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We analyze the branching of center vortices in SU(3) Yang-Mills theory in maximal center gauge.
When properly normalized, we can define a branching probability that turns out to be independent of the
lattice spacing (in the limited scaling window studied here). The branching probability shows a rapid
change at the deconfinement phase transition, which is much more pronounced in space slices of the
lattice as compared to time slices. Though not a strict order parameter (in the sense that it vanishes in
one phase) the branching probability is thus found to be a reliable indicator for both the location of the
critical temperature and the geometric rearrangement of vortex matter across the deconfinement phase
transition.
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I. INTRODUCTION

The center vortex picture is one of the most intuitive
and prolific explanations of color confinement in strong
interactions. It was first proposed by Mack and Petkova
[1], but lay dormant until the advent of new gauge fixing
techniques that permitted the detection of center vortex
structures directly within lattice Yang-Mills configura-
tions [2]. These numerical studies have revealed a large
amount of evidence in favor of a center vortex picture of
confinement: The center vortex density detected on the
lattice in the maximal center gauge after center projection
properly scales with the lattice constant in the continuum
limit, and therefore, it must be considered a physical
quantity [3]. When center vortices are removed from the
ensemble of gauge field configurations the string tension
is lost in the temporal Wilson loop. Conversely, keeping
the center vortex configurations only, the static quark
potential extracted from the temporal Wilson loop is
linearly rising at all distances [2]. Center vortices also
seem to carry the nontrivial topological content of gauge
fields: the Pontryagin index can be understood as the self-
intersection number of center vortex sheets in four
Euclidean dimensions [4,5], or in terms of the writhing
number of their three-dimensional (3D) projection, which
are loops [5]. For the color group SU(2), attempts to
restore the structure of the underlying (fat) vortices
suggest that the topological charge also receives contri-
butions from the color structure of self-intersection

regions of such fat vortices [6,7]. Removing the center
vortex content of the gauge fields makes the field
configuration topologically trivial and simultaneously
restores chiral symmetry. The Pontryagin index [8], as
well as the quark condensate [9,10], are both lost when
the center vortices are removed, see also [11]. In the case
of SU(3), this link of center vortices to both confinement
and chiral symmetry breaking has also been observed
directly in lattice simulations of the low lying hadron
spectrum [12]. Finally, the center vortex picture also gives
a natural explanation of the deconfinement phase tran-
sition, which appears as a depercolation transition from a
confined phase of percolating vortices to a smoothly
interacting gas of small vortices winding dominantly
around the compactified Euclidean time axis [13].
Center vortices detected on the lattice after center

projection form loops in D ¼ 3 dimensions and surfaces
inD ¼ 4; in both cases, they live on the dual lattice and are
closed due to Bianchi’s identity. While a gas of closed loops
can be treated analytically, see e.g., [14], an ensemble of
closed sheets is described by string theory, which has to be
treated numerically. The main features of D ¼ 4 center
vortices detected on the lattice after center projection, such
as the emergence of the string tension or the order of the
deconfinement transition, can all be reproduced in an
effective random center vortex model: in this approach,
vortices are described on a rather coarse dual lattice (to
account for the finite vortex thickness), with the action
given by the vortex area (Nambu-Goto term), plus a penalty
for the curvature of the vortex sheets to account for vortex
stiffness [15–17]. The model was originally formulated for
the gauge group SU(2) [15] and later extended to SU(3)
in Ref. [16].
The SU(3) group has two nontrivial center elements

z1=2 ¼ e�i2π=3 that are related by z21 ¼ z2, z22 ¼ z1. Because
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of this property, two z1 center vortices can fuse to a single
z2 vortex sheet and vice versa (see Fig. 2 below). This
vortex branching is a new element absent in the gauge
group SU(2). In Ref. [16], it was found within the random
center vortex model that the deconfinement phase transition
is accompanied with a strong reduction of the vortex
branching and fusion. In the present paper, we investigate
the branching of center projected lattice vortices found in
the maximal center gauge.
This paper is organized as follows: In Sec. II, we

describe the geometrical and physical properties of vortex
branching and develop the necessary quantities to study this
new phenomenon on the lattice. Section III gives details on
our numerical setup and the lattice parameters and tech-
niques used in the simulations. The results are presented
and discussed in Sec. IV, and we close with a short
summary and an outlook to future investigations.

