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The impact of SUð3Þ center vortices on the gluon propagator in Landau gauge is investigated on original,
vortex-removed and vortex-only lattice gauge field configurations. Vortex identification is found to
partition the gluon propagator into short-range strength on the vortex-removed configurations and long-
range strength on the vortex-only configurations. The effect of smoothing vortex-only configurations is
also studied, and a regime for recovering the form of the smoothed original propagator from vortex-only
configurations is introduced. The results reinforce the significance of center vortices in a fundamental
understanding of QCD vacuum structure.
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I. INTRODUCTION

There is now significant evidence supporting the role
of center vortices in confinement and dynamical chiral
symmetry breaking in QCD. It is well established that for
SUð2Þ gauge theories, center vortices account for both of
these properties [1–4] and thus it would seem intuitive that
the same would hold for SU(3) theories as well. Previous
work has successfully shown that vortex removal in SUð3Þ
corresponds to a loss of dynamical mass generation and
string tension [5,6]. However, complete recovery of these
properties on vortex-only backgrounds has proven diffi-
cult [7].
In this paper we explore the behavior of the Landau-

gauge gluon propagator [8–10] on original, vortex-removed
and vortex-only configurations. Suppression of the gluon
propagator after vortex removal has been previously
demonstrated [11,12]. However, the scalar propagator
has not yet been examined on a vortex-only background.
Studies of the overlap fermion quark propagator have

found that by starting from the vortex-only fields, which
consist only of the center elements of SUð3Þ, and through
the application of a link smoothing algorithm, one is able to
reproduce all the salient features of QCD, including confine-
ment [13], dynamical mass generation [6], and the low-lying
hadron spectrum [14]. In this work, we extend this line of
investigation by examining the effect of cooling and smear-
ing on the gluon propagator obtained from vortex-modified

gauge field configurations. The purpose of this investigation
is to identify whether it is possible to reproduce a gluon
propagator indicative of confining behavior on vortex-only
configurations.

II. LANDAU-GAUGE GLUON PROPAGATOR

The momentum-space gluon propagator on a finite
lattice with four-dimensional volume V is given by

Dab
μνðpÞ≡ 1

V
hAa

μðpÞAb
νð−pÞi; ð1Þ

where Aa
μ are the Hermitian gluon fields (see the Appendix

for more details). In the continuum, the Landau-gauge
momentum-space gluon propagator has the following form
[15,16],

Dab
μνðqÞ ¼

�
δμν −

qμqν
q2

�
δabDðq2Þ; ð2Þ

where Dðq2Þ is the scalar gluon propagator. Contracting
Gell-Mann index b with a and Lorentz index ν with μ
one has

Daa
μμðqÞ ¼ ð4 − 1Þðn2c − 1ÞDðq2Þ; ð3Þ

such that the scalar function can be obtained from the gluon
propagator via

Dðq2Þ ¼ 1

3ðn2c − 1ÞD
aa
μμðqÞ; ð4Þ

where nc ¼ 3 is the number of colors.
As the lattice gauge links UμðxÞ naturally reside in the

fundamental representation of SUð3Þ, it is convenient to
work with the corresponding 3 × 3 matrix representation

*james.biddle@adelaide.edu.au

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 094504 (2018)

2470-0010=2018=98(9)=094504(9) 094504-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.094504&domain=pdf&date_stamp=2018-11-12
https://doi.org/10.1103/PhysRevD.98.094504
https://doi.org/10.1103/PhysRevD.98.094504
https://doi.org/10.1103/PhysRevD.98.094504
https://doi.org/10.1103/PhysRevD.98.094504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


of the gauge potential Aμ ¼ Aa
μðλa=2Þ, where λa are the

eight Gell-Mann matrices. Using the orthogonality relation
TrðλaλbÞ ¼ 2 δab for the Gell-Mann matrices, it is straight-
forward to see that

2TrðAμAμÞ ¼ Aa
μAa

μ; ð5Þ

which can be substituted into Eq. (4) to obtain the final
expression for the lattice scalar gluon propagator,

