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We present a generalized linear sigma model that includes both scalar and pseudoscalar glueballs in
addition to a quark-antiquark as well as a four-quark chiral nonet. Utilizing the axial and trace anomalies of
QCD (at the effective mesonic level), we aim to develop the most general structure of the Lagrangian which
can be used to study the interaction of quarkonia with glueballs. We then study the effect of scalar glueball
on the vacuum of the model by considering a decoupling limit in which the glueball fields are decoupled
from quarkonia. This determines the properties of the pure scalar glueball and builds a practical foundation
for determining the model parameters when the interactions are turned on.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the theory of strong
interactions [1] displays in the low energy regime phenom-
ena such as mass gap, confinement or approximate chiral
symmetry. Different attempts have been made to describe
these properties (each with its own balance of rigor versus
practicality) including chiral perturbation theory [2] and its
extensions such as chiral unitary approach [3–10] and
inverse amplitude method [11–13], lattice QCD approaches
[14–24], QCD sum-rules [25–33], linear sigma models
[34–50], as well as other explorations and nonperturbative
methods [51–75]. At low energies the main degrees of
freedom are mesons and baryons, bound states of two, three
ormore quarks or glueballs which are gauge invariant bound
states of gluons with different possible quantum numbers
[59–75].
The possible presence of the glueballs in the QCD

spectrum was discussed early on in [59]. In the years that
followed, the glueball spectrum and properties were ana-
lyzed in the context of QCD sum rules, quark constituent
models or lattice QCD. For example, in quenched lattice
approximation, the mass of the lowest scalar glueball was
calculated to be M0þ ¼ 1.550 GeV [16], M0þ ¼
1.730 GeV [17] or M0þ ¼ 1.709 GeV in [18] (see [19]
for a thorough review). In the QCD sum rules approach, the
lowest scalar glueballs are predicted to be [28–30] M0þ ¼

0.9–1.1 GeV and M0
0þ ¼ 1.5–1.6 GeV with the possibility

of a broad lower stateM0þ ¼ 0.7 GeV ([28,30]). However,
experiment has not yet detected “pure” scalar (or pseudo-
scalar) glueballs, because, expectedly, these composites
mix with the appropriate quark building blocks of mesons
and thereby “hide” inside some of the known mesonic
states such as several of the isosinglet scalar states in the
1–2 GeV range [f0ð1370Þ, f0ð1500Þ and f0ð1710Þ] which
are considered to have noticeable glue admixtures.
For the lowest pseudoscalar glueball states, there are

many candidates proposed in different frameworks. One of
them is ηð1405Þ [60] while other candidates below 2 GeV
were proposed in [75]. The observation that eta states around
1.5 GeV are more complex states than a simple quark-
antiquark is shared by other approaches such as the work of
[10] which has studied the possibility of these states being
dynamically generated in ηf0ð980Þ and πa0ð980Þ inter-
actions. In our investigation too [45], the eta states around
1.5 GeVare not pure (or dominantly) quark-antiquark states
and their compositions seem to contain a large four-quark
and glue admixtures. In lattice QCD, the mass of the lowest
pseudoscalar glueball is estimated at M0− ¼ 2.330 GeV in
[16], M0− ¼ 2.590 GeV in [17] and M0− ¼ 2.557 GeV in
[18]. Similar to the scalar glueball mixing with scalar
isosinglet quark states, the quark bound states with the
same quantum numbers mix with the pseudoscalar glueball
states leading to a complex spectroscopy worthy of inves-
tigation. For example, the interference between the glueball
states and the quark-antiquark ones in the latticemethodwas
studied in [20,21] with the main conclusion that there is a
maximal mixing between the glueball states and two quark
meson singlet ones.
In the absence of a fully understood theoretical frame-

work for low-energy QCD, determination of various quark
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and glue components of the physical states is known to be
notoriously difficult and any attempt on disentanglement of
such components within a given framework inevitably
suffers from model dependencies. Such model dependen-
cies can be minimized if the framework is tested against
various low-energy processes. In [38–47], we proposed and
developed a generalized linear sigma model with two chiral
nonets that satisfy approximately the low-energy chiral
symmetry and the quantum anomalies of QCD. The model
was able to describe the mass spectrum and some of the
properties of 36 low lying scalar and pseudoscalar states
with a good agreement with the experimental data. The
axial and trace anomalies in a linear sigma model refer both
to the electromagnetic and the gluon fields. In [46,47], we
studied the effect of the electromagnetic axial and trace
anomalies on the decays to two photons of some of the
scalar and pseudoscalar states. However the treatment of
the gluon anomalies is somewhat different because the
gauge invariant glueball states may behave as individual
degrees of freedomwhich may be either integrated out from
the Lagrangian or maintained as physical states. The
purpose of our work will thus be to investigate how the
low lying physical scalar and pseudoscalar glueballs may
fit in a generalized linear sigma model with two chiral
nonets, one with a quark-antiquark structure, the other one
with a four quark composition.
This work is organized as follows: In Sec. II, we give the

main templates for modeling the quantum anomalies of
QCD at the mesonic level and establish connections with
the underlying fundamental properties. For the conven-
ience of the readers, in Sec. III, we give a brief review of
our generalized linear sigma model (in the absence of
glueballs), and then show how glueballs can be added to
this framework in Sec. IV. This leads to an extended
version of the generalized linear sigma model, which
naturally comes with the price of additional complexities
due to the proliferation of new parameters. Tackling this
Lagrangian requires a careful and ground-up approach in
which addition of glueballs and their interactions with
quarkonia components are tractable. This brings us to
Sec. V where we consider a decoupling limit in which
glueballs, while present in the model, do not interact with
quark composite operators, and thus allowing a probe of
their role in stabilizing the QCD vacuum and measuring
the direct effect of glueball condensate on the model
parameters. This section serves as a foundation for further
studies when the interactions are turned on. Additional
relationships and bulkier formulas are collected in two
appendices.

II. A TWO GLUEBALL LAGRANGIAN

In [35], Schechter proposed an effective Lagrangian that
contains two glueball states; a pseudoscalar glueball
that satisfies the Uð1ÞA anomaly and a scalar glueball that
satisfies the trace anomaly according to:

∂μJ5μ ¼
g2

16π2
NFF̃F ¼ G

θμμ ¼ ∂μDμ ¼ −
βðgÞ
2g

FF ¼ H: ð1Þ

Here F is the SUð3ÞC field tensor, F̃ is its dual, NF is
the number of flavors, βðgÞ is the beta function for the
coupling constant, J5μ is the axial current and Dμ is the
dilatation current.
Assuming that the two glueballs are not physical states

but are integrated out by using the equation of motion we
can derive the following Lagrangian that satisfies the axial
and trace anomalies:

L ¼ −
1

2
Trð∂μM∂μM†Þ þ fðIn; G;HÞ

þ i
4Nf

G ln

�
detM
detM†

�
−H

X
m

cm
m

ln

�
Rm

Λm

�
: ð2Þ

Here,
P

mcm ¼ 1, M is the two quark chiral nonet field
of pseudoscalar and scalar states, In ¼ TrðMM†Þn, and
fðIn; G;HÞ ¼ fðIn;−G;HÞ is in general a chiral and
Uð1ÞA invariant function that must satisfy the scale invari-
ance condition:

Tr

�
M

∂f
∂M þM† ∂f

∂M†

�
þ 4G

∂f
∂Gþ 4H

∂f
∂H ¼ 4f: ð3Þ

Equivalently, since f is chiral-invariant and hence a
function of In, its scale invariance also implies:

X
n

2nIn
∂f
∂In þ 4G

∂f
∂Gþ 4H

∂f
∂H ¼ 4f: ð4Þ

This partial differential equation can be solved to give the
general form of function f:

fðIn; G;HÞ ¼
X
i

ki

�Y
n

IðlnÞin

�
G2piHqi ð5Þ

where ki are unknown constants and
P

n2nðlnÞi þ
8pi þ 4qi ¼ 4. The leading terms in f up to quadratic
power of the fields are

ffiffiffiffi
H

p
I1; I2; H;

G2

I2
;

G2

H
;

H2

I2
; � � � ð6Þ

Note that terms such as I21, I
2
2=H, G2H=I22 involve two

separate flavor traces and are not favored by OZI rule and
therefore are not as important as the above terms. In
addition, terms that include I22 have higher number of
quark and antiquark lines and according to the approxi-
mation scheme developed in [45] (which is one of the
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guiding criteria of the present work) are considered less
important compared to terms with linear power of I2.
Similarly, Rm is an arbitrary function of In, G and H that

must satisfy the requirements

Tr

�
M

∂Rm

∂M þ ∂Rm

∂M† M
†
�
þ 4G

∂Rm

∂G þ 4H
∂Rm

∂H ¼ mRm

RmðIn; G;HÞ ¼ RmðIn;−G;HÞ: ð7Þ

Again, the partial differential equation for Rm can be
rewritten in terms of In,

X
n

2nIn
∂Rm

∂In þ 4G
∂Rm

∂G þ 4H
∂Rm

∂H ¼ mRm ð8Þ

with the general solution

RmðIn; G;HÞ ¼
X
i

rðmÞ
i

�Y
n

IðlnÞin

�
G2piHqi ð9Þ

where rðmÞ
i are unknown constants and

P
n2nðlnÞi þ

8pi þ 4qi ¼ m.
Terms contributing to m ¼ 2 include,

I1;
I2
I1
;

H
I1
; � � � ð10Þ

Terms with m ¼ 3 include,

detM; detM†; � � � ð11Þ

Terms contributing to R4 are the same as (6), etc.
Our objective in this work is to use the same method-

ology as presented in this section to extend the generalized
linear sigma model that contains also a four-quark chiral
nonet M0 in addition to the quark-antiquark chiral nonet M
present in the above formulation.