II. CENTER VORTEX BRANCHING POINTS

On the lattice, center vortices are detected by first fixing
all links UμðxÞ to a suitable center gauge, preferably the so-
called maximal center gauge (MCG), cf. Eq. (4) below.
This condition attempts to find a gauge transformation that
brings each link, on average, as close as possible to a center
element. The transformed links are then projected on the
nearest center element, UμðxÞ → ZμðxÞ ∈ ZN , and since it
was already close, we can hope that the resulting ZN theory
preserves the relevant features of the original Yang-Mills
theory. In fact, it has been shown that the string tension is
retained to almost 100% under the center projection for the
color group G ¼ SUð2Þ and still to about 62% for G ¼
SUð3Þ [18], while the string tension disappears for all G if
vortices are removed [2,19]. Also, the near-zero modes of
the Dirac operator relevant for chiral symmetry breaking

disappear if vortices are removed from the physical
ensemble [9,10].
The center projected theory is much simpler to analyze.

Since all links are center valued after projection, so are the
plaquettes. If such a center-valued plaquette happens to be
nontrivial, it is said to be pierced by a center vortex, i.e., the
corresponding dual plaquette is considered part of a center
vortex world sheet. For G ¼ SUð3Þ, in particular, we
associate a center projected plaquette ZμνðxÞ in the original
lattice with a triality qαβðx�Þ ∈ f0; 1; 2g on the dual lattice,
where

ZμνðxÞ ¼ exp

�
i
π

3
ϵμναβqαβðx�Þ

�
: ð1Þ

Here, the usual sum convention over greek indices is in
effect, and the footpoint of the dual plaquette is defined as
x� ¼ xþ ðeμ þ eν − eα − eβÞ=2. As the reader may con-
vince herself, this assignment is such that the initial and
dual plaquette link with each other. The triality can be
viewed as a quantized flux of field strength flowing through
the original plaquette. It is, however, only defined modulo
N ¼ 3, so that a q ¼ 1 vortex is equivalent to q ¼ −2,
which in turn is a q ¼ 2 vortex with an opposite direction of
flux. This ambiguity gives rise to different geometrical
interpretations (see. Fig. 2), but it does not affect the
quantities studied in the present work. The vortex world
sheet itself is now composed of all connected nontrivial
dual plaquettes. This world sheet may branch along links of
the dual lattice where three or more vortex plaquettes join,
cf. the left panel of Fig. 1.
For the actual measurement, we study the branching in

the original lattice, where the branching link is dual to an
elementary cube, while the plaquettes attached to the
branching link are dual to the plaquettes on the surface

FIG. 1. Illustration of vortex branching. The single and double arrows on the lines represent triality q ¼ 1 and q ¼ 2, respectively. The
left figure represents a ν ¼ 3 vortex branching in the full 4D lattice. The graphic in the middle shows the same situation from a 3D slice,
where the vortex plaquettes are replaced by three flux tubes joining at a branching point x�. The tubes enter the elementary cube
surrounding x� by piercing three of its six surface plaquettes. The right figure gives a simplified picture where only the branching vortex
lines are displayed.
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of the cube. Geometrically, this can be visualized in the 3D
slice1 of the original lattice that contains the cube, cf. Fig. 1:
in this slice, the vortex plaquettes are projected onto links
that are dual to the nontrivial plaquettes and represent the
center flux through the plaquettes. Vortex matter thus
appears as a network of closed lines composed of nontrivial
dual links. These thin lines are the projection vortices in
which the center flux of the unprojected (thick) vortex is
compressed into a narrow tube with a cross section of only
a single plaquette.
Vortex branching in a 3D slice occurs at branching

points, which are the projection of the branching links in
the 4D lattice. Geometrically, the branching points are
located in the middle of the cubes dual to the branching
links as illustrated in Fig. 1: the vortex lines entering an
elementary cube must pierce the plaquettes on its surface,
and up to six vortices can join at any given point of the dual
3D slice.2 We call this number νðx�Þ ∈ f0;…; 6g of vortex
lines joining at a site x� of the dual 3D slice its branching
genus. Clearly, ν ¼ 0 means that no vortex passes through
x�, while ν ¼ 2means that a vortex goes in and out without
branching (but possibly changing its direction). The cases
ν ¼ 4 and ν ¼ 6 correspond to vortex self-intersections (or
osculation points), which are also present in the case of
G ¼ SUð2Þ. The odd numbers ν ¼ 3 and ν ¼ 5, however,
are genuine vortex branchings that cannot be observed in
SU(2), and they are thus a new feature of the center
projected theory for the more complex color group SU(3).
In the present study, we investigate the distribution of

