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We compute the heavy quarkonium mass of l ≠ 0 (angular momentum) states, with otherwise arbitrary
quantum numbers, with next-next-to-next-to-leading logarithmic (N3LL) accuracy. This constitutes
the first observable in heavy quarkonium for which two orders of the weak-coupling expansion
sensitive to the ultrasoft scale are known and the resummation of ultrasoft logarithms is made. We also
obtain, for the first time, resummed N3LL expressions for the different fine and hyperfine energy splittings
of these states, which are not sensitive to the ultrasoft scale but still require resummation of (hard)
logarithms. We do this analysis for the equal and non-equal mass cases. We also study an alternative
computational scheme that treats the static potential exactly. We then perform a comprehensive
phenomenological analysis: we apply these results to the n ¼ 2, l ¼ 1 bottomonium, Bc and charmonium
systems and study their convergence.
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I. INTRODUCTION

The heavy quarkonium mass has been computed with
increasing accuracy in the limit of very large mass (i.e., in
the strict weak-coupling approximation) over the years. If n
represents the principal quantum number and l the orbital
angular momentum, in this paper we exclusively consider
non-S-wave states (i.e., those states with l ≠ 0). Typically,
we will use the notation “P-wave” to refer to non-S-wave
states (unless explicitly stated otherwise). The heavy
quarkonium mass of the P-wave states has been computed
in Ref. [1] to next-to-leading order (NLO), in Ref. [2] to
NNLO, in Ref. [3] the ln αs term of the N3LO, in Refs. [4,5]
with N3LO accuracy for the equal mass case and in Ref. [6]
for the nonequal mass case. For the n ¼ 2 and l ¼ 1 fine
splitting in the equal mass case, the N3LO expression was
obtained in Ref. [7] and the hyperfine in Ref. [8] (for
arbitrary quantum numbers and equal masses).

Once the spectrum has been obtained with N3LO
accuracy, one can move to the next step: the computation
of the heavy quarkonium mass with N3LL accuracy by the
resummation of the large logarithms. This is one of the
main purposes of this paper, and we achieve this goal for
arbitrary P-wave states. Most of the necessary ingredients
are already available in the literature. The ultrasoft renorm-
alization group (RG) analysis of the potentials relevant for
the P-wave states were obtained with N3LL accuracy in
Ref. [9]. These results, together with the detailed compu-
tations in Ref. [6], allow us to obtain the mass of the excited
states with N3LL accuracy. We also achieve this precision
for the fine and hyperfine P-wave splittings for the first
time. Crucial to obtain this last result is the knowledge of
the potential to N3LO, of the structure of the potential in
terms of Wilson loops, and the confirmation that no
ultrasoft effects enter at this order. The above results are
obtained using the effective field theory (EFT) named
potential nonrelativistic QCD (pNRQCD) [10,11] (for
reviews see [12,13]).
The cancellation of the leading renormalon of the pole

mass and the static potential, first found in Ref. [14], and
later in [15,16], led to the realization [16] that using
threshold masses [16–20] (which explicitly implement
the cancellation of the renormalon in heavy quarkonium
observables) improves the convergence of the perturbative
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series. This makes these very precise computations
useful not only for academical purposes but also for
phenomenological applications. The applicability of a
weak-coupling analysis to the first P-wave heavy quar-
konium excited state (n ¼ 2, l ¼ 1) is an open issue.
Originally, they were studied in Refs. [21–24], where the
outcome of the analysis was qualitatively positive. These
analyses had NNLO accuracy and used the Upsilon
counting [25], which effectively introduces the cancella-
tion of renormalon but does not use threshold masses.
An analysis of the fine splittings, which are directly
renormalon free, was done in Ref. [7]. Beyond NNLO
there is only a preliminary phenomenological analysis in
N3LO using the Upsilon counting [4] and the more
recent analysis [26].
On the phenomenological side, one of the purposes of

this paper is to study the P-wave states of heavy quarko-
nium for bottomonium, charmonium and Bc (but specially
bottomonium) to clarify if a weak-coupling description
for them is appropriate, and, if so, to which extent.
Nonperturbative corrections are parametrically smaller than
the perturbative terms we neglect, and depend on how one
treats the perturbative expansion. Therefore, we refrain of
incorporating nonperturbative effects until we get a more
clear understanding of the asymptotic behavior of the
perturbative series. Actually, this is one of the reasons
we do a strict perturbative analysis in this paper: We believe
it is important to study pure perturbative predictions before
start including nonperturbative effects. We also study
separately the effect of the pure ultrasoft contributions,
when they appear, as those contributions are the ones
expected to be more sensitive to nonperturbative dynamics.
The threshold mass we will use is the RS0 mass [18]. We
also want to quantify the impact of the resummation of
logarithms in the heavy quarkonium spectrum: for the first
time we have two terms of the weak-coupling expansion
that depend on the ultrasoft logarithmic resummation.
Besides the aforementioned phenomenological analysis

performed at strict weak coupling, we also study the
convergence of an alternative computational scheme that
reorganizes the perturbative expansion of the weak-
coupling computation. This scheme is characterized by
solving the Schrödinger equation including the static
potential exactly (to the order it is known). This incorpo-
rates formally subleading terms in the leading-order (LO)
solution. On the other hand the relativistic corrections to the
spectrum are included perturbatively. This working scheme
performs a partial resummation of higher-order effects.
This may accelerate the convergence of the perturbative
series. This is indeed the effect seen in (most of) the cases
where it has been applied (spectrum and decays)
[23,24,27,28] (the acceleration is somewhat more marginal
in the analysis in Ref. [29]). This scheme naturally leads to
the organization of the computation in powers of v, the
relative velocity of the heavy quark in the bound state.

A. pNRQCD

Integrating out the soft modes in NRQCD [30,31], we
obtain the EFT named pNRQCD [10]. The most general
pNRQCD Lagrangian compatible with the symmetries of
QCD that can be constructed with a singlet and an octet
(quarkonium) fields, as well as an ultrasoft gluon field to
NLO in the multipole expansion has the form [10,11]

LpNRQCD ¼
Z

d3rTrfS†ði∂0 − hsðr;p;PR;S1;S2ÞÞS

þ O†ðiD0 − hoðr;p;PR;S1;S2ÞÞOg
þ VAðrÞTrfO†r · gESþ S†r · gEOg

þ VBðrÞ
2

TrfO†r · gEOþ O†Or · gEg

−
1

4
Ga

μνGμνa þ
Xnf
i¼1

q̄ii=Dqi; ð1:1Þ

hsðr;p;PR;S1;S2Þ ¼
p2

2mr
þ P2

R

2M
þ Vsðr;p;PR;S1;S2Þ;