III. BRIEF REVIEW OF THE GENERALIZED
LINEAR SIGMA MODEL

The model is constructed in terms of 3 × 3 matrix chiral
nonet fields:

M ¼ Sþ iϕ; M0 ¼ S0 þ iϕ0; ð12Þ

which are in turn defined in terms of “bare” scalar meson
nonets S (a quark-antiquark scalar nonet) and S0 (a four-
quark scalar nonet), as well as “bare” pseudoscalar meson
nonets ϕ (a quark-antiquark pseudoscalar nonet) and ϕ0
(a four-quark pseudoscalar nonet). Chiral fields M
and M0 transform in the same way under chiral SU(3)
transformations

M → ULMU†
R; M0 → ULM0U†

R; ð13Þ

but transform differently under Uð1ÞA transformation
properties

M → e2iνM; M0 → e−4iνM0: ð14Þ

There are several possible four-quark substructures for M0
(such as diquark-antidiquark types or molecular type),
however, the model does not distinguish these different
types of four-quark substructures and can only probe the
percentages of quark-antiquark and four-quark components
(but not different types of four-quark components). The
model distinguishes M from M0 through the Uð1ÞA trans-
formation according to (14).
The Lagrangian density has the general structure

L ¼ −
1

2
Trð∂μM∂μM†Þ − 1

2
Trð∂μM0∂μM0†Þ

− V0ðM;M0Þ − VSB; ð15Þ

where V0ðM;M0Þ stands for a function made from
SUð3ÞL × SUð3ÞR (but not necessarily Uð1ÞA) invariants
formed out of M and M0. In addition to scalar and
pseudoscalar mesons included in this Lagrangian density,
the vector and axial vector mesons can be introduced by
gauging the linear sigma model [48]. However, for inves-
tigation of the scalar and pseudoscalar mass spectrum
(which is the main objective of the present work) inclusion
of vectors and axia vectors are of qualitatively limited
relevance. In principle, there are infinite number of invari-
ant terms in the potential. To keep the calculations in this
model tractable, it is practical to define an approximation
scheme that allows limiting the number of terms at each
level of calculation, and systematically improving the
results thereafter. Such a scheme was defined in [42], in
terms of the number of underlying quark and antiquark
fields in each term. The leading choice of terms corre-
sponding to eight or fewer underlying quark plus antiquark
lines at each effective vertex reads:

V0¼−c2TrðMM†Þþca4TrðMM†MM†Þ
þd2TrðM0M0†Þþea3ðϵabcϵdefMa

dM
b
eM0c

fþH:c:Þ

þc3

�
γ1 ln

�
detM
detM†

�
þð1− γ1Þ ln

TrðMM0†Þ
TrðM0M†Þ

�
2

: ð16Þ

All the terms except the last two (which mock up the axial
anomaly) have been chosen to also possess the Uð1ÞA
invariance. The symmetry breaking term which models the
QCD mass term takes the form:

VSB ¼ −2TrðASÞ; ð17Þ

where A ¼ diagðA1; A2; A3Þ are proportional to the three
light quark current masses (i.e., in the isospin invariant limit
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A1 ¼ A2 ∝ mu ¼ md and A3 ∝ ms.) The model allows for
two- and four-quark condensates,

αa ¼ hSaai; βa ¼hS0aai: ð18Þ

Here we assume isotopic spin symmetry so A1 ¼ A2 and:

α1 ¼ α2 ≠ α3; β1 ¼ β2 ≠ β3: ð19Þ

We also need the “minimum” conditions,

�∂V0

∂S
�

0

þ
�∂VSB

∂S
�

0

¼ 0;

�∂V0

∂S0
�

0

¼ 0; ð20Þ

where the brackets with subscript zero represent evaluation
of the derivatives at the vacuum expectation values (18). At
the leading order of the model (containing terms with eight
or fewer quark and antiquark lines), there are twelve
parameters describing the Lagrangian and the vacuum.
These include the six coupling constants given in Eq. (16),
the two quark mass parameters, (A1 ¼ A2; A3) and the four
vacuum parameters (α1 ¼ α2; α3; β1 ¼ β2; β3). The four
minimum equations reduce the number of needed input
parameters to eight. In the work of [45], eight experimental
inputs were selected from several masses of relevant states
together with pion decay constant and the light “quark mass
ratio” A3=A1, allowing a complete determination of the
Lagrangian parameters and making predictions for some of
the unknown masses and two and four-quark percentages.
It was found that there is a significant underlying mixings
among the two- and four-quark components of scalars
below and above 1 GeV with the four-quark components of
those below 1 GeV having an edge over their quark-
antiquark components. This is in contrast to the physical
light pseudoscalar meson nonet below 1 GeV for which this
picture is reversed. Inclusion of both scalar and pseudo-
scalar glueballs is expected to improve this analysis. This
directly affects the properties of isosinglet states, which in
addition to two- and four-quark components, can contain a
glue content. While the case of isodoublets and isotriplets
are not directly affected by the inclusion of glueballs,
however, when glueballs are included in this model, they
can generally modify the model parameters and thereby can
indirectly affect the properties of these states as well.

IV. INCLUSION OF SCALAR AND
PSEUDOSCALAR GLUEBALLS IN THE
GENERALIZED LINEAR SIGMA MODEL

The formal extension to two chiral nonets M and M0
(which is the main focus of this work) is straightforward:

L ¼ −
1

2
Trð∂μM∂μM†Þ − 1

2
Trð∂μM0∂μM0†Þ

−
1

32
H−3=2∂μH∂μH −

1

2
H−3=2∂μG∂μG

þ f þ fA þ fS þ fSB: ð21Þ

Here f is invariant under the chiral symmetry and Uð1ÞA,
fA is a term that mocks up the axial anomaly, fS is a term
that leads to the correct scale anomaly and fSB introduces
explicit breaking of the chiral symmetry in the Lagrangian.
In what follows, we will discuss in detail the properties and
expressions for each of these terms.
The first term after kinetic terms is f with the general

form fðIn;I0m;I00st;G;HÞ¼fðIn;I0m;I00st;−G;HÞ where In ¼
Tr½ðMM†Þn�, I0m ¼ Tr½ðM0M0†Þm�, I00st is a Hermitian and
chiral invariant combination that contains s number of
fields M and t number of fields M0 and thus has the mass
dimension sþ t (note that for each pair s and t there are
multiple possibilities for I00st which are however encapsu-
lated in the same abstract notation for simplicity). We
require the invariance of f under the scale transformation
according to:

Tr

�
M

∂f
∂M þM† ∂f

∂M†

�
þ Tr

�
M0 ∂f

∂M0 þM0† ∂f
∂M0†

�

þ 4G
∂f
∂Gþ 4H

∂f
∂H ¼ 4f: ð22Þ

Equivalently, since f is chiral-invariant and hence a
function of In, I0n and I00nm its scale invariance also implies:

X
n

2nIn
∂f
∂In þ

X
m

2mI0m
∂f
∂I0m þ

X
st

ðsþ tÞI00st
∂f
∂I00st

þ 4G
∂f
∂Gþ 4H

∂f
∂H ¼ 4f: ð23Þ

This partial differential equation can be solved to give the
general form of function f:

fðIn; I0n; I00nm; G;HÞ

¼
X
i

ui

�Y
n

IðlnÞin

��Y
m

I0ðlmÞim

��Y
st

I00ðlstÞist

�
G2piHqi

ð24Þ

where ui are unknown constants and
P

n2nðlnÞi þP
m2mðlmÞiþ

P
stðsþ tÞðlstÞiþ8piþ4qi¼4. The leading

terms in f up to quadratic power of the fields are

ffiffiffiffi
H

p
I1; I2;

ffiffiffiffi
H

p
I01; H;

G2

I2
;
G2

I02
;
G2

H
;
H2

I2
;
H2

I02
�� � ð25Þ

As stated in Sec. II, again note that terms such as I21, I
2
2=H,

G2H=I22 include separate flavor traces and are not favored
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by the OZI rule. Also terms such as I22 contain higher
number of quark and antiquark lines and thus less important
compared to terms like I2 with fewer lines.
The term corresponding to the axial anomaly must have

the general expression:

fA ¼ i
G
12

X
i

γi ln

�
Qi

Q†
i

�
ð26Þ

where
P

iγi ¼ 1 and composite operators Qi can be
selected from the set

Qi ∈ fdetM; detM0;TrðMM0†Þ; ϵabcϵdefMa
dM

0b
eM0c

f;

TrðMM0†MM0†Þ; � � �g ð27Þ

The term leading to the correct scale anomaly is given by:

fS ¼ −H
X
m

τm ln

�
Rm

Λm

�
; ð28Þ

where the arbitrary parameters τm must satisfy the con-
straint:

P
mmτm ¼ 1.

