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We present results on QCD with four dynamical flavors in the temperature range 150 MeV≲
T ≲ 500 MeV. We have performed lattice simulations with Wilson fermions at maximal twist and
measured Polyakov loop, chiral condensate and disconnected susceptibility, on lattices with spacings as
fine as 0.065 fm. For most observables spacing effects are below statistical errors, which enables us to
identify lattice results with continuum estimates. Our estimate of the pseudocritical temperature compares
favorably with continuum results from staggered and domain wall fermions, confirming that a dynamical
charm does not contribute in the transition region. From the high-temperature behavior of the
disconnected chiral susceptibility we infer the topological susceptibility, which encodes relevant
properties of the QCD axion, a plausible dark matter candidate. The topological susceptibility thus
measured exhibits a power-law decay for T=Tc ≳ 2, with an exponent close to the one predicted by the
dilute instanton gas approximation (DIGA). Close to Tc the temperature-dependent effective exponent
seems to approach the DIGA result from above, a behavior which would support recent analytic
calculations based on an instanton-dyon model. These results constrain the mass of a hypothetical QCD
post-inflationary axion, once an assumption concerning the relative contribution of axions to dark matter
is made.
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I. INTRODUCTION

The properties of strong interactions at high temperatures
are under active scrutiny both theoretically and experimen-
tally. From an experimental viewpoint, collisions of ultra-
relativistic ions at the LHC create matter whose
temperature has been estimated to reach 500 MeVor more.
Theoretically, the behavior of the theory at high temper-
ature offers important insights into the mechanisms of
chiral symmetry, confinement and the degrees of freedom
(d.o.f.) active in the different phases. For instance, both
experiments and lattice results indicate that the system
remains very strongly coupled above the critical temper-
ature Tc, and that the perturbative regime, and eventually a

free-field behavior, will only set in at much higher temper-
atures; see e.g., Ref. [1].
As a consequence of this, fundamental d.o.f. manifest

their influence in a sequential way when temperature
increases: particles of the light spectrum dissolve first,
and heavy bound states dissolve later. Among the quarks
themselves, the light ones, which receive most of their
masses at the quark-gluon transition, have a significant
influence on the transition itself: the dependence of the
value of the pseudocritical temperature(s) as well as of the
nature of the transition on the masses of light current quark
masses, as well as the role of the strange quark mass around
Tc have been studied at great length, and the current status
of our understanding of the sensitivity of the phase diagram
to the light d.o.f. is for instance summarized in the so-called
Columbia plot [2–4]. Closely related with the issue of the
nature of the phase transition is the (effective) restoration of
the UAð1Þ symmetry [5,6].
By contrast, we know that the charm quark mass does

not carry any influence on the transition: if we were to draw
a multidimensional Columbia plot including the charm
mass mc the plot would just look the same for values of the
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charm mass ranging from infinity down to the experimental
value. This can be anticipated just by considering that the
charm does not acquire its mass across the chiral phase
transition, and our numerical results will confirm this.
However, as the temperature increases the role of the charm
becomes more important, and hard thermal loop calcula-
tions predict a temperature threshold for sizable charm
effects at about 300 MeV [7].
This suggests that precise calculations of QCD thermo-

dynamics in the LHC working region, where temperatures
as high as 500 MeV may be reached, require a dynamical
charm. However, in comparison with studies with 2þ 1
flavors, lattice results with two dynamical families are
much less developed: lattice discretization effects are more
severe due to the large charm mass. Only the MILC Colla-
boration [8] and the Wuppertal-Budapest Collaboration [9]
have published results for the equation of state with Nf ¼
2þ 1þ 1 flavors based on the staggered action. Our own
study of the equation of state is underway and only
preliminary and partial results have appeared [10], which
will not be presented here.
In this paper we study the chiral and topological proper-

ties of QCD for temperatures ranging from about 150 MeV
to about 500MeV, well above the deconfinement transition,
and close to the charm threshold. We use four flavors of
maximally twisted mass Wilson fermions in the isospin
limit, i.e., with degenerate up and down quark masses, and
physical strange and charm masses, relying on the zero-
temperature results of the ETM Collaboration (ETMC) for
scale setting and tuning of the algorithm to simulate at
maximal twist [11].
The purpose of this study is twofold. First, we present the

first results around the pseudocritical temperature obtained
with twisted mass Wilson fermions. We successfully cross-
check our results with earlier ones obtained with Nf ¼
2þ 1 staggered and domain wall fermions [12–14], thus
confirming that a dynamical charm has no influence around
the transition. Second, we use the results for the discon-
nected chiral susceptibility to calculate the topological
susceptibility for temperatures as high as 500 MeV, appa-
rently reaching the onset of the dilute instanton gas
approximation. Since this second aspect is at the moment
under active investigation by several groups, we conclude
this introduction with a brief review of the current status of
topology in hot QCD.
QCD topology is an eminently nonperturbative problem

which has been addressed on the lattice for a long time. It is
well known that topological studies are hampered by tech-
nical difficulties on a discrete lattice [15,16]. However, recent
methodological progress, together with more adequate com-
puter resources, have to some extent reopened the field,
leading to the first results on topology at high temperature
with dynamical fermions [9,17–20]. Although these studies
exhibit some common features, which we will review in the
following together with our own results, a quantitative

agreement has not been reached yet. Particularly signifi-
cant—and still under debate—is the onset of the dilute
instanton gas behavior: once this is reached, the results could
be safely extrapolated to temperatures T ¼ Oð1Þ GeV of
cosmological relevance.
In the calculation of the topological susceptibility

presented here we follow an early proposal of Kogut,
Lagae, and Sinclair [21] which has also been investigated
by other groups [19,22,23]. In a nutshell, we will use
well-known identities in the fermionic sector based on
the Atiyah-Singer theorem—as we will review in the
following—to infer the topological susceptibility at high
temperatures from the results for the chiral susceptibility.
Let us finally mention that Ref. [24] proposed to use lattice