Dðp2Þ ¼ 2

3ðn2c − 1ÞV hTrAμðpÞAμð−pÞi: ð6Þ

Following the formalism of Ref. [15], we calculate the
lattice gluon propagator using the midpoint definition of the
gauge potential in terms of the lattice link variables [17],

Aμðxþ μ̂=2Þ¼ 1

2i
ðUμðxÞ−U†

μðxÞÞ− 1

6i
TrðUμðxÞ−U†

μðxÞÞ
þOða2Þ: ð7Þ

In this definition of the gauge potential we have absorbed
the lattice spacing a and the strong coupling constant g into
Aμ, such that gaAμ → Aμ. The gluon fields UμðxÞ are first
gauge fixed by maximizing an Oða2Þ-improved functional
using a Fourier-accelerated algorithm [18–20]. The gauge
potential in momentum space is then obtained by taking the
discrete Fourier transform,

AμðpÞ ¼
X
x

e−ip·ðxþμ̂=2ÞAμðxþ μ̂=2Þ: ð8Þ

The gauge fields used in this analysis are created using
the Oða2Þ-improved Lüscher and Weisz action [21]. It is
known that the continuum propagator has the form

Dðp2Þ ¼ 1

p2
; ð9Þ

as p2 → ∞. To preserve this behavior on the lattice, it is
necessary to make use of the momentum variable qμ
defined by the tree-level form of the Oða2Þ-improved
gluon propagator [16,22].

qμ ¼
2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
pμa

2

�
þ 1

3
sin4

�
pμa

2

�s
; ð10Þ

where pμ are the usual lattice momentum variables

pμ ¼
2πnμ
aNμ

; nμ ∈
�
−
Nμ

2
;
Nμ

2

�
: ð11Þ

This choice of a Oða2Þ-improved action, gauge-fixing
functional [19] and momentum ensures that we reduce

the sensitivity of the gluon propagator to finite lattice-
spacing effects [16].
We follow the tradition of examining q2Dðq2Þ such that at

large q2 we observe q2Dðq2Þ trending towards a constant.
We then renormalize such that q2Dðq2Þ ¼ 1 for qa ¼ 3.0 on
the original configurations, and apply this same renormal-
ization factor to all subsequent vortex-modified propagators.

III. CENTER VORTEX PROJECTION

In the center vortex model of confinement [23,24], center
vortices are associated with regions of an SUðNÞ gauge
field that have a nontrivial topology. In a four-dimensional
Euclidean space-time, the physical center vortices present
in the QCD vacuum form three-dimensional volumes.
These physical or thick vortices are distinguished from
the concept of thin vortices. In the continuum (in four
dimensions), a thin vortex forms a two-dimensional sur-
face. The thin vortex surface can be related to the region
occupied by a corresponding thick vortex, where the former
is characterized by an infinitesimal profile while the latter
has a finite extent [25,26].
A key property of the thin vortices is that Wilson loops

which enclose a vortex line acquire a nontrivial center
phase en2πi=N , n ¼ 0; 1;…; N − 1. An illustration of a
Wilson loop that is pierced by a thin center vortex is
shown in Fig. 1. Three of the four space-time dimensions
are shown. The thin vortex is represented by the dashed
line. In this instance, the extent of the two-dimensional
vortex surface in the fourth dimension is suppressed, and
only the intersection with the three-dimensional space is
shown. The oriented solid circle represents a Wilson loop
which lies within the vertical plane, and is pierced by the
vortex line at a single point. The vortex intersection causes
the Wilson loop to acquire a nontrivial center phase.
On the lattice, the trace of the elemental plaquettes

represents the smallest nontrivial Wilson loops. We decom-
pose the SUð3Þ lattice gauge links

UμðxÞ ¼ ZμðxÞ · RμðxÞ; ð12Þ

FIG. 1. An illustration of a Wilson loop in the vertical plane
(solid line) that is pierced by a thin center vortex (dashed line) at a
single point. Only three of the four Euclidean dimensions are
shown, such that the intersection with the two-dimensional vortex
surface appears as a line.
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in such a way that all vortex information is captured in the
field of center-projected elements ZμðxÞ,