Similarly, Rm is an arbitrary function of In, I0m,I00st, G and
H that must satisfy the requirements:

Tr

�
M

∂Rm

∂M þM† ∂Rm

∂M†

�
þ Tr

�
M0 ∂Rm

∂M0 þM0† ∂Rm

∂M0†

�

þ 4G
∂Rm

∂G þ 4H
∂Rm

∂H ¼ mRm

RmðIn; I0m; I00st; G;HÞ ¼ RmðIn; I0m; I00st;−G;HÞ ð29Þ

Again, the partial differential equation for Rm can be
rewritten in terms of In, I0m and I00st

X
n

2nIn
∂Rm

∂In þ
X
m

2mI0m
∂Rm

∂I0m þ
X
st

ðsþ tÞI00st
∂Rm

∂I00st
þ 4G

∂Rm

∂G þ 4H
∂Rm

∂H ¼ mRm ð30Þ

with the general solution

RmðIn; I0n; I00nm;G;HÞ

¼
X
i

vðmÞ
i

�Y
n

IðlnÞin

��Y
m

I0ðlmÞim

��Y
st

I00ðlstÞist

�
G2piHqi

ð31Þ

where vðmÞ
i are unknown constants and

P
n2nðlnÞi þP

m2mðlmÞi þ
P

stðsþ tÞðlstÞi þ 8pi þ 4qi ¼ m.
Terms contributing to m ¼ 2 include,

I1;
I2
I1
;

H
I1
; � � � ð32Þ

Terms with m ¼ 3 include,

detM; detM†; � � � ð33Þ

Terms contributing to R4 are the same as (25), etc.
Finally there are multiple possibilities for the symmetry

breaking term fSB [38]. An explicit example will be given
at the end of this section.
The scalar and pseudoscalar fields H and G (that have

mass dimension four) are related to scalar and pseudoscalar
fields h and g with mass dimension one. We make the
substitutionH ¼ h4 and G ¼ h3g in the Lagrangian (21) to
obtain:

L ¼ −
1

2
Trð∂μM∂μM†Þ − 1

2
Trð∂μM0∂μM0†Þ

−
1

2
ð∂μhÞð∂μhÞ −

1

2
ð∂μgÞð∂μgÞ − V;

−V ¼ f þ fA þ fS þ fSB: ð34Þ

where, as discussed previously, fðM;M0; g; hÞ is invariant
under chiral, axial and scale transformations, whereas fA
and fS respectively break axial and scale symmetries
according to (1) and fSB is explicit symmetry breaker
due to quark masses.
Below, we give the particular expressions for f, fA and

fS such that the inclusion of glueballs is achieved as the
minimal extension of the leading order of generalized linear
sigma model discussed in Sec. III. Since the resulting mass
spectra and probe of the substructures are extracted from a
set of highly nonlinear and coupled system of equations, it
is important to first carefully study this minimal extension
in order to keep the calculations manageable and be able
to provide a meaningful interpretation of the results in
comparison with those found previously in [45] (and
references therein).
In the minimal extension, the part of function f that

contains quark-antiquark and four-quark chiral nonets M
andM0 corresponds to terms in the general expression for f
[given in (24)] that recover the first four terms of potential
(16). Since function f is also scale invariant, effectively the
desired extension is obtained by replacing the dimensionful
couplings in the first four terms of (16) with dimensionless
couplings and appropriate powers of scalar glueball field h,
i.e., by making the following substitution in (16)

c2 → −u1h2; ca4 → u4;

d2 → u3h2; ea3 → u4h; ð35Þ

which, when combined with the mass terms for scalar and
pseudoscalar glueballs, result in the following chiral,
Uð1ÞA, and scale invariant terms in f in this minimal
extension
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fðM;M0; g; hÞ ¼ −ðu1h2Tr½MM†� þ u2Tr½MM†MM†�
þ u3h2Tr½M0M0†�
þ u4hðϵabcϵdefMa

dM
b
eM0c

f þ H:c:Þ
þ u5h4 þ u6h2g2 þ � � �Þ: ð36Þ

Similarly, we can write down fA in the minimal extension.
As mentioned in Sec. III, in the leading order of generalized
linear sigma model in which only effective terms with eight
(or fewer) quark or antiquark lines are retained, the
effective term for axial anomaly is the last term given in
Eq. (16) which is obtained from integrating the pseudo-
scalar glueball out. When the pseudoscalar glueball is
present in the Lagrangian, the general form that mocks
up the exact Uð1ÞA anomaly is given in (26) with operators
Qi taken from set (27). In the minimal extension, the
operators that (after integrating out the pseudoscalar glue-
ball field) result in the last term of (16) are detM and
TrðMM0†Þ (note that detM0 contains 12 quark and aniquark
lines and does not contribute to the leading order of
generalized linear sigma model). Therefore, in the minimal
extension

fA ¼ i
G
12

�
γ1 ln

�
detM
detM†

�
þ γ2 ln

�
TrðMM0†Þ
TrðM0M†Þ

��
; ð37Þ

where γ1 and γ2 in Eq. (37) are arbitrary parameters that
must satisfy the constraint: γ1 þ γ2 ¼ 1 [38–46].
In a similar fashion, we can work out fS in this minimal

extension using the general template (28). Incorporating the
same operators detM and TrðMM0†Þ that we just discussed

above for the axial anomaly, as well as a term which is the
fourth power of the glueball field h, Eq. (28) results in:

fS ¼ −H
	
λ1 ln

�
H
Λ4

�
þ λ2

�
ln

�
detM
Λ3

�
þ ln

�
detM†

Λ3

��

þ λ3

�
ln

�
TrMM0†

Λ2

�
þ ln

�
TrM0M†

Λ2

��

; ð38Þ

whereΛwith mass dimension one is the characteristic scale
of QCD and λ1, λ2 and λ3 are arbitrary parameters that must
fulfill the condition: 4λ1 þ 6λ2 þ 4λ3 ¼ 1 [47]. As such,
the terms f and fS in the potential are invariant under
Uð3ÞL × Uð3ÞR and fA breaks Uð1ÞA.
In the presence of the quark masses,

θμμ ¼ H − ð1þ γmÞVSB; ð39Þ

where γm is the anomalous dimension of the fermion mass
operator. Note that a simple symmetry breaking term such
as (17) does not fully result in Eq. (39), therefore, it should
be extended. The complete symmetry breaking term is:

fSB ¼ Tr½MM†�1−γm
2 Tr½AðM þM†�: ð40Þ

which, under the scale transformation, leads to exactly the
second term on the right hand side of Eq. (39), where,
similar to (17), A ¼ diagðA1; A2; A3Þ is proportional to the
three light quark masses.
The minimum equations describing the stability of

vacuum are

�∂V
∂S11

�
0

¼ 4u4h0ðα1β3 þ α3β1Þ þ 2u1h02α1 þ 4u2α13 þ 4
ðβ1ðλ2 þ λ3=2Þα1 þ 1=2α3β3λ2Þh04

2α1
2β1 þ α1α3β3

þ 4ð2α12 þ α3
2Þ−γm=2ð−2þ γmÞðA1α1 þ 1=2A3α3Þα1 − 2ð2α12 þ α3

2Þ1−γm=2A1�∂V
∂S33

�
0

¼ 8u4h0β1α1 þ 2u1h02α3 þ 4u2α33 þ 4
ð1=2β3ðλ2 þ λ3Þα3 þ α1β1λ2Þh04

2α1α3β1 þ β3α3
2

þ 4ð2α12 þ α3
2Þ−γm=2ð−2þ γmÞα3ðA1α1 þ 1=2A3α3Þ − 2ð2α12 þ α3

2Þ1−γm=2A3� ∂V
∂S011

�
0

¼ 2
ð4α12α3β1u4 þ ð2α32β3u4 þ 2β1

2h0u3 þ h03λ3Þα1 þ α3β1β3h0u3Þh0
2β1α1 þ β3α3� ∂V

∂S033
�

0

¼ 2
h0ð4α13β1u4 þ 2α1

2α3β3u4 þ 2α1β1β3h0u3 þ α3β3
2h0u3 þ α3h03λ3Þ

2β1α1 þ β3α3�∂V
∂h

�
0

¼ 8 ln

�
2β1α1 þ β3α3

Λ2

�
h03λ3 þ 8 ln

�
α1

2α3
Λ3

�
h03λ2 þ 4 ln

�
h04

Λ4

�
h03λ1 þ ð4λ1 þ 4u5Þh03

þ ð4α12u1 þ 2α3
2u1 þ 4β1

2u3 þ 2β3
2u3Þh0 þ 4u4α1ðα1β3 þ 2α3β1Þ ð41Þ

where the first two equations describe the minimum of V with respect to quark-antiquark components whereas the third and
fourth equations describe this minimum with respect to four-quark composites. The last equation minimizes the potential
with respect to the scalar glueball field. The brackets with subscript zero represent evaluation of each derivative at VEV
values
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αa ¼ hSaai; βa ¼ hS0aai; h0 ¼ hhi: ð42Þ