ð1:2Þ

hoðr;p;PR;S1;S2Þ ¼
p2

2mr
þ P2

R

2M
þ Voðr;p;PR;S1;S2Þ;

ð1:3Þ

Vs¼Vð0Þ þVð1;0Þ

m1

þVð0;1Þ

m2

þVð2;0Þ

m2
1

þVð0;2Þ

m2
2

þ Vð1;1Þ

m1m2

þ�� � ;

ð1:4Þ

Vo¼Vð0Þ
o þVð1;0Þ

o

m1

þVð0;1Þ
o

m2

þVð2;0Þ
o

m2
1

þVð0;2Þ
o

m2
2

þ Vð1;1Þ
o

m1m2

þ��� ;

ð1:5Þ

where iD0O≡ i∂0O − g½A0ðR; tÞ;O�, PR ¼ −i∇R for the
singlet, PR ¼ −iDR for the octet (where the covariant
derivative is in the adjoint representation), p ¼ −i∇r,

mr ¼
m1m2

m1 þm2

ð1:6Þ

and M ¼ m1 þm2. We adopt the color normalization

S ¼ Slc=
ffiffiffiffiffiffi
Nc

p
; O ¼ OaTa=

ffiffiffiffiffiffi
TF

p
; ð1:7Þ

for the singlet field Sðr;R; tÞ and the octet fieldOaðr;R; tÞ.
Here and throughout this paper we denote the quark-
antiquark distance vector by r, the center-of-mass position
of the quark-antiquark system by R, and the time by t.
Both, hs and the potential Vs are operators acting on the

Hilbert space of a heavy quark-antiquark system in the
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singlet configuration.1 According to the precision we are
aiming for, the potentials have been displayed up to terms
of order 1=m2.2 The static and the 1=m potentials are real-
valued functions of r ¼ jrj only. The 1=m2 potentials have
an imaginary part proportional to δð3ÞðrÞ, which we will
drop in this analysis, and a real part that may be decom-
posed as:

Vð2;0Þ ¼ Vð2;0Þ
SD þ Vð2;0Þ

SI ; Vð0;2Þ ¼ Vð0;2Þ
SD þ Vð0;2Þ

SI ;

Vð1;1Þ ¼ Vð1;1Þ
SD þ Vð1;1Þ

SI ; ð1:9Þ

Vð2;0Þ
SI ¼ 1

2
fp2

1;V
ð2;0Þ
p2 ðrÞgþVð2;0Þ

L2 ðrÞL
2
1

r2
þVð2;0Þ

r ðrÞ; ð1:10Þ

Vð0;2Þ
SI ¼ 1

2
fp2

2;V
ð0;2Þ
p2 ðrÞgþVð0;2Þ

L2 ðrÞL
2
2

r2
þVð0;2Þ

r ðrÞ; ð1:11Þ

Vð1;1Þ
SI ¼−

1

2
fp1 ·p2;V

ð1;1Þ
p2 ðrÞg

−Vð1;1Þ
L2 ðrÞðL1 ·L2þL2 ·L1Þ

2r2
þVð1;1Þ

r ðrÞ; ð1:12Þ

Vð2;0Þ
SD ¼ Vð2;0Þ

LS ðrÞL1 · S1; ð1:13Þ

Vð0;2Þ
SD ¼ −Vð0;2Þ

LS ðrÞL2 · S2; ð1:14Þ

Vð1;1Þ
SD ¼ Vð1;1Þ

L1S2
ðrÞL1 · S2 − Vð1;1Þ

L2S1
ðrÞL2 · S1

þ Vð1;1Þ
S2

ðrÞS1 · S2 þ Vð1;1Þ
S12

ðrÞS12ðrÞ; ð1:15Þ

where, S1 ¼ σ1=2, S2 ¼ σ2=2, L1 ≡ r × p1, L2 ≡ r × p2

and S12ðrÞ≡ 3r·σ1r·σ2
r2 − σ1 · σ2. Note that neither L1 nor L2

correspond to the orbital angular momentum of the particle
or the antiparticle.
Due to invariance under charge conjugation plus m1 ↔

m2 interchange we have

Vð1;0ÞðrÞ ¼ Vð0;1ÞðrÞ: ð1:16Þ

This allows us to write

Vð1;0Þ

m1

þ Vð0;1Þ

m2

¼ Vð1;0Þ

mr
: ð1:17Þ

Invariance under charge conjugation plus m1 ↔ m2 also
implies

Vð2;0Þ
p2 ðrÞ ¼ Vð0;2Þ

p2 ðrÞ; Vð2;0Þ
L2 ðrÞ ¼ Vð0;2Þ

L2 ðrÞ;
Vð2;0Þ
r ðrÞ ¼ Vð0;2Þ

r ðr;m2 ↔ m1Þ;
Vð2;0Þ
LS ðrÞ ¼ Vð0;2Þ

LS ðr;m2 ↔ m1Þ;
Vð1;1Þ
L1S2

ðrÞ ¼ Vð1;1Þ
L2S1

ðr;m1 ↔ m2Þ: ð1:18Þ

For the precision of the computation of the spectrum
reached in this paper, we can neglect the center-of-mass
momentum, i.e., we set PR ¼ 0 in the following and thus
L1 ≡ r × p1 ¼ r × p≡L, L2 ≡ r × p2 ¼ −r × p≡ −L.
Expressions for the N3LO potentials for the nonequal

mass case can be found in Ref. [6] for different bases of
potentials (on-shell, Wilson, Coulomb, Feynman matching
schemes). For illustration, we will work with the on-shell
basis of potentials where the potential proportional to L2 is
set to zero (for ease of reference we list them in
Appendix A). Nevertheless, we emphasize that the results
are independent of the chosen basis of potentials to N3LL
order. In the following section, we give the N3LL potentials
for the (un)equal mass case relevant for the P-wave
spectrum (see also [9]). The singlet potential Vs depends
on the factorization scales νh, ν and νus: Vsðν; νh; νusÞ.3
Throughout this paper we will use the notation αs ¼
αsðνÞ, αus ¼ αsðνusÞ, αh ¼ αsðνhÞ. Large logarithms are
resummed setting νh ∼m, ν ∼mαs and νus ∼mα2s . We will
generically split the RG improved potential to NiLL into
the fixed-order result plus the correction generated by the
resummation of logarithms:

VRG
s;NiLL

ðν;νh;νusÞ¼Vs;NiLOðνÞþδVRG
s;NiLL

ðν;νh;νusÞ; ð1:19Þ

such that δVRG
s;NiLL

ðν; ν; νÞ ¼ 0, and similarly for each

individual potential: Vð1;0Þ, etc.

II. RENORMALIZATION GROUP RUNNING

We consider now the modifications of the N3LO poten-
tials needed to achieve the resummation of the large
logarithms for the P-wave spectrum.