results as a quantitative input to axion cosmology. Berkowitz,
Buchoff andRinaldi [25]were the first ones to implement this
suggestion in a paper which we regard as seminal, as it has
inspired a large lattice activity focused on axion cosmology
(despite being based on the quenched model). Not surpris-
ingly, given the exploratory nature of these studies and the
already mentioned complications of lattice topology, the
results on axion cosmology have not reached a unanimous
consensus: even pure Yang Mills is still under investigation
(see e.g., Refs. [26,27]). This calls for further studies, thus
providing one of the motivations of this work.
This paper is organised as follows. In the next section we

review the lattice action and the setup of the simulations.
Observables are introduced in Sec. III. The following two
sections contain our results: Sec. IV is devoted to the
analysis of the pseudocritical region, while in Sec. V we
discuss topology and its implication on the bounds on the
post-inflationary QCD axion. We close with a brief dis-
cussion on the present status of Nf ¼ 2þ 1þ 1 thermo-
dynamics and topology, and future steps.
Some of the results presented here have been presented

in a preliminary form at conferences [10,28].

II. THE ACTION AND THE SIMULATION SETUP

We performed simulations with four flavors of maximally
twisted mass Wilson fermions in the isospin limit, i.e., with
degenerate, larger than physical, up and down quark masses,
and physical strange and charm quarkmasses. In terms of the
twisted fields χl;h ¼ exp ð−iπγ5τ3=4Þψ l;h the light and
heavy quark twisted mass actions have the following form:

Slf½U; χl; χ̄l� ¼
X
x;y

χ̄lðxÞ½δx;y − κDWðx; yÞ½U�

þ 2iκaμγ5δx;yτ3�χlðyÞ; ð1Þ

and similarly

Shf½U;χh; χ̄h� ¼
X
x;y

χ̄hðxÞ½δx;y− κDWðx;yÞ½U�

þ2iκaμσγ5δx;yτ1þ2κaμδδx;yτ3�χhðyÞ; ð2Þ
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where DW½U� is the usual Wilson operator, a is the lattice
spacing, and χl;h are quark spinors in the twisted basis. The
hopping parameter κ is set to its coupling-dependent critical
value κcðβÞ leading to the so-called “maximal twist” of the
action (1)–(2) with the property of automaticOðaÞ improve-
ment for expectation values of any operator [29,30]. The
parameter μl describes the mass of the degenerate light quark
doublet, which is still unphysically large in our study: the
charged pion mass valuesmπ� considered at present are 210,
260, 370 and 470 MeV. The heavy twisted mass parameters
μσ and μδ have been tuned in the unitary approach to
approximately reproduce the physical K and D meson mass
values within an accuracy of 10%, thus allowing for a
realistic treatment of s and c quarks.
For the gauge sector the Iwasaki action is used (c0¼

3.648 and c1 ¼ −0.331):

Sg½U� ¼ β

�
c0
X
P

�
1 −

1

3
ReTrðUPÞ

�

þ c1
X
R

�
1 −

1

3
ReTrðURÞ

��
: ð3Þ

The two sums extend over all possible plaquettes (P) and
planar rectangles (R), respectively.
Our finite-temperature simulations have been performed

for three values of β ¼ ð1.90; 1.95; 2.10Þ. Using the
nucleon mass to fix the scale, this gives a ¼ 0.0646 fm,
a ¼ 0.0823 fm and a ¼ 0.0936 fm [31]. For each lattice
spacing we explored temperatures ranging from 150 to
500 MeV by varying the temporal size of the lattice Nτ. So
far we have generated finite-temperature configurations for

eight sets of parameters that correspond to four values of
the charged pion mass of about 470, 370, 260 and
210 MeV, for which two, three, two and one value(s) of
the lattice spacing have been considered, respectively.
For each lattice spacing the advantage of this setup

(“fixed-scale approach” [32]) is that we are allowed to rely
on the setup of T ¼ 0 simulations of the ETMC, thus
exploring a wide set of temperatures. Different lattice
spacings allow us to study the approach to the continuum
limit. In principle, we have to deal with the mismatch of
different temperatures obtained for different choices of β.
In practice, the temperature scans are fine enough to over-
come this potential disadvantage, as we will see when
presenting the results. The full set of parameters, as well as
the indicative statistics, are reported in Table I.

III. OBSERVABLES

We concentrate first on the study of the critical region:
our primary observables here are the quasi-order parame-
ters for deconfinement and chiral symmetry breaking: the
Polyakov loop and the chiral condensate in the light sector.
We also consider the disconnected chiral susceptibility: as
it is merely the fluctuations of the order parameter, it has the
same meaning as ordinary susceptibilities in spin models,
and hence it carries the relevant information on the
pseudocritical behavior. We will also discuss later how
this observable acts as a proxy for the topological suscep-
tibility in the symmetric phase.
The resulting pseudocritical temperatures characterizing

the crossover (including statistical and systematical errors)
are summarized in Table II.

