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Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons
D�

s0ð2317Þ and Ds1ð2460Þ, have been observed that do not conform with quark-model expectations. It was
recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the
SU(3) multiplets for the lightest scalar and axial-vector states, among them the D�

s0ð2317Þ and the
Ds1ð2460Þ, owe their existence to the nonperturbative dynamics of Goldstone-boson scattering offDðsÞ and
D�

ðsÞ mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural.

We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data
on the B− → Dþπ−π− provided by the LHCb experiment. This implies that the lowest quark-model
positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the
ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made
from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not
described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a
collection of quark-model states.

DOI: 10.1103/PhysRevD.98.094018

One of the currently most challenging problems in
fundamental physics is to understand the nonperturbative
regime of Quantum Chromodynamics (QCD), the funda-
mental theory for the interaction of quarks and gluons.
However, since the quark and gluon fields are confined
inside color-neutral hadrons, what needs to be achieved is a
quantitative understanding of the hadron spectrum. First-
principle lattice QCD (LQCD) calculations are indispen-
sable in this regard. In many cases, one can efficiently
bridge the computationally intensive LQCD framework
with complicated experimental observables using chiral
perturbation theory (ChPT)—the effective field theory for
QCD at low energies—and its unitarization to fulfill
probability conservation. In this work we demonstrate

how such a combination leads to the resolution of a number
of long-standing puzzles in charm-meson spectroscopy.
It also paves the way towards a new paradigm in the
spectroscopy for heavy-light mesons.
Until the beginning of the millennium heavy-hadron

spectroscopy was assumed to be well understood by means
of the quark model [1,2], which describes the positive-
parity ground-state charm mesons as bound systems of a
heavy quark and a light antiquark in a P-wave. This belief
was put into question in 2003, when the charm-strange
scalar (JP ¼ 0þ) and axial-vector (1þ) mesons D�

s0ð2317Þ
[3] and Ds1ð2460Þ [4] were discovered (for recent reviews
on new hadrons, see Refs. [5–11]), since the states showed
properties at odds with the quark model. Moreover,
attempts to adjust the quark model raised more questions
[12]. Various alternative proposals were put forward about
the nature of these new states including Dð�ÞK hadronic
molecules (loosely bound states of two colorless hadrons)
[13,14], tetraquarks (compact states made of two quarks
and two antiquarks) [15], and chiral partners (doublets due
to the chiral symmetry breaking of QCD in heavy-light

*fkguo@itp.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 094018 (2018)

2470-0010=2018=98(9)=094018(8) 094018-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.094018&domain=pdf&date_stamp=2018-11-20
https://doi.org/10.1103/PhysRevD.98.094018
https://doi.org/10.1103/PhysRevD.98.094018
https://doi.org/10.1103/PhysRevD.98.094018
https://doi.org/10.1103/PhysRevD.98.094018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


systems) [16,17]. The situation became more obscure
in 2004, when two new charm-nonstrange mesons, the
D�

0ð2400Þ [18] and D1ð2430Þ [19], were observed. In brief,
the experimental discoveries brought up three puzzles:
(1) Why are theD�

s0ð2317Þ andDs1ð2460Þmasses much
lower than the quark-model expectations for the
lowest 0þ and 1þ cs̄ mesons?

(2) Why is the mass difference between the Ds1ð2460Þ
and theD�

s0ð2317Þ equal to that between the ground-
state vector meson D�þ and pseudoscalar meson Dþ
within 2 MeV?

(3) Why are theD�
0ð2400Þ andD1ð2430Þmasses almost

equal to or even higher than their strange siblings, a
relationship exploited in many works [20–23],
although states with an additional strange quark
are typically at least 100 MeV heavier since
ms=md ≃ 20, see, e.g., Ref. [24]?