branching points in 3D slices across the deconfinement
phase transition.
It should also be mentioned that the case ν ¼ 1 would

represent a vortex end point, which is forbidden by
Bianchi’s identity, i.e., flux conservation modulo 3.
More precisely, Bianchi’s identity in the present case states
that the sum of the trialities of all plaquettes in an
elementary cube of a 3D slice must vanish modulo N
(the number of colors). This holds even for cubes on the
edge of the lattice if periodic boundary conditions are
employed. Clearly, this rule is violated if the cube has only
ν ¼ 1 nontrivial plaquette, which is hence forbidden. In our
numerical study, the number of ν ¼ 1 branching points
must then be exactly zero, which is a good test on our
algorithmical bookkeeping.
Finally, we must also stress that ν ¼ 6 branchings for the

color group G ¼ SUð2Þ are always self-intersections or
osculation points, while they can also be interpreted as
double vortex branchings in the case of G ¼ SUð3Þ.
With the present technique, we cannot keep track of the

FIG. 2. Ambiguities in the interpretation of SU(3) vortex branching. In the top line, the simple branching of a q ¼ 2 vortex on the left
can be equivalently described as three q ¼ 1 vortices emanating from a common source, i.e., as the Z3 center monopole. Similarly, the
self-intersection of a q ¼ 1 vortex in the bottom line (left), is equivalent to an osculation point of, e.g., two q ¼ 1 vortices (middle) or a
q ¼ 1 and a q ¼ 2 vortex (right).

TABLE I. Possible vortex branching types and their geomet-
rical interpretation. As explained in Fig. 2, there is some
arbitrariness in the geometrical picture, while the branching
genus ν is independent of all conventions.

ν ¼ 0 no vortex
ν ¼ 1 vortex end point, forbidden

by Bianchi’s identity
ν ¼ 2 nonbranching vortex
ν ¼ 3 simple vortex branching
ν ¼ 4 vortex self-intersection/osculation
ν ¼ 5 complex vortex branching
ν ¼ 6 complex vortex

self-intersection/osculation/double branching

1Such slices are obtained by holding either the Euclidean time
coordinate x0 (time slice) or a space coordinate xi (space slice)
fixed.

2Equivalently, up to six vortex plaquettes in D ¼ 4 can join a
common branching link.
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orientation of vortices (i.e., the direction of the vortex flux),
and hence, we are unable to distinguish double branchings
from complex self-intersections. Fortunately, ν ¼ 6 branch-
ing points are so extremely rare that they can be neglected
entirely for our numerical analysis. If we speak of vortex
branching, we thus always mean the cases ν ¼ 3 and ν ¼ 5,
which only exist for G ¼ SUð3Þ, and for which all possible
interpretations involve a single vortex branching. Table I
summarizes again the different sorts of vortex branchings
and their geometrical meaning.

III. NUMERICAL SETUP

We simulate SU(3) Yang-Mills theory on a hypercubic
lattice using the standard Wilson action as a sum over all
plaquettes UP ≡UμνðxÞ

S ¼
X
P

�
1 −

1

2N
trðUP þ U†

PÞ
�
: ð2Þ

Configurations are updated with the pseudoheatbath algo-
rithm due to Cabibbo and Marinari [20] applied to a full set
of SU(2) subgroups. To study finite temperature, we reduce
the extent Lt of the Euclidean time direction, while keeping
the spatial extent Ls ≫ Lt to eliminate possible finite size
effects,

T ¼ 1

aðβÞLt
: ð3Þ

Since the variation of Lt only allows for a rather coarse
temperature grid, we have also varied the lattice spacing
aðβÞ by considering three different couplings β within the
scaling window.3 Table II lists the lattice extents and
coupling constants used in our simulations.
For each run, the lattice was thermalized using at least

