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Exact analytical forms of solutions for dispersion relations for amplitudes and dispersion relations for
slopes are applied in the analysis of pp and pp̄ scattering data in the forward range at energies belowffiffiffi
s

p
≈ 30 GeV. As inputs for the energy dependence of the imaginary part, use is made of analytic form for

the total cross sections and for parameters of the t dependence of the imaginary parts, with exponential and
linear factors. A structure for the t dependence of the real amplitude is written, with slopes BR and a linear
factor ρ − μRt that allows compatibility of the data with the predictions from dispersion relations for the
derivatives of the real amplitude at the origin. A very precise description is made of all dσ=dt data, with
regular energy dependence of all quantities. It is shown that a revision of previous calculations of total cross
sections, slopes and ρ parameters in the literature is necessary, and stressed that only determinations based
on dσ=dt data covering sufficient t range using appropriate forms of amplitudes can be considered as valid.
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I. INTRODUCTION

In the scattering theory in quantum mechanics, the
elastic differential cross sections are written in terms of
a complex amplitude with independent imaginary and real
parts, which are functions of two variables s, t (spin effects
neglected). In the analysis of observables, besides the
nuclear amplitude, account is taken for the contribution
from the real Coulomb interaction. This is very basic and
obvious, but we show in the present work that this structure
is not usually obeyed in the treatments of the pp and pp̄
systems, where dσ=dt is written without due account for
the properties of the amplitudes. We give a treatment of
these elastic processes using theoretical constraints and
appropriate forms of the input quantities, arriving at
realistic amplitudes to connect measurements and theoreti-
cal dynamical models.
Determinations of σ, ρ and other parameters of pp and

pp̄ forward elastic scattering are not direct experimental
measurements. Rather, they result from model-dependent
analytical limiting procedures, performed with forms
assumed for the imaginary and real parts of the complex
elastic amplitude. The work done in the laboratory consists
in measuring values of the number ΔN=Δt of event rates in

intervals t → tþ Δt. With attention given to fluxes and
densities (we are only concerned with unpolarized beams
and targets), tables of t distributions in differential cross
sections dσ=dt are produced. We stress that the identifi-
cation of the amplitudes and their parameters requires use
of proper theoretical framework.
The differential cross section is written as a sum of

absolute values

dσ
dt

¼ dσI
dt

þ dσR
dt

¼ ðℏcÞ2ðjTIj2 þ jTRj2Þ ð1Þ

and the disentanglement required for the determination of
the amplitudes TIðs; tÞ and TRðs; tÞ is not at all trivial. Help
is brought from the interference of nuclear and Coulomb
interactions and from dispersion relations connecting real
and imaginary parts through general principles of causality
and analyticity.
Besides the entanglement to be resolved, we have that

production rates are not obtainable directly at the origin
t ¼ 0, or even very close to it, but rather in sets of points of
an interval. The determination of σ, ρ, slopes and other
quantities requires extrapolation of data in a jtj range, using
analytical expressions, and the results obviously depend on
their forms. The mathematical structures of the amplitudes
are mounted using parameters that must be found in
confront with the observed t distribution in dσ=dt.
Regularity in the behavior of all quantities with the energy
is an important consideration to obtain sensible descrip-
tions of the elastic processes. Experiments at different
energies must be analyzed globally, since separate fitting
procedures may lead to values that are useless as a step for
the phenomenology of the area.
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The t range of the data at given energy must be sufficient
for representation through assumed analytical forms. In the
low energy range, up to

ffiffiffi
s

p
≈ 30 GeV, often these con-

ditions are not satisfied, even suffering insecure normali-
zation in the measurements of dσ=dt, and compilations of
published values for typical parameters result scattered in
plots, without coherence and regularity. We propose an
investigation of this energy range, with emphasis on the
identification of the amplitudes, searching to build a bridge
between measurements and mathematical description, nec-
essary to guide models of the dynamics of the processes.
In the interval of

ffiffiffi
s

p
from 30 to 60 GeV, pp and pp̄ from

ISR/CERN and Fermilab data cover the large t range with
good precision, showing fast increase in σ, a forward peak
and a marked dip in dσ=dt. These measurements led to the
establishment of the successful Regge phenomenology
[1,2], based on the exchange of particles (Pomerons,
Reggeons) in the t channel. Several theoretical models
were developed to describe dynamically this region of data
in the s and t variables [3].
Above

ffiffiffi
s

p ¼ 60 GeV, experiments [4] have large energy
gaps, passing fast by SPS/CERN, Fermilab and reaching
the TeV range of LHC [5]. Ingredients of QCD dynamics
enter with less or more detail in the interpretation of these
data [6,7]. According to QCD expectations, as the energy
increases the response of the gluon density in the hadrons
increases and the hadronic interaction becomes determined
by the vacuum structure [8,9]. The interpretation of the
forward scattering parameters in the LHC experiments
at 7, 8 and 13 TeV is not trivial, and ambiguities and
possible discrepancies are not clarified [10]. The potential
of crucial information [11] in the real part of the forward
amplitude at high energies requires that doubts in the
analysis of the data be properly solved.
In this paper we analyze forward pp, pp̄ data with

ffiffiffi
s

p
from ≈3 to ≈30 GeV, using forms for real and imaginary
scattering amplitudes restricted to the forward regime and
exploring fully the theoretical resources and constraints of
dispersion relations treated exactly, in order to extract pure
information on the forward quantities, as much as possible
independently of peculiar microscopic models. This is the
most difficult range of data for the analysis, for both
reasons of insufficiency in the data and sophistication of the
mathematical solutions of dispersion relations at low
energies. Anyhow, we believe that in this sector we can
learn about determination of amplitude parameters, and
hope that this technical knowledge may be useful in the
present difficulties encountered in the analysis of the recent
LHC experiments.
We propose a treatment of pp and pp̄ forward elastic

scattering analyzing all data of differential cross sections
that seem qualified (namely covering necessary t range
with regularity) for the extraction of the real and imaginary
parts of the complex amplitude. We use the simplest and
realistically possible analytical forms, treating coherently

the Coulomb interference and the Coulomb phase, we use
dispersion relations for the amplitudes (DRA) and for their
slopes (DRS) [12] with exact solutions for the principal
value integrals, obtaining coherent energy dependence of
all quantities. DRA and DRS predict algebraic values for
the real amplitudes and their derivatives at t ¼ 0, and our
aim is to have sound proposals for the energy dependence
of other parameters in order to reduce flexibility and
choices by fittings, and produce a complete coherent
description of all data in pp and pp̄ unpolarized elastic
scattering. To eliminate fluctuations that are not mean-
ingful, we account for normalization uncertainties (sys-
tematic errors), investigating a normalization factor in each
experiment that adjusts the total cross section to the
parametrized prediction. These factors are always very
close to 1.
The plots and numbers presented in the Review of

Particle Properties [13] of the Particle Data Group for
forward scattering parameters in the low energy range,
taken from the experimental papers, are scattered and
misleading. The results of our work for all data that we
analyze are regularly distributed, presented in numbers and
very precise plots of dσ=dt in Sec. III, showing a way for
rationalization of the phenomenological knowledge.
However, the proposed solutions are not meant to be
conclusive, unique or fully convincing. Alternatives are
possible and may be looked for.
In elastic pp and pp̄ scattering in the forward direction,

the t dependences of the amplitudes are mainly charac-
terized by exponential forms, with slopes BI and BR that are
essentially independent quantities, essentially not equal to
each other: the real and imaginary amplitudes do not run
parallel along the t axis. We take special care in the
investigation of the behavior of the real part, which has
structure deviating from a pure exponential form for t
values included in the forward range.
Once the total cross sections for pp and pp̄ are para-

metrized in the energy, the usual dispersion relations for the
amplitudes (DRA) determine the real amplitudes at the
origin (namely the ρ parameters). Similarly, if the deriv-
atives of the imaginary parts of pp and pp̄ at t ¼ 0 are
given as functions of the energy, the derivatives of the real
parts at t ¼ 0 are determined by the dispersion relations for
slopes (DRS). At low energies it is essential that in both
DRA and DRS calculations the exact solutions [14] be
used. The dispersion relations for the amplitudes has been
effectively used in investigations of the energy dependence
of total cross section and ρ parameter in pp and pp̄
scattering, being a very important tool of control in the
analysis of the data [15].
The imaginary part is positive at t ¼ 0 and decreases

with an exponential form, which must be multiplied by a
proper factor pointing to a zero, so that the well known dip
may be created in dσ=dt. Actually, in our analysis the dip is
located outside the examined jtj range, but a linear factor
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pointing to a distant zero has influence in the shape of the
imaginary amplitude and its extrapolation for t ¼ 0 to use
the optical theorem. In the real part the effect of the
structure (t dependence) beyond the exponential slope is
present in the small jtj region, and is essential in DRA and
DRS for the determination of the parameter ρ, and here also
a factor (linear, in our case) must be introduced.
The solutions for the forward amplitudes can be obtained

with high accuracy, minimum freedom of parameters, and
with remarkable simplicity and regularity in the energy
dependence of all quantities.
Trusting to propose a realistic assumption, we write for

the pp or pp̄ elastic differential cross sections

dσ
dt

ðpp; pp̄Þðs; tÞ

¼ πðℏcÞ2
��

σðρ − μRtÞ
4πðℏcÞ2 eBRt=2 þ FCðtÞ cos ðαΦÞ

�
2

þ
�
σð1 − μItÞ
4πðℏcÞ2 eBIt=2 þ FCðtÞ sin ðαΦÞ

�
2
�
; ð2Þ

where t≡ −jtj and we call attention for the different values
expected for the slopes BI and BR of the imaginary and real
amplitudes and introduce factors with linear t dependence
in each amplitude. This expression is applied for pp and
pp̄, and the energy dependent quantities σðsÞ, BIðsÞ, μIðsÞ,
ρðsÞ, BRðsÞ, μRðsÞ are specific for each case.
In a given normalization we write for the real and

imaginary nuclear (upper label N) amplitudes

TN
R ðs; tÞ ¼

1

4
ffiffiffi
π

p ðℏcÞ2 σðρ − μRtÞeBRt=2 ð3Þ

and

TN
I ðs; tÞ ¼

1

4
ffiffiffi
π

p ðℏcÞ2 σð1 − μItÞeBIt=2: ð4Þ

The optical theorem is implicit in Eq. (4). At t ¼ 0, we have
the usual definition of the ρ parameter

ρ ¼ TN
R ðs; t ¼ 0Þ

TN
I ðs; t ¼ 0Þ ; ð5Þ

remarking that the value of ρ obtained by fitting of data in a
certain t range depends on the analytical forms (3) and (4)
of the amplitudes.
In Eq. (2), α is the fine-structure constant, Φðs; tÞ is the