A. Ultrasoft renormalization group running

The bare potential can be written in terms of the
renormalized potential and its counterterm in the following
way:

1Therefore, in a more mathematical notation: h → ĥ,
Vsðr;pÞ → V̂sðr̂; p̂Þ. We will however avoid this notation in
order to facilitate the reading.

2Actually, we also have to include the leading correction to the
nonrelativistic dispersion relation for our calculation of the
spectrum:

δVs ¼ −
�

1

8m3
1

þ 1

8m3
2

�
p4; ð1:8Þ

and use the fact there is no Oðαs=m3Þ potential.
3Strictly speaking the ν dependence is traded off by a

dependence in 1=r to the order we are working.
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Vs;B ¼ Vs þ δVs: ð2:1Þ

If the counterterm is determined in terms of the Wilson
coefficients of the EFT, it is possible to resum the large
logarithms of the potentials associated to the ultrasoft scale
by solving the associated renormalization group equation

(RGE). The counterterm δVs for the NLL ultrasoft running
of Vs was obtained in Eq. (35) of Ref. [9].4 The RGE then
reads

ν
d
dν

Vs;MS ¼ BVs
; ð2:2Þ

where

BVs
¼ CF

�
r2ðΔVÞ3 − 1

2m2
r
½p; ½p; Vð0Þ

o �� þ 1

2m2
r
fp2;ΔVg þ 2

mr
ΔV

�
r
d
dr

Vð0Þ
�

þ 1

2mr

�
4ðΔVÞ2 þ 4ΔV

��
r
d
dr

ΔV
�
þ ΔV

�
þ
��

r
d
dr

ΔV
�
þ ΔV

�
2
��

×

�
−
2αs
3π

þ α2s
9π2

�
CA

�
−
47

3
− 2π2

�
þ 10

3
TFnf

�
þOðα3sÞ

�
; ð2:3Þ

and ΔV ¼ Vð0Þ
o − Vð0Þ. Solving this RGE, we obtain the RG improved (RGI) expressions for the static, the 1=m and the

1=m2 momentum-dependent spin-independent potentials (as they do not depend on the hard scale).5 We obtain

Vð0Þ
RGðr; νusÞ ¼ Vð0Þðr; νÞ þ δVð0Þ

RGðr; ν; νusÞ; ð2:4Þ
Vð1;0Þ
RG ðr; νusÞ ¼ Vð1;0Þðr; νÞ þ δVð1;0Þ

RG ðr; ν; νusÞ; ð2:5Þ
Vð2;0Þ
p2;RG

ðr; νusÞ ¼ Vð2;0Þ
p2 ðr; νÞ þ δVð2;0Þ

p2;RG
ðr; ν; νusÞ; ð2:6Þ

Vð1;1Þ
p2;RG

ðr; νusÞ ¼ Vð1;1Þ
p2 ðr; νÞ þ δVð1;1Þ

p2;RG
ðr; ν; νusÞ; ð2:7Þ

where Vð0Þ, Vð1;0Þ, Vð2;0Þ
p2 and Vð1;1Þ

p2 are the fixed-order potentials. We collect them in Eqs. (A1)–(A5) for ease of reference.
The symmetries in Eq. (1.18) also apply to the N3LL potentials.
The functions δVRG are the corrections generated by solving Eq. (2.2). They read

δVð0Þ
RGðr; ν; νusÞ ¼ r2

�
CAαs
2r

�
3
�
1þ 3

αs
4π

ða1 þ 2β0 lnðνeγErÞÞ
�
Fðν; νusÞ; ð2:8Þ

δVð1;0Þ
RG ðr; ν; νusÞ ¼

�
2

�
CAαs
2r

�
2
�
1þ 2

αs
4π

�
a1 þ 2β0 ln

�
νeγEþ1

2r

���

þ 2
CACFα

2
s

2r2

�
1þ 2

αs
4π

�
a1 þ 2β0 ln

�
νeγE−

1
2r

����
Fðν; νusÞ; ð2:9Þ

δVð1;1Þ
p2;RG

ðr; ν; νusÞ ¼
CAαs
r

�
1þ αs

4π
ða1 þ 2β0 lnðνeγErÞÞ

�
Fðν; νusÞ; ð2:10Þ

δVð2;0Þ
p2;RG

ðr; ν; νusÞ ¼
CAαs
2r

�
1þ αs

4π
ða1 þ 2β0 lnðνeγErÞÞ

�
Fðν; νusÞ; ð2:11Þ

where

Fðν; νusÞ ¼ CF
2π

β0

�
2

3π
ln
αus
αs

−ðαus − αsÞ
�
8

3

β1
β0

1

ð4πÞ2 −
1

27π2
ðCAð47þ 6π2Þ − 10TFnfÞ

��
: ð2:12Þ

Note that these expressions should be truncated at the appropriate order in the expansion in αs for a given accuracy.

δVð1;0Þ
RG ðr; ν; νusÞ corrects the NLL result in Ref. [9] because in BVs

some subleading terms in αsð1=rÞ of the potentials were
neglected, which are needed for a NLL precision.

5The contributions generated by Eq. (2.2) to Vr that contribute to the P-wave spectrum will be discussed in Sec. II C.

4Confirmation of the counterterm in the context of vNRQCD [32] was obtained in Refs. [33,34] for the Oð1=mÞ and Oð1=m2Þ,
potentials. Prior to this, the running of the static potential was computed at LL in Ref. [35] and at NLL in Ref. [36] and confirmed in
Ref. [37], whereas the complete LL ultrasoft running of the Vs was obtained in Ref. [38].
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There are other operators in the pNRQCD Lagrangian
that could potentially contribute to the P-wave spectrum to
N3LL. These are

δLa ∼
cð1ÞF

m1

S†σ ·BaOa þ � � � ð2:13Þ

and

δLb ∼
cð1ÞS

m2
1

S†σ · ðp ×EaÞOa þ � � � ; ð2:14Þ

where the dots stand for contributions needed to make the
Lagrangian density hermitian as well as the contribution
of the other heavy particle. Note that both operators are
spin dependent. Both operators can generate divergent
contributions that are absorbed by 1=m2 deltalike potentials
(∼1=r3).
The contribution to the potential associated to the

operator in Eq. (2.13) is generated at second-order pertur-
bation theory with ultrasoft gluons: σ·B

m � � � σ·Bm , and it
produces the following divergence:

δVa ∼
1

m1m2

1

ϵ
cð1ÞF cð2ÞF αusðΔVÞ3σ1 · σ2: ð2:15Þ

The contribution to the potential associated to the operator
in Eq. (2.14) is generated at second-order perturbation
theory with ultrasoft gluons of the following type:
r ·E � � � cSL·E

m2 , and produces the following divergence:

δVb ∼
1

m2
1

1

ϵ
cð1ÞS αusðΔVÞ3σ1 ·L: ð2:16Þ

For P-wave state energies, we know that the expectation
value h 1r3il≠0 is finite. This moves these contributions
beyond the N3LL accuracy we seek in this paper. Note
however, that δVa actually contributes to the spectrum to
N3LL but only to S-wave energies (and in particular to the
hyperfine splitting [39,40]), since now h 1r3il¼0 is divergent.
δVb does not contribute to S-wave energies either; even
though h 1r3il¼0 is divergent, the overall contribution is
multiplied by L, which again moves the contribution
beyond N3LL.
Overall, we do not consider these contributions here as

we are only interested in P-wave energies at N3LL.
Therefore one only needs to consider the r ·E � � � r · E
contributions up to two loops which we already dis-
cussed above.