The mass matrices for pions (M2
π), kaons (M2

K), system
of a0 scalars (X2

a) and kappa system (X2
κ) are

ðM2
πÞ11 ¼ 4u4h0β3þ2u1h02þ4u2α12þ2

h04λ2
α1

2

þ4ð−2þ γmÞðA1α1þ1=2A3α3Þð2α12þα3
2Þ−γm=2

ðM2
πÞ12 ¼ 4u4h0α3þ

2h04λ3
2β1α1þβ3α3

ðM2
πÞ22 ¼ 2u3h02 ð43Þ

ðM2
KÞ11 ¼

1

2α1
3α3 þ α1α3

3
½4α1ð−2þ γmÞ

× α3ðA1α1 þ 1=2A3α3Þð2α12 þ α3
2Þ1−γm=2

þ 4ðα12 þ 1=2α32Þð2α13α3u2 − 2α1
2α3

2u2

þ α3ð2α32u2 þ 2u4h0β1 þ u1h02Þα1 þ h04λ2Þ�

ðM2
KÞ12 ¼ 4α1u4h0 þ

2h40λ3
2β1α1 þ β3α3

ðM2
KÞ22 ¼ 2u3h02 ð44Þ

ðX2
aÞ11¼−4u4h0β3þ2u1h02þ12u2α12−2

h04λ2
α1

2

þ4ð−2þ γmÞðA1α1þ1=2A3α3Þð2α12þα3
2Þ−γm=2

ðX2
aÞ12¼−4u4h0α3þ

2h04λ3
2β1α1þβ3α3

ðX2
aÞ22¼ 2u3h02 ð45Þ

ðX2
κÞ11¼−4u4h0β1þ2u1h02

þ4u2ðα12þα1α3þα3
2Þ−2

h04λ2
α1α3

þ4ð−2þ γmÞðA1α1þ1=2A3α3Þð2α12þα3
2Þ−γm=2

ðX2
κÞ12¼−4u4h0α1þ

2h04λ3
2β1α1þβ3α3

ðX2
κÞ22¼ 2u3h02 ð46Þ

Note that these mass matrices are subject to the vacuum
conditions expressed by Eqs. (41). Once these vacuum
conditions are invoked some of the unknown parameters
can be determined in terms of the rest of the parameters. For
example, we can use the five equations given in Eqs. (41) to
solve for u1 � � � u5 (these solutions are rather bulky and we
do not give them here). Upon substitution of these solutions
back into the pion mass matrix (43) we can compute the
determinant

detðM2
πÞ ¼ −4

ð2α21 þ α3
2Þ1−γm=2h04λ3ðα12 − α3

2ÞA1

α1ð2α12β12 − α1α3β1β3 − α3
2β3

2Þ ð47Þ

which is, as expected, proportional to the quark masses
(here proportional to A1) and vanishes when there is no
explicit symmetry breaking. Since detðM2

πÞ ¼ m2
πm02

π ,
Eq. (47) results in a massless pion when A1 → 0.
Similarly, using the kaon mass matrix given above,

together with vacuum conditions (41), we can show

detðM2
KÞ ¼ −8λ3ð−α3 þ α1Þh40ð2α12 þ α3

2Þ1−γm=2
�
−
�
A1α1 þ

A3

2
α3

�
ð−2þ γmÞðα1 þ α3Þ þ ðA1γm − A1 þ A3Þα12

þ ð−2þ γmÞ
�
A1 þ

A3

2

�
α3α1 þ

α3
2

2
ðA3γm þ A1 − A3Þ

��
½ð2α12 þ α3

2Þð2β1α1 þ β3α3Þðβ1α1 − β3α3Þ� ð48Þ

which clearly shows that

lim
A1;A3→0

detðM2
KÞ → 0 ð49Þ

and since detðM2
KÞ ¼ m2

Km
02
K , in the absence of quark

masses mK vanishes.
The mass matrices for f0 and η systems (each a 5 × 5

matrix) are more involved and given in Appendix A. The
determinant of eta system is also explicitly given in
Appendix A and shown to be proportional to quark masses
(similar to the above cases for pion and kaon systems).
Note that in the absence of the glueballs, the mass

matrices obtained in this section as well as the minimum

equations should agree with those given in [45]. In order to
check this, we first make the substitution for u1 � � �u4 and
γm in terms of c2, ca4; d2 and ea3 defined in [45]:

u1 → u01 ¼ −
c2
h20

u2 → u02 ¼ ca4

u3 → u03 ¼
d2
h20

u4 → u04 ¼
ea3
h0

γm → γ0m ¼ 2 ð50Þ

and then take the limit of h0 → 0:
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ðX2
aÞð0Þ ¼ lim

h0→0
½ðX2

aÞjui¼u0i ;γm¼γ0m
�

ðX2
κÞð0Þ ¼ lim

h0→0
½ðX2

κÞjui¼u0i ;γm¼γ0m
�

ðX2
0Þð0Þ ¼ lim

h0→0
½ðX2

0Þjui¼u0i ;γm¼γ0m
�

ðM2
πÞð0Þ ¼ lim

h0→0
½ðM2

πÞjui¼u0i ;γm¼γ0m
�

ðM2
KÞð0Þ ¼ lim

h0→0
½ðM2

KÞjui¼u0i ;γm¼γ0m
� ð51Þ

where i ¼ 1 � � � 4, and the matrices on the left hand side
with superscript (0) are those found in [45] in the absence
of glueballs. We find that the expected limits are upheld.
The case of M2

0 is more complicated. There is a clear
limit in which the glueball part in the Lagrangian in
Eq. (34) can lead in first order to the axial anomaly term
in Eq. (16). This is achieved when the bare glueball mass
term u6h2g2 or more exactly u6 is very large such that the
kinetic term becomes negligible and the glueball field can
be integrated out. Therefore:

∂V
∂g ¼ 2u6h2g− i

h3

12

�
γ1 ln

�
detM
detM†

�
þ γ2 ln

�
TrðMM0†Þ
TrðM0M†Þ

��
¼ 0; ð52Þ

and solve for g to obtain:

g ¼ i
h

24u6

�
γ1 ln

�
detM
detM†

�
þ γ2 ln

�
TrðMM0†Þ
TrðM0M†Þ

��
: ð53Þ

which upon substitution into the pseudoscalar glueball
piece of the Lagrangian (34) leads to the following term:

Veff
A ¼ h4

288u6

�
γ1 ln

�
detM
detM†

�
þγ2 ln

�
TrðMM0†Þ
TrðM0M†Þ

��
2

;

ð54Þ

In first order, this leads to identification of c3 in Eq. (16)
with

u6 → u06 ¼
h40

288c3
: ð55Þ

Therefore, we expect

ðM2
ηÞð0Þαβ ¼ lim

h0→0
½ðM2

ηÞαβjui¼u0i ;γm¼γ0m
� þ lim

u6→u0
6

�� ∂2Veff
A

∂ηα∂ηβ
�

0

�

ð56Þ
where i; α; β ¼ 1 � � � 4. We have verified that this equation
is satisfied as well.

V. DECOUPLING LIMIT

We consider a limiting case where the glueball fields are
decoupled from the quark mesons and affect the system

only through the vacuum. This limit is important because
(a) it allows probing the pure glueball mass from the
stability of vacuum, and (b) it defines a basic starting point
for tackling the complicated system of mass matrices and
minimum equations (derived in previous section) and
makes it possible to study the mass spectrum and the
interaction vertices as well as the spectroscopy of the
physical scalar and pseudoscalar states in which
the formation of the quark and gluball components are
assembled step by step upon the properties of the vacuum.
Particularly, it is well known that disentangling the two-
quark, four-quark and glueball building blocks of isosinglet
states (particularly scalars) is a nontrivial undertaking, and
in this approach, we begin with a careful study of the
vacuum containing quark-antiquarks, four-quarks and non-
interacting glueballs.
For comparison, we refer to the work of [42–44] in

SU(3) limit. In these works, the effect of pseudoscalar
glueball was fully taken into account (in which while the
pseudoscalar glueball is integrated out, the Uð1ÞA is exactly
saturated), but in [42–44] no scalar glueballs were present.
In the decoupling limit of the present work, the situation is
rather reversed: the pseudoscalar glueball is completely
decoupled and only noninteracting scalar glueballs are
considered. We find that, expectedly, the eta masses are
not physical in this limit (demonstrating the well-known
fact about the importance of the axial anomaly), whereas
the scalar isosinglet masses (and their quark substructure)
are similar to those found in the three references just cited
which shows that in oder to make physical predictions,
having scalar glueball in the vacuum is not sufficient and
the glueball interactions with quark mesons should be
turned on.
For the scalars, the decoupling conditions for the choice

γm ¼ 2 are straightforward:

½X2
0�45 ¼ 4α21u4 þ 4u3h0β3 þ

8h30λ3α3
2α1β1 þ α3β3

¼ 0

½X2
0�35 ¼ 4

ffiffiffi
2

p
α1α3u4 þ 4

ffiffiffi
2

p
u3h0β1 þ

8
ffiffiffi
2

p
h30λ3α1

2α1β1 þ α3β3
¼ 0

½X2
0�25 ¼ 8u4α1β1 þ 4u1h0α3 þ

8h30λ2
α3

þ 8h30λ3β3
2α1β1 þ α3β3

¼ 0

½X2
0�15 ¼ 4

ffiffiffi
2

p
u4½β1α3 þ α1β3� þ 4

ffiffiffi
2

p
u1h0α1 þ

8
ffiffiffi
2

p
h30λ2
α1

þ 8
ffiffiffi
2

p
h30λ3β1

2α1β1 þ α3β3
: ð57Þ

The two minimum equations of interest refer to M0
components and are
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4α31β1u4 þ 2α21α3β3u4 þ 2α1β1β3h0u3