100 heatbath sweeps, and measurements were then taken
on 70 to 200 thermalized configurations (depending on Lt),
with 10 sweeps between measurements to reduce autocor-
relations. For each measurement, the following sequence of
steps was performed:
(a) Gauge fixing to the maximal center gauge: This is

achieved by maximizing the functional

F ¼ 1

V

X
fx;μg

���� 1N trUμðxÞ
����
2

; ð4Þ

under gauge rotations, where N ¼ 3 is the number of
colors and V ¼ Q

μ Lμ is the lattice volume. The main
gauge fixing algorithm used in this study is the iterated
overrelaxation [21] in which the local quantity

Fx ¼
X
μ

ðjtrfΩðxÞUμðxÞgj2 þ jtrfUμðx− μ̂ÞΩ†ðxÞgj2Þ

ð5Þ

is maximized with respect to a local gauge rotation
ΩðxÞ ∈ SUð3Þ at each lattice site x. We stop this
process when the largest relative change of Fx at all
sites x falls below 10−6. More advanced gauge fixing
techniques, such as simulated annealing [22] or
Landau gauge preconditioners [23] from multiple
random initial gauge copies, have also been tested.
While such methods are known to have a significant
effects on the propagators of the theory in any gauge
[24,25], we found that they have very little effect, at
our lattice sizes, on the gauge fixing functional and the
vortex geometry investigated here. For the production
runs, we have therefore reverted to simple overrelax-
ation with random starts.

(b) Center projection: Once a configuration is fixed to the
MCG, each link is projected to its closest center
element UμðxÞ → ZμðxÞ by first splitting off the phase

trUμðxÞ ¼ jtrUμðxÞj · e2πiδμ=N; ð6Þ
which defines δμ ∈ R modulo N. After rounding (δμ
mod N) to the closest integer qμ ∈ ½0; N − 1�, we can
then extract the center projected link as

ZμðxÞ≡ exp

�
i
2π

N
qμ

�
1 ∈ ZN: ð7Þ

In the case of SU(3), we will call the integer qμ ∈
f0; 1; 2g the triality of a center element. As mentioned
earlier, the triality is only defined modulo 3, i.e.,
qμ ¼ −2 is identical to qμ ¼ 1. While this ambiguity
alters the geometric interpretation of a given vortex
distribution (cf. Fig. 2), both the existence of a vortex
branching point and its genus (the number of vortex
lines meeting at the point) are independent of the
triality assignment.

TABLE II. Parameters for the finite temperature simulations. The last row gives the number of configurations used
for measurements, and the spatial lattice size was Ls ¼ 24 in all cases.

β 5.8 5.85 5.9

Lt 3 4 5 6 9 4 5 6 7 10 4 5 6 7 10
# configs 140 102 106 90 92 122 98 80 73 73 119 107 75 74 78

3Finer temperature resolutions through the use of anisotropic
lattices proved to be unnecessary for the present investigation.
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(c) Vortex identification: After the center projection, all
links are center valued, and so are the projected
plaquettes. If such a center-valued plaquette happens
to be nontrivial, we interpret this as a center vortex
piercing the plaquette, i.e., the corresponding dual
plaquette is part of the center vortex world sheet. The
exact formula for the triality assignment of the
vortex plaquettes was given in Eq. (1) above. For the
computation of the area density of vortices, it is
sufficient to consider a 2D plane in the original lattice
and count the number of nontrivial plaquettes after
center projection.

(d) branching points: As explained earlier, center vortices
appear within a time or space slice as a network of
links on the lattice dual to the slice. At each point x� of
this dual 3D slice, between ν ¼ 0; 2;…; 6 vortex lines
may join. Since the point x� is the center of an
elementary cube of the original time or space slice,
the vortices joining in x� must enter or exit the cube and
hence pierce some or all of the six plaquettes on its
surface. We can thus determine νðx�Þ simply by count-
ing the number of nontrivial plaquettes on elementary
cubes in 3D slices of the lattice, and we assign it to the
possible branching point x� in the middle of the cube.