TABLE I. T ¼ 0 base ensembles, charged pion mass, lattice spacings and finite-temperature ensembles generated so far.

tmft T ≠ 0
nomenclature

ETMC T ¼ 0
nomenclature mπ� [MeV] a [fm] Nτ × N3

σ Statistics

D210 D15.48 213(9) 0.0646 f4; 6; 8; 10; 12; 14; 16; 18; 20; 24g × 483 1k–7k

A260 A30.32 261(11) 0.0936 f4; 6; 8; 10; 11; 12; 14g × 323 1k–5k
f16g × 403 3k
f20g × 483 4k

B260 B25.32 256(12) 0.0823 f4; 5; 6; 8; 10; 12; 14; 16; 18g × 403 1k–8k

A370 A60.24 364(15) 0.0936 f3; 4; 5; 6; 7; 8; 9; 10; 11; 12g × 243 2k–9k
f13; 14g × 323 5k,27k

B370 B55.32 372(17) 0.0823 f3; 4; 5; 6; 7; 8; 10; 11; 12; 13; 14; 15; 16g × 323 2k–10k
B370.24 f4; 6; 8; 10; 11; 12g × 243 3k–10k

D370 D45.32 369(15) 0.0646 f5; 6; 7; 8; 9; 10; 12; 14; 16g × 323 1k–12k
f18g × 403 10k
f20g × 483 10k

A470 A100.24s 466(19) 0.0936 f4; 5; 6; 7; 8; 9; 10; 11; 12g × 243 3k–8k
f14g × 323 8k

B470 B85.24 465(21) 0.0823 f4; 5; 6; 7; 8; 9; 10; 11; 12g × 243 2k–4k
f13; 14g × 323 2.5k,7k
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A. Polyakov loop

The Polyakov loop is defined as a Wilson loop of gauge
fields winding once around the temporal (thermal) direction.
The important quasi-order parameter is the real part of it,

ReðLÞ ¼ 1

Nc

1

N3
σ
ReTr

X
x

YNτ−1

x4¼0

U4ðx; x4Þ: ð4Þ

We may only consider the real part since when quarks are
present the center symmetry is explicitly broken towards the
real sector. In pure gauge theory this quantity is strictly the
order parameter for the deconfinement transition, and since
the pure gauge limit is approached for large quarkmasses the
Polyakov loop also acts as a quasi order parameter with
dynamical quarks. It may be renormalized as follows [33]:

hReðLÞiR ¼ hReðLÞi exp ðVðr0Þ=2TÞ; ð5Þ

where Vðr0Þ denotes the static quark-antiquark potential at
the distance of the Sommer scale r ¼ r0 [34]. The latter is to
be determined at zero temperature. The static quark-
antiquark potential VðrÞ has been evaluated using 20 steps
ofAPE smearingwith a smearing parameterαAPE ¼ 0.5. For
r0 we use the values determined by the ETMC. Subse-
quently VðrÞ was interpolated using cubic splines and its
value Vðr0Þ has been extracted.
The results for the potential are summarized in Fig. 1 and

the extraction of the value Vðr0Þ needed for the renorm-
alization of the Polyakov loop is exemplified for the results
for a pion mass of 210 MeVon the D ensembles. The others
are completely analogous. It is important to note that this
prescription [33] introduces a further dependence on
temperature; hence in the crossover region we should
not expect that the results for the pseudocritical temper-
atures match those obtained using other temperature-
independent renormalization prescriptions. Of course in
the infinite-mass limit, when the Polyakov loop becomes an
exact order parameter for deconfinement, these ambiguities
disappear.

B. Chiral condensate

The chiral condensate hψ̄ψi in the light sector serves as
an (approximate) order parameter for the SUð2Þ × SUð2Þ
symmetry, which is explicitly broken by the quark mass:

hψ̄ψi ¼ T
V
∂ lnZ
∂mq

¼ 1

N3
σNτ

hTrM−1
q i: ð6Þ

The trace of the inverse is evaluated by means of the
technique of noisy estimators using multiple quark matrix
inversions acting on 24 Gaussian noise vectors. At maximal
twist the leading ultraviolet-divergent part is proportional to
μ=a2 which in our early Nf ¼ 2 study was removed by
subtracting the corresponding condensate at the same mass
at T ¼ 0 [35]. The multiplicative renormalization factors
are then canceled by dividing by the condensate at zero
temperature in the chiral limit:

TABLE II. Summary of fit-estimated pseudocritical temperatures using fermionic and gluonic observables. The first error is statistical,
while the second is systematic; see text for details

Ensemble a [fm] mπ [MeV] Tχ [MeV] TΔ [MeV] Tp
Δ [MeV] Tdeconf [MeV] TF

deconf [MeV]

D210 0.065 213 158(1)(4) 165(3)(1) 161(2)(8) 176(8)(8) � � �
A260 0.094 261 157(8)(14) 172(2)(1) 186(3)(8) 188(6)(1) 204(16)(1)
B260 0.082 256 161(13)(2) 177(2)(1) 181(1)(9) 192(9)(2) 196(13)(1)
A370 0.094 364 185(5)(3) 191(2)(0) 202(1)(10) 202(1)(8) 192(12)(15)
B370 0.082 372 189(2)(1) 194(2)(0) 196(1)(8) 201(6)(0) 181(12)(6)
D370 0.065 369 185(1)(3) 180(5)(1) 188(2)(9) 193(13)(2) 196(65)(20)
A470 0.094 466 200(4)(6) 193(5)(2) 204(5)(10) 205(4)(2) 184(15)(10)
B470 0.082 465 203(2)(2) 202(7)(1) 204(2)(10) 212(6)(1) 193(17)(14)

FIG. 1. The results for the potential at zero temperature used for
the renormalization of the Polyakov loop. The vertical band is
drawn in correspondence with the value of r0=a calculated by the
ETMC for the D ensemble and a pion mass of 210 MeV; hence
the horizontal band indicates the corresponding renormalization
parameter V0 which has been numerically determined as de-
scribed in the main text. Analogous procedures have been
followed for the other ensembles.
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Rhψ̄ψi ¼
hψ̄ψiT;μl − hψ̄ψiT¼0;μ

l þ hψ̄ψiT¼0;μ¼0
l

hψ̄ψiT¼0;μ¼0
l

: ð7Þ

Having now the strange quark at our disposal, we
use another prescription based on a suitable subtraction
(involving the light and strange masses) of the strange
quark condensate. It eliminates the additive μ-proportional
divergence contained in the light condensate being esti-
mated by means of the strange quark condensate. This
procedure has been proposed for Nf ¼ 2þ 1 flavors in the
literature [36]:

Δl;s ¼
hψ̄ψil − μ

μs
hψ̄ψis

hψ̄ψiT¼0
l − μ

μs
hψ̄ψiT¼0

s
; ð8Þ

where hψ̄ψis is the strange quark condensate calculated
in the Osterwalder-Seiler setup [29,37] to avoid mixing in
the heavy quark sector and where the strange mass μs has
been determined as to reproduce the physical mass of s̄γμs.
The corresponding expression at T ¼ 0 serves as a nor-
malization factor.