þ α3β
2
3h0u3 þ α3h30λ3 ¼ 0

4α21α3β1u4 þ 2α23β3α1u4 þ 2β21α1h0u3 þ h30λ3α1

þ α3β1β3h0u3 ¼ 0 ð58Þ

These equations may be put in more amenable form:

2α21u4 þ β3h0u3 þ
α3h30λ3

2α1β1 þ α3β3
¼ 0

2α1α3u4 þ β1h0u3 þ
α1h30λ3

2α1β1 þ α3β3
¼ 0: ð59Þ

Subtracting first equation in Eq. (57) from the second
equation in Eq. (59) we obtain

λ3 ¼
α21u4ð2α1β1 þ α3β3Þ

h30α3
: ð60Þ

Then the system of four equations (57) reduces to:

3α21u4 þ u3h0β3 ¼ 0

2α1α3u4 þ
α31
α3

u4 þ β1h0u3 ¼ 0

α1α3u4 þ
2α31
α3

u4 þ β1h0u3 ¼ 0 ð61Þ

Solving this system leads to:

α3 ¼ α1 ¼ α β3 ¼ β1 ¼ β u3 ¼ −
3α2u4
βh0

: ð62Þ

We thus arrive at the SUð3ÞV limit. From the first two
minimum equations we determine A1 ¼ A3 ¼ A. We fur-
ther solve the last two equations (which are identical in the
SUð3ÞV limit) in Eq. (57) to determine

λ2 ¼ −
α2ðh0u1 þ 4βu4Þ

2h30
: ð63Þ

In the SUð3ÞV limit, the mass matrices are organized in
terms of octet-singlet bases in which the mass matrices for
scalars (Y2) and pseudoscalars (N2) are related to the
isosinglet scalar and pseudoscalar mass matrices by

Y2 ¼ T̃X2
0T N2 ¼ T̃M2

0T ð64Þ

where T is the transformation matrix between strange-
nonstrange (SNS) basis and the octet-singlet (OS) basis
which its explicit form is not unique and obviously depends
on the specific way that the basis vectors are defined and
organized. Our definitions and notations for these bases
(and our preference for their organization) are as follows:

Fphy ¼

2
6666664

f1
f2
f3
f4
f5

3
7777775
; FSNS ¼

2
6666664

fa
fb
fc
fd
h

3
7777775
; FOS ¼

2
6666664

f8
f08
f0
f00
h

3
7777775
;

ηphy ¼

2
6666664

η1

η2

η3

η4

η5

3
7777775
; ηSNS ¼

2
6666664

ηa

ηb

ηc

ηd

g

3
7777775
; ηOS ¼

2
6666664

η8

η08
η0

η00
g

3
7777775
; ð65Þ

where f1…f5 and η1…η5 are respectively the five lowest
physical isosinglet scalars and pseudoscalars and

fa ¼
S11 þ S22ffiffiffi

2
p ∝ nn̄; fb ¼ S33 ∝ ss̄;

fc ¼
S011 þ S022ffiffiffi

2
p ∝ nsn̄ s̄; fd ¼ S033 ∝ nnn̄ n̄; ð66Þ

are the bare quark-antiquark and four-quark components in
the SNS scalar basis. In the OS basis,

f8 ¼
S11 þ S22 − 2S33ffiffiffi

6
p ; f08 ¼

S011 þ S022 − 2S033ffiffiffi
6

p ;

f0 ¼
S11 þ S22 þ S33ffiffiffi

3
p ; f00 ¼

S011 þ S022 þ S033ffiffiffi
3

p ; ð67Þ

where the scalar components f8 and f0 are of quark-
antiquark type whereas the f08 and f00 have four-quark
substructure. Similarly,

ηa ¼
ϕ1
1 þ ϕ2

2ffiffiffi
2

p ∝ nn̄; ηb ¼ ϕ3
3 ∝ ss̄;

ηc ¼
ϕ01

1 þ ϕ02
2ffiffiffi

2
p ∝ nsn̄ s̄; ηd ¼ ϕ03

3 ∝ nnn̄ n̄ : ð68Þ

are the bare quark-antiquark and four-quark pseudoscalar
components in the SNS basis. In the OS basis,

ϕ8 ¼
ϕ1
1 þ ϕ2

2 − 2ϕ3
3ffiffiffi

6
p ; ϕ0

8 ¼
ϕ01

1 þ ϕ02
2 − 2ϕ03

3ffiffiffi
6

p ;

ϕ0 ¼
ϕ1
1 þ ϕ2

2 þ ϕ3
3ffiffiffi

3
p ; ϕ0

0 ¼
ϕ01

1 þ ϕ02
2 þ ϕ03

3ffiffiffi
3

p ; ð69Þ

where the pseudoscalar components ϕ8 and ϕ0 are of
quark-antiquark type whereas the ϕ0

8 and ϕ0
0 have

four-quark substructure. The SNS and OS bases are related
by transformation matrix T,
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FSNS ¼ TFOS; ηSNS ¼ TηOS; ð70Þ

where, in our setup, matrix T has the explicit form

T ¼

2
66666666664

1ffiffi
3

p 0
ffiffi
2
3

q
0 0

−
ffiffi
2
3

q
0 1ffiffi

3
p 0 0

0 1ffiffi
3

p 0
ffiffi
2
3

q
0

0 −
ffiffi
2
3

q
0 1ffiffi

3
p 0

0 0 0 0 1

3
77777777775
: ð71Þ

The mass matrices Y2 and N2 defined in Eq. (64) have a
block diagonal octet singlet structure

½Y2�5×5 ¼
� ½Y2

8�2×2
½Y2

0�3×3

�
;

½N2�5×5 ¼
� ½N2

8�2×2
½N2

0�3×3

�
: ð72Þ

The octet physical states

Ψ8þ ¼
�
ψ ð1Þ
8þ

ψ ð2Þ
8þ

�
; Ψ8− ¼

�
ψ ð1Þ
8−

ψ ð2Þ
8−

�
; ð73Þ

diagonalize ½Y2
8� and ½N2

8� respectively and are related to the
octet “bare” states

B8þ ¼
�
f8
f08

�
; B8− ¼

�
η8

η08

�
; ð74Þ

by

Ψ8þ ¼ ½K8þ�−1B8þ ; Ψ8− ¼ ½K8− �−1B8− ; ð75Þ

therefore

Ψ̃8þ½Y2
8�diagΨ8þ ¼ B̃8þ½Y2

8�B8þ ;

Ψ̃8− ½N2
8�diagΨ8− ¼ B̃8− ½N2

8�B8− : ð76Þ

In the present decoupling limit, Y2
0 and N2

0 themselves
become block diagonal as well:

Y2
0 ¼

� ½Ŷ2
0�2×2

m2
h

�
N2

0 ¼
� ½N̂2

0�2×2
m2

g

�
ð77Þ

In this case, the physical singlet states

Ψ̂0þ ¼
�
ψ̂ ð1Þ
0þ

ψ̂ ð2Þ
0þ

�
; Ψ̂0− ¼

�
ψ̂ ð1Þ
0−

ψ̂ ð2Þ
0−

�
; ð78Þ

are related to the “bare” singlet states

B̂0þ ¼
�
f̂0
f̂00

�
; B̂0− ¼

�
η̂0

η̂00

�
; ð79Þ

by

Ψ̂0þ ¼ ½K̂0þ�−1B̂0þ Ψ̂0− ¼ ½K̂0− �−1B̂0− ð80Þ

which means

˜̂Ψ0þ½Ŷ2
0�diagΨ̂0þ ¼ ˜̂B0þ½Ŷ2

0�B̂0þ ;

˜̂Ψ0− ½N̂2
0�diagΨ̂0− ¼ ˜̂B0− ½N̂2

0�B̂0− ; ð81Þ

The mass matrices Y2
8, Y

2
0, N

2
8 and N2

0 in the SU(3) limit
are

ðY2
8Þ11 ¼

1

α2
ð12u2α4 − 4u4h0βα2 þ 2u1h02α2 − 2h04λ2Þ

ðY2
8Þ12 ¼

2h0
3αβ

ð−6α2βu4 þ h03λ3Þ

ðY2
8Þ22 ¼ 2u3h20 ð82Þ

ðY2
0Þ11 ¼

1

3α2
½ð−6λ2 − 2λ3Þh40 þ 6u1h20α

2

þ 24u4h0βα2 þ 36u2α4�
ðY2

0Þ12 ¼ 8u4h0α

ðY2
0Þ13 ¼

4ffiffiffi
3

p
α
ð6α2βu4 þ 3u1h0α2 þ 6h03λ2 þ 2h03λ3Þ

ðY2
0Þ22 ¼ −

2h20
3β2

ð−3u3β2 þ h20λ3Þ

ðY2
0Þ23 ¼

4
ffiffiffi
3

p

3β
ð3α2βu4 þ 3u3h0β2 þ 2h30λ3Þ

ðY2
0Þ33 ¼ 24 ln

�
α3

Λ3

�
h20λ2 þ 12 ln

�
h40
Λ4

�
h02λ1

þ 24 ln

�
αβ

Λ2

�
h02λ3 þ 24 lnð3Þh02λ3

þ ð28λ1 þ 12u5Þh02 þ 6u1α2 þ 6u3β2 ð83Þ

ðN2
8Þ11 ¼

1

α2
ð4u2α4 þ 4u4h0βα2 þ 2u1h20α

2 þ 2h40λ2Þ

ðN2
8Þ12 ¼

2h0
3αβ

ð6α2βu4 þ h30λ3Þ

ðN2
8Þ22 ¼ 2u3h20 ð84Þ
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ðN2
0Þ11 ¼