Although their bottom cousins are still being searched for
in high-energy experiments, it is natural to ask whether
such puzzles will be duplicated there and in other sectors.
As outlined below, in recent works it was demonstrated

that analyses combining effective field theory methods with
LQCD allows one to resolve all those puzzles. These
analyses suggest that all low-lying positive-parity heavy
open-flavor mesons qualify as hadronic molecules. In this
paper we add two crucial pieces to the existing line of
reasoning, namely we propose a lattice QCD study at
unphysical quark masses that will allow one to see the two-
meson character of the mentioned states more explicitly,
and we demonstrate that recent data on B− → Dþπ−π−
show a nontrivial structure fully in line with the proposed
dynamical picture.
One reason why the analyses that led to the D�

0ð2400Þ
and D1ð2430Þ resonance parameters in the Review of
Particle Physics (RPP) [24] should be questioned is that
the amplitudes used were inconsistent with constraints from
the chiral symmetry of QCD. As its chiral symmetry is
spontaneously broken, the pions, kaons, and eta arise
as Goldstone bosons with derivative and thus energy-
dependent interactions even for S-wave couplings. The
standard Breit-Wigner (BW) resonance shapes used in the
experimental analyses correspond, however, to constant
couplings. Moreover, the energy range of these states
overlaps with various S-wave thresholds that necessarily
need to be considered in a sound analysis, as these
thresholds can leave a remarkable imprint on observables
as will be shown below. A theoretical framework satisfying
such requirements is provided by the unitarized chiral
perturbation theory (UChPT) for heavy mesons [25–34]. In
this approach, ChPTat a given order is used to calculate the
interaction potential, which is then resummed in a scatter-
ing equation to fulfill exact two-body unitarity and allows
for the generation of resonances as pioneered in Ref. [35].
Although there is no unique method for unitarization,
different methods do not differ much as long as there

are no prominent left-hand cuts [36], as is the case here. It
should be mentioned that any algebraic unitarization
generates logarithms at higher order with wrong coeffi-
cients—this is discussed for the case of ππ scattering in
Ref. [37] (for a more recent discussion see Ref. [38]). As
long as the unitarization is set up as for the amplitudes
employed here, those appear only at orders higher than the
order of the potential. However, there is no a priori way to
estimate their significance and the reliability of the ampli-
tudes must be tested, e.g., by a comparison with lattice data
or experiment. We will employ here the next-to-leading
order (NLO) version whose free parameters have been
fixed to the Goldstone-boson–charm-meson scattering
lengths determined in fully dynamical LQCD in channels
without disconnected diagrams [32]. Later it was demon-
strated [39] that these coupled-channel amplitudes properly
predict the energy levels generated in LQCD (with a pion
mass Mπ ≃ 391 MeV) for the isospin-1=2 channel even
beyond the threshold [40]. This means that now the
scattering amplitudes for the coupled Goldstone-boson–
charm-meson system are available that are based on QCD.
Moreover, those amplitudes allow us to identify the poles in
the complex energy plane reflecting the lowest positive-
parity meson resonances of QCD in the charm sector as
well as in the bottom sector, once heavy quark flavor
symmetry [41] is employed. The predicted masses for the
lowest charm-strange positive-parity mesons are fully in
line with the well-established measurements, and those for
the bottom-strange mesons are consistent with LQCD
results with an almost physical pion mass [42], see
Table I where the uncertainties quoted stem from the
one-sigma uncertainties of the parameters in the NLO
UChPT determined in Ref. [32].
It should be noted that in principle in addition to the

mentioned uncertainty there is potentially an additional
uncertainty stemming from the truncation of the chiral
expansion at NLO—in other words terms of order
ðMK=ΛχÞ3 ∼ 10% were neglected. It is difficult to translate
this uncertainty into an uncertainty of the pole locations
since the parameters of the NLO potential were fixed to
LQCD data such that higher order effects are effectively
absorbed into the parameters. However, we did check that a
variation of the strength of the potential by 10% simply
moved the poles by 10–20 MeV—but neither the number

TABLE I. Predicted masses of the lowest positive-parity heavy-
strange mesons in comparison with the measured values [24] and
latest LQCD results, in units of MeV.