C. Chiral susceptibility

The chiral susceptibility, defined as the mass derivative
of the chiral condensate reads

χ ¼ V
T

∂
∂ml

hψ̄ψil ≡ χdiscψ̄ψ þ χconnψ̄ψ : ð9Þ

The disconnected chiral susceptibility, which carries the
relevant information on the critical behavior, is the quad-
ratic fluctuation of the chiral condensate,

χdiscψ̄ψ ¼ V
T
ðhðψ̄ψÞ2il − hψ̄ψi2l Þ; ð10Þ

for which the traces arising from the path integral have been
evaluated using the stochastic noise method and we made

sure that no net connected piece enters the final result.
Ultraviolet divergences cancel in the difference, and we are
left only with a multiplicative renormalization.

IV. THERMAL TRANSITION TEMPERATURE(S)

We have considered the renormalized Polyakov loop and
two chiral observables in order to extract three different
pseudocritical temperatures. We will discuss the used fit
strategies in what follows.

A. From the Polyakov loop

The deconfinement transition temperature Tdeconf is read
off from the inflection point of a hyperbolic tangent
function fit to the renormalized Polyakov loop data

hReðLÞiR ¼ AP þ BP tanh ðCPðT − TdeconfÞÞ: ð11Þ

The data becomes more and more noisy for larger Nτ which
mostly reduces the data quality for the small mass ensembles.
The data and relevant hyperbolic tangent fits for the renor-
malized Polyakov loop are shown in Fig. 2.
We have restricted the fits to temperatures below T ¼

310 MeV for our central fits in order to avoid the region of
visible discretization artifacts at high temperatures. We
have always included in the fits all available data at the low-
temperature end since data is very limited there.
A second fit was performed including higher-temper-

ature data up to T ¼ 380 MeV (or up to T ¼ 400 MeV in
the case of B260, respectively) in order to estimate a
systematic error for Tdeconf taking half of the deviation from
the central fit results above.
In the middle panel of Fig. 2 we have added the Polyakov

loop data of our finite-size test 243 ensemble B370.24.
There is no difference in the data as compared to the data
obtained in the larger volume 323.
As we have already discussed at the end of Sec. III A, this

renormalization prescription is temperature dependent and

FIG. 2. The renormalized Polyakov loop. Left: For mπ ¼ 210 MeV (blue points) and for mπ ¼ 260 MeV. Middle: For
mπ ¼ 370 MeV. The data of the finite-size test ensemble B370.24 is shown slightly shifted for ease of reading. Right: For
mπ ¼ 470 MeV.
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hence it affects the estimate of the pseudocritical temper-
ature in the crossover region. This is just one of the many
examples of a pseudocritical temperature which is not
unique. As an alternative estimate of the pseudocritical
temperature for deconfinement we may define TF

deconf as
the inflection point of the free energy for a static quark
(or, equivalently, from the peak of the entropy for a static
quark). Consider the free energyF ¼ −T logReðLÞR where
the renormalization constant is only additive and does not
influence the inflection point position. We have performed
hyperbolic tangent fits in the interval [130:300]MeVandwe
have estimated the systematic error on the inflection point by
varying the fit interval and/or the fit function (polynomial
fits). As it is well known, the free energy is rather
smooth (due to the logarithm); for the lightest mass the fits
were not successful and in the other cases the identification
of the inflection point has large errors. All in all TF

deconf is
consistent with Tdeconf within the errors. A high-statistics
study with a finer range of temperature will be necessary to
reveal the expected shift between Tdeconf and TF

deconf which
will anyway disappear when the Polyakov loop is an exact
order parameter.

B. From the renormalized chiral condensate

In Fig. 3, the first estimate TΔ for the crossover temper-
ature Tc is determined from the renormalized chiral
condensate. The data of Δls follows an S-shape curve
for all considered ensembles. We therefore used as a fit
ansatz the following sigmoid function:

ΔlsðTÞ ¼ AΔ þ BΔ tanh ð−CΔðT − TΔÞÞ: ð12Þ

We always used all available data at low temperatures and
used two upper limits for the fit ranges in temperature. The
main fits were obtained with data with T < 350 MeV and
another extended fit has been done with T < 450 MeV.
Half the deviation of the latter from the main fit results was
used to estimate the systematic error.

Second, we have used a simple polynomial fit

ΔlsðTÞ ¼ aΔ þ bΔT þ cΔT2 þ dΔT3: ð13Þ

We started from an exact fit using four points and we
progressively enlarged the interval until the quality of the fit
deteriorated. The inflection point is then Tp

Δ ¼ −cΔ=ð3dΔÞ
and one first estimate of the error is given by the maximum
between the statistical errors of the individual fits, and the
dispersion of the results obtained by changing the interval
as described. Taking into account that the polynomial fit
merely serves as an interpolator in the given interval, a
second more conservative estimate for the error uses the
resolution of the interpolation; in practice, half of the
distance between the simulation points which are closest to
TΔ. We quote both errors in the table, where we also keep
both results, from the sigmoid fit and from the polynomial
fit, as the dispersion between them offers a further estimate
of the errors. It turns out that within the larger errors
associated with the polynomial fits TΔ and Tp

Δ agree.