1

3α2
½ð6λ2 þ 2λ3Þh40 þ 6u1h20α

2 − 24u4h0βα2

þ 12u2α4�
ðN2

0Þ12 ¼ −8u4h0α

ðN2
0Þ13 ¼

ffiffiffi
3

p
h30

18α
ð2γ1 þ 1Þ

ðN2
0Þ22 ¼

2h20
3β2

ð3u3β2 þ h20λ3Þ

ðN2
0Þ23 ¼

ffiffiffi
3

p
h30

18β
ð−1þ γ1Þ

ðN2
0Þ33 ¼ 2u6h20 ð85Þ

In the decoupling limit, ðY2
0Þ13 ¼ ðY2

0Þ23 ¼ ðN2
0Þ13 ¼

ðN2
0Þ23 ¼ 0.
The trace of the mass matrices for the scalar and

pseudoscalar octets are the sum of the physical masses,

½N2
8�11 þ ½N2

8�22 ¼ m2
8− þm02

8−

½Y2
8�11 þ ½Y2

8�22 ¼ m2
8þ þm02

8þ ; ð86Þ

which can be used to calculate u1 and u4 in terms of α, β
and h:

u1 ¼ −
m2

8− þm02
8− þ 8α2u2 −m2

8þ −m02
8þ

2h20
:

u4 ¼ −
βð3m2

8− þ 3m02
8− −m2

8þ −m02
8þÞ

12α2h0
: ð87Þ

We have two more relations for the determinants of the
octet scalar and pseudoscalar mass matrices. In order to
simplify them, we will subtract and add the two determi-
nants which leads to

ðm2
8− þm02

8− −m2
8þ −m02

8þÞ½N2
8�22 − ð½N2

8�212 − ½Y2
8�212Þ

¼ m2
8−m

02
8− −m2

8þm
02
8þ

½m2
8− þm02

8− þ ðm2
8þ þm02

8þÞ�½N2
8− �22

− 2ð½N2
8− �222 − ½N2

8− �212 − ½Y2
8�212Þ

¼ m2
8−m

02
8− þm2

8þm
02
8þ : ð88Þ

From the first equation, we determine β in terms of α:

β

α
¼ −

3

2
½3ðm4

8− þm04
8−Þ þm4

8þ þm04
8þ

þ 4ðm2
8− −m2

8þ −m02
8þÞm02

8−

þ 4ðm2
8þ −m2

8−Þm02
8þ − 4m2

8þm
2
8− �1=2

× ðm2
8þ þm02

8þ − 3m2
8− − 3m02

8−Þ: ð89Þ

The second equation is then independent of any param-
eter and is a constraint applied to the physical mass of the
heavy pseudoscalar octet:

m0
8− ¼ 2

3
ðm2

8þ þm02
8þÞ −

38

39
m2

8−

� 1

39
½169m4

8þ þ ð−364m02
8þ þ 52m2

8−Þm2
8þ

þ 169m04
8þ þ 52m02

8þm
2
8− − 77m4

8− �1=2: ð90Þ

Using the octect decay constant and Eq. (89), we
determine α

α ¼ f8−

2ðcos θ8− − β
α sin θ8−Þ

ð91Þ

where

cos θ8− ¼
�
2u3h20 −m2

8−

m02
8− −m2

8−

�
1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8− þ 3m02
8− −m2

8þ −m02
8þ

2ðm02
8− −m2

8−Þ

s
; ð92Þ

and this, together with (89), determines β. Upon substitu-
tion of α and β into (87) u4 is determined as a function of h0
[i.e., u4ðh0Þ]. When u4ðh0Þ is substituted in (60), results in
λ3ðh0Þ. Using a first-order estimate stemming from the
trace anomaly results (namely λ1 ¼ 11

36
), together with

λ3ðh0Þ, result in λ2ðh0Þ which in turn, when substituted
in Eq. (63), determines u1ðh0Þ. Finally, when u1ðh0Þ is
substituted in the first equation of (87) determines u2ðh0Þ.
Therefore, all parameters are determined in terms of h0.
For numerical analysis, we examine the following inputs

for the octets (and then make variations to study the
sensitivity of the results):

m8− ¼ 137 MeV f8− ¼ 131 MeV

m8þ ¼ 980 MeV m0
8þ ¼ 1474 MeV ð93Þ

With these inputs,Eq. (90)givesm0
8− ¼ 1308 MeVwhich

is near the central value of the experimental data on
m½πð1300Þ� ¼ 1.2–1.4 GeV [1]. In Table I, our results for
the model parameters are given for two values of h0. These
model parameters then allow predictions for SU(3) singlet
masses (Table II) and rotationmatrices (Table III), both being
independent of h0. This is of course expected in the
decoupling limit in which the properties of scalar and
pseudoscalar mesons become decoupled from the properties
of glueballs (hence, independent of condensateh0).However,
once the interactions of quark components with glueballs are
turned on the predictions are expected to depend on h0. The
predictions for both scalar and pseudoscalar SU(3) singlets
include a light and a heavy state. The light pseudoscalar
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singletmass of 93MeVdoes not overlapwith knownphysical
eta masses, but the scalar singlet mass of 236 MeV is
qualitatively pointing to the sigma meson. The lighter than
expected pseudoscalar singlet can be attributed to the
complete suppression of pseudoscalar glueball in this limit
which in turn suppresses the realization of Uð1ÞA which is
known to be crucial in generating the correct η masses. The
lowmassof the ηmeson in ourmethodcanbe justified further.
In [76], Weinberg showed that in a theory where Uð1ÞA axial
current is conserved and its breaking stems only from the
quark masses there is a pseudoscalar singlet with a very low
mass oforder

ffiffiffi
3

p
mπ. Similarly, in [9]within the leading-order

U(3) chiral perturbation theory, an explicit calculation
showed that in the Nc → ∞ limit (where the axial anomaly
term vanishes) the eta mass approaches the mass of the pion.
For the scalar singlet, the situation is different because

the effect of trace anomaly on singlet scalar masses is not as
pronounced as the effect of axial anomaly on singlet
pseudoscalars [38–47]. The heavier singlet masses (both
around 1.5 GeV) overlap with some of the known η or f0
states above 1 GeV.
The prediction for the scalar glueball mass depends on

h0. We have shown [77] that the favored range of h0 ¼
0.8–1 is consistent with QCD sum-rules analysis. In this
range of h0, the scalar glueball mass is 1.6–2.0 GeV
consistent with other approaches [33].
In the decoupling limit, the model predictions for the

quark and glue contents of scalars and pseudoscalars are
expected to be of qualitative importance. We have pre-
sented these predictions in Table III. We see that the
substructure of octet states (both scalars and pseudoscalars)

are overall consistent with general expectations where light
pseudoscalars are mainly quark-antiquark states (which is
seen to be minimally the case) while light scalars are closer
to four-quark states (which is seen to be clearly the case).
The situation for singlets is different and the predictions are
not conclusive because of suppressing the interactions of
quark components with glueballs. The values of α, β and A
are independent of the parameter h0.
To further investigate the stability of predictions, we

have considered the decoupling limit with massless quark.
This imposes more stringent conditions on the system of
equations. The results are given in the three tables of
Appendix B and show, expectedly, that there are no
sensitivities compared to Tables I, II, and III when this
additional condition is imposed.
According to Eq. (A2) in order to decouple the pseu-

doscalar glueball (which amounts to setting the elements
ðM2

ηÞi5 with i ¼ 1, 2, 3, 4 to zero) the instanton term should
be dropped altogether. However alternatively one might
consider a generalized instanton term of the type in Eq. (26)
that contains enough parameters such that the decoupling
equations are solvable and the axial anomaly would still be
satisfied.
We end this section by a general comparison of the

decoupling limit presented here and the decoupling of scalar
glueballs from quark-antiquarks obtained as a result of a
“chiral suppression” studied in [65]. Of course there are
major differences between our formulation and the work of
[65]: Our framework is formulated in terms of chiral nonet
fields and can only indirectly probe quarks (through studies
of mixing patterns among components); it contains compo-
sites of four-quark fields; and in our model chiral symmetry
is broken both through quark masses as well as sponta-
neously through condensates of quark-antiquarks, four-
quarks and scalar glueball field. Moreover, the decoupling
limit in our model can occur both with or without quark
masses, and in either case, within the SUð3ÞV subgroup. In
this decoupling limit, while the scalar glueball is not
interacting with mesons, it still plays a very important role
in stabilizing the vacuum through mixing of its condensate
with other condensates. Nevertheless, in limits that our
model qualitatively resembles themodel of Ref. [65], it does

TABLE I. Values of the model parameters in terms of h0.