Coulomb phase and FCðtÞ is related with the proton form
factor

FCðtÞ ¼ ð−=þÞ 2αjtj F
2
protonðtÞ; ð6Þ

for the pp=pp̄ collisions, where

FprotonðtÞ ¼ ½Λ2=ðΛ2 þ jtjÞ�2; ð7Þ

with Λ2 ¼ 0.71 GeV2.
In the present work we follow the usual belief that the

phase of the Coulomb-Nuclear interference is based on the
superposition of amplitudes in the eikonal formalism [16].
In Appendix A we present the calculation of the Coulomb
phase adequate for the amplitudes (3) and (4).
The expressions for the derivatives of the amplitudes are

d
dt

TN
R ðs; tÞ

����
t¼0

¼ 1

4
ffiffiffi
π

p ðℏcÞ2 σ
�
ρBR

2
− μR

	
ð8Þ

and

d
dt

TN
I ðs; tÞ

����
t¼0

¼ 1

4
ffiffiffi
π

p ðℏcÞ2 σ
�
BI

2
− μI

	
: ð9Þ

The combinations of parameters

DI ¼
BI

2
− μI ð10Þ

and

DR ¼ ρBR

2
− μR; ð11Þ

entering respectively as input and output in DRS, are
directly related with data, and are crucial for the determi-
nation of ρ, μR, BR.
It must be noted that the usual direct evaluation of the

exponential behavior in dσðtÞ=dt ¼ ðdσðtÞ=dtÞðt ¼ 0Þ ×
expðBtÞ using a straight line for the measurements, actually
informs the combined average

B ¼ 2
DI þ ρDR

1þ ρ2
¼ ðBI − 2μIÞ þ ρðρBR − 2μRÞ

1þ ρ2
: ð12Þ

In a complete analysis of data all quantities in this
expression, and not only the average slope B in dσ=dt,
must be determined.
The forms written above for TIðtÞ and TRðtÞ are

representations valid for small jtj, of amplitudes for the
full t range, studied in several models [3,7] at ISR/CERN
and higher energies that stress the peculiar properties of the
real part of the elastic amplitude with common features of
strong slope BR and a zero for small jtj. In the low energy
region here studied, there are not sufficient data for large jtj,
and the analysis is restricted to the forward forms of
Eqs. (3) and (4), showing that all quantities (for pp and
pp̄) in these expressions are necessary and sufficient for
the description of data obeying constraints from DRA
and DRS.
At very low energies, namely below pLAB ¼ 4 GeV, the

description of elastic processes is influenced by details of

STRUCTURE OF FORWARD pp AND pp̄ … PHYS. REV. D 98, 094029 (2018)

094029-3



quark-quark and quark-antiquark interactions, with account
for specific intermediate states, as for example in a
framework of partial waves [17]. The measurement of
polarized amplitudes [18], not considered here, depend on
the precise values of nonpolarized quantities, as we obtain
in the present work. In the energy range of our study,
gluonic interactions are present, with global dynamics
that is describable by simple analytical forms in the
variables s, t.
With total cross sections, imaginary slopes and the linear

terms μI written as analytical forms with powers and
logarithms in the energy, both DRA and DRS require
evaluation of principal value (PV) integrals with the generic
structure

Iðn; λ; xÞ ¼ P
Z þ∞

1

x0λ lognðx0Þ
x02 − x2

dx0: ð13Þ

In recent studies, we have obtained the analytic exact
solution for these integrals in terms of the Lerch’s tran-
scendents [14], and these solutions are applied in the
present work, with demonstration that they are of funda-
mental importance, particularly in the low energy range.
The mathematical formalism of our work is presented in

Sec. II and the energy dependent inputs of the imaginary
parts are written, with forms that are shown to be valid up to
LHC energies and also predict correctly the integrated
elastic cross sections.
In Appendix A we calculate the phase of the nuclear-

Coulomb interference for real amplitude of the form
of Eq. (3).
In Appendix B we present in explicit form the calcu-

lation of dispersion relations for the amplitudes (DRA) and
for their derivatives (DRS) with the exact solutions in terms
of Lerch’s transcendents.
In Appendix C we present alternative equivalent for-

malism for the total cross section in the language of
Pomeron and Reggeon trajectories.
With established energy dependent inputs σðpp; pp̄Þ,

BIðpp; pp̄Þ, μIðpp; pp̄Þ we give in Sec. III a precise
description of the forward range of elastic pp and pp̄
scattering, with the essential identification and separation
of the real and imaginary amplitudes, with coherence and
regularity in the energy dependence of all quantities.
In Sec. IV we present conclusions and summarize

achievements of our effort.

II. FORMALISM AND INPUTS FOR
DISPERSION RELATIONS

A. Inputs for imaginary part of elastic amplitude

In this section we introduce the forms of the imaginary
part of the elastic amplitudes, and explain the determination
of their parameters. We stress that we only use qualified
data on dσ=dt that may be considered as able to allow

reliable analysis in terms of amplitudes written in the
analytical forms of Eqs. (3) and (4). The method of
construction of our proposal is interactive, with inputs
and outputs nourishing each other. In a first free analysis,
we obtain values of parameters for σ, BI and μI, while the
quantities of the real part are left free. The extracted values
are put in regular behavior with the energy, leading to
analytical forms with terms of powers and logarithms as
described below. Adopting these representations for the
imaginary amplitude, we use exact forms of dispersion
relations for amplitudes (DRA) and for slopes (DRS) to
obtain the quantities of the real part, and then we review the
imaginary amplitude.
In the reported experiments at low energies the momen-

tum in the lab system pLAB is more often used, while at high
energies the use of the center of mass energy

ffiffiffi
s

p
is more

common. For pp and pp̄ scattering the connection with the
lab energy

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2LAB þm2

q
ð14Þ

is

s ¼ 2mEþ 2m2; ð15Þ

where m is the p=p̄ mass. To work with the dispersion
relations, the most useful quantity is the dimensionless ratio

x ¼ E=m ð16Þ

and then

s
2m2

¼ xþ 1: ð17Þ

Approximate relations that are often used at high energies
are obviously s ≈ 2mE, x ≈ s=2m2, x ≈ pLAB=m.
The usual parametrizations [13] for the total cross

sections of the pp and pp̄ interactions have the forms

σ∓ðsÞ¼PþH log2
�
s
s0

	
þR1

�
s
s0

	
−η1�R2

�
s
s0

	
−η2

; ð18Þ

with parameters P, H, R1, R2 constants given in millibarns,
s0 in GeV2, while η1, η2 are dimensionless. The upper and
lower indices −,þ refer to pp and pp̄ scattering respec-
tively. The representation is considered to be adequate for
all energies s ≥ s0 and is based on a large number of values
of σ (pp, pp̄) found in experimental papers. We have the
radical claim that these values often are not of good
precision, for several reasons, and in general because the
optical theorem is not applied to well identified imaginary
amplitudes.
This form of amplitude is based on the Pomeron/

Reggeon dynamics assumed for the strong interactions
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[2], and refers only to purely elastic processes.
Contributions of diffractive nature, as first studied by
Gribov and later formulated by Good and Walker [19],
are not included in this framework. Single diffractive,
double diffractive and truly inelastic processes have not
been measured in the energy range of our study, while
theoretical [8] work based on the gluonic dynamics of QCD
and measurements start at energies of the ISR/CERN and
Fermilab experiments [4], namely

ffiffiffi
s

p
⪆ 30 GeV. We show

indeed that our treatment describes well the integrated
elastic and total cross sections at these higher energies.
Dispersion relations are defined with respect to the

lab system energy, and, for low energies, terms like
log2ðEþmÞ and ðEþmÞ−η appear preventing to obtain
closed exact forms. We then obtain a representation for the
total cross sections in terms of dimensionless variables
x ¼ E=m, x0 ¼ E0=m, with x > 1, writing

σ∓ðxÞ ¼ PþH log2
�
x
x0

	
þ R1

�
x
x0

	
−η1 � R2

�
x
x0

	
−η2

;

ð19Þ

and analyze all dσ=dt data for pLAB from 4 to 500 GeV=c
using the assumed structures of the amplitudes in Eqs. (3)
and (4).
We keep the value s0 ¼ 16 GeV2 suggested [13] for

Eq. (18), now appearing as

x0 ¼ s0=ð2m2Þ ¼ 9.0741; ð20Þ

where m ¼ 0.93827 GeV. With this choice, the parameters
P, H, R1, R2 remain the same and numerical values are the
same, given in Table I. With

ðℏcÞ2 ¼ 0.38938 GeV2 mb

we also need

ðℏcÞ2 1

m2
¼ 0.4423 mb:

In Fig. 1 we show the comparison between Eqs. (18)
and (19) for pp̄ written with the same parameters. The

difference between the curves represents the deviation of
Eq. (17) to the approximated form x ≈ s=2m2.
For use as inputs in dispersion relations DRS we write

the slopes Bpp
I ðxÞ and Bpp̄

I ðxÞ in terms of the x variable as

B∓
I ðxÞ¼ b0þb1 logxþb2 log2 xþb3x−η3 �b4x−η4 ; ð21Þ

again with symmetry in the coefficients for pp̄ and pp. As
in Eqs. (18) and (19), for s=2m2 ≫ 1 the slopes BI of
Eq. (21) can be written with similar analytical forms in the
variable s.
In Eq. (4) we have in addition to the slope of the

imaginary part, BI , a term μI which is linear on t
dependence. The inputs μIðxÞ for both pp and pp̄ are
determined by a controlled analysis. The result is that the
difference between the values of μIðxÞ for pp and pp̄ is not
important, and we assume for both the form

μ∓I ðxÞ ¼ μ0 þ μ1 log x: ð22Þ
The numerical values of the input parameters are given in

Table I and in Fig. 2 we show the quantities σðxÞ, BIðxÞ and

TABLE I. Parameters of total cross section, slopes and linear terms of imaginary parts in Eqs. (19), (21), and (22).

