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We study non-Abelian vortex strings in N ¼ 2 supersymmetric QCD with the gauge group UðNÞ
deformed by the mass μ of the adjoint matter. This deformation breaks N ¼ 2 supersymmetry down to
N ¼ 1 and in the limit of large μ the theory flows to N ¼ 1 QCD. Non-Abelian strings in addition to
translational zero modes have orientation moduli. In the N ¼ 2 limit of small μ the dynamics of
orientational moduli is described by the two-dimensional CPðN − 1Þmodel for QCD with Nf ¼ N flavors
of quark hypermultiplets. For the case of Nf > N the non-Abelian string becomes semilocal developing
additional size moduli that modify the effective two-dimensional σ-model on the string making its target
space noncompact. In this paper we consider the μ-deformed theory with Nf > N eventually making μ

large. We show that size moduli develop a potential that forces the string transverse size to shrink.
Eventually in the large μ limit size moduli decouple and the effective theory on the string reduces to the
CPðN − 1Þ model. We also comment on physics of confined monopoles.
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I. INTRODUCTION

Searches for a non-Abelian generalization of the
Seiberg-Witten scenario of quark confinement [1,2] lead
to the discovery of non-Abelian vortex strings in N ¼ 2
supersymmetric QCD [3–6]; see also [7–10] for reviews.
They are formed in the Higgs phase of UðNÞ gauge theory
due to the condensation of scalar quarks and are responsible
for the confinement of monopoles. In the strong coupling
regime the theory is in the “instead-of-confinement” phase.
Particularly rich structure with non-Abelian dual gauge
group appears in a theory with number of quark flavors
Nf > N; see [11] for a review.
The N ¼ 2 supersymmetric quantum chromodynamics

(SQCD) is a nice theoretical laboratory to study non-
perturbative non-Abelian dynamics. However, since we
wish to learn more about the “real world,” we are interested
in studying more realistic theories. N ¼ 1 supersymmetric
QCD is one of the most promising examples. Much in the
same way as the real world QCD it has no adjoint scalars

and no Abelianization of the theory can occur due to their
condensation.
To study this theory we start with N ¼ 2 SQCD

deformed by the mass μ of the adjoint matter. This
deformation breaks N ¼ 2 supersymmetry down to
N ¼ 1. In the limit of large μ the adjoint matter decouples
and the theory flows toN ¼ 1 QCD. It was shown that the
non-Abelian instead-of-confinement phase survives for
Nf > N; see review [11] and references therein.
Motivated by these results in this paper we study non-

Abelian confining strings in μ-deformed N ¼ 2 SQCD
with Nf > N. In particular, we consider the limit of large μ
when the theory flows to N ¼ 1 SQCD.
The case Nf ¼ N was studied earlier. To the leading

order in μ the mass term for the adjoint matter reduces to
the Fayet-Iliopoulos (FI) F-term, which does not break
N ¼ 2 supersymmetry [12,13]. In the quark vacuum
squark condensate is determined by

ffiffiffiffiffiffiffi
μm

p
, where m is a

quark mass. In this setup non-Abelian strings were first
found [3–6] and their dynamics was well studied; see [9]
for a review. In addition to the translational zero modes
typical for Abelian Abrikosov-Nielsen-Olesen (ANO) vor-
tex strings [14], non-Abelian strings have orientational
moduli associated with rotations of their fluxes inside the
non-Abelian SUðNÞ group. The dynamics of the orienta-
tional moduli in N ¼ 2 QCD is described by the two-
dimensional CPðN − 1Þ model living on the world sheet of
the non-Abelian string.
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The μ deformation of N ¼ 2 SQCD was considered
recently in [15]. It turns out that the non-Abelian string
ceases to be Bogomol’nyi-Prasad-Sommereld (BPS), and
world sheet supersymmetry is completely lost. The fer-
mionic sector of the low energy world sheet theory
decouples at large μ, while the bosonic sector is given
by the two-dimensional CPðN − 1Þ model. It was also
shown that in the case of equal quark masses confined
monopoles seen in the world sheet theory as kinks [5,6]
survive μ deformation and present in the limit of
N ¼ 1 SQCD. The potential in two-dimensional world
sheet theory induced by quark mass differences was
also found.
Non-Abelian strings inN ¼ 2 SQCDwith “extra” quark