C. From Tχ discψ̄ψ

Here the second estimate for the crossover temperature
Tχ is determined from the chiral susceptibility. We noted
that by considering the Tχdiscψ̄ψ rather than χdiscψ̄ψ the signal is
sharper, and we used this in our estimates. The modest shift
in the pseudocritical temperature associated with this
different normalization is about 10 MeV, which is negli-
gible with respect to other errors.
For estimating the position of the peak in the (modified)

disconnected chiral susceptibility (10) we fit an ansatz
quadratic in the temperature to the data:

χdiscψ̄ψ ðTÞ ¼ Aχ þ BχðT − TχÞ2; ð14Þ

a definition that does not assume a model of the T
dependence of the susceptibility data but is a generic fit
function that should be valid in the close vicinity of a peak.

FIG. 3. The renormalized chiral condensate Δls. Left: For mπ ¼ 210 MeV (blue points) and for mπ ¼ 260 MeV. Middle: For
mπ ¼ 370 MeV. Right: For mπ ¼ 470 MeV.
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We have fitted it to the peak regions of our χdiscψ̄ψ data. Each
ensemble was fitted separately and we have considered
several fit regions in temperature for each ensemble to
address the systematic uncertainty of its choice. We take the
central values and the statistical errors from the best-
fit result (in terms of χ2=d:o:f.) and use fits with
χ2=d:o:f: < 2.5 or with χ2=d:o:f: ¼ ∞ (i.e., the parameters
are fully constrained by the data). Among the allowed fit
results imposing the just-mentioned conditions on the fit
quality we picked the one with the maximum deviation
from the central fit and took half of the deviation as the
systematic error.
Since we adopted a fixed-scale approach the number of

data points we are able to measure in the peak region is
restricted by construction. It is even more restricted for the
smaller pion masses since there intermediate points would
be at large odd Nτ which are prohibitively expensive in
terms of computing time and therefore out of the reach of
our present capabilities. Consequently, the peak region for
the small pion masses is not too well covered by data and
the fits turned out to be more difficult than those to the
renormalized quark condensate discussed previously.

In Figs. 4–6 we show for each ensemble the best fit
obtained upon varying the fit range in T.
Figure 4 shows the chiral susceptibility for the three

ensembles with the lightest pion. While the peak is nicely
visible for the ensemble at a pion mass of ∼210 MeV the
maximum of the data is much more weakly pronounced for
the two ensembles at a pion mass of about 260 MeV which
in both cases is mainly due to the smallest temperature
points. While for the A260 ensemble the best fit is
accordingly found by discarding the smallest temperature
point, the fits for the B260 ensemble favor including it.

D. The pseudocritical line in the
temperature-mass plane

Figure 7 shows the obtained results for Tχ and TΔ. The
estimates of Tχ and TΔ at physical quark masses were
obtained by the Wuppertal-Budapest Collaboration [12],
with staggered quark discretizations. There is also the
HotQCD result from an independent study with chiral
domain wall fermions [14], which is almost identical to the
value from their staggered analysis [13].

FIG. 4. Bare disconnected chiral susceptibility Tχdiscψ̄ψ and fits for different ensembles, for the two lightest pion masses, and different
lattice spacings. Left: D210. Middle: A260. Right: B260 MeV. The best fit to the peak area for the respective ensemble is shown as a
smooth curve together with the corresponding error envelope.

FIG. 5. Same as in Fig. 4, but for a pion mass of 370 MeV. Left: A370. Middle: B370. Right: D370 MeV.
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We fitted our values of Tχ for the two scenarios discussed
above in the context of the order of the phase transition in
the chiral limit of the two-flavor theory [2,4]. First, we
confirm that for these relatively large masses we cannot
discriminate between different critical scenarios. On the
positive side, we note that either plausible parametrization
interpolates the data, and fares well regarding the results for
physical pion masses obtained with Nf ¼ 2þ 1 staggered
and domain wall fermions. We thus cross-check the results
for the pseudocritical temperature provided by other
groups, and, at the same time, confirm that a dynamical
charm does not contribute to the chiral dynamics in the
pseudocritical region; see Fig. 7.
We close by noting two features of our results which call

for further investigations. In the Oð4Þ scaling window we

would expect ðTχdiscψ̄ψ − T0Þ=ðTΔ − T0Þ ≃ 1.5, which is vio-
lated by our results once we assume T0 ≃ 138 MeV. It is an
open questionwhether this is a correction toOð4Þ scaling, or
if indeed the Oð4Þ scenario should be abandoned, or T0

should be revised. Also, again in contrast to scaling expect-
ations, the two chiral temperatures seem to get closer to each
other at large mass. This effect may be due to a statistical
fluctuation at mπ ¼ 260 MeV (if we discard this point the
trend, which is anyway small, disappears), or, again, to large
mass scaling violations. Note that also the Polyakov loop
pseudocritical temperature gets closer to TΔ at larger pion
masses, which may indeed indicate the onset of the heavy
quark regime. Obviously the validity of the chiral scaling,
and the crossover to the heavy quark regime are interesting
questions but beyond the scopeof the present study.Wehope
to be able to return to them in a future investigation.

V. TOPOLOGY AND AXION’S PROPERTIES

Let us first briefly recall how axion physics and topology
are intimately connected. We will then describe the results
for the topological susceptibility, comment on the scaling
with the pion mass, and discuss the implications on the
post-inflationary axion’s mass bound.
The QCD Lagrangian admits a CP-violating term

L ¼ LQCD þ θ
g2

32π2
Fa
μνF̃

μν
a ; ð15Þ

wherewe recognize that g2

32π2
Fa
μνF̃

μν
a is the topological charge

density QðxÞ. The θ term gives an electric dipole moment to
the neutron, which is strongly constrained experimentally
[38] leading to the bound θ < 10−10. The strongCP problem
consists in explaining this unnaturally small value.
An elegant solution to the strong CP problem postulates

the existence of an extra particle [39–41], a pseudo-
Goldstone boson of the spontaneously broken Peccei-
Quinn symmetry, which couples to the QCD topological
charge, with a coupling suppressed by a scale fa. The
thermal grand canonical partition function of QCD is now a
function of θ and the temperature T,

FIG. 7. Pseudocritical temperature as a function of the pion
mass, superimposed by the curves corresponding to first- and
second-order chiral scenarios. The staggered value from the
Wuppertal-Budapest Collaboration [12] and the coinciding result
from both staggered [13] and domain wall [14] studies of the
HotQCD Collaboration for physical pion mass are shown as well.
Data from the disconnected chiral susceptibility Tχdiscψ̄ψ have been
used in the fits. See text for discussions.