Parameters h0 ¼ 0.80 GeV h0 ¼ 1.0 GeV

α (GeV) 5.10 × 10−2 5.10 × 10−2

β (GeV) 4.12 × 10−2 4.12 × 10−2

u1 1.83 × 10 2.85 × 10
u2 −1.06 × 103 −2.68 × 103

u3 8.03 × 10−1 5.14 × 10−1

u4 −3.39 −2.72
λ2 −3.56 × 10−2 −3.65 × 10−2

λ3 −2.13 × 10−3 −8.71 × 10−4

A ðGeV3Þ 7.96 × 10−4 7.96 × 10−4

TABLE II. Predicted masses in terms of h0.

Masses (GeV) h0 ¼ 0.80 GeV h0 ¼ 1.0 GeV

m0− 9.26 × 10−2 9.26 × 10−2

m0
0− 1.58 1.58

m0þ 2.36 × 10−1 2.36 × 10−1

m0
0þ 1.52 1.52

mh 1.60 2.0

TABLE III. Predicted rotation matrices in terms of h0.

Rotation matrices h0 ¼ 0.80 GeV h0 ¼ 1.0 GeV

½K8− �−1 0.772 0.636 0.772 0.636
−0.636 0.772 −0.636 0.772

½K̂0− �−1 0.521 −0.853 0.521 −0.853
−0.853 −0.521 −0.853 −0.521

½K8þ �−1 0.235 −0.972 0.235 −0.972
−0.972 −0.235 −0.972 −0.235

½K̂0þ �−1 0.765 0.644 0.765 0.644
−0.644 0.765 −0.644 0.765
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not seem to contradict the “chiral suppression” found in
that work. For example, when trace anomaly is saturated
by glueballs only (i.e., when λ2 ¼ λ3 ¼ 0) and assuming
γm ¼ 2 for simplicity, together with invoking the minimum
conditions (41), the coupling of scalar glueball in this limit to
nonstrange quark-antiquark is

gnn̄≈
1ffiffiffi
2

p lim
λ2¼λ3→0;γm→2

ðX2
0Þ15¼−4

�
A1α3

3−A3α1
3

h0ðα12−α3
2Þα3

�
ð94Þ

whereas the coupling of scalar glueball to strange quark-
antiquark (in this limit) becomes

gss̄ ≈ lim
λ2¼λ3→0;γm→2

ðX2
0Þ25 ¼ −4

�
A1α3

3 − A3α1
3

h0ðα12 − α3
2Þα1

�
: ð95Þ

First, we see that in massless quark limit, both of these
couplings vanish in agreement with “chiral suppression” of
[65]. Secondly, using (94) and (95), we find

gss
gnn

≈
α3
α1

: ð96Þ

To get the numerical value of this ratio, we need to do the
calculation in the SU(2) isospin limit. In the absence of the
SU(2) calculation in the present work, we can only give a
rough approximation. For all values of the condensates α1
and α3 found in the generalized linear sigma model without
glueballs (see Fig. 2 in Ref. [45]), this ratio is clearly larger
than one in agreement with the “chiral suppression” of [65].
However, this is only an estimate and has to be confirmed
with full SU(2) calculation.

VI. CONCLUSIONS

In [42–44], we introduced the SUð3ÞV limit of the
generalized linear sigma model with two chiral nonets
(both with and without quark masses). These analyses were
performed with the hope that this simplified model would
have the correct main features of the low energy meson
spectrum. In the limit of massless quarks, three pions and
one of the η’s were massless as expected. The model
contained a very low isosinglet scalar mass and was
consistent with the picture developed in further works that
the low lying pseudoscalars are mostly “quark-antiquark”
states whereas the low lying scalars have a larger four quark
component. The SUð3ÞV limit in the presence of quark
masses had the same main features except that the massless
states were replaced by light meson masses.
In the model presented here, all the characteristics

outlined in our previous versions of the generalized linear
model are respected with the provision that one of the
pseudoscalar singlets and the lowest scalar isosinglet (σ)
are nearly massless in the limit of massless quarks. This
difference stems from the presence of the instanton term in
the Lagrangian in the model discussed in [42–44] that
brought a large contribution directly to the η masses and

indirectly to the σ mass. Since the corresponding term gives
no contribution to the ηmass matrix in the decoupling limit
of the present model, it is natural to obtain a massless η.
This setup may have limited phenomenological conse-
quences but it is very important from the theoretical point
of view as it reveals the significance of specific terms in the
Lagrangian. Also the important feature that the low lying
pseudoscalars are mainly “quark-antiquark” states whereas
the corresponding scalars have large four quark compo-
nents emerges from the rotation matrices in Tables III
and VI.
In the case of massive quarks in the decoupling SUð3ÞV

limit, there is no massless meson but the main character-
istics of the meson spectrum are preserved. The model
contains a very low η and a very low σ with the masses
indicated in Table II.
The generalized linear sigma model developed in

[38–45] provided an adequate and reliable picture of
low-energy QCD model with pseudoscalar and scalar
mesons. In the present work, we expanded that framework
to accommodate scalar and pseudoscalar glueballs that may
mix with the quark meson states and conceivably lead to a
better description of the low energy sector. We discussed
that in the decoupling SUð3ÞV limit (both with and without
quark masses) the model presents interesting features
compatible with the same limit for the generalized linear
sigma model of quark mesons only. Moreover, the mass of
the scalar glueball was predicted for adequate values of the
glueball condensate with a result in very good agreement
with those calculated in lattice studies [16–18] or from
QCD sum rules [33] (for a detailed discussion of the scalar
glueball mass in the present approach see [77]).
The Lagrangian in (34) is fairly complex, contains a very

large number of parameters that, in principle, can be exactly
treated numerically. However, in practice, brute force
numerical approach is insufficient because (i) it lacks
physical insight into how the system of equations evolve
step by step from the simplest limits which are exactly
solvable and contain the basic fundamental knowledge of
the underlying dynamics, and (ii) the optimized numerical
solutions of a highly nonlinear system of equations with
many unknown parameters (in the leading order of the
model presented here there are 18 a priori unknown
parameters) are not unique and while may mathematically
correspond to an optimized solution may not necessarily
correspond to a physical solution. Therefore, tackling the
system of equations by first pushing them to solvable limits
and then step by step evolving their solutions to the desired
general conditions is necessary and is the main strategy
promoted in this work for exploring the unknowns of the
model. The aspects already discussed here are promising
and suggest that a comprehensive analysis of the model
may lead to a very interesting picture of low energy scalar
and pseudoscalar meson spectrum and properties. This
endeavor will be further pursued in future works.
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APPENDIX A: ISOSINGLET MASS MATRICES

In this appendix, we give the mass matrices for isosinglet scalars and isosinglet pseudoscalars:

ðX2
0Þ11 ¼ 4u4h0β3 þ 2u1h02 þ 12u2α12 − 8

h04ððβ1α1 þ 1
2
α3β3Þ2λ2 þ 1

2
α21β

2
1λ3Þ

α21ð2β1α1 þ β3α3Þ2
− 4ð2α12 þ α3

2Þ−1−γm=2ð−2þ γmÞ2α12ð2A1α1 þ A3α3Þ þ 4ð−2þ γmÞðA1α1 þ 1=2A3α3Þð2α12 þ α3
2Þ−γm=2

− 16ð−2þ γmÞð2α12 þ α3
2Þ−1−γm=2α12ðA1α1 þ 1=2A3α3Þ þ 8ð2α12 þ α3

2Þ−γm=2ð−2þ γmÞα1A1

ðX2
0Þ12 ¼ −

1

ð2β1α1 þ β3α3Þ2ð2α12 þ α3
2Þ2

× ½16ðð−2þ γmÞð−A3α1
3 þ A1α3ðγm − 1Þα12

þ 1=2A3α3
2ðγm − 1Þα1 − 1=2A1α3

3Þðβ1α1 þ 1=2β3α3Þ2ð2α12 þ α3
2Þ1−γm=2 − 1=2ðα12 þ 1=2α32Þ2

× ð8u4β12α12 þ 8u4β1β3α1α3 þ ð2u4β3α32 − λ3h03Þβ3Þh0β1Þ
ffiffiffi
2

p
�

ðX2
0Þ13 ¼ 4u4h0α3 þ 2

h04λ3α3β3�
2α1β1 þ α3β3

�
2

ðX2
0Þ14 ¼ 2

ffiffiffi
2

p �
2u4h0α1 −

h04λ3β1α3
ð2α1β1 þ α3β3Þ2

�

ðX2
0Þ15 ¼ 4

ffiffiffi
2

p �
u4ðβ1α3 þ β3α1Þ þ u1h0α1 þ 2h03

�
λ2
α1

þ λ3β1
2α1β1 þ α3β3

��

ðX2
0Þ22 ¼

1

α3
2ð2β1α1 þ β3α3Þ2

ð−16α34ðA1α1 þ 1=2A3α3Þðβ1α1 þ 1=2β3α3Þ2γmð−2þ γmÞð2α12 þ α3
2Þ−1−γm=2

þ 16α3
2ðβ1α1 þ 1=2β3α3Þ2ðA1α1 þ 3=2A3α3Þð−2þ γmÞð2α12 þ α3

2Þ−γm=2 þ 12α3
6β3

2u2 þ 48α1α3
5β1β3u2

þ ð48α12β12u2 þ 2β3
2h02u1Þα34 þ 8α1α3

3β1β3h02u1

− 2h02ð−4u1β12α12 þ h02β32ðλ2 þ λ3ÞÞα32 − 8α1α3β1β3h04λ2 − 8α1
2β1

2h04λ2Þ

ðX2
0Þ23 ¼ 2

ffiffiffi
2

p �
2u4h0α1 −

h04λ3α1β3
ð2α1β1 þ α3β3Þ2

�

ðX2
0Þ24 ¼ 4

h04λ3α1β1
ð2α1β1 þ α3β3Þ2

ðX2
0Þ25 ¼ 8u4α1β1 þ 4u1h0α3 þ 8h03

�
λ2
α3

þ λ3β3
2α1β1 þ α3β3

�

ðX2
0Þ33 ¼ 2u3h02 − 4

h04λ3α12

ð2β1α1 þ β3α3Þ2

ðX2
0Þ34 ¼ −2

h04λ3
ffiffiffi
2

p
α1α3

ð2β1α1 þ β3α3Þ2

AMIR H. FARIBORZ and RENATA JORA PHYS. REV. D 98, 094032 (2018)