flavors (Nf > N) were also well studied. In this setting the
string develops size moduli and becomes semilocal. In
particular, in the Abelian case these strings interpolate
between ANO local strings and sigma-model lumps
[16–20]. World sheet theory on the semilocal non-
Abelian string was first considered from a D-brane pro-
spective [3,6], and later from a field theory side [21–24]. In
particular, in [24] it was found that the world sheet theory is
the so-called N ¼ ð2; 2Þ supersymmetric zn model.
In this paper we continue studies of non-Abelian strings

in SQCD with additional quark flavors, Nf > N, and
consider μ-deformed theory. In particular, we study what
becomes of semilocal non-Abelian strings as we increase μ
and take the large μ limit where the theory flows to N ¼ 1
SQCD. First we found that much in the same way as for
Nf ¼ N case [15] the string is no longer BPS and the world
sheet supersymmetry is lost.
Moreover, as we switch on the deformation parameter μ

the string itself ceases to be semilocal. Considering the
world sheet theory at small μ we show that string size
moduli develop a potential that forces them to shrink.
Eventually in the large μ limit size moduli decouple
and the effective theory on the string reduces to the
CPðN − 1Þ model.
We also briefly discuss the physics of confined

monopoles.
The paper is organized as follows. In Sec. I we briefly

outline the underlying bulk theory and calculate its mass
spectrum. In Sec. II we consider the non-Abelian semilocal
string in the μ deformed theory and study the world sheet
theory for this string. We summarize our results in Sec. III.

II. THEORETICAL SETUP

A. Bulk theory

In this section we briefly describe our initial theory in
the bulk. The basic model is four-dimensional N ¼ 2
supersymmetric QCD with the gauge group SUðNÞ×Uð1Þ.
The field content of the theory is as follows. The matter
consists ofNf ¼ N þ Ñ flavors of quark hypermultiplets in
the fundamental representation, scalar components being

qkA and q̃Ak. Here, A ¼ 1;…; Nf is the flavor index and
k ¼ 1;…; N is the color index. The vector multiplets
consist of U(1) gauge field Aμ and SUðNÞ gauge field
Aa
μ, complex scalar fields a and aa in the adjoint repre-

sentation of the color group, and their Weyl fermion
superpartners. Index a runs from 1 to N2 − 1, and the
spinorial index α ¼ 1, 2.
Superpotential of the N ¼ 2 SQCD is

WN¼2 ¼
ffiffiffi
2

p �
1

2
q̃AAUð1ÞqA þ q̃AAaTaqA

�
þmAq̃AqA;

ð2:1Þ

which includes adjoint matter chiral N ¼ 1 multiplets
AUð1Þ and ASUðNÞ ¼ AaTa, and the quark chiral N ¼ 1

multiplets qA and q̃A (here we use the same notation for the
quark superfields and their scalar components). The μ
deformation considered in this paper is given by the
superpotential

WN¼1 ¼
ffiffiffiffi
N
2

r
μ1
2
ðAUð1ÞÞ2 þ μ2

2
ðAaÞ2: ð2:2Þ

We assume the deformation parameters to be of the same
order, μ1 ∼ μ2 ∼ μ. When we increase μ → ∞, N ¼ 2
supersymmetry becomes broken, and the theory flows to
N ¼ 1 SQCD. Instead in the limit of small μ this super-
potential does not break the N ¼ 2 supersymmetry and
reduces to a FI F-term [12,13].
In order to control the theory and stay at weak coupling

as we take this limit, we require the product
ffiffiffiffiffiffiffi
μm

p
to stay

fixed and well above ΛN¼1, which is the scale of the SU(N)
sector of N ¼ 1 QCD.
The bosonic part of the action is given by

Sbos ¼
Z

d4x

�
1

2g22
TrðFSUðNÞ

μν Þ2 þ 1

4g21
ðFUð1Þ

μν Þ2

þ 2

g22
Trj∇μaSUðNÞj2 þ 1

g21
j∂μaUð1Þj2 þ j∇μqAj2

þ j∇μ
¯̃qAj2 þ VðqA; q̃A; aSUðNÞ; aUð1ÞÞ

�
: ð2:3Þ

Here ∇μ is the covariant derivative in the corresponding
representation,

∇adj
μ ¼ ∂μ − i½Aa

μTa; ·�;