IV. RESULTS

The vortex area density is known to be a physical quantity
in the sense that it scales properly with the lattice spacing
aðβÞ (see below) [3]. This entails that the overall amount of
vortex matter quickly decays with increasing coupling β. To
improve the statistics, we therefore choose coupling con-
stants β near the lower end of the scaling window
5.7≲ β ≲ 7, cf. Table II. Since this implies a rather coarse
lattice, we must ensure that the lattice size in the short time
direction does not become too small. For the values of β
chosen in our simulation, Lt ¼ ½aðβÞT��1 ≫ 1 for temper-
atures at least up to T ≲ 2T�, which is entirely sufficient for
the present purpose. We have also checked that increasing
the spatial volume from Ls ¼ 16 to Ls ¼ 24 has only
marginal effects on the results, so that finite volume errors
are also under control. In the final results, we only include
the findings for the larger lattice extent Ls ¼ 24.
The properties of vortex matter are intimately related to

the choice and implementation of the gauge condition, as
well as the absence of lattice artifacts. In particular, the
vortex area density only survives the continuum limit if
MCG is chosen and implemented accurately, and the lattice
spacing is sufficiently small to suppress artifacts. As an
independent test of these conditions, we have therefore
reanalyzed the area density ρ of vortex matter. In lattice
units, this is defined as the ratio

ρ̂ðβÞ ¼ aðβÞ2ρ ¼ #nontrivial center plaquettes
#total plaquettes

ð8Þ

in every 2D plane within the lattice. (We average over all
planes in the full lattice, or in appropriate 3D slices, in order
to improve the statistics.) After gauge fixing and center
projection, the measurement of the vortex density is
therefore a simple matter of counting nontrivial plaquettes.
If we assume that the vortex area density is a physical
quantity that survives the continuum limit, we should have
ρ ¼ cσ, where σ is the physical string tension and c is a
dimensionless numerical constant. A random vortex sce-
nario [1] entails σ ¼ 3

2
ρ for G ¼ SUð3Þ, which corresponds

to c ¼ 0.67. Previous lattice studies found a somewhat
smaller value of about c ¼ 0.5 instead, indicating that the
random vortex picture for MCG vortices at T ¼ 0 is not
always justified [18]. In lattice units, these findings trans-
late into

ρ̂ðβÞ
σ̂ðβÞ ¼

aðβÞ2ρ
aðβÞ2σ ¼ ρ

σ
¼ c ≃ 0.5

independent of β in the scaling window: ð9Þ

For our values of the coupling, as in Table II, we have not
measured the area density ρ̂ðβÞ at T ¼ 0 directly, but
instead, we took the data from the largest temporal extent
Lt ¼ 10 that corresponds to a temperature T=T� ≈ 0.55
deep within the confined phase. Since the string tension and
the vortex density do not change significantly until very
close to the phase transition, the Lt ¼ 10 data should still
be indicative for the values at T ¼ 0. From these results and
the string tension data σ̂ðβÞ in Ref. [26], the ratio (9) can
then be determined as follows:

β 5.8 5.85 5.9

c 0.558 0.573 0.591

As can be seen from this chart, the ratio (9) is indeed
roughly constant in the considered coupling range, and it is
also in fair agreement with previous lattice studies [18],
given the fact that we did not really make a T ¼ 0
simulation. In addition, inadequately gauge fixed configu-
rations would show increased randomness, which would
lead to a significant drop in the vortex density as compared
to the string tension data from Ref. [26], and hence a much
smaller value of c. We thus conclude that our chosen lattice
setup and gauge fixing algorithm are sufficient for the
present investigation.

Next, we study the finite temperature behavior of vortex
matter. The critical deconfinement temperature for G ¼
SUð3Þ is given by T�=

ffiffiffi
σ

p
≈ 0.64 [26]. Since we do not

measure the string tension independently, we can use
Eq. (9)

T�ffiffiffiffiffi
ρ0

p ¼ T�ffiffiffi
σ

p
ffiffiffiffiffi
σ

ρ0

r
¼ T�=

ffiffiffi
σ

p
ffiffiffi
c

p ≈ 0.90 ð10Þ
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to determine the critical temperature in units of the zero-
temperature vortex density ρ0 ≡ ρðT ¼ 0Þ, which sets the
scale in our simulations. In absolute units,

ffiffiffiffiffi
ρ0

p ¼ ffiffiffiffiffi
cσ

p
≈ 330 MeV: ð11Þ

From the results in Fig. 3, we see that there is roughly a
50% drop in the vortex density at the critical temperature,
which is consistent with the findings of Ref. [18]. A
complete loss of vortex matter at T� would mean that
both the temporal and spatial string tension would vanish in
the deconfined phase, contrary to lattice results [27]. What
happens instead is a percolation phase transition in which
the geometric arrangement of vortices changes from a
mostly random ensemble to a configuration in which most
vortices are aligned along the short time direction [13].
Since this leads to a nearly vanishing vortex density in
space slices while the average density only drops mildly,
the density in time slices and the associated spatial string
tension must even increase for T > T�.
These considerations imply that a good order parameter