B. Spin-dependent momentum-dependent potentials

The spin-dependent potentials do not receive ultrasoft
running, unlike the spin-independent ones. If we also

restrict ourselves to the momentum-dependent potentials,
they also do not receive potential running. Both statements
hold true for N3LL precision. On the other hand the spin-
dependent momentum-dependent potentials receive non-
trivial hard/soft running through the inherited NRQCD
Wilson coefficients coming from spin-dependent operators.
All boils down to a dependence on a single NRQCD
Wilson coefficient: cF (the dependence on cS is trans-
formed in a dependence on cF since cS ¼ 2cF − 1, [41]).
For the precision we seek, we need cF with NLL precision,
which is known at present [42,43]:

cðiÞF;NLLðν; νhÞ ¼ z−
γ0
2

�
1þ αh

4π

�
c1 þ

γ0
2
ln

ν2h
m2

i

�

þ αh − αs
4π

�
γ1
2β0

−
γ0β1
2β20

��
; ð2:17Þ

where cðiÞF;LLðν; νhÞ ¼ z−
γ0
2 , z ¼ ðαs=αhÞ1=β0 , νh ∼mi is the

hard matching scale, c1 ¼ 2ðCA þ CFÞ and the one- and
two-loop anomalous dimensions read

γ0 ¼ 2CA; γ1 ¼
68

9
C2
A −

52

9
CATFnf: ð2:18Þ

We will also need cF at fixed order in powers of αs,
which can be obtained from the previous expression by

fixing νh ¼ ν, i.e., cðiÞF;NLOðνÞ≡ cðiÞF;NLLðν; νÞ. In this case,

cðiÞF;LOðνÞ ¼ 1 is trivial.
The spin-dependent potentials are unambiguous under the

field redefinitions considered in Ref. [6] (at least to the order
we are working at). They were originally computed in
Ref. [44] at NNLO, in Ref. [45] for the N3LO hyperfine
splitting, and in Ref. [46] the complete expression for
unequal masses was obtained. In principle, in order to
obtain the RGI expressions of these potentials one should
work in the EFT.We do not need to do that. The fact that we
know the dependence of the potentials in terms of the
NRQCDWilson coefficients enables us to get them fromold
computations. The spin-dependent potentials have been
defined in Eqs. (1.13)–(1.15). Their renormalized expres-
sions read (renormalized NRQCD Wilson coefficients are
understood)

Vð2;0Þ
LS;RGðrÞ ¼ −

cð1ÞF

r2
ir · lim

T→∞

Z
T

0

dtt⟪gB1ðtÞ × gE1ð0Þ⟫

þ cð1ÞS

2r2
r · ð∇rVð0ÞÞ; ð2:19Þ

where

ir
r2

· lim
T→∞

Z
T

0

dtt⟪gB1ðtÞ × gE1ð0Þ⟫jMS

¼ CFCAα
2
s

2πr3
ð1þ ln ðrνeγE−1ÞÞ þOðα3sÞ; ð2:20Þ
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r
r2

· ð∇rVð0ÞÞ ¼ CFαs
r3

�
1þ αs

4π
ða1 þ 2β0 lnðrνeγE−1Þ

�
þOðα3sÞ; ð2:21Þ

Vð1;1Þ
L2S1;RG

ðrÞ ¼ −
cð1ÞF

r2
ir · lim

T→∞

Z
T

0

dtt⟪gB1ðtÞ × gE2ð0Þ⟫; ð2:22Þ

where

ir
r2

· lim
T→∞

Z
T

0

dtt⟪gB1ðtÞ × gE2ð0Þ⟫jMS ¼ −CF
αsðe1−γE=rÞ

r3

�
1þ αs

π

��
13

36
−
1

2
ln

�
νr

e1−γE

��
CA −

5

9
nfTF

��
; ð2:23Þ

and

Vð1;1Þ
S12;RG

ðrÞ ¼ cð1ÞF cð2ÞF

4
ir̂ir̂j lim

T→∞

Z
T

0

dt

�
⟪gBi

1ðtÞgBj
2ð0Þ⟫ −

δij

3
⟪gB1ðtÞ · gB2ð0Þ⟫

�
; ð2:24Þ

where

ir̂ir̂j lim
T→∞

Z
T

0

dt

�
⟪gBi

1ðtÞgBj
2ð0Þ⟫ −

δij

3
⟪gB1ðtÞ · gB2ð0Þ⟫

�				
MS

ð2:25Þ

¼ CFαsðe4=3−γE=rÞ
r3

�
1þ αs

π

��
13

36
− ln

�
νr

e4=3−γE

��
CA −

5

9
nfTF

��
: ð2:26Þ

The other potentials follow from the symmetry relations in
Eq. (1.18).
Note that the above potentials have N3LL accuracy. This

is a new result. Additionally, we give expressions with
N3LO accuracy, Oðα2sÞ, for the Wilson loops with chro-
momagnetic (and/or chromoelectric) insertions in the MS.
One can easily change to other schemes by changing e.g.,

cðiÞF from the MS to the lattice scheme (since the whole
potential is scheme independent). This enables a more
detailed comparison with lattice simulations at short dis-
tances. This research will be carried out elsewhere.
Overall, with very few new computations we have been

able to obtain the spin-dependent momentum-dependent
1=m2 potentials with N3LL accuracy. The NNLL result was
originally obtained in Ref. [47].