ZμðxÞ ¼ ek2πi=3I; k ∈ f−1; 0;þ1g; ð13Þ

with the remaining short-range fluctuations described by
the vortex-removed field RμðxÞ. The center-projected pla-
quettes in the ZμðxÞ configurations with a nontrivial flux
around the boundary form the thin vortices (or P-vortices)
that are embedded within the thick vortices of the original
Monte Carlo configurations. Note that while a fundamental
plaquette is sufficient to detect a thin vortex on the lattice, a
thick vortex requires a Wilson loop of finite size to acquire
the center element [4].
To identify center vortices in the Monte Carlo generated

configurations we follow the maximal center gauge (MCG)
center projection procedure as described in Refs. [27,28].
We seek a gauge transformation ΩðxÞ that minimises

kUΩ
μ ðxÞ − ZμðxÞk; ð14Þ

where ZμðxÞ are the center elements of SUð3Þ. This
transformation is performed by maximising the so-called
“mesonic” functional [7]

R ¼ 1

VNdimn2c

X
x;μ

jTrUΩ
μ ðxÞj2: ð15Þ

Once the configurations are fixed to maximal center gauge,
each link can be projected onto the nearest center element.
We define these projected configurations ZμðxÞ as the
vortex-only configurations. This projection also allows
us to define the vortex removed configurations

RμðxÞ ¼ Z†
μðxÞUμðxÞ: ð16Þ

Hence, we refer to the three different gauge field ensembles
created as follows:
(1) Original ‘untouched’ fields, UμðxÞ,
(2) Projected vortex-only fields, ZμðxÞ,
(3) Vortex-removed fields, RμðxÞ ¼ Z†

μðxÞUμðxÞ.

IV. RESULTS

A. Survey of configurations

We calculate the gluon propagator on 100 configurations
of a 203 × 40 SUð3Þ lattice with spacing a ¼ 0.125 fm, as
used in Refs. [5,6]. Following the procedure of Ref. [15,16]
all results are plotted after a momentum half-cut and a
cylinder cut of radius pa ¼ 2 lattice units have been
performed. Additionally, we can take advantage of the
rotational symmetry of the scalar propagator to perform
Zð3Þ averaging over the Cartesian coordinates. This means
that we average over all points with the same Cartesian

radius; for example, we would average across the points
ðnx; ny; nzÞ ¼ ð2; 1; 1Þ, (1,2,1) and (1,1,2).
Calculating the scalar propagator on untouched, vortex-

removed and vortex only configurations gives the results
illustrated in Fig. 2. As discussed at the end of Sec. II, we
renormalize such that q2Dðq2Þ ¼ 1 for qa ¼ 3.0 on the
original configurations, and apply this same renormaliza-
tion factor to the vortex removed and vortex only propa-
gators. The vortex removed configurations display the
expected behavior, with vortex removal corresponding to
significant infrared suppression of the propagator when
compared to the untouched propagator, in agreement with
the results of Ref. [12]. The increased roughness of the
gauge fields after vortex removal is evidenced by the
enhancement of the propagator at large q. This reflects
the increase in short-distance fluctuations that have been
introduced to the gauge fields by the vortex removal
procedure.
It is interesting to note that the vortex only propagator

retains approximately two thirds of the untouched propa-
gator’s peak strength. This is comparable to previous work
showing partial recovery of the string tension on vortex
only configurations [7,13,14,29]. Despite only recovering
a portion of the original strength, the infrared peak is
still considerably greater than the peak observed in the
vortex-removed propagator. The loss of strength is most
likely in part because of the known imperfections in the
vortex identification algorithm that results in some vortex
matter remaining in the vortex-removed configurations.
The vortex-only configurations also exhibit a loss of
short-range strength, due to the absence of the high
frequency modes that are instead contained within the
vortex-removed field.