σðxÞ
PðmbÞ HðmbÞ R1ðmbÞ R2ðmbÞ η1 η2
34.37� 0.13 0.272� 0.00 12.74� 0.09 8.143� 0.180 0.4288� 0.0100 0.6144� 0.0090

BIðxÞ
b0ðGeV−2Þ b1ðGeV−2Þ b2ðGeV−2Þ b3ðGeV−2Þ b4ðGeV−2Þ η3 η4
13.79� 0.12 −0.625� 0.070 0.04255� 0.01000 −6.937� 0.120 11.95� 0.21 0.5154� 0.0060 0.772� 0.006

μIðxÞ
μ0ðGeV−2Þ μ1ðGeV−2Þ � � � � � � � � � � � � � � �
0.3724� 0.0096 −0.1441� 0.0021 � � � � � � � � � � � � � � �

x
10

)
 (

m
b)

 (
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σ

45
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55

60

65

70

pp

  2
η-

)
0x

x+1*(2+ R1
η-

)
0x

x+1*(
1

)+R
0x

x+1(2(x)=P+H*log±
apprσ

  2
η-

)
0x

x*(2+ R1
η-

)
0x

x*(
1

)+R
0x

x(2(x)=P+H*log±σ

dashed: 

solid:

FIG. 1. Comparison between calculations of pp̄ cross sections
with Eqs. (18) and (19) using the same parameter values, showing
the deviation for low energies due to kinematics.
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μIðxÞ of Eqs. (19), (21), and (22) with the points obtained in
the examination of the data described in Sec. III. In the inset
plots with the variable

ffiffiffi
s

p
we show that the extrapolations

up to LHC energies (7 and 8 TeV) are compatible with the
predicted results [7,10].
The integrated elastic cross section of the imaginary part

is given by

σelI
σ
ðxÞ ¼ 1

σ

Z
−∞

0

dσI
dt

¼ 1

16πðℏcÞ2
σ

BI

��
1þ μI

BI

	
2

þ μ2I
B2
I

�
: ð23Þ

Plots of σelasticI and the ratio with σ as a function of the
energy are given in Fig. 3. We recall that this expression
gives the ratio of the purely elastic processes. The remain-
ing part of the ratio 1 − σelI =σ gives diffractive plus inelastic
processes. We also mark in the figure the experimental
values of σelastic in the ISR range (

ffiffiffi
s

p
≈ 30 to 60 GeV) [4]

and our published calculations for 1.8 GeV and LHC
energies [7].
The dimensionless Fourier transforms of the amplitude

Tðs; tÞ in Eqs. (3) and (4). with respect to the momentum
transfer

T̃ðb; sÞ ¼ T̃R þ iT̃I ð24Þ
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FIG. 2. Input forms for σ, BI and μI of Eqs. (19), (21), and (22), together with values obtained in the study of the data in Sec. III. The
connections of the analytical forms with our previously published calculations [7] for very high energies (1.8 TeVand LHC) are shown
in the insets in terms of

ffiffiffi
s

p
.
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are given by

T̃Rðb; sÞ ¼
σ

2πBR

�
ρþ μR

BR

�
2 −

b2

BR

	�
e−b

2=2BR ð25Þ

and

T̃Iðb; sÞ ¼
σ

2πBI

�
1þ μI

BI

�
2 −

b2

BI

	�
e−b

2=2BI : ð26Þ

The profile corresponding to the imaginary forward ampli-
tude is dominant over the real part for low b values.
However from b ≥ 14 GeV (≃2.8 fm) the real part can be
dominant and this effect is more pronounced due to the
presence of the μR parameter in Eq. (25).
In Appendix C alternative forms are written for the total

cross section, σðxÞ or σðsÞ, in terms of power instead of
logarithm as in Donnachie-Landshoff formalism, with all
accuracy.

B. Dispersion relations for amplitudes and slopes

The well known dispersion relations for pp and pp̄
elastic scattering are written in terms of even and odd
dimensionless amplitudes,

ReFþðE; tÞ ¼ K þ 2E2

π
P
Z þ∞

m
dE0 ImFþðE0; tÞ

E0ðE02 − E2Þ ; ð27Þ

ReF−ðE; tÞ ¼
2E
π

P
Z þ∞

m
dE0 ImF−ðE0; tÞ

ðE02 − E2Þ : ð28Þ

With x ¼ E=m, the even and odd combinations of ampli-
tudes are related to the pp and pp̄ systems through

Fppðx; tÞ ¼ Fþðx; tÞ − F−ðx; tÞ;
Fpp̄ðx; tÞ ¼ Fþðx; tÞ þ F−ðx; tÞ: ð29Þ

The optical theorem informs the normalization of the
amplitudes by

σppðxÞ ¼
ImFppðx; t ¼ 0Þ

2m2x
ð30Þ

and similarly for pp̄.
With the exponential and linear factors in the imaginary

parts, we write the inputs

ImFppðx; tÞ
2m2x

¼ σpp½1 − μppI � exp ðBpp
I t=2Þ; ð31Þ

ImFpp̄ðx; tÞ
2m2x

¼ σpp̄½1 − μpp̄I � exp ðBpp̄
I t=2Þ; ð32Þ

with functions σðxÞ, BIðxÞ and μIðxÞ for pp and pp̄ given
in Eqs. (19), (21), and (22).
As explained in Sec. I, the real parts are written with

exponential and linear factors

ReFppðx; tÞ
2m2x

¼ σppðxÞ½ρppðxÞ − μppR ðxÞt� exp½Bpp
R ðxÞt=2�

ð33Þ
and similarly for pp̄.
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FIG. 3. (a) Integrated elastic cross section due to the imaginary part of the amplitude. Recall that the difference σ − σelasticI accounts for
diffractive plus inelastic processes. The large difference indicates that diffractive processes are highly dominant at low energies.
Experimental points [4] from ISR/CERN, Fermilab (1.8 TeV) and LHC (7 and 8 TeV) [5] are marked. (b) The same plot, for the ratio
σelasticI =σ. The agreement of the lines with the data points shown that our amplitudes are realistic.
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The ρ parameters are then obtained from

1

2m2x
ReFþðx; 0Þ ¼

1

2
½ðσρÞðpp̄Þ þ ðσρÞðppÞ� ð34Þ

and

1

2m2x
ReF−ðx; 0Þ ¼

1

2
½ðσρÞðpp̄Þ − ðσρÞðppÞ�; ð35Þ

with the lhs given by dispersion relations (27) and (28).
Thus the ρ parameter of the real part is defined by

σppðxÞρppðxÞ ¼
ReFppðx; t ¼ 0Þ

2m2x
; ð36Þ

and similarly for pp̄.
The derivatives of the real amplitude at jtj ¼ 0 are

written

∂ReFppðx; tÞ
∂t

����
t¼0

¼ 2m2xσppðxÞ
�
ρppB

pp
R

2
− μppR

�
ðxÞ;

ð37Þ

and similarly for pp̄. These quantities are determined by
DRS, which give the even and odd combinations

1

2m2x
∂ReFþðx; tÞ

∂t
����
t¼0

¼ 1

2
½σpp̄Dpp̄

R þ σppD
pp
R � ð38Þ

and

1

2m2x
∂ReF−ðx; tÞ

∂t
����
t¼0

¼ 1

2
½σpp̄Dpp̄

R − σppD
pp
R �: ð39Þ

The quantities Dpp̄
R and Dpp

R are combinations of amplitude
parameters as in Eq. (11).
Substituting these expressions into Eqs. (27) and (28),

written in terms of the dimensionless variable x, we obtain

ReFþðx; tÞ ¼ K þ 2m2x2

π
P
Z þ∞

1

1

x02 − x2

× ½σpp̄ðx0Þð1 − μpp̄I ðx0ÞÞ exp ½Bpp̄
I ðx0Þt=2�

þ σppðx0Þð1 − μppI ðx0ÞÞ exp ½Bpp
I ðx0Þt=2��dx0

ð40Þ

and

ReF−ðx; tÞ ¼
2m2x
π

P
Z þ∞

1

x0

x02 − x2
½σpp̄ðx0Þð1 − μpp̄I ðx0ÞÞ

× exp ½Bpp̄
I ðx0Þt=2� − σppðx0Þð1 − μppI ðx0ÞÞ

× exp ½Bpp
I ðx0Þt=2��dx0: ð41Þ

Taking t ¼ 0 we obtain the dispersion relations for the
amplitudes (DRA)

ReFþðx; t ¼ 0Þ ¼ 2m2x½σpp̄ρpp̄ þ σppρpp�ðxÞ

¼ K þ 2m2x2

π
P
Z þ∞

1

1

x02 − x2

× ½σpp̄ þ σpp�ðx0Þdx0 ð42Þ

and

ReF−ðx; t¼ 0Þ ¼ 2m2x½σpp̄ρpp̄ − σppρpp�ðxÞ

¼ 2m2x
π

P
Z þ∞

1

x0

x02 − x2
½σpp̄ − σpp�ðx0Þdx0:

ð43Þ

The expressions in terms of PV integrals are given in
Appendix B.
To obtain DRS, we take derivatives of Eqs. (40) and (41)

with respect to t, writing

∂ReFþðx; tÞ
∂t ¼ m2x2

π
P
Z þ∞

1

1

x02 − x2

× ½σpp̄ðx0Þ½Bpp̄
I − 2μpp̄I �ðx0Þ exp½Bpp̄

I ðx0Þt=2�
þ σppðx0Þ½Bpp

I ðx0Þ − 2μppI ðx0Þ�
× exp½Bpp

I ðx0Þt=2��dx0; ð44Þ

∂ReF−ðx; tÞ
∂t ¼ m2x

π
P
Z þ∞

1

x0

x02 − x2

× ½σpp̄ðx0Þ½Bpp̄
I − 2μpp̄I �ðx0Þ exp½Bpp̄

I ðx0Þt=2�
− σppðx0Þ½Bpp

I ðx0Þ − 2μppI ðx0Þ�
× exp½Bpp

I ðx0Þt=2��dx0: ð45Þ

With t ¼ 0, these equations become the dispersion relations
for slopes (DRS) that we may write

4½σpp̄Dpp̄
R þ σppD

pp
R �ðxÞ

¼ x
π
P
Z þ∞

1

2

x02 − x2
½σpp̄Dpp̄

I þ σppD
pp
I ðx0Þ�ðx0Þdx0;

ð46Þ

4½σpp̄Dpp̄
R − σppD

pp
R �ðxÞ

¼ 1

π
P
Z þ∞

1

2x0

x02 − x2
½σpp̄Dpp̄

I − σppD
pp
I �ðx0Þdx0; ð47Þ

where we have introduced the parametrization of the real
amplitudes.
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In Eqs. (47) and (48) the terms Dpp
I and Dpp̄

I given by
Eq. (10) keep analytical form similar to that of BIðxÞ given
by Eq. (21), since the parametrization of μI is linear in
logðxÞ. The presence of the quantity μIðxÞ as an input in
dispersion relations for slopes does not change the algebra
of Eqs. (B10) and (B11) (which were first written [14]
assuming μI ¼ 0) and the contribution of μI can be given
by the change of the parameters

b0 → b00 ¼ b0 − 2μ0;

b1 → b01 ¼ b1 − 2μ1: ð48Þ

Introducing analytical expressions for the terms in the
imaginary parts, we fall in principal value integrations of
the form (B1) that we can solve exactly [14]. The input

forms in Eqs. (19), (21) and (22) taken into the expressions
from DRA and DRS, with numbers given in Sec. III lead to
values for ρ and the coefficients of the derivatives of the real
parts at the originDR for pp and pp̄. In the low energy end,
namely with pLAB up to 30 GeV, it is essential to use the
exact solutions for the PV integrals that appear in DRA and
DRS in the calculations of ρ and DR. Illustrating plots are
given in Appendix B.
From comparison of the results with the ρ data, the value

of the separation constant K that appears in the expressions
of DRA is determined. We obtain the interval