Prediction RPP LQCD

D�
s0 2315þ18

−28 2317.7� 0.6 2348þ7
−4 [43]

Ds1 2456þ15
−21 2459.5� 0.6 2451� 4 [43]

B�
s0 5720þ16

−23 � � � 5711� 23 [42]
Bs1 5772þ15

−21 � � � 5750� 25 [42]
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of poles nor their sheets did change as a result of this
variation.
The first two of the puzzles listed above are solved in this

picture: theDð�ÞK hadronic molecules do not correspond to
the quark-model cs̄ states; spin symmetry predicts that the
binding energies are independent of the heavy meson spin
up to an uncertainty of about 10%, as the leading spin
symmetry breaking interaction is also of NLO in the chiral
expansion. Moreover, there are two poles, corresponding to
two resonances, in the I ¼ 1=2 and strangeness S ¼ 0
channel. The predicted poles, located at the complex
energies M − iΓ=2, for both scalar and axial-vector charm
and bottommesons are listed in Table II. The masses for the
lower nonstrange resonances are smaller than those for the
strange ones, leading to the solution to the third puzzle. For
comparison the currently quoted masses and widths of the
D�

0ð2400Þ0 and D1ð2430Þ0 given in the RPP are also listed.
This pattern of two I ¼ 1=2 states emerges naturally in

the underlying formalism since already leading order ChPT
interactions are attractive in two flavor multiplets to which
the two states belong: the antitriplet and the sextet [25,39].
These two scalar isospin I ¼ 1=2 states were predicted in
the earlier works of Refs. [25,26], where, however, less
refined amplitudes were employed.
Given the above discussion, it is important to test the

scenario outlined above as much as possible. In this work
we discuss two possible paths: On the one hand we propose
a numerical experiment on the lattice, and on the other hand
we demonstrate that recent experimental data provide
additional support of the nontrivial dynamics that leads
to the existence of the light positive-parity open-charm
states.
If the mentioned states were q̄c states, they would all be

members of the flavor antitriplet—the presence of the
sextet is a nontrivial prediction emerging from the
meson-meson dynamics that the picture presented above
is based on. We notice that while we predicted two I ¼ 1=2
states (see Table II), the Hadron Spectrum Collaboration
reported only one, located just below the Dπ threshold, in
their lattice calculation at Mπ ≃ 391 MeV [40]. This is in
line with the expectation that the lower pole would become
a bound state at Mπ ≳ 350 MeV [32]. The authors of
Ref. [40] report that they “do not find any further poles in

the region where … [their lattice analysis] constrained the
amplitudes.” This does on the other hand not exclude the
presence of the second pole advocated for in Ref. [39] as
well as above: The quote simply reflects the fact that while
various of the amplitudes employed in the analysis of
Ref. [40] contained a second pole, its location was strongly
parametrization dependent [44]. With the quark masses
used in Ref. [40], the predicted sextet pole is located deep
in the complex plane [39], and thus it is not captured easily.
The advantage of our amplitudes compared to those
employed in the analysis of Ref. [40] is that they are
constrained by both the pattern of chiral symmetry breaking
of QCD as well as lattice data in additional channels. To
further test our explanation for the light positive-parity
open-charm states, we propose to search for them in lattice
studies at an SU(3) symmetric point, with a relatively large
quark mass mu ¼ md ¼ ms, such that the lightest pseudo-
scalar-meson masses will be near or abovemϕ ≳ 475 MeV.
We predict that the sextet pole will become a virtual state
below threshold for such large quark masses, and that it
would even become a bound state for higher quark masses.
This behavior is illustrated in Fig. 1, where one can see that
now the pole is close to threshold, and it should be easy to
detect in a lattice calculation. Note that the trajectory of the
pole displayed in Fig. 1, in particular that in a certain
parameter range resonance poles exist in the complex
energy plane below threshold, is common for two-meson
states in a relative S-wave. This feature is discussed in quite
general terms in Ref. [45] [see also Refs. [46,47] for the
f0ð500Þ case] and was first presented for the open-flavor
states in the focus here in Ref. [31].
In the following, we show that our resolution to these

puzzles is backed by precise experimental data by showing
that the amplitudes with the two D�

0 states are fully
consistent with the LHCb measurements of the reaction

TABLE II. Predicted poles corresponding to the positive-parity
heavy-light nonstrange mesons given as (M, Γ=2), with M the
mass and Γ the total decay width, in units of MeV. The current
RPP [24] values are listed in the last column.