for confinement in the vortex picture should be sensitive to
the randomness or order in the geometric arrangement of
vortex matter and, as a consequence, should behave differ-
ently in temporal or spatial 3D slices of the lattice. A prime
candidate in SU(3) Yang-Mills theory is the three-volume
density of branching points, since it is directly defined in
3D slices and describes deviations of the vortex cluster
from a straight aligned ensemble. This has previously been
studied in the effective center vortex model [16], where
indeed a significant drop of vortex branching was observed
in the deconfined phase, but not directly in lattice Yang-
Mills theory.
Since vortex branching implies a deviation from a

straight vortex flow, we expect that it is suppressed in
the deconfined phase where most vortices wind directly
around the short time direction. In addition, the residual
branching for T > T� should be predominantly in a space

direction (since the vortices are already temporally aligned)
and should hence be mostly visible in time slices, where the
vortex matter is expected to still form large percolating
clusters. In space slices, by contrast, vortices are mostly
aligned (along the time axis) in the deconfined phase, and
the suppression of the remnant branching for T > T�
should be much more pronounced.
To test these expectations, we have measured the

(dimensionless) volume density of branching points

ρ̂B ≡ branching points in lattice dual to 3D slice
total sites in lattice dual to 3D slice

¼ elementary cubes in 3D slice with v ∈ f3; 5g
all elementary cubes in 3D slice

;

ð12Þ
by assigning the vortex genus ν ∈ f0;…; 6g to all elemen-
tary cubes in a 3D slice, cf. Sec. II, and counting them. (To
improve the statistics, we have averaged over space and
time slices separately, using the same thermalized configu-
rations.) Generally, we find:
(1) Vortex endpoints with ν ¼ 1 do not appear, i.e.,

vortices are closed in accordance with Bianchi’s
identity.

(2) Vortex branchings are rare as compared to ν ¼ 2
nonbranching vortex matter.

(3) Complex vortex branchings with ν ¼ 5 are very rare
and significantly reduced as compared to the simple
branchings with ν ¼ 3; numerically, the ν ¼ 5
branchings contribute with only 0.1…1.0% to the
total branching probability.

To construct a quantity that has the chance of scaling to
the continuum, we must express the branching density in
physical units,

ρBðT; βÞ≡ ρ̂BðT; βÞ
aðβÞ3 ; ð13Þ

where aðβÞ is the lattice spacing at coupling β, which we
take from Ref. [26]. Equation (13) is indeed a physical
quantity, as can be seen directly from the result in Fig. 4,
where the data for all β considered here fall on a common
curve. Since we only considered a limited range of
couplings β, one could be worried that possible scaling
violations in ρB would not be very pronounced. As can be
seen from the right panel of Fig. 4, this is not the case. The
dimensionless density (12), for instance, exhibits large
scaling violations that are clearly visible even for our
restricted range of couplings. This gives a strong indication
that the branching density ρBðTÞ really survives the
continuum limit, even though further simulations at large
couplings would be helpful to corroborate this fact.
From Fig. 5, the physical branching density indeed

shows a rapid drop at the critical temperature T ¼ T�,
while it stays roughly constant below and above T�.
In particular, the maximal value is expected at T → 0.

FIG. 3. Vortex area density near the phase transition.

SPENGLER, QUANDT, and REINHARDT PHYS. REV. D 98, 094508 (2018)

094508-6



We have not made independent measurements at T ¼ 0,
but the available data from Lt ¼ 9 and Lt ¼ 10 corre-
sponding to T=T� ¼ 0.55 should still be indicative for the
value at zero temperature, since the vortex properties are
known to show no significant change until very close to the
phase transition. With this assumption, we find, in absolute
units,