FIG. 6. Same as in Fig. 4, but for the heaviest pion mass 470 MeV. Left: A470. Right: B470 MeV.
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ZQCDðθ;TÞ¼
Z

D½Φ�e−T
P

t

R
d3xLQCDðθÞ ¼e−VFðθ;TÞ ð16Þ

and the free energy Fðθ; TÞ is the axion potential.
At leading order in 1=fa (well justified as

fa ≳ 4 × 108 GeV) the axion can be treated as an external
source, and its mass is given by

m2
aðTÞf2a ¼

∂2Fðθ; TÞ
∂θ2

����
θ¼0

≡ χtopðTÞ: ð17Þ

The cumulants Cn of the topological charge distribution
are related to the Taylor coefficients of the expansion of the
free energy around θ ¼ 0

Fðθ; TÞ ¼ V
X∞
n¼1

ð−1Þnþ1
θ2n

ð2nÞ!Cn; ð18Þ

and hence higher-order cumulants and their ratios carry
information on the axion’s interactions. We will consider
higher-order cumulants in a companion paper based on the
gluonic measurements [17,42], while in this paper we will
use our results on topological susceptibility exclusively to
constrain the (post-inflationary) axion mass.

A. Topological susceptibility

We measure the topological susceptibility following
Refs. [19,21,22]. They started from the continuum identity

QðxÞ ¼ g2

32π2
Fa
μνF̃

ρσ
a ¼ ml

Z
d4xψ̄ðxÞγ5ψðxÞ ð19Þ

and noted that this remains true on a smooth gauge field
configuration (i.e., if lattice artifacts are small); hence, by
squaring Eq. (19),

χtop ≡ hQ2i
V

¼ m2
l χ

disc
5 : ð20Þ

It is well known that χdisc5 suffers from huge fluctuations.
Rather than attempting its measurement, one considers that
when chiral symmetry is restored, χdisc5 ≈ χdiscψ̄ψ .
The main quantity of interest for our topological analysis

thus turns out to be the disconnected susceptibility of the

chiral condensate, χdiscψ̄ψ ¼ N3
σ
T ðhðψ̄ψÞ2il − hψ̄ψi2l Þ which we

have already discussed within the pseudocritical region. For
our topological study we will consider results in the
extended temperature range, and based on these results
we evaluate the topological susceptibility which we show
in Fig. 8. We have grouped the results according their mass
value, and in each plot we show results for the different
lattice spacings. Within our statistical errors we cannot see
any lattice spacing dependence, and we will take our results
as continuum estimates. In the next subsection we comment
in more detail on scaling and the continuum limit.
In Fig. 9 we show all the results for the topological

susceptibility on a log-log scale in the high-temperature

FIG. 8. The chiral disconnected susceptibility, evaluated on the different ensembles corresponding to pion masses ranging from 210 to
470 MeV, and on lattices of different coarseness. For each pion mass the residual lattice spacing dependence is below the statistical
errors. We superimpose the central results of the fits to the simple power-law falloff described in the text.
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FIG. 9. The topological susceptibility from the chiral discon-
nected susceptibility, for different masses at all available lattice
spacings. We superimpose power-law fits χtop ≃ AT−d described
in the text.
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region. We superimpose the fits to a simple power-law
falloff χtopðTÞ ¼ AT−d, which describe the data for
T > 350 MeV, with a power roughly independent of the
mass. As already stated, we could not detect any lattice
spacing dependence within our accuracy, and hence we
globally fit all data belonging to the same mass for all
values of lattice spacing.
The fit parameters A and d are strongly correlated and fit

errors have little meaning; we merely quote the central
values for d ¼ ð6.26; 6.88; 7.52; 7.48Þ for decreasing val-
ues of the mass mπ ¼ ð470; 370; 260; 210Þ MeV. To get a
feeling for the error of the exponent d we may explore the
functional dependence of the topological susceptibility on
the temperature by defining a local effective power [43]
deffðTÞ ¼ Td log χtopðTÞ=dT which we show in Fig. 11. In

doing so, we do not distinguish different masses and
spacings: as the log derivative is rather noisy, it is not
possible to detect any trend with mass and spacing and we
simply plot all the results together. The average result is
broadly consistent with the fits, and apparently approaches
a constant value above T ∼ 350 MeV, while the spread of
the exponents could be taken as an estimate of the error on
the power d of the falloff.
Concerning the apparent constant asymptotic behavior,

we expect that at very large temperatures the partition
function is described by a dilute gas of instantons and
anti-instantons (DIGA), which leads to a well-defined
prediction for the falloff of the topological susceptibility,
also shown in Fig. 11. Apparently the DIGA result is
approached already for these temperatures; however, it is
not clear from the plot whether such a decreasing trend with
temperature has reached its nearly asymptotic value (mod-
ulo small corrections), or, rather, if the apparent coinci-
dence with the DIGAvalue is accidental, and restricted to a
limited range of temperatures. Only simulations for larger
temperatures can settle this issue.
Further, we note that the DIGA result is approached from

above: the exponent has larger values for smaller temper-
atures; see again Fig. 9. Very interestingly, it has recently
been proposed [44] that close to Tc the dilute instanton gas
changes to an ensemble of instantons and dyons, and the
signature for this should be a faster decrease of the
topological susceptibility close to Tc.