Lower pole Higher pole RPP

D�
0 (2105þ6

−8 , 102
þ10
−11 ) (2451þ35

−26 , 134
þ7
−8 ) (2318�29, 134�20)

D1 (2247þ5
−6 , 107

þ11
−10 ) (2555þ47

−30 , 203
þ8
−9 ) (2427�40, 192þ65

−55 )
B�
0 (5535þ9

−11, 113
þ15
−17 ) (5852þ16

−19 , 36�5) ���
B1 (5584þ9

−11, 119
þ14
−17 ) (5912þ15

−18 , 42
þ5
−4 ) ���

FIG. 1. Illustration of the mass of the predicted sextet state at
the SU(3) symmetric point as a function of the Goldstone-boson
mass mϕ. Below mϕ ≲ 475 MeV, the pole is a resonance with its
imaginary part (Γ6=2) shown in the inserted subfigure. Above
mϕ ≃ 475 MeV, it evolves into a pair of virtual states, and finally
it becomes a bound state at mϕ ≃ 600 MeV.
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B− → Dþπ−π− [48], which are at present the best data
providing access to the Dπ system and thus to the non-
strange scalar charm mesons. Therefore, all the available
theoretical, experimental, and LQCD knowledge is con-
sistent with the existence of two D�

0 states in the mass
region where there was believed to be only one D�

0ð2400Þ.
The Feynman diagrams for the decay amplitude for

B− → Dþπ−π− are shown in Fig. 2. All the channels
(Dþπ−, D0π0, D0η, and Dþ

s K−) coupled to Dþπ− need
to be considered in the intermediate states. The decay
amplitude in the energy region up to 2.6 GeV, which is
sufficient to study the low-lying scalar states, can be
decomposed into S-, P-, and D-waves,

AðB− → Dþπ−π−Þ ¼
X2
L¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
ALðsÞPLðzÞ; ð1Þ

where s is the Dþπ− center-of-mass energy squared,
A0;1;2ðsÞ correspond to the amplitudes with Dþπ− in the
S-, P-, and D-waves, respectively, and PLðzÞ are the
Legendre polynomials. For the P- and D-wave amplitudes
we use the same BW form as in the LHCb analysis [48].
However, for the S-wave we employ

A0ðsÞ ¼ A

�
Eπ

�
2þ G1ðsÞ

�
5

3
T1=2
11 ðsÞ þ 1

3
T3=2ðsÞ

��

þ 1

3
EηG2ðsÞT1=2

21 ðsÞ þ
ffiffiffi
2

3

r
EK̄G3ðsÞT1=2

31 ðsÞ
�

þ BEηG2ðsÞT1=2
21 ; ð2Þ

where A and B are two independent couplings following
fromSU(3) flavor symmetry [49], andEπ;η;K̄ are the energies
of the light mesons. The effective Lagrangian for the
production vertex leading to the above amplitude can be
found in the Appendix. Here the TI

ijðsÞ are the S-wave
scattering amplitudes for the coupled-channel system with
total isospin I, where i, j are channel indices with 1,2, and 3
referring toDπ,Dη, andDsK̄, respectively. These scattering
amplitudes can be found in Ref. [32] where also all the
parameters were fixed. The unitarity relation

