for Nf ¼ 12 and amf ¼ 0.04.

FIG. 4. M2
a0ll

, M2
a0lh

and M2
a0hh

in M2
η0 units, using nonlinear

formulas versus ðM2
πhh −M2

πllÞ=M2
π . The unperturbed spectrum,

for the same choice of parameters as in Fig. 3. We emphasize that
other corrections need to be included to get a realistic graph.
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In QCD, the a0 can decay into ηπ and is sometimes
considered as a more complicated degree of freedom [20].
However, in the single mass situation with Nf ¼ 8 or 12,
where η and π are degenerate, the a0 of the LatKMI data is
light enough to forbid the on-shell process. We expect this
property to remain valid with the small mass difference
suggested above. This should make the lattice analysis
simpler than in QCD.
More generally our work should be considered as an

encouragement to calculate spectra with two not so
different masses and test model calculations of the effects

of the mass difference with a reliability comparable to
what can be done with chiral perturbation theory
for QCD.
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