B. Details on lattice artifacts

We focus on the results for mπ ¼ 370 MeV, where we
have results at the three lattice spacings. First, we per-
formed individual power-law fits that we are going to use as

FIG. 10. Left: The topological susceptibility computed on mπ ¼ 370 MeV lattices with different spacings. Power-law fits for
individual ensembles are superimposed, together with their error bands. Right: Pointwise continuum extrapolations for interpolated χtop.
The interpolations are needed to match temperatures for results obtained at different lattice spacings using power-law fits (as shown in
the left panel) for T > 300 MeV and a polynomial interpolation at lower temperatures. The dashed and solid lines correspond to zeroth-
and first-order extrapolations in a2, respectively, as described in the text.

d e
ff

T

MeVT

DIGA N f 2
DIGA N f 3

250 300 350 400 450

5

10

15

20

FIG. 11. The effective exponent describing the (local) power-
law behavior of the topological susceptibility. All available pion
masses and lattice spacings are used in the plot. The results from
the dilute instanton gas are shown as well.
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interpolators for T > 300 MeV. We display the fits for
m2

l χ
disc
ψ̄ψ ≃ χtop in the left diagram of Fig. 10. Next, we show

in the right panel of Fig. 10 the lattice spacing dependence
of m2

l χ
disc
ψ̄ψ for different temperatures, mostly above Tc

(remember that this quantity is a proxy for χtop only in the
symmetric phase). The required interpolations to obtain
matching temperatures have used a polynomial inter-
polation around and slightly above the pseudocritical
temperature, and the power-law fits just described for
T > 300 MeV. We then consider two continuum extrap-
olations, m2

l χ
disc
ψ̄ψ ða2Þ¼m2

l χ
disc
ψ̄ψ þOða2Þ and m2

l χ
disc
ψ̄ψ ða2Þ ¼

m2
l χ

disc
ψ̄ψ þ Ka2 þOða4Þ, i.e., we truncate the a2 series for

m2
l χ

disc
ψ̄ψ at the zeroth (dashed lines) or first order (solid lines

in Fig. 10). In the first case we consider the two points at the
smallest lattice spacings, and we note that ensemble A is
anyway well described within errors; in the second case we
use the three points we have at our disposal. All fits fare
nicely through the data, with continuum-extrapolated
results for m2

l χ
disc
ψ̄ψ in good agreement with each other,

and with the results at the smallest lattice spacing. A word
of warning is however in order: it is obvious that a robust
continuum extrapolation would require at least another
lattice spacing. At the moment, within the given restrictions
and with this caveat issued, we conclude that we observe
good scaling and that using results on finite lattices as
estimates of continuum ones is legitimate. We also note that
the scaling pattern we observe is quite comparable with
those reported by the ETMC at zero temperature in their
study of the topological susceptibility from the twisted
mass Dirac operator spectrum [45].

C. Pion mass dependence and rescaling

Our results have been obtained with pion masses ranging
from 210 to 470 MeV, above the physical pion mass. The
same dilute instanton gas model has a prediction for the
mass scaling which may be used to extrapolate our results
to the physical pion mass: χtop ∝ m4

π . We note that this
leading mass dependence is more general than DIGA and
simply follows from the analyticity of the chiral condensate
in the chiral limit above Tc. In fact, taking hψ̄ψi ¼P

n¼0 anm
2nþ1
l in the symmetric phase, the total suscep-

tibility is an even series in the quark mass

χ ¼ V
T

∂
∂ml

hψ̄ψi≡ χdiscψ̄ψ þ χconnψ̄ψ ¼
X
n¼0

anm2n
l : ð21Þ

Barring unexpected cancellation we may assume that the
same holds for the connected and disconnected suscep-
tibilities separately; hence

χtop ¼ m2
l χ

disc
ψ̄ψ ¼

X
n¼0

anm
4ðnþ1Þ
π : ð22Þ

An exact DIGA form would imply that the leading order is
exact, i.e., that the disconnected chiral susceptibility does
not depend on the pion mass in the mass range considered.
Our results do show a mass dependence, which is not
surprising, given the relatively large masses that we are
using: smaller masses are probably needed to get rid of the
subleading mass corrections. In this first study, rather than
attempting an extrapolation in mass we content ourselves
with the simple rescaling dictated by the leading order, as
was done first in Ref. [18].
In Fig. 12 we present the results for the topological

susceptibility obtained by rescaling the data for different
pion masses to the physical pion mass according to the
leading scaling prescription. For mπ ¼ 370 MeV, the
continuum result from the first-order extrapolation in a2

is also given, which is consistent with the D-ensemble data
points within error bars. In the same diagram we reproduce
the results from Table S7 of Ref. [9] obtained with physical
quark masses for comparison. As we have already dis-
cussed, the trend close to Tc is different, while there is a
broad agreement at high temperatures; we will discuss
below the implications of the residual differences on the
axion mass. A similar agreement holds with the results
of Ref. [19].

D. Axions

A power-law decay for the topological susceptibility as
noted by many authors opens a very interesting possibility:
a safe extrapolation to very large temperatures. This feature
has been exploited in applications to axion physics, as
briefly mentioned in the Introduction. In a nutshell
(see e.g., Ref. [46]), when the axion mass is of the order
of the inverse of the Hubble parameter, the axion starts
to oscillate: 3HðTÞ ¼ maðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χtopðTÞ

p
=fa. fa can be
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FIG. 12. The fourth root of the topological susceptibility versus
the temperature for three different pion masses, rescaled to the
physical pion mass according to χtop ∝ m4