FIG. 2. The gluon propagator calculated from the original
untouched (red dots), shown with the vortex removed (blue
triangles) and vortex only (green open circles) results. Here, the
renormalization factor for the vortex removed and vortex only
propagators is chosen to be the same as for the untouched
propagator.

GLUON PROPAGATOR ON A CENTER-VORTEX BACKGROUND PHYS. REV. D 98, 094504 (2018)

094504-3



If we sum the vortex-only and vortex-removed propa-
gators and independently renormalize such that q2Dðq2Þ ¼
1 at qa ¼ 3.0, we obtain the result shown in Fig. 3. Here we
observe agreement between the untouched and summed
propagators. This indicates that vortex modification effec-
tively partitions the lattice configuration into short-range
physics on the vortex-removed configurations and long-
range physics on the vortex-only configurations, up to
errors in the vortex identification procedure.
This partitioning is expected if the vortex-removed and

vortex-only configurations are orthogonal. To see how this
behavior emerges, suppose that we can decompose the
gluon field Aμ into two independent fields as follows:

AμðpÞ ¼ BμðpÞ þ CμðpÞ: ð17Þ

In the context of this work, we associate Bμ with the
background field of short-range gluon fluctuations and Cμ

with the center vortex field. Note also that if B and C are in
Landau gauge then so is A. Using this partitioning it
follows that the gluon propagator for A can be written as the
sum of the respective gluon propagators for B and C,

DA
μνðpÞ ¼

1

V
hAμðpÞAνð−pÞi

¼ 1

V
ðhBμðpÞBνð−pÞi þ hCμðpÞCνð−pÞi

þ hBμðpÞCνð−pÞ þ CμðpÞBνð−pÞiÞ
¼ DB

μνðpÞ þDC
μνðpÞ; ð18Þ

where we have made use of the fact that B and C represent
orthogonal degrees of freedom in the gauge field and

hence in the ensemble average the cross-correlations should
vanish.
To elucidate the connection to the unitary formulation of

the lattice gauge links, we suppose that we can transform A
to an “ideal center gauge” such that in lattice units the field
C consists purely of center phases,

CμðxÞ ¼ k
2π

3
I; k ∈ f−1; 0;þ1g: ð19Þ

On a continuous manifold we can write the Wilson line
corresponding to a lattice link as a path-ordered exponential,

UμðxÞ ¼ Pei
R

1

0
dλAμðxþλμ̂Þ: ð20Þ

The lattice midpoint approximation replaces the integral as
follows,

UμðxÞ ¼ eiAμðxþμ̂=2Þ: ð21Þ

As A ¼ Bþ C it immediately follows that we can write

UμðxÞ ¼ eiBμðxþμ̂=2ÞeiCμðxþμ̂=2Þ; ð22Þ

noting that in our ideal center gauge ½B;C� ¼ 0 so the Baker-
Campbell-Haussdorff relation is trivial. Identifying

ZμðxÞ ¼ eiCμðxþμ̂=2Þ ð23Þ

as the vortex-projected field, and

RμðxÞ ¼ eiBμðxþμ̂=2Þ ð24Þ

as the background remainder field we thus recover the
decomposition of the links used herein,

UμðxÞ ¼ ZμðxÞ · RμðxÞ: ð25Þ

In practice, on the lattice the maximal center gauge fixing
that is implemented differs from the ideal center gauge
postulated here due to apparent numerical difficulties in
simultaneously identifying all vortex matter within an
SUð3Þ gauge field. What this means is that the projected
field Z may not capture all of the vortex matter such that
there are some nontrivial topological structures that
remain in the background field R. The infrared enhance-
ment in the vortex-removed results in Fig. 2 suggests this is
the case.