ImA0;iðsÞ ¼ −
X
j

T�
ijðsÞρjðsÞA0;jðsÞ; ð3Þ

with ρjðsÞ the two-body phase space factor in channel j, is
satisfied as long as ImGiðsÞ ¼ −ρiðsÞ, which allows us to
represent GiðsÞ via a once-subtracted dispersion relation
[50]. The same subtraction constant aA is taken for all
channels. The amplitude of Eq. (2) embodies chiral sym-
metry constraints and coupled-channel unitarity, and thus has
a sound theoretical foundation. Here the final state inter-
action between the two π− mesons is neglected because the
two pions are in an isospin-tensor state, and they have a large
relative momentum so that they quickly fly away from
each other.
The so-called angular moments, see, e.g., Refs. [48,51],

contain important information about the partial-wave phase
variations. Neglecting partial waves with L ≥ 3, which is
perfectly fine in the energy region of interest as indicated by
the LHCb data, the first few moments are given by

hP0i ∝ jA0j2 þ jA1j2 þ jA2j2;

hP2i ∝
2

5
jA1j2 þ

2

7
jA2j2 þ

2ffiffiffi
5

p jA0jjA2j cosðΔδ2Þ;

hP13i≡ hP1i −
14

9
hP3i ∝

2ffiffiffi
3

p jA0jjA1j cosðΔδ1Þ; ð4Þ

where Δδ1;2 are the phase differences of P- and D-waves
relative to the S-wave, respectively. Instead of hP1i and
hP3i we propose to analyze the linear combination hP13i,
since it only depends on the S − P interference up to L ¼ 2
and is particularly sensitive to the S-wave phase motion.
We fit to the data of the moments defined in Eq. (4) up to

MDþπ− ¼ 2.54 GeV for the decay B− → Dþπ−π− mea-
sured by the LHCb Collaboration [48]. Except for the
S-wave Dπ given in Eq. (2), we include the resonances D�
and D�ð2680Þ in the P-wave and D2ð2460Þ in the D-wave.
Their masses and widths are fixed to the central values in
the LHCb analysis [48], and their phase parameters are
denoted by δD�, δ0D� , and δD2

, respectively. The best fit has
χ2=d:o:f: ¼ 1.7 and the parameter values are B=A ¼
−3.6� 0.1, aA ¼ 1.0� 0.1, δD� ¼ −0.42� 0.04, δ0D� ¼
1.1� 0.2, and δD2

¼ −0.83� 0.07. We do not show the
four normalization parameters (three for these resonances
and one for the S-wave). A comparison of the best fit with
the LHCb data is shown in Fig. 3 together with the best fit
provided by the LHCb Collaboration [48] (dashed lines),
where cubic splines were used to interpolate between
certain anchor points—below we detail this method further.
The bands in Fig. 3 reflect the one-sigma errors of the
parameters in the scattering amplitudes determined in
Ref. [32]. It is worthwhile to notice that in hP13i,
where the D2ð2460Þ does not play any role, the data
show a significant variation between 2.4 and 2.5 GeV.
Theoretically this feature can now be understood as a signal
for the opening of the D0η and Dþ

s K− thresholds at 2.413
and 2.462 GeV, respectively, which leads to two cusps in
the amplitude. This effect is amplified by the higher pole

FIG. 2. The decay amplitude for B− → Dþπ−π−. Here, A, B
parametrize the production vertex, see Eq. (2), and TI

ij denotes the
final state interactions between the charm and light mesons.
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which is relatively close to the DsK̄ threshold on the
unphysical sheet.
One might wonder whether the discrepancy between our

amplitude and the data for hP13i at low energies points to a
deficit of the former. Fortunately the LHCb Collaboration
provides more detailed information on their S-wave ampli-
tude in Ref. [48]: In the analysis of the data a series of
anchor points were defined where the strength and the
phase of the S-wave amplitude were extracted from the
data. Then cubic splines were used to interpolate between
these anchor points. In Fig. 4 the S-wave amplitude fixed as
described above is compared to the LHCb anchor points.
Not only does this figure show very clearly that the strength
of the S-wave amplitude largely determined by the fits to