ρBð0Þ ≈ 5.86 fm−3 ¼ ð0.56 fmÞ−3: ð14Þ
There is also a remnant branching density in the deconfined
phase, but this is much smaller in space slices [20% of
ρBð0Þ] than in time slices (60%), in agreement with our
geometrical discussion of vortex branching above. In fact,
the branching density in time slices even increases slightly
with the temperature within the deconfined phase.
Next, we want to demonstrate that the steep drop in the

branching density is not due to an overall reduction of
vortex matter itself, but rather it signals a geometrical
rearrangement. Instead of studying ρB=ρ directly, we make
a small detour and first introduce the branching probability

qB ≡ # elementary cubes in 3D slice with ν ∈ f3; 5g
# all elementary cubes in 3D slice with ν ≠ 0

;

ð15Þ

which gives the likelihood that a vortex that enters an
elementary cube of edge length equal to the lattice spacing
aðβÞ will actually branch within that cube. The branching
probability qB itself cannot be a physical quantity since it is
expected to be proportional to the lattice spacing a near
the continuum limit.4 This entails that the branching
probability per unit length

FIG. 4. Scaling of the volume density of vortex branching in space slices of the lattice. The physical density (13) (left) shows no
apparent scaling violations. For comparison, the dimensionless density (12) (right) shows the amount of scaling violations to be
expected for the present range of couplings. Error bars for the physical density are much larger since they also include uncertainties in
the physical scale taken from Ref. [26].

FIG. 5. Volume density of vortex branching points in physical units, measured in space slices (left) and time slices (right). Error bars
include statistical errors and uncertainties in the physical scale taken from Ref. [26].

4To see this, assume that the probability of branching in a cube of
edge length a ≪ 1 is q ≪ 1, and consider a cube of length na
composed of n3 subcubes of length a. Since vortices are stiff, most
nonbranching vortices do not change their direction if a ≪ 1 and
just pass straight through n subcubes. The probability of non-
branchingwithin thena cube is therefore ð1 − qÞn at small spacing,
so that the branching probability in the na cube becomes
1 − ð1 − qÞn ≈ nq, i.e., it is proportional to the edge length of
the cube.
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wBðT; βÞ≡ qBðT; βÞ
aðβÞ ð16Þ

could be a physical quantity. As can be seen from Fig. 6,
this is indeed the case as the curves for wB for all available
couplings fall on a common curve. The temperature
dependence of the physical quantity wBðTÞ is very similar
to the branching density in Fig. 4, with the drop at T ¼ T�
being reduced from 75% to about 50%. The qualitative
features of the branching probability per unit length are,
however, very similar to the branching point density, and
both are physical quantities that scale to the continuum.
Next we want to show that the branching probability per

unit length wB is actually related to the ratio ρB=ρ of
branching points and vortex matter density. To see this, we
consider an arbitrary 3D slice containing V sites and thus
also V elementary cubes. The number of cubes of branch-
ing genus ν is denoted by Nν, and obviously,

P
6
ν¼0Nν ¼

V. Then the dimensionless branching density (12) can be
expressed with Eq. (15) as

ρ̂B ¼ N3 þ N5

V

¼ qB

P
6
ν¼2Nν

V

¼ 3qB

P
6
ν¼2½νþ ð2 − νÞ�Nν

6V

¼ 3qB

P
6
ν¼2 νNν

6V
·

�
1 −

P
6
ν¼2ðν − 2ÞNνP

6
ν¼2 νNν

	

¼ 3qBρ̂λ ð17Þ
with the dimensionless factor

λ≡ 1 −
P

6
ν¼2ðν − 2ÞNνP

6
ν¼2 νNν

∈ ½0; 1�: ð18Þ

In the last step in Eq. (17), we have used the fact that a cube
with branching genus ν has ν nontrivial plaquettes on its

surface, each of which is shared with an adjacent cube.
Thus, the sum

P
ννNν counts every nontrivial plaquette

twice, and the dimensionless vortex area density Eq. (8)
becomes, after averaging over all planes in the 3D slice,

ρ̂ ¼
1
2

P
6
ν¼0 νNν

3V
¼

P
6
ν¼2 νNν

6V
;

since a 3D slice with V sites and periodic boundary
conditions contains a total of 3V plaquettes. After inserting
appropriate factors of the lattice spacing in Eq. (17), we
obtain the exact relation

ρBðTÞ ¼ 3wBðTÞρðTÞλðT; aÞ: ð19Þ

As indicated, the coefficient λ may depend on the temper-
ature and the lattice spacing, but it must fall in the range
[0, 1]. As a consequence, we obtain an exact inequality
between physical quantities,