B. Smoothing

It has previously been shown that smoothing is necessary
to obtain agreement between the untouched and vortex-only
string tension,mass function and instanton content [6,13,14].
Motivated by these results, we investigate the effect of both
Oða4Þ-improved cooling [30] and overimproved stoutlink

FIG. 3. The gluon propagator from the original untouched
ensemble as in Fig. 2, now shown with the independently
renormalized sum (cyan triangles) of the vortex removed and
vortex only propagators. The two vortex modified propagators
are also shown, but here their renormalization factor is chosen to
be the same as for the summed propagator.
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smearing [31]. Following the results of Ref. [31], the over-
improved smearing parameters are ρ ¼ 0.06 and ϵ ¼ 0.25 to
best preserve the size of instantons on the lattice. To
accomplish a similar preservation of topological objects
under cooling, we used the three-loop improved algorithm
as described in Ref. [30].
We first plot the untouched propagator after 0, 1, 2, 4

and 8 sweeps of cooling in Fig. 4. In gauge fixing, each
sweep has been preconditioned by the Landau-gauge
transformation of the prior sweep in descending order
(i.e., the transformation for sweep 10 preconditions sweep
9). This preconditioning is done to ensure that the Landau-
gauge functional is near the same local minima for each
cooling sweep. We observe the expected removal of
short-distance fluctuations that is typical of smoothing,
resulting in a suppressed propagator at large q. This is
complemented by an amplification in the infrared region
which can be attributed to the increase in low momentum
modes arising from the smoothing of the gauge fields.
To compare the effects of cooling and overimproved

smearing, the untouched gluon propagator is plotted in
Fig. 5 after either overimproved smearing or cooling.
By comparing the smeared and cooled propagator we
can see that cooling has a more rapid effect, related to
the well-known fast removal of action from the lattice. The
qualitative shape of the propagator remains the same
however, and it can be seen that, for example, four smearing
sweeps produce a propagator remarkably similar to one
cooling sweep. More generally, we observe that in regards
to the shape of the propagator, nsm ≈ 4ncool. Following the
observation made in Ref. [32] that the number of over-
improved stoutlink smearing sweeps is related to the
gradient flow time by

t ≈ ρnsm; ð26Þ

we deduce that the relationship between gradient flow time
and cooling is

t ≈ 0.24ncool: ð27Þ
It is well understood that smoothing alters the vortex
background, and based on previous work [4,13,33] we
anticipate that the vortices identified on smoothed con-
figurations will differ to those identified on the unsmoothed
configurations. We therefore perform vortex identification
only on the original configurations, with smoothing then
being performed independently on the untouched, vortex-
only and vortex-removed configurations. We choose to use
cooling as the smoothing algorithm for the results presented
in this paper; however it is worth noting that similar results
can be obtained with the use of overimproved smearing.

C. Role of center vortices

After performing ten sweeps of cooling on the untouched,
vortex-removed and vortex-only ensembles, we obtain the
results shown in Fig. 6. As is typical of cooling, the removal
of short-range structures means that all three ensembles tend
to 0 as q → ∞. There is now a noticeable improvement in the
agreement between the untouched and vortex-only configu-
rations; however there is still a difference present, especially
in the qa ≈ 0.5 and qa ≈ 1.5 regions.
We perform the same analysis of the vortex-only

propagator under cooling as performed in Sec. IV B on
the untouched propagator. Once again in gauge fixing, each
sweep is preconditioned by the Landau-gauge transforma-
tion of the previous sweep in descending order. The result
of this analysis is shown in Fig. 7. This figure shows a
similar change in the vortex-only propagator when com-
pared to the untouched propagator in Fig. 4, with an
enhancement in the infrared and suppression in the UV

FIG. 4. Comparison of the gluon propagator on the untouched
configurations after cooling. For clarity we have selected a
sample of sweeps between 1 and 8.

FIG. 5. The gluon propagator after cooling or improved
smearing. We see that the shape of the plot changes minimally
between the smoothing routines. However cooling requires fewer
sweeps to produce the same effect when compared to smearing.
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modes. The UV suppression is less noticeable in this case
due to the prior removal of short-range effects brought
about by the vortex identification.
We observe that the vortex-only and untouched propa-

gators in Fig. 6 resemble the gluon propagator under a
differing number of sweeps of cooling, as shown in Figs. 4
and 7. The vortex-only propagator has a peak that sits below
the untouched propagator, and the untouched propagator is
further suppressed in the qa ≈ 1.5 region. Following the
trend inFigs. 4 and7, this indicates that further cooling on the
vortex-only propagator aligns it with the untouched propa-
gator. This follows from an understanding that the vortex-
only configurations are initially much rougher than their
untouched counterparts [6], and should therefore require
additional cooling to obtain agreement with the untouched
configurations.