lattice data is fully consistent with the one extracted from
the data for B− → Dþπ−π−, the amplitude fixed in the
experiment also shows clear structures at both the Dη and
DsK̄ thresholds. From our point of view the most natural
explanation of those structures is that they are the men-
tioned cusps enhanced in impact by the pole located nearby.
Thus the comparison of the S-wave amplitude extracted by
the LHCb Collaboration with our result shows the role of
the higher pole in the I ¼ 1=2 and S ¼ 0 channel even
more clearly than the angular moments discussed above.
This clearly highlights the importance of a coupled-channel
treatment for this reaction. An updated analysis of the LHC
Run-2 data is called for to confirm the prominence of the
two cusps. Notice that the shape of the S-wave is deter-
mined by only two real parameters (B=A, aA), while its
phase motion is largely determined from unitarity, Eq. (3).
Furthermore, the data for the angular moments for B0

s →
D̄0K−πþ [51] can be easily reproduced in the same
framework with the D̄ K̄ interaction fixed from Ref. [32]
again, which has the D̄�

s0ð2317Þ as a dynamically generated
state. We focus on the angular moments as functions of the
D̄0K− invariant mass which were measured in the LHCb
experiment [51]. The decay mechanism is similar to the
one in Fig. 2, and the final state D̄0K− can be generated
from D̄0K−, D−K̄0, D̄sη, and D̄sπ

0 intermediate states.
Considering isospin symmetry, the S-wave part of the
decay amplitude for this process can be written as

A0ðsÞ ¼ EK

�
Cþ 1

2
ðCþ AÞG1ðsÞT0

11ðsÞ

þ 1

2
ðC − AÞG1ðsÞT1

11ðsÞ
�

−
1ffiffiffi
3

p
�
3

2
B − C

�
EηG2ðsÞT0

21ðsÞ; ð5Þ

where C ¼ ffiffiffi
2

p ðc2 þ c4Þ=F in terms of the low-energy
constants (LECs) in Eq. (A1), the channel labels 1 and 2

FIG. 3. Fit to the LHCb data for the angular moments hP0i, hP1i − 14hP3i=9, and hP2i for the B− → Dþπ−π− reaction [48]. The
largest error among hP1i and 14hP3i=9 in each bin is taken as the error of hP1i − 14hP3i=9. The solid lines show our results, with error
bands corresponding to the one-sigma uncertainties propagated from the input scattering amplitudes, while the dashed lines stand for the
LHCb fit using cubic splines for the S-wave [48].
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FIG. 4. Comparison of the S-wave amplitude determined in this
work to the S-wave anchor points found in the experimental
analysis, shown as the data points [48]. The red line gives the best
fit results and the gray band quantifies the uncertainties that
emerged from the fitting procedure. The fitting range extends up
to 2.55 GeV. The dashed perpendicular lines indicate the
locations of the Dη and DsK̄ thresholds, respectively.
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refer to the D̄ K̄ and D̄sη channels, respectively, and the
superscript of the T-matrix refers to the isospin. Note that
the Lagrangian in Eq. (A1) does not yield a term contrib-
uting to B0

s → D̄sπ
0πþ. Taking the central values of B=A

and the subtraction constant aA as determined from fitting
to the B− → Dþπ−π− data, there is only one free parameter
in the S-wave amplitude, which is C=A (we choose A to
serve as the normalization constant for the S-wave con-
tribution). For the P- and D-waves, we again take the same
BW resonances as the LHCb analysis [51], i.e., D�

s and
D�

sð2700Þ for the P-wave and Ds2ð2573Þ for the D-wave,
with their masses and widths fixed to the central values in
Ref. [51]. The best fits to the angular moments hP0i, hP2i,
and hP1i − 14hP3i=9 for the LHCb B0

s → D̄0K−πþ data
[51] up to 2.7 GeV leads to χ2=d:o:f: ¼ 1.6, and the only
free parameter in the S-wave amplitude is determined to be
C=A ¼ 4.8þ3.4