C. Vr and Vð1;1Þ
S2

potentials

The remaining potentials we need to consider are Vr

and Vð1;1Þ
S2 . At OðαsÞ they are proportional to δðrÞ, which

does not contribute to the spectrum of l ≠ 0 states to the
order we work (the deltalike potential contribution van-
ishes at first and second order in perturbation theory). At
Oðα2sÞ, potentials proportional to ln k (or reg 1=r3 in
position space) are generated in the NRQCD-pNRQCD
matching. Such potentials generate nonzero contributions
to the spectrum of l ≠ 0 states. We know them at leading
nonvanishing order, which is all we need. We need them

both for the spin-dependent and the spin-independent
potentials.
The spin-dependent potential has been computed with

N3LL accuracy in Ref. [39,40]. We are only interested in
the term proportional to reg 1

r3, which reads

Vð1;1Þ
S2;RG

ðrÞ _¼8πCF

3

�
−

1

4π
reg

1

r3

�
cð1ÞF cð2ÞF

α2s
π

�
−
β0
2
þ7

4
CA

�
;

ð2:27Þ

where

−
1

4π
reg

1

r3
≡

Z
d3k
ð2πÞ3 e

−ik·r ln k: ð2:28Þ

The correction to the fixed-order potential comes from

considering the difference between cð1ÞF cð2ÞF evaluated at νh
and at νh ¼ ν.
The spin-independent Vr is at present unknown with

N3LL accuracy (indeed, it is the missing link to obtain the
complete N3LL spectrum for a general S-wave energy),
since the Oðα2sÞ of the delta potential is not known. This
does not affect our analysis, since the term proportional to
δð3ÞðrÞ does not contribute to the energy of P-wave states.
On the other hand, we know the term proportional to reg 1

r3

with enough accuracy, as it can be deduced from the k
dependence of the NNLL result. It reads
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Vð2;0Þ
r;RGðrÞ
m2

1

þ Vð0;2Þ
r;RGðrÞ
m2

2

þ Vð1;1Þ
r;RGðrÞ
m1m2

_¼ πCF

m1m2

�
−

1

4π
reg

1

r3

��
k
d
dk

D̃ð2Þ
d

�				LL
k¼ν

; ð2:29Þ

where

k
d
dk

D̃ð2Þ
d

				LL
k¼ν

¼ −β0
α2s
2π

þ α2s
π

�
2CF −

CA

2

�
cð1Þk cð2Þk þ α2s

π

�
m1

m2

�
1

3
Tfnfc̄

hlð2Þ
1 −

4

3
ðCA þ CFÞ½cð2Þk �2 − 5

12
CA½cð2ÞF �2

�

þm2

m1

�
1

3
Tfnfc̄

hlð1Þ
1 −

4

3
ðCA þ CFÞ½cð1Þk �2 − 5

12
CA½cð1ÞF �2

��

−
ðm1 þm2Þ2

m1m2

4

3

�
CA

2
− CF

�
α2s
π

�
ln

�
αs
αus

�
þ 1

�
; ð2:30Þ

(cðiÞk ¼ 1 because of reparametrization invariance [48]) and
the gauge independent combination of NRQCD Wilson
coefficients

c̄hlðiÞ1 ðνÞ≡ chlðiÞ1 ðνÞ þ cðiÞD ðνÞ

¼ z−2CA þ
�
20

13
þ 32

13

CF

CA

�
½1 − z

−13CA
6 � ð2:31Þ

was computed in Refs. [49,50].
Finally, note that the ultrasoft contribution to Vr in

Eq. (2.30) is 1=N2
c suppressed and that Eq. (2.30) is the

expression in the on-shell scheme.

III. TOTAL SHIFT ON THE ENERGY LEVELS

The P-wave spectrum at N3LO was obtained in
Refs. [4,5] for the equal mass case and in Ref. [6] for the
unequal mass case. The resulting expression for EN3LO can
be found in Appendix B. From the RGI potentials discussed
in Sec. II we obtain the NiLL shift in the energy levels

ENiLLðν; νh; νusÞ ¼ ENiLO þ δERGðν; νh; νusÞjNiLL: ð3:1Þ

where ENiLO ¼ ENiLLðν; ν; νÞ. The explicit expressions of
the fixed-order and resummed energies can be found in
Appendices B and C.
The LO and NLO energy levels are unaffected by the RG

improvement, i.e.,

δERGjLL ¼ δERGjNLL ¼ 0: ð3:2Þ

We now determine the variations with respect to the
NNLO and N3LO results. We are here interested in the
corrections associated to the resummation of logarithms.
In order to obtain the spectrum of a P wave at NNLL
and N3LL, we need to add the following energy shift to
the NNLO and N3LO spectrum (strictly speaking we

only compute the piece that contributes to the P-wave
spectrum):

δERGjNNLL ¼ hnljδVRG
s;NNLLjnli ¼ EC

n

�
αs
π

�
2

δc2; ð3:3Þ

which was computed in Ref. [38] for equal masses,
and

δERGjN3LL ¼ hnljδVRG
s;N3LL

jnli

þ 2hnlj½Vð0Þ
1 − Vð0Þ

0 � 1

ðEC
n − hÞ0 δV

RG
s;NNLLjnli

þ ½δEusðν; νusÞ − δEusðν; νÞ� ð3:4Þ

¼EC
n

��
αs
π

�
2

δc2þ
�
αs
π

�
3

ð2β0δc2Lνþδc3Þ
�
: ð3:5Þ

Note that hnljδVRG
s;N3LL

jnli includes hnljδVRG
s;NNLLjnli.

Let us also note that the first term in Eq. (3.4), besides
the N3LO ultrasoft corrections to the momentum-
dependent potentials, also contains the ln k contributions
associated to Vr and VS2 discussed in Sec. II C. In
the second term of Eq. (3.4), we only have to consider
the LL ultrasoft running of the momentum-dependent
potentials and the LL (hard) running of the spin-
dependent potentials. The first and second terms in
Eq. (3.4) are computed in the same way we did in
Ref. [6]. We add the last term in Eq. (3.4) in order to
account for the evaluation at the ultrasoft scale of the
ultrasoft energy:
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δEus
nlðν;νusÞ¼−EC

n
αsαus
π

�
2

3
C3
FL

E
nlþ

1

3
CA

�
Lνus −Lusþ

5

6

�

×

�
C2
A

2
þ 4CACF

ð2lþ1Þnþ2C2
F

�
8

ð2lþ1Þn−
1

n2

��

þ8δl0
3n

C2
F

�
CF−

CA

2

��
Lνus −Lusþ

5

6

��
;

ð3:6Þ

where Lus ¼ ln CFαsn
2

þ S1ðnþ lÞ, and LE
n are the non-

Abelian Bethe logarithms. Numerical determinations of
these non-Abelian Bethe logarithms for l ≠ 0 can be
found in Ref. [5].
In Eq. (3.5), EC

n ¼ − mrC2
Fα

2
s

2n2 , Lν ¼ ln nν
2CFmrαs

þ S1ðnþ lÞ.
We split the δci coefficients into a Coulomb-like and a
non-Coulomb-like contribution,