ρBðTÞ ≤ 3wBðTÞρðTÞ; ð20Þ

which must be valid at all temperatures. Moreover, the
deviation from unity in the coefficient λ can be estimated,
from Eq. (18),

λ ¼ 1 −
P

6
ν¼2ðν − 2ÞNνP

6
ν¼2 νNν

¼ 1 −
N3 þ N5P

6
ν¼2 νNν

þ 2
N4 þ N5 þ 2N6P

6
ν¼2 νNν

¼ 1 −
1

6

ρ̂B
ρ̂
þO

�
N4

N2

�
¼ 1 −

1

6

ρBðTÞ
ρðTÞ aþO

�
N4

N2

�
:

Here, the leading correction to unity vanishes in the
continuum limit a → 0 since both ρB and ρ are physical.
Furthermore, the next-to-leading term has the simple branch-
ing ν ¼ 3 removed and starts with the probability of self-
intersection or osculation, which is small and presumably

FIG. 6. Branching probability per unit length (16) in physical units, measured in space slices (left) and time slices (right). Error bars
include statistical errors and uncertainties in the physical scale taken from Ref. [26].
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also proportional to a, by the same argument that led from
Eq. (15) to Eq. (16) above. Thus, it is conceivable that
λðT; aÞ ¼ 1þOðaÞ and Eq. (19) turns into the relation

wBðTÞ ¼
1

3

ρBðTÞ
ρðTÞ ð21Þ

for a → 0. This is renormalization group invariant. We have
tested this conjecture numerically by computing the relevant
coefficient λðT; aÞ from Eq. (18). The result is presented in
Fig. 7, where we accumulate all available data for all
temperatures and lattice spacings. As can be seen, λ is indeed
in the range [0, 1], independent of temperature and very close
to unity. Since the overall statistical uncertainty is about 5%
and our calculations were all done at the lower end of the
scaling window with a relatively large lattice spacing a, our
numerics are at least compatible with λ ¼ 1 and hence
Eq. (21) in the continuum limit. Further calculations with
larger and finer lattices are clearly necessary to corroborate
this conjecture.
Equation (21) shows that the drop of the branching

density ρB at the phase transition is not due to an overall
reduction of vortex matter ρ, since the branching proba-
bility per unit length, wB ∼ ρB=ρ, shows the same quali-
tative behavior as ρB, even after scaling out the overall

vortex density. The conclusion is that both the branching
point density ρBðTÞ from Eq. (13) and the branching
probability wBðTÞ per unit length Eq. (16) can be used
as a reliable indicator for the phase transition and as a signal
for the change in the geometrical order of the vortices at the
deconfinement transition. Our findings in full Yang-Mills
theory match the general expectations discussed above, and
they also comply with the predictions made in the random
vortex world-surface model [16].

V. CONCLUSION

In this work, we have studied the probability of center
vortex branching within SU(3) Yang-Mills theory on the
lattice. The general expectation, confirmed only in models
so far, was that the branching probability should be
sensitive to the geometry of vortex clusters and thus
provide an alternative indicator for the deconfinement
phase transition. We were able to corroborate this con-
jecture: both the branching point density ρBðTÞ and the
branching probability per unit length wBðTÞ are indepen-
dent of the lattice spacing and exhibit a steep drop at the
critical temperature, though a remnant branching proba-
bility remains even above T�. This effect is much more
pronounced in space slices of the original lattice, which
clearly indicates a dominant alignment of vortices along the
short time direction within the deconfined phase. The same
conclusion can be drawn from the renormalization group
invariant relation wB ∼ ρB=ρ, which proves that the drop in
the branching density is not due to an overall reduction of
the vortex matter ρ, but instead, it must be caused by the
change in the geometry of the vortex cluster.
In future studies, it would be interesting to directly control

the branching of vortices and study its effect on the confine-
ment and the chiral symmetry breaking, e.g., through the
Dirac spectrum in the background of such branching-free
configurations. The control over vortex branching could also
address the obvious conjecture that the different (first) order
of the phase transition for G ¼ SUð3Þ, as compared to the
weaker second order transition of G ¼ SUð2Þ, is a result of
the new geometrical feature of vortex branching.
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