K ¼ from ð−310Þ to ð−287Þ: ð49Þ

In the examples and plots of the present paper we use the
value K ¼ −310.
Given the σðxÞ, BIðxÞ and μI inputs, the quantities ρ and

DR are determined by DRA and DRS. Since DR ¼
ρBR=2 − μR is a combination of μR and BR, they must
be determined by the data. We obtain that μR presents very
regular energy dependence for both pp and pp̄ systems.
We introduce the forms

μRðppÞ ¼ c0 þ c1x−ν1 þ c2 log x ð50Þ

and

μRðpp̄Þ ¼ c3 þ c4x−ν4 þ c5 log x: ð51Þ

TABLE II. Values of parameters of μR for pp and pp̄ in
Eqs. (50) and (51), obtained for K ¼ −310. The corresponding
lines are shown in Fig. 5. The central values of c0 and c2 are
shown with high precision to put coincident the zeros of ρ and
DR=2þ μR for the choice K ¼ −310.

pp
c0ðGeV−2Þ ν1 c1ðGeV−2Þ c2ðGeV−2Þ
1.897� 0.160 0.450� 0.032 −17.87� 0.92 −0.142� 0.001

pp̄
c3ðGeV−2Þ ν4 c4ðGeV−2Þ c5ðGeV−2Þ
0.653� 0.121 0.385� 0.101 −4.71� 0.74 −0.075� 0.001
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FIG. 4. (a) The lines give the predictions for the quantity ρ predicted by dispersion relations for the amplitudes DRA, showing the band
with variation ofK from −310 to −287. The marked points are obtained from the data. It is important to remark that the positions of the ρ
zeros jtj0ðppÞ ¼ 276.91 GeV2 and jtj0ðpp̄Þ ¼ 116.93 GeV2 predicted by DRA are confirmed by the data. (b) The lines show the
predictions from the dispersion relations for slopes DRS for the derivatives of the real amplitudes at the origin, which are represented by
the combinationsDR ¼ ρBR=2 − μR for pp and pp̄. The marked points represent these combinations of parameters ρ, μR, BR calculated
with the values for the experimental data presented in Sec. III.
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Numerical values for the constants are given in Table II and
plots are shown in Fig. 5.

C. Output quantities and plots

We must compare the results that are given in Sec. III
with the predictions from dispersion relations for the
quantities of the real part ρ, DR and μR for the pp and
pp̄ systems. Figure 4 shows the energy dependence of the
predictions from DRA and DRS for ρ and for the derivative
coefficient DR ¼ ρBR=2 − μR.
In Fig. 5(a) we show the energy dependence obtained for

the parameter μR for pp pp̄ and in Fig. 5(b) we form the
quotient BR ¼ 2ðDR þ μRÞ=ρ using as point values shown
in the large table with fit results, and the lines are calculated
with Eqs. (50) and (51) and the analytical results for ρ and
DR (pp and pp̄) from DRA and DRS. Note that the points
where ρ passes by zero must coincide with the zero of the
sum DR þ μR. This condition results naturally in our
solution.
We thus have a closed coherent determination of all

quantities describing forward scattering, with no free local
parameter.

III. ANALYSIS OF DATA IN FORWARD
DIRECTION

The data [20] presented in Tables III and IV cover jtj
ranges accessible for the analysis, which requires a regular
set of points with jtj ≤ 0.5 GeV2. Ideally, it would be
nice to have good quality data from the very low

jtj ≈ 0.001 GeV2 and going up to 0.1 GeV2, but this is
not always available in the low energy range.
The analysis covers all data of elastic pp and pp̄

scattering in the energy range of
ffiffiffi
s

p
from 3 to 30 GeV.

These data have been treated along the history with
incomplete theoretical expressions for dσ=dt. In this energy
range it is believed that the dynamics of forward scattering
is mainly determined by gluonic interactions resulting in
smooth energy dependence of all parameters. On the other
hand, at very low energies below pLAB ¼ 4 GeV the direct
quark-quark and quark-antiquark interactions may be more
important. This seems to be particularly visible in the
pp̄ case.
Above

ffiffiffi
s

p ¼ 30 GeV, ISR/CERN and Fermilab data,
covering very wide t ranges, deserves to be studied with
analytical forms including thewhole t range. There aremany
models [3,7] for this purpose, and the forward scattering
forms here studied are part of these full-jtj descriptions.
An important feature of our analysis is the absorption of

normalization errors that accompany the determinations of
dσ=dt. Even when these normalization indeterminacies are
small, their influence in the parameters is large. The
experimental papers use criteria for normalization that
we do not consider legal or correct, as ignoring existence
of real part, ignoring realistic t dependences in the
amplitudes, and comparison with other experiments.
Some experiments report σ values using data that are
not qualified for the analysis (as insufficient t range).
These difficulties lead to fluctuations in values of param-
eters that do not represent physical effects and do not allow
a regular global description.

 (GeV)
LAB

p
10 210

)
) 

  (
pp

 , 
pp

 -
2

 (
G

eV
Rμ

8−

7−

6−

5−

4−

3−

2−

1−

0
pp

pp 

 (GeV)
LAB

p
10 210

)
) 

 (
pp

 , 
pp

 -
2

 (
G

eV
R

B

15

20

25

30

35

pp

 pp

FIG. 5. (a) Representations of the values of the parameters μppR and μpp̄R through Eqs. (50) and (51) and the points obtained from the
data. (b) Energy dependence of the slopes BRðppÞ and BRðpp̄Þ of the real amplitudes. The lines are fully predicted by the dispersion
relations for slopes DRS (that give DR ¼ ρBR=2 − μR for pp and pp̄), dispersion relations for the amplitudes (that give ρ for pp and
pp̄) and by Eqs. (50) and (51) that give μppR and μpp̄R .

E. FERREIRA, A. K. KOHARA, and J. SESMA PHYS. REV. D 98, 094029 (2018)

094029-10



After a smooth description has been achieved and
parameters P, H, R1, R2, η1, η2 of Eq. (19) are determined,
the values of σ are imposed at each energy. Thus we
introduce a constant normalization factor f for each data

set, chosen so that the total cross section σ equals the value
determined given by Eq. (19). We thus write

dσ
dt

¼ f ×
dσ
dt

jdata: ð52Þ

TABLE III. Values of the parameters for the amplitudes of pp elastic scattering.

pLAB
ffiffiffi
s

p
N

tmin − tmax

f
σ BI − 2μI

ρ
BR μR μI

χ2
Re

(GeV) (GeV) (GeV−2) (mb) (GeV−2) (GeV−2) (GeV−2) (GeV−2) [20]

4.2 3.14 39 0.001 06–0.189 1.0520 39.18� 0.16 5.85� 0.08 −0.564� 0.020 33� 1 −7.68� 0.69 0.11� 0.03 1.165 aq
7 3.88 59 0.001 41–0.31 1.0316 39.05� 0.08 7.52� 0.04 −0.460� 0.010 33� 1 −5.60� 0.10 0.09� 0.02 1.87 aq
9.43 4.42 34 0.000 79–0.01283 0.9966 38.92� 0.09 8.2� 0.2 −0.390� 0.002 31� 1 −4.8� 0.1 0.05� 0.01 1.042 h
18.9 6.11 67 0.0009–0.10883 0.9845 38.6� 0.04 9.76� 0.08 −0.266� 0.001 30� 1 −3.14� 0.06 −0.07� 0.03 1.227 h
38.01 8.55 65 0.000 86–0.113 18 0.9792 38.44� 0.02 10.37� 0.06 −0.160� 0.004 30� 2 −1.99� 0.25 −0.13� 0.03 1.282 h
40.62 8.83 65 0.000 88–0.113 79 0.9916 38.44� 0.04 10.73� 0.1 −0.161� 0.005 29� 2 −1.88� 0.25 −0.17� 0.03 1.55 h
42.5 9.03 19 0.001 93–0.039 82 1.0007 38.43� 0.25 10.90� 0.20 −0.160� 0.010 30� 1 −1.60� 0.30 −0.25� 0.30 0.762 j
50.62 9.84 66 0.000 96–0.115 08 0.9728 38.44� 0.05 10.83� 0.1 −0.132� 0.004 30� 1 −1.6� 0.1 −0.18� 0.04 1.651 h
52 9.97 72 0.000 63–0.0306 0.9800 38.45� 0.06 11� 0.08 −0.130� 0.004 29� 1 −1.5� 0.1 −0.22� 0.08 1.297 i
52.2 9.99 18 0.001 87–0.050 41 0.9903 38.45� 0.20 11.30� 0.30 −0.132� 0.020 29� 2 −1.50� 0.10 −0.22� 0.20 1.729 j
69.84 11.53 73 0.001 11–0.108 17 1.0094 38.51� 0.06 11.05� 0.1 −0.101� 0.005 29� 1 −1.25� 0.1 −0.25� 0.05 1.238 h
70 11.54 124 0.001 85–0.083 52 1.0038 38.51� 0.07 11.05� 0.1 −0.101� 0.005 29� 1 −1.25� 0.1 −0.25� 0.05 0.888 n
80 12.32 58 0.000 66–0.029 28 0.9953 38.55� 0.06 11.3� 0.04 −0.087� 0.004 29� 1 −1.12� 0.1 −0.26� 0.01 0.960 i
100 13.76 140 0.001 70–0.151 13 1.0053 38.66� 0.07 11.48� 0.03 −0.073� 0.005 28� 1 −0.93� 0.12 −0.31� 0.02 1.054 n
100 13.76 73 0.0022–0.0388 1.0045 38.66� 0.07 11.48� 0.03 −0.073� 0.005 28� 1 −0.93� 0.12 −0.31� 0.02 1.252 r
125 15.37 92 0.001 64–0.098 28 1.0158 38.8� 0.05 11.5� 0.2 −0.05� 0.01 30� 2 −0.75� 0.3 −0.3� 0.05 0.845 n
150 16.83 92 0.001 64–0.098 28 0.9943 38.93� 0.06 11.68� 0.02 −0.037� 0.003 29� 1 −0.64� 0.03 −0.36� 0.06 1.198 n
150 16.83 68 0.0022–0.0392 0.9920 38.93� 0.06 11.68� 0.02 −0.037� 0.003 29� 1 −0.64� 0.03 −0.36� 0.06 1.192 r
175 18.17 55 0.001 81–0.097 66 1.0103 39.07� 0.07 11.7� 0.16 −0.022� 0.01 30� 2 −0.54� 0.3 −0.38� 0.04 1.152 n
199 19.37 69 0.000 66–0.0315 0.988 39.2� 0.06 11.9� 0.1 −0.017� 0.004 28� 1 −0.47� 0.05 −0.41� 0.01 1.143 i
250 21.7 64 0.0022–0.039 0.9880 39.45� 0.06 11.94� 0.01 −0.006� 0.005 28� 1 −0.35� 0.02 −0.43� 0.01 0.712 r
261 22.17 63 0.0005–0.029 78 0.994 39.5� 0.06 11.88� 0.1 −0.0034� 0.002 28� 1 −0.33� 0.03 −0.42� 0.05 1.291 i
294.4 23.54 31 0.000 37–0.0102 1.0118 39.65� 0.08 11.9� 0.1 0.003� 0.002 28� 2 −0.27� 0.05 −0.45� 0.1 0.608 k
300 23.76 60 0.0022–0.0388 0.9941 39.67� 0.08 12� 0.03 0.004� 0.002 29� 1 −0.26� 0.03 −0.45� 0.01 1.078 r
303.1 23.88 66 0.000 66–0.0316 0.9823 39.69� 0.06 12.03� 0.03 0.007� 0.003 28� 1 −0.26� 0.01 −0.47� 0.01 1.295 i
313.7 24.3 31 0.001 08–0.013 13 1.0054 39.73� 0.05 11.95� 0.05 0.007� 0.003 28� 1 −0.26� 0.06 −0.47� 0.08 0.763 l
398 27.36 60 0.000 47–0.025 79 0.979 40.07� 0.07 12.14� 0.01 0.025� 0.005 27� 2 −0.13� 0.01 −0.50� 0.02 1.272 i
499.1 30.63 32 0.0005–0.0176 1.0080 40.43� 0.05 12.1� 0.15 0.032� 0.003 27� 2 −0.06� 0.01 −0.53� 0.15 0.776 k