We take the average Oða4Þ three-loop improved action
of the lattice divided by the single instanton action
S0 ¼ 8π2

g2 , denoted S̄=S0, to be a measure of roughness.

We observe that for n < 20 cooling sweeps the vortex-
only configurations have a significantly higher action than
their untouched counterparts after the same number of
sweeps of cooling, as illustrated in Fig. 8. We therefore
seek to find the number of sweeps required to best match
the action between the vortex-only and untouched con-
figurations. The results of this procedure are shown in
Table I. If we now plot these matched configurations, we
obtain the results shown in Fig. 9. Here we have truncated
the plot at large qa to better show the agreement in the
mid-qa region. By matching the actions as closely as
possible with an integer number of cooling sweeps, we see
that there is a better agreement between the untouched
and vortex-only gluon propagators.
There is now a significant body of evidence that center

vortices contain the essential degrees of freedom of the
Yang-Mills vacuum, such that the application of smoothing

FIG. 6. The gluon propagator calculated on the three ensembles
after ten sweeps of cooling. We now observe an improved
agreement between the untouched and vortex-only propagators.

FIG. 7. The vortex-only propagator after different sweeps of
cooling. A trend similar to Fig. 4 is observed, with enhancement
in the infrared and suppression in the UV region.

FIG. 8. The average action calculated on the untouched and
vortex-only configurations as a function of cooling sweeps, n.
The vortex-only configurations are initially rougher than the
untouched, as evidenced by the higher average action.

TABLE I. Comparison of the number of cooling sweeps on the
untouched (nU) and vortex-only (nVO) configurations required to
match the average action.

nU S̄=S0 nVO S̄=S0

5 734.83 11 727.67
10 344.22 15 357.68
15 238.21 20 231.19
20 187.55 24 184.68
25 156.92 28 155.72
30 135.91 32 135.61
35 120.29 36 120.66
40 107.08 40 109.02
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enables the recreation of the major features of QCD [4,6,
13,14,34]. Noting that sufficient smoothing of a vortex-
only field generates a topological background of instanton-
like objects, we can regard the thin center vortices as the
seeds of instantons. The smoothing process that is applied
on the vortex-only configurations raises a question regard-
ing the precise role of vortices in the restoration of the
infrared propagator; is it simply the presence of (suffi-
ciently smoothed) vortices or is it more indirectly the
reformation of the instanton background? If we examine
Fig. 6, we see that after the application of ten sweeps of
cooling the vortex-only propagator has the appropriate
qualitative infrared behavior. Comparing with previous
work, in particular Fig. 7 within Ref. [13] which shows
the typical distribution of the instanton radius against
the topological charge at the center, we can see that after
only ten sweeps of cooling the vortex-only distribution still
deviates significantly from the ideal theoretical instanton
relationship. This suggests that it is the smoothed center
vortices that are directly responsible for the infrared
structure of the gluon propagator.

V. CONCLUSIONS

Through investigation of the Landau-gauge gluon propa-
gator on original, vortex-removed and vortex-only back-
grounds, we have shown that center vortices play a
significant role in the structure of the gluon propagator.
Vortex identification partitions the gluon propagator into
short-range strength on the vortex-removed configurations
and long-range strength on the vortex only configurations.
We also demonstrated that this partitioning is consistent
with the vortex-modified gauge potential representing
orthogonal components of the original potential. Although

the vortex-only propagator does not exhibit the full infrared
strength of the original configurations, it is clear that center
vortices encode much of the long-range physics.
We then investigated the effect of smoothing on the