∇fund
μ ¼ ∂μ −

i
2
AUð1Þ
μ − iAa

μTa;

with the SUðNÞ generators normalized as TrðTaTbÞ ¼
ð1=2Þδab. Superpotentials (2.1) and (2.2) contribute to
the scalar potential V, which is given by the sum of F
and D terms,
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VðqA; q̃A; aSUðNÞ; aUð1ÞÞ

¼ g22
2

�
1

g22
fabcābac þ q̄ATaqA − q̃ATa ¯̃qA

�
2

þ g21
8
ðq̄AqA − q̃A ¯̃qAÞ2 þ 2g22

����q̃ATaqA þ 1ffiffiffi
2

p ∂WN¼1

∂aa
����2

þ g21
2

����q̃AqA þ
ffiffiffi
2

p ∂WN¼1

∂aUð1Þ
����2

þ 2
XNf

A¼1

�����
�
1

2
aUð1Þ þ mAffiffiffi

2
p þ aaTa

�
qA
����2

þ
����
�
1

2
aUð1Þ þ mAffiffiffi

2
p þ aaTa

�
¯̃qA
����2
�
; ð2:4Þ

where summation is implied over the repeated flavor
indices A (and over omitted color indices, too).
Consider the case when we have one extra flavor,

Nf ¼ N þ 1. Scalar potential (2.4) has a set of super-
symmetric vacua, but in this paper we concentrate on a
particular vacuum where the maximal number of squarks
equal to the rank of the gauge group N condense. Up to a
gauge transformation, the squark vacuum expectation
values are given by

hqkAi ¼ h ¯̃qkAi ¼ 1ffiffiffi
2

p

0
BBBBBB@

ffiffiffiffiffi
ξ1

p
0 0 0 0

0 . .
. ..

. ..
. ..

.

..

.
…

ffiffiffiffiffiffiffiffiffi
ξN−1

p
0 0

0 … 0
ffiffiffiffiffi
ξN

p
0

1
CCCCCA;

ð2:5Þ

where we write quark fields as rectangular matrices N × Nf

and ξP are defined as

ξP ¼ 2

� ffiffiffiffi
2

N

r
μ1m̂þ μ2ðmP − m̂Þ

�
; ð2:6Þ

m̂ ¼ 1

N

XN
A¼1

mP: ð2:7Þ

If we define a scalar adjoint matrix as

Φ ¼ 1

2
aþ Taaa; ð2:8Þ

then the adjoint fields vacuum expectation values (VEVs)
are given by

hΦi ¼ −
1ffiffiffi
2

p

0
B@

m1 … 0

… … …

0 … mN

1
CA: ð2:9Þ

The vacuum field (2.5) results in the spontaneous breaking
of both gauge UðNÞ and flavor SUðNÞ. However, in the
equal mass limit mA ≡m, A ¼ 1;…; Nf all parameters ξ
become equal, ξP ≡ ξ, P ¼ 1;…; N and a diagonal global
SUðNÞCþF survives, or, more exactly,

UðNÞgauge × SUðNÞflavor → SUðNÞCþF × SUðÑÞF × Uð1Þ:
ð2:10Þ

Thus, a color-flavor locking takes place in the vacuum. The
presence of the color-flavor SUðNÞCþF global symmetry is
the reason for the formation of non-Abelian strings; see [9]
for a review.
In the special case when

μ2 ¼ μ1
ffiffiffiffiffiffiffiffiffi
2=N

p ≡ μ; ð2:11Þ

superpotential (2.2) is simplified and becomes a single-
trace operator

WN¼1 ¼ μTrðΦ2Þ: ð2:12Þ

B. Mass spectrum

In this section we review the mass spectrum of our
bulk SQCD taking all quark masses equal, cf., [9,13,25].
Because of squark condensation, the gauge bosons acquire
masses1

mUð1Þ ¼ g1

ffiffiffiffi
N
2

r
ξ;