TABLE IV. Values of the parameters for the amplitudes of pp̄ elastic scattering.

pLAB
ffiffiffi
s

p
N

tmin − tmax
f

σ BI − 2μI
ρ

BR μR μI
χ2

Re
(GeV) (GeV) (GeV−2) (mb) (GeV−2) (GeV−2) (GeV−2) (GeV−2) [20]

4.2 3.14 48 0.001 06–0.54 1 67.45� 0.32 13.4� 0.11 0� 0.05 25� 2 −2� 0.5 0� 0.1 1.33 aq
6 3.63 83 0.001 41–0.42 1 61.44� 0.26 12.8� 0.08 −0.072� 0.005 22� 2 −1.77� 0.4 0� 0.1 1.331 ab
8 4.11 83 0.001 81–0.33 1.021 55.84� 0.05 12.5� 0.02 −0.076� 0.009 19� 1 −1.55� 0.09 0.056� 0.009 1.567 ac
10 4.54 55 0.001 81–0.355 1 53.6� 0.1 12.35� 0.05 −0.08� 0.01 17� 1 −1.4� 0.1 0.035� 0.2 1.106 ad
16 5.64 25 0.085–0.540 1.1084 49.71� 0.18 11.90� 0.10 −0.072� 0.006 16� 1 −1.2� 0.2 −0.05� 0.02 2.84 c
22.4 6.62 32 0.055–0.43 1.0242 47.53� 0.12 12.08� 0.07 −0.060� 0.020 16� 1 −0.96� 0.04 −0.08� 0.04 0.771 g
25.2 7.01 33 0.075–0.580 1.0914 46.87� 0.20 12.00� 0.05 −0.058� 0.041 16� 2 −0.92� 0.24 −0.10� 0.03 1.562 e
32.1 7.88 39 0.055–0.47 1.0950 45.66� 0.17 12.00� 0.05 −0.050� 0.010 16� 2 −0.80� 0.26 −0.14� 0.02 3.285 s
40.1 8.78 30 0.075–0.520 1.1306 44.72� 0.30 11.90� 0.08 −0.042� 0.020 16� 2 −0.73� 0.3 −0.14� 0.03 2.362 e
50 9.78 11 0.0375–0.400 1.0136 43.93� 0.20 11.58� 0.08 −0.036� 0.020 13� 1.5 −0.66� 0.10 −0.18� 0.02 2.114 f
70 11.54 125 0.001 85–0.084 68 1.0076 42.97� 0.11 12.05� 0.15 −0.02� 0.02 16� 2 −0.56� 0.2 −0.22� 0.05 1.279 n
70 11.54 125 0.0375–0.500 1.0076 42.97� 0.11 12.05� 0.15 −0.02� 0.02 16� 2 −0.56� 0.2 −0.22� 0.05 1.279 f
125 15.37 140 0.001 64–0.209 31 1.0101 41.92� 0.08 12.13� 0.1 0.003� 0.001 16� 2 −0.43� 0.2 −0.32� 0.05 1.206 n
150 16.83 140 0.001 64–0.209 31 0.996 41.73� 0.11 12.14� 0.15 0.01� 0.005 16� 2 −0.4� 0.2 −0.38� 0.05 1.205 n
175 18.17 86 0.001 81–0.097 66 1.0019 41.61� 0.14 12.19� 0.12 0.015� 0.01 16� 2 −0.37� 0.2 −0.4� 0.05 1.051 n
175 18.17 86 0.0375–0.600 1.0019 41.61� 0.14 12.19� 0.12 0.015� 0.01 16� 2 −0.37� 0.2 −0.4� 0.05 1.051 f
200 19.42 86 0.001 81–0.536 56 1.0125 41.54� 0.09 12� 0.2 0.02� 0.006 16� 2 −0.35� 0.2 −0.41� 0.07 1.359 n
313.7 24.3 32 0.001 08–0.013 76 0.9911 41.51� 0.04 12.31� 0.26 0.036� 0.002 17� 1 −0.28� 0.01 −0.46� 0.07 0.51 l
491.5 30.4 29 0.000 67–0.015 61 0.9859 41.76� 0.15 12.2� 0.2 0.051� 0.003 17� 2 −0.23� 0.18 −0.53� 0.1 1.525 k
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The value of f for the data set of each experiment is given in
Tables III and IV. Thus the central values of σ are assumed
and f is determined. The error bars in σ and other quantities
represent sensitivities of the fit to each parameter individu-
ally, without freedom for correlations.
The resulting suggested parameter values from our

analysis are collected in Tables III and IV. The input
energies for the data are written primarily in terms of pLAB,
as has been more usual in the presentation of data in this
range, but the table also includes

ffiffiffi
s

p
values. In some cases,

mainly at very low energies, where data are not rich, we
combine information from different experiments of same or
nearby energies, in the same numerical treatment and in
plots. We observe good matching of data sets.
We show examples of the treatment of the dσ=dt data in

many plots. More detailed information is given in the figure
captions. The log jtj horizontal scale helps to expand and
exhibit the small jtj behavior, and it is remarkable that often
the descriptions work very well up to jtj ¼ 0.2, beyond the
strictly forward range that determines parameters. We
interpret that this is so thanks to appropriate form assumed
for the amplitudes, and to the control established by DRA
and DRS.
Ranges where ρ passes by zero are particularly delicate.

The experiments at
ffiffiffi
s

p ¼ 23.542 and 23.882 GeV
(pLAB ¼ 294.4 and 303.1 GeV) give an example in which
there is discrepancy in literature for the ρ sign. Our
treatment solves the discrepancy, namely we show that ρ
passes by zero in this region, and this is valid for both
experiments. Parameters are in Table III.
For pp̄ in the range of our analysis ρ is always small and

the data are poor. We are then strongly dependent on the
predictions from DRA and DRS.
We inspect and analyze the data using a CERN MINUIT

program for the determination of χ2, nominally with six
parameters. We use the form for the total pp and pp̄ cross
sections in Eq. (19), and iteratively with observations of the
behavior of BI and μI , and use of dispersion relations
DRA and DRS as guides for the real parts. Simultaneously
we obtain a value for the subtraction constant K.
Determinations of BI, μI and the normalization factor f
are made simultaneously. BI, μI are well represented by the
simple analytical forms of Eqs. (21) and (22) and Table I.
Once the solution for each data set is obtained, the error
bars are obtained relaxing the value of each quantity in the
fitting code, so that they represent the sensitivity of the χ2

value, but in general do not include correlations.
Details of the data sets and of the calculation of the

analytical representations are given in the figure captions.

A. pp data analyzed

1. Piles of data in four experiments

Figure 6 shows data from four experiments, [20], [20],
[20], and [20], that cover regularly large energy and jtj

ranges. In the plots these are called Beznogikh (1973) [20],
Kuznetsov (1981) [20], Fajardo (1981) [20] and Burq
(1983) [20]. The parameters for the lines are given in
Table III. We observe that the representations obtained by
Eqs. (2)–(4) are very faithful to the data up to surprisingly
large jtj values, namely above jtj ¼ 0.1 GeV2 and up to 0.3
in some cases. The compatibility of different experiments
can be noted.

2. Low energies: pLAB = 4–10 GeV

In the very low energy end, there are forward data from
Jenni et al. [20] at pLAB ¼ 4.2, 7 and 10 GeV. At 4.2 and
7 GeV we join Ambats et al. [20] at 3.65 and 6 GeV, with
factors 0.99 to compensate for the energy dependence.
At pLAB ¼ 10 GeV, to exhibit a representative recom-

mendation we join to Jenni et al. [20] the data from
Beznogikh et al. [20] at 9.43 GeV and from Brandenburg
et al. [20] at 10.4 GeV, with energy adjustment factors,
forming a large set with 153 data points.
In all these cases the matching of the experimental sets is

very good, and we are then able to find representations of
very good quality for dσ=dt in elastic pp scattering in all
this energy range. The parameters are shown in Table III
and the data and representative curves are shown in Fig. 7.

3. pp scattering in CERN at pLAB = 294.4, 313.7
and 499.1 GeV

The energy pLAB ¼ 294.4 GeV, with
ffiffiffi
s

p ¼ 23.54 GeV,
of a CERN measurement [20], shown in Fig. 8 is close to
the energy

ffiffiffi
s

p ¼ 23.88 GeV (namely pLAB ¼ 303 GeV)
of the Fermilab data [20] shown in Fig. 6. The para-
meters are given in Table III, showing the characteristic
feature that ρ crosses zero in this region. The data
of the CERN measurements, also at

ffiffiffi
s

p ¼ 24.3 GeV
(thus pLAB ¼ 313.7 GeV), and

ffiffiffi
s

p ¼ 30.63 GeV (thus
pLAB ¼ 499.1 GeV) are shown together in Fig. 8. All
descriptions are of high precision. Other measurements in
this energy region, at pLAB ¼ 303 and 398 GeV, are
included in Fig. 6.