gluon propagator, and determined that both cooling and
overimproved smearing produce similar suppression of
high frequency modes and amplification of infrared behav-
ior. After applying smoothing, the untouched and vortex-
only configurations are brought closer together, and by
using the average action as a measure of roughness we see
that it is possible to recover the strength of the propagator
on the vortex-only configurations when compared to the
untouched configurations. The accuracy to which the
smoothed vortex-only configurations are able to recreate
the gluon propagator on similarly smooth original con-
figurations is remarkable, as illustrated in Fig. 9.
This work motivates further exploration of the impact of

center vortices in full QCD, where we would anticipate
infrared screening of the propagator [22]. It would also be of
interest to investigatewhether improved vortex identification
can account for the discrepancy between the untouched and
vortex-only propagators. Additionally, there has been work
to develop smoothing techniques that explicitly grow thin
SUð2Þ vortices by spreading the center flux across larger
Wilson loops [35]. The consequences of this novel smearing
method in SUð3Þ would be an interesting area for future
work.
As discussed in Ref. [13], it is currently unknown whether

the number of smoothing sweeps required to reproduce
QCD properties increases or remains constant as the lattice
spacing approaches the continuum limit. The former case
implies that the purpose of smoothing is to grow thin vortices
into thick vortices that have a similar size to those found on
the original configurations; whereas the latter case indicates
that smoothing is merely required to remove the roughness
of the vortex-only configurations. As a result, we wish to
investigate the impact of center vortices and smoothing in the
continuum limit. The results of this work contribute further
numerical evidence that center vortices are the fundamental
mechanism underpinning QCD vacuum structure.
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APPENDIX: NOTES ON THE GLUON
PROPAGATOR

Here we briefly recall the derivation of the expression
used to calculate the momentum-space gluon propagator

FIG. 9. Comparison of the gluon propagator on the untouched
and vortex-only configurations after tuning the number of cooling
sweeps to best match the average plaquette action. This procedure
gives a much better agreement in the shape of the gluon
propagator from the two configurations.
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on the lattice [8,9,11]. It is instructive to reference the
coordinate space form,

Dab
μνðxÞ ¼ hAa

μðxÞAb
νð0Þi: ðA1Þ

The propagator in momentum space is simply related by the
discrete Fourier transform,

Dab
μνðpÞ ¼

X
x

e−ip·xhAa
μðxÞAb

νð0Þi: ðA2Þ

Noting that the coordinate space propagator Dab
μνðx − yÞ

only depends on the difference x − y, we can make use
of translational invariance to average over the four-
dimensional volume to obtain the form for the momentum-
space propagator given in Eq. (1),

Dab
μνðpÞ ¼

1

V

X
x;y

e−ip·xhAa
μðxþ yÞAb

νðyÞi

¼ 1

V

X
x;y

he−ip·ðxþyÞAa
μðxþ yÞeþip·yAb

νðyÞi

¼ 1

V
hAa

μðpÞAb
νð−pÞi: ðA3Þ

On a discrete lattice we prefer to make use of the midpoint
definition of the gauge potential, as this yields a symmetric
local Landau-gauge condition [17],

ΔðxÞ ¼
X
μ

Aμðxþ μ̂=2Þ − Aμðx − μ̂=2Þ ¼ 0: ðA4Þ

This local gauge condition in momentum space is thenX
μ

2i sin
pμ

2
AμðpÞ ¼ 0; ðA5Þ

which is free from OðaÞ errors. The Landau-gauge fixing
functional that we use to transform the links UμðxÞ is
further improved by taking a combination of one- and two-
link terms to eliminate Oða2Þ errors [19].
The scalar propagator is obtained from the Lorentz

diagonal components of the gluon propagator. In the case
μ ¼ ν, it is straightforward to replace y → yþ μ̂=2 in
Eq. (A3) to derive Daa

μμðpÞ in terms of the midpoint
definition of the Aμ fields. The propagator itself is calcu-
lated directly from the potential in momentum space to
avoid the problem of statistical noise in the coordinate
space propagator at large separations jx − yj [8,9,11].
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