mSUðNÞ ¼ g2
ffiffiffi
ξ

p
: ð2:13Þ

Scalar state masses are to be read off from the potential
(2.4). Expanding and diagonalizing the mass matrix one
can findN2 − 1 real scalars with the massesmSUðNÞ and one
scalar with the mass mUð1Þ. These are N ¼ 1 superpartners
of SUðNÞ and Uð1Þ gauge bosons. Other N2 components
are eaten by the Higgs mechanism. Another 2 × 2N2 real
scalars (adjoint scalars aa, a and the half of squarks)
become scalar components of the following N ¼ 1 chiral
multiplets: one with mass

mþ
Uð1Þ ¼ g1

ffiffiffiffiffiffiffiffiffiffiffiffi
N
2
ξλþ1

r
; ð2:14Þ

and another one with mass

m−
Uð1Þ ¼ g1

ffiffiffiffiffiffiffiffiffiffiffiffi
N
2
ξλ−1

r
: ð2:15Þ

1Here we assume for simplicity that ξ, μ1, μ2 are real.
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The remaining 2ðN2 − 1Þ chiral multiplets have masses

mþ
SUðNÞ ¼ g2

ffiffiffiffiffiffiffiffi
ξλþ2

q
; ð2:16Þ

m−
SUðNÞ ¼ g2

ffiffiffiffiffiffiffi
ξλ−2

p
: ð2:17Þ

Here λ�i are roots of the quadratic equation [9,13]

λ2i − λið2þ ω2
i Þ þ 1 ¼ 0 ð2:18Þ

with

ω1 ¼
g1μ1ffiffiffi

ξ
p ; ω2 ¼

g2μ2ffiffiffi
ξ

p : ð2:19Þ

Once Nf > N apart from the above massive scalars, we
also have 4NðNf − NÞ scalars that come from the extra
squark flavors qK and q̃K , K ¼ ðN þ 1Þ;…; Nf. In the
equal mass limit these extra scalars are massless, and the
theory enjoys a Higgs branch

H ¼ T�GrCðNf; NÞ ð2:20Þ

of real dimension

dimH ¼ 4NðNf − NÞ: ð2:21Þ

In the large μ limit, states with masses mþ
Uð1Þ and mþ

SUðNÞ
become heavy with masses ∼g2μ and decouple. They
correspond to the adjoint matter multiplets. Instead states
with masses m−

Uð1Þ and m−
SUðNÞ become light with masses

∼ξ=μ. Scalar components of these multiplets are Higgs
scalars. They develop VEVs (2.5). In the opposite limit of
small μ their masses are given by

m−
Uð1Þ ¼ g1

ffiffiffiffiffiffiffi
N
2
ξ

r �
1 −

g1μ1
2
ffiffiffi
ξ

p þ � � �
�
;

m−
SUðNÞ ¼ g2

ffiffiffi
ξ

p �
1 −

g2μ2
2
ffiffiffi
ξ

p þ � � �
�
: ð2:22Þ

As we already mentioned N ¼ 2 supersymmetry is not
broken in our theory to the leading order at small μ [12,13].
The leading order corresponds to sending parameters ω in
(2.19) to 0 while keeping FI parameter ξ ∼ μm fixed. One
can see that in theN ¼ 2 limit Higgs scalars are degenerate
with the gauge fields,2 but become lighter as we switch on
the μ-deformation.
The ratio of squares of Higgs and gauge boson masses β

is an important parameter in the theory of superconduc-
tivity. Type I superconductors correspond to β < 1, while

type II superconductors correspond to β > 1. BPS strings
arise on the border at β ¼ 1. We see that in our theory both
parameters β,

βUð1Þ ¼
�m−

Uð1Þ
mUð1Þ

�
2

; βSUðNÞ ¼
�m−

SUðNÞ
mSUðNÞ

�
2

; ð2:23Þ

are less than unity, and thus our theory is in the type I
superconducting phase at nonzero μ. This turns out to be
important later.

III. SEMILOCAL NON-ABELIAN VORTICES

In this section we study a vortex string solution in the
equal quark mass limit. First we review previous results
[24] for the BPS semilocal non-Abelian vortex string and
then consider a small μ-deformation. We derive the world
sheet effective theory for the string moduli fields in this
case. For simplicity we consider the theory with one extra
quark flavor, Nf ¼ N þ 1.