4. Large jtj: Behavior beyond the forward range

The situation at large jtj is shown with Ayres et al. data
[20] in Fig. 9, where we study the behavior for jtj beyond
0.1 GeV2. These data do not cover the low-jtj range, and
are plotted together with the lines representing the
Beznogikh (1973) and Fajardo (1981) data at the corre-
sponding energies. We see a remarkable matching of
normalization in the points with smaller jtj and an increas-
ing deviation as jtj increases. We here confirm that the
equations for the amplitudes in forward scattering have the
validity confirmed up to 0.1 GeV, where regular deviation
of the data upwards may start.
Two other plots in the same Fig. 9 show the behavior of

data in comparison with the analytic representations for jtj
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beyond the strict forward region. Details are given in the
figure caption.

B. pp̄ data analyzed

At low energies, the analysis of the pp̄ forward scatter-
ing data is particularly difficult, because ρ is very small, and
changes sign for pLAB ¼ 117 GeV (

ffiffiffi
s

p
near 12 GeV).

1. pp̄ in the range pLAB = 4.2–10.0

The range is
ffiffiffi
s

p ¼ 3.14–4.54 GeV in pp̄ scattering is
difficult to treat, because ρ is very small, possibly passing
through zero in this range. In Fig. 10 we show data
collected at the energies pLAB ¼ 4.2, 6.0, 8.0 and
10.0 GeV corresponding to measurements of Jenni et al.
[20] with jtj starting at about 10−3 GeV2. These data are not
smooth and do not cover a wide t range, so that they are
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FIG. 6. Data and suggested representations for pp scattering in the energy range pLAB ¼ 10 to 400 GeV, as reported in four different
series of measurements [20], [20], [20] and [20]. The data are regular, cover t ranges adequate for determination of forward scattering
quantities, and the representation with parameters given in Table III are extremely precise. The compatibility among the four
experiments is remarkable. The parameter ρ and the combination ðρBR=2 − μRÞ are in agreement with predictions from dispersion
relations for amplitudes DRA and for their derivatives DRS. The framework is explained in the text. The zero of ρ at pLAB ¼ 277 GeV
that occurs in the energy range of these data is well treated by the representations.
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combined with other data in the range to build sufficient
sets. The assemblage is shown in plots, with the lines
representing the results of the analysis, with parameters
given in Table IV.
At 4.2 GeV the combination is made with the pLAB ¼

5 GeV data of Ambats et al. [20], multiplied by 1.06 to
account for the energy dependence. At 6 GeV the
merging is with Braun et al. [20] at pLAB ¼ 5.7 GeV
(multiplied by the energy dependence factor 0.98). At
8 GeV the combination is made with Russ et al. [20] at
the same energy. At 10 GeV the set is completed with
data at 10.4 GeV from Brandenburg et al. [20] with a
factor 1.0117. The energy factors are based on the
squared ratio of the total cross section given by the
parametrized σ input. We thus obtain values for param-
eters that give reliable proposals in a region of energies
that is very difficult, because ρ is very small. Our
representations with Eqs. (2)–(4) and parameters given
in Table IV give correct descriptions of these data. The
dispersion relations predictions for ρ and for the deriva-
tive combination ρBR=2 − μR are satisfied.

2. pp̄ data in the mid-jtj range for pLAB = 16–50 GeV

The data in Fig. 11, with pLAB ¼ 16–50 GeV, cover
only the mid-jtj range. It is interesting to observe in
general that the representation of data using the forward
scattering expression for dσ=dt, in principle is only
valid up to jtj ¼ 0.1 GeV2, in many cases remain good
up to 0.5.
According to Ayres [20], Akerlof data [20], also at mid-

jtj, have a normalization problem, and then are not included
in our report in Table IV.

3. pp̄ in the range pLAB = 70–200 GeV

This is a sensitive range for the determination of ρ, due to
the change of sign. In pp̄ ρ is small and negative at low
energies up to about pLAB ¼ 116 GeV. The data by Ayres
[20] at pLAB ¼ 50, 70, 100, 140 and 175 GeV are regular
and with small error bars but are restricted to jtj values that
are not small enough for determination of forward scatter-
ing parameters, and we then form combinations with other
sets of data, as shown in Fig. 12. At pLAB ¼ 70 and
175 GeV these data can be combined with the data from
Fajardo et al. [20] to produce sets that cover both small and
mid-jtj values. Some parts of Fajardo data [20] in the higher
jtj part are excluded, giving place to Ayres data [20], which
are more regular. It is remarkable that the data from the two
experiments match very well, and a common solution
seems to be adequate. At pLAB ¼ 70GeV the data give
ρ compatible with zero, and in Table IV we choose the
value given by the DRA prediction. This is a choice, and
the value and sign have the corresponding uncertainty.
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FIG. 7. Data for pp scattering in the low energy end, with Jenni
points [20] at 4.2, 7 and 10 GeV in the forward range. At 4.2 and
7 GeV, data from Ambats et al. [20] at 3.65 and 6 GeV
respectively with large jtj are incorporated in the sets, after
multiplication by the same factor 0.99 accounting for the energy
dependence. At pLAB ¼ 10 we plot together in a single set data
from three different experiments [20], [20], and [20] at 9.43, 10
and 10.4 GeV respectively, introducing conversion factor 0.97 at
10.24 GeV to account for energy dependence. For 9.43 the factor
is nearly 1, and is ignored. In all cases the connection of the data
sets is remarkable. The data at 9.43 GeVare also plotted in a pile
of the same experiment [20] in Fig. 6. The parameters are given in
Table III.
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FIG. 9. Deviations for large jtj. In the first plot (a) (lhs at top) we show data for jtj in the frontier of the forward region from Ayres et al.
[20]. The lines are NOT obtained with these data, but rather are taken from the description of the forward range in Fig. 6, with the
parameters as given in Table III, at the corresponding energies. For the 140 GeV data there is no corresponding low-jtj experiment, and
we use the line for 150 GeV [20]. The matching of points of lowest jtj at each energy is impressive, showing that different experiments
succeed in the normalization of their data. At all energies there is a progressive detachment between data and predicted curves starting at,
say, 0.1 GeV, showing clearly that these data by themselves cannot be used for determinations. In the second plot (b) (rhs at top) we show
the connection between the solution at 199 GeV [20] and the forward part (up to 0.2 GeV2) of data by Schiz et al. [20] that starts at
jtj ¼ 0.02 GeV2. The solid line represents the curve for Kuznetsov data at 199 GeV in Fig. 6 with parameters given in Table III. The
agreement of Schiz data with the curve up to jtj ≈ 0.1 GeV2 is remarkable but it seems that improvement could be obtained with
normalization. We observe that for higher jtj there appears a displacement between data and the curve, exhibiting again the limitation for
the use of the forward amplitudes. For illustrative purpose, we show together Akerlof et al. points [20] added to the 200 GeV plot,
demonstrating that they should not be considered in good agreement (notice that the scale is very tight), presenting strong displacement
as jtj increases. In the third plot (c) (bottom) we show Apokin et al. data [20] at pLAB ¼ 42.5 and 52.2 GeV, covering smaller jtj ranges,
inserted together with Beznogikh [20] and Kuznetsov [20] data respectively. We observe compatibility (the 42.5 data are corrected with
factor 1.02 in the plot, to reduce to energy 40.62 GeV). The lines of the solution for Apokin [20] are shown in dashed form, while the
Beznogikh and Kuznetsov lines are solid. There is reasonable compatibility, but it is clear that the measurements reaching smaller jtj
values are more qualified for parameter determination.
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We observe in Table IV that at pLAB ¼ 125 GeV, ρ is
positive, confirming the change of sign that occurs
at pLAB ¼ 117 GeV.
At all energies of the range, the suggested solutions in

Table IV give very good descriptions, as indicated by the
low χ2 values. We are able to follow the DRA and DRS
predictions for the value of the amplitude and for its
derivative at the origin. It is interesting to observe that
often the representation of data using the forward scattering
expression for dσ=dt, in principle only valid up to
jtj ¼ 0.1 GeV2, in many cases remains good up to
0.2 GeV2. This is seen also in both Figs. 11 and 12.
We observe that in this range the numbers reported in

experimental papers for the ρ parameter are very irregular
and with contradictions.

4. pp̄ in the range pLAB = 300–500 GeV

At the high energies
ffiffiffi
s

p ¼ 24.3 and 30.4 GeV there are
data from CERN ISR, with good precision in forward
scattering measurements. The treatment of these data with
our inputs is reproduced in Fig. 13.
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FIG. 10. Low energy end. At 4.2 GeV, data from Jenni et al. [20]
together with data fromAmbats [20] at 5 GeV (multiplied by 1.06 to
account for energy dependence). Data from Jenni et al. [20] at 6GeV,
and fromBraun et al. [20] forpLAB ¼ 5.7 GeV (multiplied by 0.98).
Data from Jenni et al. [20] and fromRuss et al. [20] at 8GeV, and data
from Jenni et al. [20] at 10 GeVand from Brandenburg et al. [20] at
10.4 GeV (multiplied by 1.0117). Visually (up to jtj ≈ GeV2) and in
the calculations the matching of data is impressive. Parameter values
for each line are given in Table IV.
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FIG. 12. Data from Fajardo et al. [20], and from Ayres et al.
[20] described by the parameters given in Table IV. At 125 GeV
the solution refers only to Fajardo; the Ayres points at 100 and
140 GeV are not fitted, and only marked together with the
125 GeV line of Fajardo. The Jenni data are restricted to a range
of large jtj values, with difficulty for determination of parameters,
but are important to confirm the data of Fajardo. It is interesting to
observe that dσ=dt for large jtj is not very sensitive to the energy.
At 70 and 175 GeV, there are measurements for both Jenni and
Fajard, and then the respective data are merged to form joint sets
for the unified determination of parameters that are given in
Table IV. At pLAB ¼ 150 and 200 GeV the points are only from
Fajardo.
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IV. CONCLUDING REMARKS