094032-14



ðX2
0Þ35 ¼ 4

ffiffiffi
2

p �
u4α1α3þu3h0β1þ 2

h03λ3α1
2α1β1þα3β3

�

ðX2
0Þ44 ¼ 2u3h02− 2

h04λ3α32

ð2β1α1þ β3α3Þ2

ðX2
0Þ45 ¼ 4u4α21þ 4u3h0β3þ 8

h03λ3α3
2α1β1þα3β3

ðX2
0Þ55 ¼ 2u1ð2α12þα3

2Þþ 2u3ð2β12þ β3
2Þþ 12u5h02þ 12h02

�
λ1 ln

�
h04

Λ4

�
þ 2λ2 ln

�
α1

2α3
Λ3

�
þ 2λ3 ln

�
2β1α1þ β3α3

Λ2

��
þ 28h02λ1 ðA1Þ

ðM2
ηÞ11 ¼ −4u4h0β3 þ 2u1h02 þ 4u2α12 þ 8

ððβ1α1 þ 1=2β3α3Þ2λ2 þ 1=2λ3β12α12Þh04
α1

2ð2β1α1 þ β3α3Þ2
þ 4ð2α12 þ α3

2Þ−γm=2ð−2þ γmÞðA1α1 þ 1=2A3α3Þ

ðM2
ηÞ12 ¼ 2

ffiffiffi
2

p �
−2u4h0β1 þ h04λ3β1β3

ð2α1β1 þ α3β3Þ2
�

ðM2
ηÞ13 ¼ −4u4h0α3 þ 2

h04λ3α3β3�
2α1β1 þ α3β3

�
2

ðM2
ηÞ14 ¼ 2

ffiffiffi
2

p �
−2u4h0α1 − h04λ3β1α3

ð2α1β1 þ α3β3Þ2
�

ðM2
ηÞ15 ¼

ðβ1ðγ1 þ 1Þα1 þ α3β3γ1Þ
ffiffiffi
2

p
h03

12α1
2β1 þ 6α1α3β3

ðM2
ηÞ22 ¼ 2u1h02 þ 4u2α32 þ 8

h04ððβ1α1 þ 1=2β3α3Þ2λ2 þ 1=4λ3β32α32Þ
α3

2ð2β1α1 þ β3α3Þ2
þ 4ð2α12 þ α3

2Þ−γm=2ð−2þ γmÞðA1α1 þ 1=2A3α3Þ

ðM2
ηÞ23 ¼ −2

h0
ffiffiffi
2

p
α1ð8u4β12α12 þ 8u4β1β3α3α1 þ 2α3

2β3
2u4 þ β3h03λ3Þ

ð2β1α1 þ β3α3Þ2

ðM2
ηÞ24 ¼ 4

α1β1h04λ3
ð2β1α1 þ β3α3Þ2

ðM2
ηÞ25 ¼

ð2β1α1γ1 þ α3β3Þh03
12α1α3β1 þ 6α23β3

ðM2
ηÞ33 ¼ 2

h02ð4α12β12u3 þ 2α1
2h02λ3 þ 4α1α3β1β3u3 þ α3

2β3
2u3Þ

ð2β1α1 þ β3α3Þ2

ðM2
ηÞ34 ¼ 2

λ3h04
ffiffiffi
2

p
α1α3

ð2β1α1 þ β3α3Þ2

ðM2
ηÞ35 ¼

α1ðγ1 − 1Þ ffiffiffi
2

p
h03

12α1β1 þ 6α3β3

ðM2
ηÞ44 ¼ 2

h02ð4α12β12u3 þ 4α1α3β1β3u3 þ α3
2β3

2u3 þ α3
2h02λ3Þ

ð2β1α1 þ β3α3Þ2

ðM2
ηÞ45 ¼

α3ðγ1 − 1Þh03
12α1β1 þ 6α3β3

ðM2
ηÞ55 ¼ 2u6h02 ðA2Þ

Using the mass matrix for the eta system, together with vacuum conditions (41), we can show
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detðM2
ηÞ ¼ 1=6

ðα12 þ 1=2α32Þðα1 þ α3Þλ3h010ð−α3 þ α1Þ
ðβ1α1 − β3α3Þ2α3ðβ1α1 þ 1=2β3α3Þ3α1

×

�
−144A1A3ð2α12 þ α3

2Þ1−γmð2α12 þ α3
2Þ
�
−
β1ð−1þ γ1Þ2α13

216
− α3

�
λ3u6 −

γ1
2

216
þ γ1
108

−
1

216

�
β3α1

2

þ β1α3
2

�
λ3u6 −

γ1
2

432
þ γ1
216

−
1

432

�
α1 þ

β3α3
3ð−1þ γ1Þ2
432

�

þ λ3h04ð−α1β3 þ β1α3ÞðA1α1 þ 2A3α3Þð2α12 þ α3
2Þ−γm=2

�
; ðA3Þ

which, as expected, shows:

lim
A1;A3→0

detðM2
ηÞ ¼ 0: ðA4Þ

APPENDIX B: DECOUPLING LIMIT IN THE
MASSLESS CASE

In this appendix, we consider the decoupling limit in the
absence of explicit symmetry breaking term in the
Lagrangian. This amounts to the condition A1¼A3¼A¼0
where equivalently from the first and second equations
in (41):

6u4h0αβ þ 4u2α3 þ u1h20α ¼ 0: ðB1Þ

Equations (60)–(63) are still valid. The system of equations,

1

4
ð1 − 6λ2 − 4λ3Þ ¼ λ1 ¼

11

36
Tr½N2

8� ¼ ðm0
8−Þ2

det½N2
8� ¼ 0; ðB2Þ

is solved for the parameters u1, u2, u4:

u1 ¼
2h20
27α2

;

u2 ¼ −
2α2h40 þ 2β2h40 − 27α2β2ðm0

8−Þ2
108α4ðα2 þ β2Þ ;

u4 ¼ −
βðm0

8−Þ2
6ðα2 þ β2Þh0

: ðB3Þ

Furthermore, we calculate α from (see [42,43]),

α ¼ fπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm0

8−Þ2 − ðm8þÞ2 − ðm0
8þÞ2

p
2

ffiffiffi
2

p ðm0
8−Þ2

ðB4Þ

and then

β ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4α2 þ f2π

q
: ðB5Þ

For numerical work, we use

TABLE IV. Values of the model parameters in terms of h0 in the
massless quarks limit.

Parameters h0 ¼ 0.80 GeV h0 ¼ 1.0 GeV

α (GeV) 4.96 × 10−2 4.96 × 10−2

β (GeV) 4.28 × 10−2 4.28 × 10−2

u1 1.93 × 10 3.01 × 10
u2 −1.18 × 103 −2.99 × 103

u3 7.57 × 10−1 4.84 × 10−1

u4 −3.51 −2.81
λ2 −3.56 × 10−2 −3.65 × 10−2

λ3 −2.17 × 10−3 −8.87 × 10−4

A 0 0

TABLE V. Predicted masses in terms of h0 in the massless
quarks limit.

Masses (GeV) h0 ¼ 0.80 GeV h0 ¼ 1.0 GeV

m0− ≈0 ≈0
m0

0− 1.60 1.60
m0þ 1.81 × 10−4 3.10 × 10−4

m0
0þ 1.50 1.50

mh 1.60 2.00
m8þ 9.52 × 10−1 9.52 × 10−1

m0
8þ 1.49 1.49

TABLE VI. Predicted rotation matrices in terms of h0 in the
massless quarks limit.

Rotation matrices h0 ¼ 0.80 GeV h0 ¼ 1.0 GeV

½K8− �−1 0.757 0.653 0.757 0.653
−0.653 0.757 −0.653 0.757

½K̂0− �−1 0.501 −0.865 0.501 −0.865
−0.865 −0.501 −0.865 −0.501

½K8þ �−1 0.216 −0.976 0.216 −0.976
−0.976 −0.216 −0.976 −0.216

½K̂0þ �−1 0.757 0.653 0.757 0.653
−0.653 0.757 −0.653 0.757
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m0
8− ¼ 1.30 GeV;

TrðY2
8Þ ¼ ð0.9802 þ 1.4742Þ GeV2;

detðY2
8Þ ¼ 0.9802 × 1.4742 GeV4: ðB6Þ

For two choices of h0, the parameters are given in
Table IV, the predicted masses in Table V and the rotation
matrices in Table VI. These results show small deviations
from those presented in Tables I, II and III.
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