A. BPS semilocal non-Abelian string

We start by reviewing the semilocal non-Abelian string
in the N ¼ 2 limit [24]. Once the number of flavors
exceeds the number of colors vortices have no longer
the conventional exponentially small tails of the profile
functions. The presence of the Higgs branch and associated
massless fields in the bulk makes them semilocal; see a
detailed review of the Abelian case in [20]. The semilocal
strings have a power falloff at large distances from the
string axis. For example, the semilocal Abelian BPS
string interpolates between the ANO string [14] and
two-dimensional O(3) sigma-model instanton uplifted to
four dimensions (also known as the lump). For one extra
flavor the semilocal string possesses two additional zero
modes parametrized by the complex modulus ρ. The
string’s transverse size is associated with jρj. In the limit
jρj → 0 in the Abelian case we recover the ANO string
while at jρj ≫ 1=mUð1Þ it becomes a lump.
Consider an infinite static string stretched along the x3

axis using the following ansatz:

qkA ¼ ¯̃qkA ¼ 1ffiffiffi
2

p φkA; ð3:1Þ

φ ¼ ðϕ2ðrÞ þ nn̄ðϕ1ðrÞ − ϕ2ðrÞÞjnϕ3ðrÞe−iαÞ ð3:2Þ

for quarks, while the gauge fields are given by

ASUðNÞ
i ¼ εij

xj

r2
fGðrÞðnn̄ − 1=NÞ;

AUð1Þ
i ¼ 2

N
εij

xj

r2
fðrÞ: ð3:3Þ

Index i runs i ¼ 1, 2; all other components are 0; α, r are
the polar angle and radius in the ðx1; x2Þ plane, respectively.

2They belong to the same long vector N ¼ 2 supermultiplet
[13].
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The complex parameters nl, l¼1;…;N obey the CPðN−1Þ
constraint n̄n ¼ 1. They parametrize the orientational zero
modes of the non-Abelian string, which appear due to the
presence of the color-flavor group (2.10); see [9] for a
review.
The string profile functions entering (3.2) and (3.3)

satisfy first order BPS equations. For the case

g21
2
¼ g22

N
≡ g2

N
ð3:4Þ

the solution is particularly simple [24]. It is parametrized by
a complex size modulus ρ,

ϕ1 ≈
ffiffiffi
ξ

p rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jρj2

p ;

ϕ2 ≈
ffiffiffi
ξ

p
;

ϕ3 ¼
ρ

r
ϕ1 ≈

ffiffiffi
ξ

p ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jρj2

p ;

f ¼ fG ≈
jρ2j

r2 þ jρj2 : ð3:5Þ

This solution is valid in the limit jρj ≫ 1=ðg2
ffiffiffi
ξ

p jρjÞ, i.e.,
when the scalar fields approach the vacuum manifold
(Higgs branch). Tension of the BPS string is given by

TBPS ¼ 2πξ: ð3:6Þ

To obtain the low energy effective two-dimensional
theory living on the string world sheet, one should assume
nP and ρ to be slowly varying functions of the transversal
coordinates t, z, and substitute the solution (3.5) into the
action (2.3). This procedure yields the effective action

S2dSUSY ¼
Z

d2x
�
2πξj∂kðρnPÞj2 ln

L
jρj

þ 4π

g2
½j∂knPj2 þ ðn̄P∂knPÞ2�

�
; ð3:7Þ

where the integration is carried over the coordinates x0, x3;
see the detailed derivation in [24]. Here k ¼ 0, 3, and L is
an infrared (IR) cutoff introduced for the regularization of
the logarithmic divergences of orientational and size zero
modes of the string. More exactly we introduce the string of
a large but finite length L. This also regularizes the spread
of string profile functions in the transverse plane [21]. The
IR divergences arise due to the slow (power) falloff of
the string profile functions associated with the presence of
the Higgs branch [21,24].