In this paper we propose a revision of the existing
information on forward parameters in pp and pp̄ scatter-
ing, giving coherent and precise description of all elastic
data in the energy range from pLAB ≈ 4 to 500 GeV, namelyffiffiffi
s

p
≈ ¼ 3 to 30 GeV.
We treat the fundamental problem of the identification of

the real and imaginary parts of the complex amplitude in
dσ=dt, using Eqs. (3) and (4) and exact solutions of
dispersion relations for amplitudes (DRA) and for slopes
(DRS). The Coulomb interference is included with correct
expression for the phase in Eq. (2), which depends on the
actual analytical form of the real amplitude, and is studied
in Appendix A. We do not perform open fittings, but rather
rationalize descriptions, in an interplay between data and
mathematical representations, building a bridge for the
construction of full dynamical models.
The analysis of the dσ=dt data leads to the parameter

values presented in Tables III and IV, given in Sec. III.
Determination of parameters is guided by dispersion
relations and criteria of regularity in the energy depend-
ence, in general achieving low χ2 values, with visual
performances exhibited in plots in Sec. III. The description
is coherent and theoretically respectable and formally
simple.
A global analysis in the low energy range must be

restricted to the forward range, because there are not
enough data for a full-t study of the amplitudes. Since
the imaginary amplitudes dominate at small jtj, our

precision work has particular importance as an investiga-
tion of the structure of the real parts. At low energies the use
of dispersion relations requires the use of exact solutions
for principal value integrals, as we prove in Appendix B.
For a precise treatment of the data, the t dependence of

the amplitudes cannot be limited to exponential forms. It is
known that the imaginary part must point to a zero because
there is a dip in dσ=dt shown when data have more
extended jtj. Also the real part must show a zero when
ρ is positive, determined by Martin’s theorem [21]. We we
thus are led to the amplitudes written in Eqs. (3) and (4). To
deal with this complexity without ambiguities in the
analysis of data, we make use of the dispersion relations
for slopes (DRS), which determine the derivatives of the
real part when the derivatives of the imaginary parts are
given as a function of the energy.
The proposals for σ, BI and μI (for pp and for pp̄) in

Eqs. (19), (21) and ((22), obtained from the data, are basic
in our work as inputs for DRA and DRS. Figure 2 shows
that the analytical forms have correct extensions up to the
very distant LHC energies.
Starting with the unitarized form for σðxÞ originated in

Pomeron/Reggeon phenomenology [22], and comple-
mented with the jtj structure of the imaginary part, the
description of the dσ=dt data shows that all information in
elastic scattering at low energies can be represented by
simple expressions for the amplitudes. We believe that the
simple forms of energy dependence are a consequence of
the very complex gluonic dynamics of QCD. Local effects
that may be meaningful microscopically are absorbed in the
complexity and do not become visible in elastic data.
In Appendix C it is shown that the log-squared form of

the total cross section in Eq. (19) is shown to be equivalent
to a simple-pole-Pomeron/Reggeon form, with powers
instead of logarithms, and thus without limitation for the
analytical solutions of PV integrals.
As an important test for the amplitudes, Fig. 3 in Sec. II

shows that the integrated elastic cross section σelastic very
well reproduces the data at higher energies (ISR, Fermilab,
LHC) [4,5]. The ratio σelastic=σtotal is small, corresponding
to a large fraction of diffractive and inelastic contributions,
which have not been measured in the low energy range and
are not in our scope. The single and double diffractive
processes, measured at ISR/CERN, Fermilab and LHC
[4,5], are theoretically studied in microscopic terms based
on multi-Pomeron/Reggeon ideas [8] and on gluonic
dynamics of the color glass condensate [9].
The analysis of the pp̄ data at low energies is particularly

delicate, because ρ is very small and has change of sign.
Most pp̄ data do not cover jtj ranges sufficient for
determination of the amplitude parameters without support
of DRA, DRS and search for regular energy dependence.
We include as much pp̄ information as possible, forming
combinations of different experiments at nearby energies to
have sets suitable for analysis, arriving at reliable solutions.
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FIG. 13. Data from Breedon et al. [20] and from Amos et al.
[20] described by the parameters given in Table IV. The numerical
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p ¼ 24.3 GeV) are
available from the thesis of author Breedon [20], and also in the
CERN Library.
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Figure 4 shows that ρ and the derivativeDR¼ρBR=2−μR
follow DRA and DRS predictions. Figure 5 shows the
proposed decomposition of DR, with μR given by Eqs. (50)
and (51), and shows the calculated BR, compared to values
obtained from the data. Everything seems satisfactory,
including the behavior as high energies, where these
quantities appear [7,10]. Negative μR predicts the zero of
the real amplitude in a region where ρ is positive, as at high
energies [21], with the real zero approaching jtj ¼ 0 with
increasing energy. Of course alternative solutions can be
obtained for μR and BR, maintaining the combination
Eq. (11) as fixed by DRS.
This extensive work is an effort to place order in the

multitude of determinations of pp and pp̄ forward scatter-
ing parameters at low energies. The treatment is as simple
as possible, without relation to any specific model based on
microscopic ingredients, and identifies the real and imagi-
nary parts of the complex elastic amplitude. We hope it can
be considered as necessary and useful.
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APPENDIX A: COULOMB PHASE

We here present the Coulomb interference phase ϕ used
in the phenomenology. This phase was studied by several
authors [16].
The expression for the phase depends on the analytical

structure of the real and imaginary parts of the nuclear
amplitude and also on the Coulomb amplitude and electro-
magnetic form factor. The real and imaginary nuclear
amplitudes are given by Eqs. (3) and (4) respectively
and the Coulomb amplitude is given by Eq. (6) with the
proton form factor (7). To simplify calculations, we may
alternatively use the exponential representation for the form
factor

fðtÞ ¼ e2t=Λ
2

; ðA1Þ

with Λ2 ¼ 0.71 GeV2, trusting that differences in results
for the phases with different form factors are unimportant,
as confirmed by Cahn [16].
The Coulomb-nuclear-interference amplitude is given by

FNþCðs; tÞ ¼ FCðs; tÞeiαϕ þ FNðs; tÞ ðA2Þ

with normalization defined by

σ ¼ 4π

s
ImFNðt ¼ 0Þ; dσ

dt
¼ π

s2
jFj2: ðA3Þ

The correspondence between the dimensionless nuclear
amplitude FN and the phenomenological TN is given by

TNðs; tÞ ¼
ffiffiffi
π

p
ðℏcÞ2

FNðs; tÞ
s

: ðA4Þ

We start from the expression for the phase

ϕðs; tÞ ¼ ∓
Z

∞

0

dt0 ln
�
t0

t

	
d
dt0

�
f2ðt0ÞFNðs; t0Þ

FNðs; 0Þ
�
; ðA5Þ

with the signs ∓ corresponding to the pp=pp̄ systems.
As a generalization with respect to Cahn’s calculation,

we take for the nuclear amplitude the same expressions in
Eqs. (3) and (4). Then we need to evaluate integrals

Hkðt; bβÞ ¼
Z

−∞

0

dt0 ln
�
t0

t

	
d
dt0

½t0ke4t0=Λ2

eBβt0=2�

¼
Z

−∞

0

dt0 ln
�
t0

t

	
d
dt0

½t0kebβt0 �; ðA6Þ

where we have used the definition

bβ ¼
4

Λ2
þ Bβ

2
ðA7Þ

with β ¼ R, I.
The results of the integrations (k ¼ 0, 1) are

H0 ¼ γ þ logð−bβtÞ; H1 ¼
1

bβ
; ðA8Þ

where γ ¼ 0.5772 is the Euler Gamma constant. The phase
is then written

ϕðs; tÞ ¼ ∓ 1

ρþ i

��
−
μR
bR

þ ρðγ þ logð−bRtÞÞ
�

þ i

�
−
μI
bI

þ γ þ logð−bItÞ
��

; ðA9Þ

with real and imaginary parts respectively

ϕRðtÞ ¼∓
�

1

1þ ρ2

��
−
μI
bI

þ logðbIÞ
	

þ ρ

�
−
μR
bR

þ ρ logðbRÞ
	�

þ γþ logð−tÞ
�

ðA10Þ

and

ϕIðtÞ ¼ ∓ 1

1þ ρ2

�
ρ

�
−
μI
bI

þ logðbIÞ
	

−
�
−
μR
bR

þ ρ logðbRÞ
	�

: ðA11Þ

Equations (A10) and (A11) are our final results for the
phase calculated with form factors, in a generalization of
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the work by Cahn [16], assuming more complete structures
for the real and imaginary parts of the scattering amplitude.
It may be of practical usefulness to define

CR ¼ −
μR
bR

þ ρ logðbRÞ ðA12Þ

and

CI ¼ −
μI
bI

þ logðbIÞ ðA13Þ

and then write

ϕRðtÞ ¼ ∓
�

1

1þ ρ2
½CI þ ρCR� þ γ þ logð−tÞ

�
ðA14Þ

and

ϕIðtÞ ¼ ∓ 1

1þ ρ2
½ρCI − CR�: ðA15Þ

It must be observed that in these expressions bR, bI and
−t have compatible units, as GeV−2 and GeV2. The result is
simple: in the real part the t dependence is purely linear in
logð−tÞ, the imaginary part is very small constant, and there
is no explicit energy dependence.
In the simplified case μR ¼ μI ¼ 0, BR ¼ BI ¼ B,

bR ¼ bI ¼ b ¼ 4

Λ2
þ B

2

we obtain Cahn’s original form.

APPENDIX B: DISPERSION RELATIONS
IN EXPANDED FORMS

1. Dispersion relations for amplitudes

Introduction of the inputs of σðxÞ, BIðxÞ, μIðxÞ given in
Eqs. (19), (21), and (22), DRA and DRS become the sum of
terms with principal value integrals, all of the general form

Iðn; λ; xÞ ¼ P
Z þ∞

1

x0λlognðx0Þ
x02 − x2

dx0; ðB1Þ

belonging to a family of integrals that can be solved
analytically in terms of Lerch’s transcendents Φ [14] with
the form

Iðn; λ; xÞ ¼ π

2x
∂n

∂λn
�
xλ tan

�
π

2
λ

	�

þ ð−1Þnn!
2nþ1x2

Φ
�
1

x2
; nþ 1;

1þ λ

2

	
: ðB2Þ

Collecting terms, we have for the even and odd parts of
DRA

ReFþðx; 0Þ ¼ K þ 4m2x2

π
½Ið0; 0; xÞðPþHlog2x0Þ

þ Ið1; 0; xÞð−2H log x0Þ
þ Ið2; 0; xÞH þ Ið0;−η1; xÞR1x

η1
0 � ðB3Þ

and

ReF−ðx; 0Þ ¼
4m2x
π

Ið0; 1 − η2; xÞR2x
η2
0 : ðB4Þ

Equations (B3) and (B4) lead to the real parts of the
complex amplitude for pp and pp̄ elastic scattering, and
then we have predictions for the parameters ρ (pp, pp̄).
Using the practical truncated expression for the tran-

scendents (up to first order in 1=x) we have for the even
combination

1

2
½ðσρÞðpp̄Þ þ ðσρÞðppÞ� ¼ 1

2m2x
ReFþðx;0Þ

≈ T1ðxÞ þ T2ðxÞ þ T3ðxÞ; ðB5Þ

with

T1ðxÞ ¼ Hπ log

�
x
x0

	
; ðB6Þ

T2ðxÞ ¼
K

2m2x

þ 2

πx
ðPþH½log2ðx0Þ þ 2 logðx0Þ þ 2�Þ; ðB7Þ

T3ðxÞ ¼ R1x
η1
0

�
−x−η1 tan

�
πη1
2

	
þ 1

x
2=π
1 − η1

�
; ðB8Þ

and for the odd part

1

2
½ðσρÞðpp̄Þ − ðσρÞðppÞ�

¼ 1

2m2x
ReF−ðx; 0Þ

≈ R2x
η2
0

�
x−η2 cot

�
πη2
2

	
þ 1

x2
2=π
2 − η2

�
: ðB9Þ

Additional terms are of order Oðx−4Þ.
Using the parameter values for P, H, R1, R2 in Table I

and with K ¼ −310, the calculated ρ values are plotted in
Fig. 14. To demonstrate the importance of the calculation
with the exact solutions for the PV integrals, we plot in the
figure the ρ values obtained with the above expressions
(namely first order in the transcendents) and in zero order
(very large x, meaning the above expressions without the
last terms with 2=π=1 − η1 and 2=π=2 − η2). From the
figure we observe the importance of the improved solutions
at low energies.
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2. Dispersion relations for slopes