−1.7 . A comparison of the fit to the data is shown
in Fig. 5.
In summary, we have demonstrated that amplitudes fixed

from QCD inputs for the Goldstone-boson scattering off
charm mesons not only resolve some long-standing puzzles
in charm-meson spectroscopy but also are at the same time
fully consistent with recent LHCb data on B decays, which
provide by far the most precise experimental information
for theDπ system. The amplitudes have a pole correspond-
ing to the D�

s0ð2317Þ in the isoscalar strangeness S ¼ 1

channel, and two poles in the I ¼ 1=2 nonstrange channel
[39]. The latter pair of poles should replace the lowest
JP ¼ 0þ charm nonstrange meson, D�

0ð2400Þ, listed in the
RPP [24]. Similarly, the broad D1ð2430Þ listed in the RPP
should also be replaced by two JP ¼ 1þ states.
It should be stressed that the observation that certain

scattering amplitudes employ poles does not necessarily
imply that the corresponding states need to be interpreted as
molecular states. However, the S-wave molecular admix-
ture of a near-threshold state can be quantified from the
scattering length directly [52]. Applying this argument to
the DK scattering length in the D�

s0ð2317Þ channel,
predicted in Ref. [32] and determined using LQCD [53],

reveals that the molecular component of the D�
s0ð2317Þ

is larger than 70%, a conclusion confirmed later
in Refs. [43,54,55] for both the D�

s0ð2317Þ and the
Ds1ð2460Þ. All the poles listed in Tables I and II are
spin-flavor partners, due to approximate QCD symmetries.
Therefore, they should be envisioned as to have the same
origin, i.e., hadronic molecules generated from coupled-
channel two-hadron chiral dynamics.
Treating other narrow heavy mesons, such as the

D1ð2420Þ and the D2ð2460Þ, as matter fields leads to
additional molecular states such as the JP ¼ 1− D�

s1ð2860Þ
[56] and its partners. In fact, the interactions of Goldstone
bosons with matter fields are relatively weak at low
energies because of the chiral symmetry of QCD, even
though hadronic molecular states can be still generated.
One would expect that the S-wave attractive interaction of
other hadrons with heavy mesons, not suppressed by chiral
symmetry, may produce hadron-hadron states as well,
analogous to nuclei. These states are not the exclusive
origin of higher resonances, but they are important con-
tributors to the hadron zoo. Given more and more S-wave
thresholds at higher energies, quark models are expected to
become less and less reliable.
We therefore conclude that the long accepted paradigm

underlying open-flavor heavy meson spectroscopy that
identifies all ground states with cq̄ or bq̄ quark-model
states is no longer tenable. In a broader view, the hadron
spectrum must be viewed not as simply a collection of
quark-model states, but rather as a manifestation of a more
complex dynamics that leads to an intricate pattern of
various types of states that can only be understood by a
joint effort from experiment, LQCD, and phenomenology.
We close the paper by summarizing a few suggestions that
will provide further, nontrivial tests of the scenario pro-
posed here:
(a) Measuring the angular moments, in particular

hP1i − 14hP3i=9, with unprecedented accuracy for

the B → Dð�Þππ and B → Dð�Þ
s K̄π reactions. This

can be done at LHCb and Belle-II. We expect to

FIG. 5. Fit to the angular moments as a function of the D̄0K− invariant mass for the process B0
s → D̄0K−πþ provided by LHCb [51].

The solid lines represent the present work with the bands corresponding to the one-sigma uncertainty propagated from the input
scattering amplitudes, and the dashed lines show the LHCb fit [51].
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see nontrivial cusp structures at the Dð�Þη and Dð�Þ
s K̄

thresholds in the former, and near-threshold enhance-

ment in the Dð�Þ
s K̄ spectrum in the latter [39].

(b) Measuring the hadronic width of the D�
s0ð2317Þ,

predicted to be of about 100 keV in the molecular
scenario [32,57], and much smaller otherwise. This
will be measured by the P̄ANDA experiment.