B. Deformed world sheet theory

When we take into account higher order μ-corrections,
supersymmetry in the bulk reduces to N ¼ 1, and as we

already explained our theory becomes that of the type I
superconductor, cf., [13]. The string is no longer BPS
saturated. To mimic this we consider a simplified version of
our theory with the bosonic action given by

S0 ¼
Z

d4x

�
1

4g22
ðFa

μνÞ2 þ
1

4g21
ðFμνÞ2 þ j∇μφ

Aj2

þ λNðφ̄ATaφAÞ2 þ λ1ðjφAj2 − NξÞ2
�
: ð3:8Þ

This model depends on two parameters—ratios of the
squires of U(1) and SU(N) Higgs and gauge boson masses
given by

βUð1Þ ¼
8λ1
g21

;

βSUðNÞ ¼
2λN
g22

; ð3:9Þ

which we identify with β-parameters (2.23) of our original
theory. The model above is a non-Abelian generalization of
the one considered in [26], where the scalar QED was
studied; see also [20].
InN ¼ 2 supersymmetric QCD parameters β are exactly

equal to 1. In this case the Bogomol’nyi representation
produces first order equations for the string profile func-
tions. World sheet theory in this case is given by (3.7).
As we switch on μ-corrections parameters β are no

longer equal to unity. Let us write the Bogomol’nyi
representation for the tension of the string

Tβ ¼
Z

d2x⊥
��

1ffiffiffi
2

p
g2

Fa
12 þ

g2ffiffiffi
2

p ðφ̄ATaφAÞ
	
2

þ
�

1ffiffiffi
2

p
g1

F12 þ
g1
2
ffiffiffi
2

p ðjφAj2 − NξÞ
	
2

þ j∇1φ
A þ i∇2φ

Aj2 þ N
2
ξF�

3

þ g22
2
ðβSUðNÞ − 1Þðφ̄ATaφAÞ2

þ g21
8
ðβUð1Þ − 1ÞðjφAj2 − NξÞ2

�
; ð3:10Þ

where x⃗⊥ represents the coordinates in the transverse plane.
Two extra terms written in the last line above appear. The
Bogomol’nyi bound is no longer valid. But if the values
βUð1Þ and βSUðNÞ only slightly differ from unity, then we can
use the first order equations to rewrite expressions in these
extra terms as follows:

g22ðφ̄ATaφAÞ ¼ −Fa
12;

g21
2
ðjφAj2 − NξÞ ¼ −F12:

ð3:11Þ
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In the case (3.4) we can use (3.5) to calculate the effective
action. Substituting (3.2), (3.3), and (3.5) into (3.11) and
(3.10) one arrives at the deformed world sheet theory,

S2dβ ¼
Z

d2x

�
2πξj∂kðρnPÞj2 ln

L
jρj þ

4π

g2
½j∂knPj2

þ ðn̄P∂knPÞ2� þ
β − 1

g2
4π

3jρj2 þ � � � ;
�
; ð3:12Þ

where now β≡ βUð1Þ ¼ βSUðNÞ and the dots represent
corrections in powers of 1=g2ξjρj2.
We see that for non-BPS string ρ is no longer a modulus.

It develops a potential proportional to the deviation of β
from unity. In particular, for the type I superconductor
(β < 1) the size ρ tends to shrink, while for the type II
superconductor (β > 1) the size ρ tends to expand making
the vortex unstable, cf., [20].
In our case, the value of β is less then unity and is given

by (2.22) at small μ, namely,

β ¼ 1 −
gμffiffiffi
ξ

p þ � � � : ð3:13Þ

This gives the effective world sheet action on the string,

S2dβ ¼
Z

d2x

�
2πξj∂kðρnPÞj2 ln

L
jρj þ

4π

g2
½j∂knPj2

þ ðn̄P∂knPÞ2� − 4π
μ

3g
ffiffiffi
ξ

p 1

jρj2 þ � � �
�
: ð3:14Þ

We see that the size of the semilocal string tends to
shrink and at large μ we expect that the long-range
tails of the string are not developed. The string becomes
a local non-Abelian string with only orientational moduli
nl, whose world sheet dynamics is described by the
CPðN − 1Þ model.
In fact we can argue on general grounds that as we turn

on μ and make it large the semilocal string becomes
unstable. The semilocal string solution (3.5) is “made”
of massless fields associated with the Higgs branch of
the theory. As we already mentioned, in the Abelian case
this solution corresponds to the instanton of the two-
dimensional O(3) sigma model uplifted to four dimensions.
The instanton is essentially a BPS solution and therefore it
is natural to expect that it becomes unstable once we
increase μ breaking the world sheet supersymmetry.
In particular, as we see from Bogomol’ny representation

(3.10) extra terms arising at β < 1 reduce the tension of
the string. This is forbidden for BPS lump (uplifted
instanton) since its tension is exactly determined by the
central charge and given by 2πξ; see (3.6). As we increase μ
the string is no longer BPS; ρ develops instability and
shrinks leading at large μ to much lower tension; see
(4.1) below.