In the same way, the DRS terms are collected in terms of the standard integrals. We obtain for the even part

∂ReFþðx; tÞ
∂t

����
t¼0

¼ 2m2x2

π
fIð0; 0; xÞðPþHlog2x0Þb00 þ Ið1; 0; xÞ½ð−2H log x0Þb00 þ ðPþHlog2x0Þb01�

þ Ið2; 0; xÞ½Hb00 − 2H log x0b01 þ ðPþHlog2x0Þb2� þ Ið3; 0; xÞ½−2H log x0b2 þHb01� þ Ið4; 0; xÞHb2

þ R1x
η1
0 ðIð0;−η1; xÞb00 þ Ið1;−η1; xÞb01 þ Ið2;−η1; xÞb2 þ Ið0;−η1 − η3; xÞb3Þ

þ R2x
η2
0 Ið0;−η2 − η4; xÞb4 þ ½ðPþHlog2x0ÞIð0;−η3; xÞ

− 2H log x0Ið1;−η3; xÞ þHIð2;−η3; xÞ�b3g; ðB10Þ
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FIG. 14. Demonstration of the importance of calculations with improved solutions for the PV integrals. (a) ρ parameters. (b) and
(c) Energy dependence of the derivatives of the real amplitudes at t ¼ 0. The lines are fully predicted by the dispersion relations for the
amplitudes (that give ρ for pp and pp̄) and by dispersion relations for slopes DRS (that give DR ¼ ρBR=2 − μR for pp and pp̄).
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and for the odd part

∂ReF−ðx; tÞ
∂t

����
t¼0

¼ 2m2x
π

fR2x
η2
0 ðIð0; 1 − η2; xÞb00 þ Ið1; 1 − η2; xÞb01 þ Ið2; 1 − η2; xÞb2 þ Ið0; 1 − η2 − η3; xÞb3Þ

þ ððPþHlog2x0ÞIð0; 1 − η4; xÞ − 2H log x0Ið1; 1 − η4; xÞ þHIð2; 1 − η4; xÞ
þ R1x

η1
0 Ið0; 1 − η1 − η4; xÞÞb4g: ðB11Þ

We recall Eq. (48) with the definitions of b00 and b01.
Explicit expressions for the derivative DR including only the first terms of the expansions of the transcendents are

1

2m2x
∂ReFþðx; tÞ

∂t
����
t¼0

¼ 1

2
fσpp̄½ρBR=2 − μR�ðpp̄Þ þ σpp½ρBR=2 − μR�ðppÞg

¼ 1

π
½ðPþHlog2x0ÞG1ðxÞ þHG2ðxÞ þ R1G3ðxÞ þ R2G4ðxÞ�; ðB12Þ

where

G1ðxÞ≡ b00 − b01 þ 2b2
x

þ b01π
2

4
þ b2π2

2
log xþ b3

�
−
π

2
x−η3 tan

�
πη3
2

	
þ 1

x
1

1 − η3

	
; ðB13Þ

G2ðxÞ≡
�
π2

4

�
3log2xþ π2

2

	
−
6

x

�
ðb01 − 2b2 log x0Þ − 2b00 log x0

�
π2

4
−
1

x

	

þ ðb00 − 2b01 log x0Þ
�
π2

2
log xþ 2

x

	
þ b2

�
π2 log x

�
log2xþ π2

2

	
þ 24

x

�

− πb3x−η3
�
log x tan

�
πη3
2

	�
− log x0 þ

1

2
log x

	
−
π

2
sec2

�
πη3
2

	�
log

�
x
x0

	
−
π

2
tan

�
πη3
2

		�

þ 2b3
xð1 − η3Þ2

�
log x0 þ

1

1 − η3

	
; ðB14Þ

G3ðxÞ≡ xη10

�
b00

�
π

2
x−η1 tan

�
−
πη1
2

	
þ 1

x
1

1 − η1

�
þ b01

π

2
x−η1

�
π

2
sec2

�
πη1
2

	
− tan

�
πη1
2

	
log x

�

− b2
π2

2
x−η1

�
sec2

�
πη1
2

	�
π

2
tan

�
πη1
2

	
− log x

	
þ 1

π
tan

�
πη1
2

	
log2x

�

þ b3

�
−
π

2
x−η1−η3 tan

�
πðη1 þ η3Þ

2

	
þ 1

x
1

1 − η1 − η3

�
þ 1

x
1

ð1 − η1Þ2
�
−b01 þ

2b2
ð1 − η1Þ

	�
; ðB15Þ

G4ðxÞ≡ xη20 b4

�
−
π

2
x−η2−η4 tan

�
πðη2 þ η4Þ

2

	
þ 1

x
1

1 − η2 − η4

�
: ðB16Þ

For the odd combination we have

1

2m2x
∂ReF−ðx; tÞ

∂t
����
t¼0

¼ 1

2
fσpp̄½ρBR=2 − μR�ðpp̄Þ − σpp½ρBR=2 − μR�ðppÞg

¼ 1

π
½ðPþHlog2x0ÞF1ðxÞ þHF2ðxÞ þ R1F3ðxÞ þ R2F4ðxÞ�; ðB17Þ

where

F1ðxÞ≡ b4

�
π

2
x−η4 cot

�
πη2
2

	
þ 1

x2
1

2 − η4

	
; ðB18Þ
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F2ðxÞ≡b4

�
π

2
x−η4

�
πcsc2

�
πη4
2

	�
log

�
x
x0

	
þπ

2
cot

�
πη4
2

		

þcot

�
πη4
2

	
logxð−2logx0þ logxÞ

�

þ 2

x2
1

ð2−η4Þ2
�
logx0þ

1

2−η4

	�
; ðB19Þ

F3ðxÞ≡b4x
η1
0

�
π

2
x−η1−η4 cot

�
π

2
ðη1þη4Þ

	
þ 1

x2
1

2−η1−η3

�
;

ðB20Þ

F4ðxÞ≡xη20

�
π

2
x−η2

�
cot

�
πη2
2

	
ðb00þb01 logxþb2log2xÞ

þπ

2
csc2

�
πη2
2

	�
b01þπ cot

�
πη2
2

	
b2þ2 logxb2

	

þx−η3 cot

�
π

2
ðη2þη3Þ

	
b3

�

þ 1

x2
1

2−η3

�
b00−

b01
2−η2

þ 2b2
ð2−η2Þ2

þ ð2−η2Þb3
2−η2−η3

��
:

ðB21Þ

In Fig. 14 the quantities DR for pp and pp̄ are plotted
using the above expressions (first order in the transcen-
dents) and the calculations where Φ is ignored.
These equations, here called dispersion relations for

amplitudes (DRA) and dispersion relations for slopes
(DRS), control quantities observed in forward scattering
and should be used as basic information for phenomeno-
logical and theoretical description of forward pp and pp̄
scattering. Since their introduction [12] they were shown to
be important for the analysis of forward scattering, deter-
mining structure and parameters of the real amplitude.

APPENDIX C: ALTERNATIVE SINGLE POLE
POMERON APPROACH

In the log2 s description of total cross section (high
energies) the Pomeron intercept can be recovered when we
take a convenient energy range of the total cross section in
Eq. (18). Comparative analysis between the two main
alternatives for the total cross section was performed
[22] before the LHC era. In the present work we based
our calculation of dispersion relations in the log2 s
approach (unitarized model). On the other hand in the
log2 s description of total cross section (high energies) the
Pomeron intercept (single pole description) can be recov-
ered when we take a convenient energy range of the total
cross section. First we rewrite the dominant terms at high
energies in the form

σHEðsÞ ¼ PþHlog2
�
s0
s1

	
− 4H log

�
s0
s1

	
log

� ffiffiffiffiffi
s
s1

r 	

þ 4Hlog2
� ffiffiffiffiffi

s
s1

r 	
; ðC1Þ

where we have introduced a new scale s1 (in GeV2) chosen
appropriately in order to obtain the Pomeron intercept.
After some algebra we can rewrite the above equation as

σHEðsÞ ¼ P −H log2
�
s0
s1

	

þ 2H log2
�
s0
s1

	�
1þ yþ 1

2
y2
	
; ðC2Þ

where

y≡ log

��
s
s1

	
−1= logðs0s1Þ

�
: ðC3Þ

For values y ≪ 1, corresponding to
ffiffiffi
s

p
≪ 106 GeV, we

can exponentiate the terms in parentheses of Eq. (C2),
writing

σHEðsÞ ≃ P −Hlog2
�
s0
s1

	
þ 2Hlog2

�
s0
s1

	
eðyÞ

¼ PþHlog2
�
s0
s1

	�
2

�
s
s1

	
ϵ0
− 1

�
; ðC4Þ

where

ϵ0 ¼ −1= log
�
s0
s1

	
; ðC5Þ

which is the Pomeron intercept coefficient similar to the
one in the Donnachie and Landshoff description. From the
definition of ϵ0 in terms of the scales, s0 and s1, we can
rewrite Eq. (C4) as

σHEðsÞ ≃ Pþ H
ϵ0

�
2e−1

�
s
s0

	
ϵ0
− 1

�
: ðC6Þ

Of course Eq. (C6) is compatible with Eq. (C2) only in a
limited range of energy, and if one wants a better descrip-
tion of low energy data using Eq. (C2), the parameters P,H
and also the parameters for the low energies R1 and R2, here
not included explicitly, should be reobtained. The complete
formula for total cross section in this powerlike represen-
tation is

σ∓ðsÞ¼P0þH0
�
s
s0

	
ϵ0þR0

1

�
s
s0

	
−η0

1�R0
2

�
s
s0

	
−η0

2

; ðC7Þ

where we rewrite the parameter with prime in order to
distinguish from Eq. (18). In Table V we give values for this
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representation. It is important to observe that the term P0 in
Eq. (C7) corresponds to a Regge trajectory with zero power
coefficient.
Obviously this alternative representation can be written

in terms of the variable x for use in dispersion relations.
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