(c) Checking the existence of the sextet pole in LQCD
with a relatively large SU(3) symmetric quark mass.

(d) Searching for the predicted analogous bottom positive-
parity mesons both experimentally and in LQCD.
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Wilson for communications regarding the LQCD calcu-
lation carried out in Ref. [40]. This work is partially
supported by the National Natural Science Foundation of
China (NSFC) and Deutsche Forschungsgemeinschaft
(DFG) through funds provided to the Sino-German
Collaborative Research Center “Symmetries and the
Emergence of Structure in QCD” (NSFC Grant
No. 11621131001, DFG Grant No. TRR110), by the
NSFC (Grant No. 11747601), by the Thousand Talents
Plan for Young Professionals, by the CAS Key Research
Program of Frontier Sciences (Grant No. QYZDB-SSW-
SYS013), by the CAS Key Research Program (Grant
No. XDPB09), by the CAS President’s International
Fellowship Initiative (PIFI) (Grant No. 2018DM0034),
by the CAS Center for Excellence in Particle Physics
(CCEPP), by Spanish Ministerio de Economa y
Competitividad and the European Regional Development
Fund under Contracts No. FIS2014-51948-C2-1-P,
No. FPA2016-77313-P, No. FIS2017-84038-C2-1-P, and
No. SEV- 2014-0398, by Generalitat Valenciana under
Contract No. PROMETEOII/2014/0068, and by the
Ayudas para contratos predoctorales para la formacin de
doctores program (BES-2015-072049) from the Spanish
MINECO and ESF.

APPENDIX: EFFECTIVE LAGRANGIAN

Here we discuss briefly the effective Lagrangian for the
weak decays B̄ to D with the emission of two light

pseudoscalar mesons, induced by the Cabibbo-allowed
transition b → cūd. In the phase space region near the
Dπ threshold, chiral symmetry puts constraints on one of
the two pions, while the other one moves fast and can be
treated as a matter field. Moreover, its interaction with the
other particles in the final state can be safely neglected.
Then the relevant chiral effective Lagrangian leading to
Eq. (2) reads

Leff ¼ B̄½c1ðuμtM þMtuμÞ þ c2ðuμM þMuμÞt
þ c3tðuμM þMuμÞ þ c4ðuμhMti þMhuμtiÞ
þ c5thMuμi þ c6hðMuμ þ uμMÞti�∂μD†: ðA1Þ

Here B̄¼ðB−;B̄0;B̄0
sÞ and D ¼ ðD0; Dþ; Dþ

s Þ are the fields
for bottom and charm mesons, h� � �i denotes the trace in the
SU(3) light-flavor space, and uμ ¼ iðu†∂μu − u∂μu†Þ is
the axial current derived from chiral symmetry. The
Goldstone bosons are represented nonlinearily via u ¼
exp ðiϕ=ð ffiffiffi

2
p

FÞÞ, with

ϕ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA; ðA2Þ

in terms of the pions (π�, π0), the kaons (K�, K0, K̄0), and
the η, and F denotes the Goldstone-boson decay constant in
the chiral limit. In addition, t ¼ uHu† is a spurion field
with [49]

H ¼

0
B@

0 0 0

1 0 0

0 0 0

1
CA; ðA3Þ

for Cabibbo-allowed decays. The matter fieldM, having the
same formasϕ, describes the fastmoving lightmeson. Theci
(i ¼ 1;…; 6) are LECs. This effective Lagrangian considers
both chiral, for the regime with soft Goldstone bosons, and
SU(3) constraints, the latter of which has been considered in
Ref. [49]. In terms of the LECs in the above Lagrangian, the
parameters A and B in Eq. (2) can be expressed as A ¼ffiffiffi
2

p ðc1 þ c4Þ=F and B ¼ 2
ffiffiffi
2

p ðc2 þ c6Þ=ð3FÞ.
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