π . For the mπ ¼
370 MeV continuum band the solid line extrapolations from
the right panel of Fig. 10 are taken. We also superimpose the
tabulated results (Table S7) from Ref. [9].
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traded for the zero-temperature topological susce-
ptibility and the axion mass via χtop ¼ f2am2

a, and hence
the knowledge of the temperature dependence of the
topological susceptibility suffices to determine the time
of the beginning of oscillation. At this time, the energy
density ρaðTÞ of the oscillating axion field is the same as a
collection of axions at rest ρaðTÞ ≈ 1=2m2

aðTÞf2aθ2, and the
number density naðTÞ ¼ ρaðTÞ=maðTÞ can be estimated as
naðTÞ ≈ 1=2maðTÞf2aθ2. The axion-to-entropy ratio
remains constant after the beginning of the oscillations,
so the present mass density of axions is ρa;0 ¼ na

s mas0,
where s; s0 are the entropies at time T and today, and
Ωa ¼ ρa;0

ρc
, where ρc is the critical density. To obtain simple

expressions in closed form we employ the power-law
parametrization g�ðTÞ ¼ 50.8ðT=ðMeVÞÞ0.053 for the num-
ber of relativistic d.o.f. g�ðTÞ entering the Hubble param-
eter and entropy density, which reproduces the results up to
a few percent in the temperature interval
800 MeV < T < 1500 MeV. Following e.g., Ref. [46]

we finally arrive at ρaðmaÞ ∝ m
−3.053þd=2
2.027þd=2

a , where d > 0
defines the power-law decay of the topological suscep-
tibility at high temperatures discussed above, χtop ≃ AT−d,
and we use the latest Particle Data Group results for the
required astrophysical constants [47]. We present the
results graphically in Fig. 13: we plot the axion’s fractional
contribution to dark matter versus the axion mass for
various situations. Similar analyses have been presented
in previous works, and we confirm to a large extent their
conclusions [9,19,48]. The first three lines are obtained
from our results, rescaled to the physical pion mass. We
have included errors for the lowest mass, which are not
visible in the graph. The discrepancy between the results

for the two lowest pion masses, and for a pion of 370 MeV
may be ascribed to violations of the mass scaling discussed
above, and are anyway small at a practical level. Clearly, as
we know, further uncertainties might be hidden in the
results: to estimate their impact we plot a few mock curves
on the basis of 210 MeV data. First, we keep the same
amplitudes as the one we have measured, but choose the
DIGA exponent. Second, we choose a small exponent
similar to the one reported in Ref. [18]. To study the effect
of the amplitude, we fix the exponent to the one we have
measured at 210 MeV, and consider the fourth root of the
amplitude 10 times larger or smaller. In all cases the
intercept with the abscissa (overclosure bound) defines
the absolute lower bound for the axion mass: for our results,
this gives ma ≃ 20 μeV. This limit becomes more stringent
if we assume that the axions only contribute to a fraction of
DM;- the results can be read off of the plot from the
intercept of the desired fraction and the corresponding
curves. Clearly the bounds are robust against “small”
changes of parameters. However a significant variability
remains. In particular, as also noted in Ref. [49], slower
decays (as those observed by us using the gluonic definition
of the topological susceptibility) would considerably lower
the axion bound.

VI. DISCUSSION

We have studied chiral and topological properties of
Nf ¼ 2þ 1þ 1 QCD with twisted mass Wilson fermions.
The strange and charm mass have their physical values,
while for the light pion we have considered four different
masses.
We have identified the pseudocritical temperature as a

function of the pion mass. We have found that an
extrapolation to the pseudocritical temperature for the
physical pion is robust with respect to different assump-
tions for the universality class of the two-flavor massless
theory, and agrees well with previous estimates. This serves
as a sanity check of the twisted mass chiral dynamics
around Tc and in addition it confirms the irrelevance of a
dynamical charm in the transition region.
We have measured the topological susceptibility in the

range 150–500 MeV and found a rather fast decrease with
temperature in the range Tc < T ≲ 350 MeV. This feature
is predicted in recent instanton-dyon models [44]; however
it has not been observed in other recent lattice studies. Such
a fast decrease may also be understood within the frame-
work of the QCD magnetic equation of state [50], as it is
known that around Tc the disconnected susceptibility
almost saturates the total susceptibility ∂hψ̄ψi=∂m. Since
the total susceptibility in the symmetric phase behaves as
1=ðT − TcÞγ with γ ≃ 1 (with a weak mass dependence due
to Griffith analyticity) it is rather natural to expect a fast
decrease of the topological susceptibility leading to an
apparently large exponent in a simple power-law para-
metrization Tα. This scenario should be checked by directly

FIG. 13. The axion contribution to dark matter versus the axion
mass: the first three lines show our results for three pion masses
370, 260, and 210 MeV, respectively, all rescaled to the physical
pion mass according to χtop ∝ m4

π . The other lines are mock data
meant to study the sensitivity of the 210 MeV curve to the fit
parameters of the topological susceptibility χtop ≃ AT−d.

BURGER, ILGENFRITZ, LOMBARDO, and TRUNIN PHYS. REV. D 98, 094501 (2018)

094501-12



computing the regular contribution to the susceptibility, and
most importantly the γ5 susceptibility, which would allow
the computation of the topological susceptibility without
relying on the restoration of the chiral symmetry. At higher
temperatures the contribution from the regular part
becomes significant and the results approach the DIGA
behavior from above; however, as we have already men-
tioned it is hard to exclude a continual decreasing trend
which would bring the results well below that.
This work might be extended along several directions.

First—and obviously—the results should be further pushed
towards lower masses. The first zero-temperature results by
the ETMC with Nf ¼ 2þ 1þ 1 and a physical pion mass
have appeared recently [51], and we hope to be able to
extend them to high temperatures. Second, wewould like to
clarify in detail the source of discrepancies among different
methods. Although there are several reasons to believe that
these discrepancies may be traced back to lattice artifacts,
we are still in need of clear evidence. In a companion paper
we will present results with a gluonic method obtained on
the same lattices [42], and a study using the overlap
operator is in progress [42]. Last but not least, we hope

to go beyond the second-order cumulant studied here in
order to learn more about the axion potential.
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