IV. SUMMARY OF RESULTS

In this paper we studied what happens to the non-
Abelian semilocal string in N ¼ 2 supersymmetric
QCD as we switch on the μ-deformation and go to the
large μ limit. We showed that the size modulus ρ develops a
potential and eventually decouples as the theory flows to
the N ¼ 1 SQCD at large μ. Note that the Higgs branch is
still there; just the string is no longer made of massless
fields, so the long-range tails of the string disappear.
Thus, the semilocal string degenerates into the local one.

Non-Abelian local strings in the large μ limit of N ¼ 1
SQCD were studied in [15], and now we see that results of
this paper can be directly applied to our case Nf > N as
well. Below we briefly summarize these results.
In the large μ limit, the string tension is logarithmically

suppressed [15],

T local ¼
4πjξj
ln g2jμj

jmj
: ð4:1Þ

This should be contrasted with the BPS formula (3.6) valid
to the leading order at small μ.
As usual the world sheet theory contains translational

moduli but they decouple from the orientational sector. The
orientational sector is described by the CPðN − 1Þ model
with the action

Sð1þ1Þ ¼
Z

dtdzfγ½ð∂kn̄∂knÞ þ ðn̄∂knÞ2� þ V1þ1g: ð4:2Þ

Note that orientational fermionic zero modes are all lifted
[15] and do not enter the low energy world sheet theory.
The above world sheet theory is purely bosonic.
Here two-dimensional inverse coupling constant γ is

large, given by

γ ∼
jμj
jmj

1

ln2 g2jμj
jmj

: ð4:3Þ

At the quantum level the CPðN − 1Þ model is asymptoti-
cally free, so the coupling γ runs and at the energy E is
given by

2πγðEÞ ¼ N log

�
E

ΛCP

�
; ð4:4Þ

where the scale of the world sheet theory is given by

ΛCP ≈
ffiffiffi
ξ

p
exp

 
−const

jμj
jmj

1

ln2 g2jμj
jmj

!
: ð4:5Þ

We see that the scale ΛCP of the CPðN − 1Þmodel above is
exponentially small, so the world sheet theory is weakly
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coupled in a wide region of energies ≫ ΛCP. This should
be contrasted to non-Abelian string in N ¼ 2 QCD where
world sheet theory has a scale ΛCP equal to the scale ΛN¼2

of the bulk SQCD [9].
In the case when the quark masses entering the

Lagrangian (2.3) are nonidentical, a potential for nP is
generated. In the simplest case when all quark masses are
positive, this potential is given by [15]

V1þ1 ≈
8πjμj
ln g2jμj

jmj

XN
P¼1

mPjnPj2: ð4:6Þ

The potential (4.6) has only one minimum and one maxi-
mum at generic ΔmAB. Other (N − 2) extreme points are
saddle points. For equal quark masses this potential reduces
to the constant equal to the tension of the string (4.1).
Since our four-dimensional theory is in the Higgs phase

for squarks, ’t Hooft-Polyakov monopoles present in the
theory in the N ¼ 2 limit of small μ are confined by non-
Abelian strings and serve as junctions of two distinct strings
[5,6,27]. In the effective world sheet theory on the non-
Abelian string they are seen as kinks interpolating between
different vacua of theCPðN − 1Þmodel; see [9] for a review.

In the large μ limit adjoint fields decouple. Therefore we
could expect quasiclassically that the confined monopoles
disappear in this limit. This indeed happens for nonequal
quark masses. If quark mass differences are nonzero, a
potential (4.6) is generated. It does not have multiple local
minima; therefore, kinks (confined monopoles of the bulk
theory) become unstable and disappear.
However, in the equal quark mass case the potential (4.6)

is absent and the bosonic CPðN − 1Þmodel supports kinks.
Thus, in this case confined monopoles do survive the large
μ limit [15]. The monopoles are represented by kinks in
the effective CPðN − 1Þ model on the non-Abelian string;
see [9] for a detailed review.
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