δci ¼ δcci þ δcnci ; ð3:7Þ

for i ¼ 2, 3. The corrections δcci are given in Eqs. (C7) and
(C8). They are generated by the ultrasoft corrections to the
static potential. The relativistic ultrasoft contribution to δcnc2=3
is produced by Eqs. (2.9)–(2.11), plus the ultrasoft part of
Eq. (2.30) and Eq. (3.6), to the appropriate order. Explicit

expressions for these quantities can be found in Eqs. (C13)
and (C14). The hard contribution to δcnc2=3 is generated by the
(nontrivial) hard/soft running of the relativistic potentials
encoded in the NRQCD Wilson coefficients. The explicit
expressions can be found in Eq. (C15) and Eq. (C19). The
former only receives contributions from the spin-dependent
potentials, whereas the latter receives contributions from both
the spin-dependent and the spin-independent potentials. The
spin-dependent and spin-independent contributions from the
running of the Wilson coefficients can be found in Eq. (C21)
and Eq. (C22), respectively.
Note that, throughout this paper, we have introduced a

change of the basis of spin operators with respect to
the basis used in Ref. [6] to compute the spectrum for
different masses: fS;S1g → fS;S−g where the symmetric
and antisymmetric spin operators are S ¼ S1 þ S2 and
S− ¼ S1 − S2. We find that the latter basis suits better the
description of the heavy quarkonium spectrum since
hS−i ¼ 0. We give the expressions of the N3LO energy in
the new spin basis in Appendix B.
From the N3LL computation we can obtain the large logs

of Oðα6sÞ for the expansion of the mass in powers of αs at
the scale ν ¼ mCFαs. For the n ¼ 2, l ¼ 1 state and equal
masses, it reads (with nf ¼ 3)

δE21 ¼ EC
2

�
αs
π

�
4
�
ln

1

CFαs
ð81.4171Ds − 2.19325S12 þ 160.084XLS − 7160.10Þ

þ ln2
1

CFαs
ð−8.22467Ds − 13.1595XLS − 244.684Þ

�
: ð3:8Þ

IV. FINE AND HYPERFINE SPLITTING

The results of the previous section apply to a general
state with l ≠ 0. Now we would like to study in more detail
the fine and hyperfine splittings of P-wave states. Note that
these splittings do not depend on the ultrasoft scale at the
order at which we are working. In principle, this means
that we do not have to rely on the assumption that the
ultrasoft scale can still be handled in the weak-coupling
approximation (otherwise the power counting of the non-
perturbative corrections changes). If one assumes that
mv2 ≫ ΛQCD, the complete expression for the leading
nonperturbative expression was computed in [51]6 (earlier

partial results can be found in [52]). In any case, we will not
try to incorporate nonperturbative effects in this paper,
lacking a more clear understanding of the behavior of the
perturbative series.

A. Fine splitting

In general, we find for s ¼ 1 and l ≠ 0 (following
standard heavy quarkonium spectroscopy we define nr ¼
n − 1 for P-wave states):

Eðn3rLjÞ−Eðn3rLj0 Þ

¼EC
n

�
αs
π

�
2

½δcSD;h2 jj−δcSD;h2 jj0 �

þEC
n

�
αs
π

�
3
��

δcSD;h3 þ2β0δc
SD;h
2 LνþEh

�
αh
αs
Lνh−Lν

��				
j

−
�
δcSD;h3 þ2β0δc

SD;h
2 LνþEh

�
αh
αs
Lνh−Lν

��				
j0

�
; ð4:1Þ

where j is the quantum number associated to the combi-
nation of operators J ¼ Lþ S.

6We profit to correct Eq. (3.6) of that reference that should read

ΔHFðnewÞ ¼ −
πhαsG2i

m3ðCFα̃sÞ2
αs
α̃s

79139056

1437897825
:

The change is produced by an algebraic mistake in
VHF
8 ðannihilationÞ (the “−3” should be zero). This makes the

1=N2
c correction vanish in Eqs. (1.7) and (3.1), changes 29 → 32

in Eq. (3.2) and Eq. (3.6) to the expression above.
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For different masses and n ¼ 2 we find:

Eð13PjÞ−Eð13Pj0 Þ ¼
α4sC4

Fm
3
r

192m1m2

�
4ðDsjj−Dsjj0 Þz−γ0

�
1þ αs

2π

�
2

�
209

36
−
π2

3

�
β0þ

αh−αs
αs

�
γ1
2β0

−
β1CA

β20
þCA ln

�
ν2h

m1m2

�

þ2CAþ2CF

�
þ2ð2β0−CAÞ ln

ν

mrCFαs
−CA ln

m1m2

ν2h
−
11CA

3
þ2CFÞ

�

− ðjðjþ1Þ− j0ðj0 þ1ÞÞm
2
1þm2

2

m1m2

�
1þ αs

2π

�
β0

�
4 ln

ν

mrCFαs
−
2π2

3
þ215

18

�
−
16CA

3

��

þðjðjþ1Þ− j0ðj0 þ1ÞÞ2m1m2

m2
r

z−
γ0
2

�
1þ αs

4π

�
2β0

�
4 ln

ν

αsCFmr
−
2π2

3
þ215

18

�
þ2CF

−2CA

�
ln

ν

mrCFαs
þ mr

m1m2

�
m2 ln

m1

νh
þm1 ln

m2

νh

�
þ16

3

�

þαh−αs
αs

�
γ1
2β0

−
β1CA

β20
−

2mr

m1m2

CA

�
m2 ln

m1

νh
þm1 ln

m2

νh

�
þ2CAþ2CF

����
; ð4:2Þ

where Ds ¼ 1=2hS12ðrÞi. Note that the equal mass case is obtained just by taking m1 ¼ m2 ¼ m.
We have checked that in the limit νh ¼ ν we recover the result at N3LO obtained in Eq. (26) of Ref. [7].
Finally we can obtain the leading large logarithms for the fixed-order contribution by expanding αh in terms of αs. The

leading logarithmic resummation contains all terms of order α4þn
s lnn αs, while the NLO resummation contains all terms of

order α5sαns lnn αs. Setting νh ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
and ν ¼ 2CFmrαs we obtain the higher-order logarithms:

Eð13PjÞ − Eð13Pj0 Þj>Oðα5sÞ×logs ¼ EC
2

�
αs
π

�
4

ln

�
1

CFαs

�
π2C2

F

96

�
8m2

r

m1m2

ðDsjj −Dsjj0 Þ
�
−
23C2

A

4
−
2

3
π2β0CA þ 493β0CA

36

− 2CAðCA − 2β0Þ ln 2þ 2CACF þ β0CF −
CA

2
ðβ0 þ 2CAÞ ln

m1m2

4m2
r

�

þ ðjðjþ 1Þ − j0ðj0 þ 1ÞÞ
�
−
89C2

A

6
−
4

3
π2β0CA þ 505β0CA

18
þ 2CAð4β0 − CAÞ ln 2

þ 2CACF þ 2β0CF þ CAðβ0 þ CAÞ
�
m1 −m2

m1 þm2

ln
m1

m2

− ln
m1m2

4m2
r

���

− EC
2

�
αs
π

�
4

ln2
�

1

CFαs

�
π2CAC2

F

96

�
ðjðjþ 1Þ − j0ðj0 þ 1ÞÞðβ0 þ CAÞ

þ 4m2
r

m1m2

ðβ0 þ 2CAÞðDsjj −Dsjj0 Þ
�
: ð4:3Þ

B. Hyperfine splitting

The hyperfine splitting of P-wave states is defined in the
following way:

Δn;l ≡ Eðn1lj¼lÞ − Eðn3lÞc:o:g:; ð4:4Þ

where the “center of gravity” average reads

Eðn3lÞc:o:g: ¼
2l − 1

3ð2lþ 1ÞEðn
3lj¼l−1Þ þ

2lþ 1

3ð2lþ 1ÞEðn
3lj¼lÞ

þ 2lþ 3

3ð2lþ 1ÞEðn
3lj¼lþ1Þ: ð4:5Þ

In practice, we will use this expression only for the case
n ¼ 2 and l ¼ 1:

Δ≡Δ2;1¼Eð11P1Þ−
1

9
ð5Eð13P2Þþ3Eð13P1ÞþEð13P0ÞÞ:

ð4:6Þ
For general radial and l ≠ 0 angular quantum numbers,

and different masses, we find at fixed order

Δn;l¼−
m3

rC4
Fα

5
sð1−δl0Þ

9m1m2πlðlþ1Þð2lþ1Þn3 ðCA−8nfTFÞ: ð4:7Þ

We have checked that Eq. (4.7) for m1 ¼ m2 ¼ m recovers
the result obtained in Ref. [8]. Note that the hyperfine
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splitting for P-wave states is OðαsÞ suppressed compared
with the hyperfine splitting of S-wave states. This sup-
pression is indeed seen experimentally (actually, experi-
mentally, the suppression is stronger than expected. For a
discussion on this issue, see [53]).
The resummation of logarithms can be easily obtained

by incorporating the nontrivial running of the NRQCD
Wilson coefficients. The general N3LL result for a P-wave
state reads

ΔRG
n;l ¼−

m3
rC4

Fα
5
sð1−δl0Þ

9m1m2πlðlþ1Þð2lþ1Þn3ðCA−8nfTFÞz−γ0 :

ð4:8Þ

Note that this quantity is positive, because it is one of the
few places where light-fermion effects are more important
than non-Abelian effects.
Since we only have the first order in the logarithmic

expansion, we can only compute terms that are α5þn
s lnn αs.

Setting νh ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
and ν ¼ 2mrCFαs, we obtain for a P

wave

Δn;ljlnαs ¼
m3

rC4
Fα

6
sCAðCA−8TFnfÞ
9π2m1m2n3

ð1−δl0Þ
lðlþ1Þð2lþ1Þ ln

1

CFαs

×

�
1−

αs
4π

ð2CAþ3β0Þ ln
1

CFαs

�
: ð4:9Þ

V. PHENOMENOLOGY OF n= 2, l = 1 STATES
AT STRICT WEAK COUPLING

We now confront our results with the experimental
values of the spectrum [54] for n ¼ 2, l ¼ 1 states, which
we list in Table I. We use the modified renormalon

TABLE I. Experimental values of the heavy quarkonium
masses, Δ and the fine splittings in MeV.

System bb̄ð1PÞ (exp)
cb̄ð1PÞ
(exp)

cc̄ð1PÞ
(exp)

hð1P1Þ 9899.3(8) � � � 3525.38(11)

χ0ð3P0Þ 9859.44(42)(31) � � � 3414.71(30)

χ1ð3P1Þ 9892.78(26)(31) � � � 3510.67(5)

χ2ð3P2Þ 9912.21(26)(31) � � � 3556.17(7)

Δ −0.57ð84Þ � � � þ0.08ð13Þ
χ1ð3P1Þ−χ0ð3P0Þ 32.49(93) � � � 95.96 (30)

χ2ð3P2Þ−χ1ð3P1Þ 19.10(25) � � � 45.5 (1)
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FIG. 1. Plots for ΔSI in the RS0 scheme with νus ¼ 1 GeV for bottomonium. Upper left, upper right and lower left panels: Plots for
νf ¼ 2, 1 and 0.7 GeV respectively. The red line is the experimental value, the black-dashed line is 2mb;RS0 . The orange-dotted, purple
dot-dashed, green-dashed and black-dashed lines are ΔSI evaluated at LO-N3LO, respectively. The solid-green and solid-black lines are
the NNLL and N3LL result respectively, and the dotted-black line is the N3LL result without δEus

21. Lower right panel: Comparison of
the νf ¼ 2 GeV (green), νf ¼ 1 GeV (orange) and νf ¼ 0.7 GeV (black) lines. For each case, the dashed line is the N3LO result and the
solid line the N3LL one.
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subtracted scheme (RS0), as defined in Ref. [18] for the
heavy quark masses and the static potential. The RS0
scheme eliminates the leading renormalon of the pole mass
and the static potential, introducing a new factorization
scale, νf, which is formally smaller than, or of the order of,
the soft energy regime.We refer to Ref. [18] for extra details.
The values for the bottom and charm quark masses used in
this paper are those determined in Ref. [29]. For the strong
coupling we take αsðMzÞ ¼ 0.1184ð12Þ from Ref. [54].

A. Spin-independent energy combination

We first consider the following energy combination,
which is free of spin-dependent effects:

ΔSI ≡ 1

12
ð5Mχb2 þ 3Mχb1 þMχb0Þ þ

1

4
Mhb; ð5:1Þ

and similarly for charmonium and Bc.
This quantity allows us to visualize the gross features of

the spectrum of any P-wave state. We consider first
bottomonium. In Fig. 1, we compare the strict weak-
coupling prediction with experiment. We show both the

fixed-order and RGI expressions. The former can be found
in Eq. (B1) and the latter in Eq. (C1). We have explored the
dependence of the result with νf, ν and the order of
truncation of the computation. We produce plots with
νf ¼ 2 GeV, νf ¼ 1 GeV and νf ¼ 0.7 GeV. For refer-
ence, we take the νf ¼ 1 GeV case. In this case, the fixed-
order result approaches the experimental number as we
increase the order of truncation of the computation (albeit
the size of the consecutive terms is almost equal, i.e., the
convergence is marginal). Indeed, the N3LO result agrees
with experiment at ν ∼ 1.2 GeV and shows a relatively
mild scale dependence. The resummation of logarithms
produces nontrivial results at NNLL and N3LL. We observe
that most of the effect of the RGI is due to the ultrasoft
gluons. At NNLL the effect of resummation of logarithms
is marginal. At N3LL the effect is important. At this
order, there is relatively good agreement with experiment.
At ν ∼ 2.2 GeV there is agreement with experiment and
the scale variation is of order ∼� 50 MeV in the range
ν ¼ 1–4 GeV. In this respect, the resummation of loga-
rithms (in particular ultrasoft logarithms) does not spoil the
agreement with data, though it makes the shift between the
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FIG. 2. Plots for ΔSI in the RS0 scheme with νus ¼ 1 GeV for charmonium. Upper left, upper right and lower left panels: Plots for
νf ¼ 2, 1 and 0.7 GeV respectively. The red line is the experimental value, the black-dashed line is 2mb;RS0 . The orange-dotted, purple dot-
dashed, green-dashed and black-dashed lines are ΔSI evaluated at LO-N3LO, respectively. The solid-green and solid-black lines are the
NNLL and N3LL result respectively, and the dotted-black line is the N3LL result without δEus

21. Lower right panel: Comparison of the
νf ¼ 2 GeV (green), νf ¼ 1 GeV (orange) and νf ¼ 0.7 GeV (black) lines. For each case, the dashed line is the N3LO result and the solid
line the N3LL one.
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NNLL and N3LL bigger putting into question the con-
vergence of the perturbative expansion. Finally, the biggest
point of concern is the applicability of the weak-coupling
computation at the ultrasoft scale. We roughly asses the
importance of this effect by subtracting δEus to the N3LL
result. The effect is small (this happens both for the RGI
and the fixed-order computation). Overall, the uncertainties
of the computation do not allow us to see if the resumma-
tion of the large logarithms improves the result or not. We
have also explored the dependence of the result on νf.
Choosing a larger value, νf ¼ 2 GeV, does not change the
qualitative picture. It makes it slightly more convergent but
at the prize of making the corrections and scale dependence
bigger (note though that νf ¼ 2 GeV is an unnatural value
for νf, as the power counting demands νf < soft scale,
which we do not expect to happen for νf ¼ 2 GeV).
Remarkably, for the smaller value νf ¼ 0.7 GeV, the size
of the higher-order corrections is very small, except for the
N3LL result, where the incorporation of the large (ultrasoft)
logarithms and of the ultrasoft correction brings the result
quite close to experiment. In the last plot in Fig. 1, we
combine the N3LL and N3LO results for different values of
νf. We observe that smaller values of νf produce smaller ν

scale dependence (we remark again the warning of choos-
ing a too high value of νf). They are all consistent among
them and with experiment. Indeed, the three N3LL lines
cross at

ΔSI ∼ 9.885 GeV; ð5:2Þ

quite close the experimental valueΔSI ∼ 9.900 GeV ∼Mhb .
The three N3LO lines cross at ΔSI ∼ 9.850 GeV, also quite
close the experimental value. As a final remark, in all cases,
at ν≲ 1 GeV, there is a strong scale dependence.
For completeness, we also show the results for charmo-

nium and Bc in Figs. 2 and 3 (and for the renormalon-free

combination ΔðBcÞ
SI − ΔðbbÞ

SI =2 − ΔðccÞ
SI =2 in Fig. 4) but in

those cases the errors are so large that we do not aim to any
serious phenomenological analysis. At most we can give an
estimate of

ΔðBcÞ
SI ∼ 6.75 GeV: ð5:3Þ

This number is obtained from the approximate crossing
of the three different curves in the lower-right panel in
Fig. 3. For the case of bottomonium and charmonium
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FIG. 3. Plots for ΔSI in the RS0 scheme with νus ¼ 1 GeV for Bc. Upper left, upper right and lower left panels: Plots for νf ¼ 2, 1 and
0.7 GeV respectively. The black-dashed line is mb;RS0 þmc;RS0 . The orange-dotted, purple dot-dashed, green-dashed and black-dashed
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and νf ¼ 0.7 GeV (black) lines. For each case, the dashed line is the N3LO result and the solid line the N3LL one.
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this gave a reasonable estimate. Such value and the exper-
imental masses of bottomonium and charmonium yields

ΔðBcÞ
SI − ΔðbbÞ

SI =2 − ΔðccÞ
SI =2 ∼ 60 MeV.

B. Fine splitting

The Eð13PjÞ − Eð13Pj0 Þ energy differences are interest-
ing objects for study, they are free of renormalon effects
(we take νf ¼ 1 GeV for reference but the result is quite
insensitive to this) and also of ultrasoft effects. In this paper,
we have obtained, for the first time, theoretical expressions
with relative NLL precision (i.e., we have two terms of the
weak-coupling expansion and we also know the RGI
expression for them). We would like to see how well
our theoretical predictions compare with experiment.
We first start with bottomonium, which, in principle, is

the system where the weak-coupling approach should work
better. We plot the strict weak-coupling predictions in
Fig. 5. We expect the large logarithms to be resummed
around ν ∼ soft scale, of order 1 GeV. Indeed, we observe a
much better agreement at those scales, and results com-
patible with experiment, assuming that the relative size of
the uncomputed Oðmv6Þ corrections is of order 20%–30%.
We also observe that the resummation of (hard) logarithms

produces a sizable effect but of the order of uncertainties.
At those scales we also observe convergence of the
expansion (the N3LL correction is smaller than the
NNLL correction). If we repeat the analysis for charmo-
nium the numbers we get are quite low when compared
with experiment. We show them in Fig. 6. In principle, this
confirms the expectation that charmonium P-wave states
can not be described by a weak-coupling analysis. For
completeness, we also show the prediction of the strict
weak-coupling analysis for the fine splitting of the P-wave
Bc states in Fig. 7.
We also study the ratio

ρ ¼ Eð13P2Þ − Eð13P1Þ
Eð13P1Þ − Eð13P0Þ

¼ 4

5
þ 6ðm1 −m2Þ2
5ðm2

1 þ 10m1m2 þm2
2Þ

þOðαsÞ: ð5:4Þ

One can speculate that this observable is cleaner in the
sense that the NR matrix element cancels in the ratio at the
leading nonvanishing order. Nevertheless, this observable
is also sensitive to the wave function at the next order. We
show the result in Fig. 8. There is a difference with
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experiment of order 25%. The resummation of hard
logarithms does not improve the agreement with data (it
actually makes it slightly worse, specially for the LL
result). The difference between theory and experiment in

the case of charmonium is larger, since the theoretical
prediction is more or less equal as for bottomonium but the
experimental value of ρ is significantly different for
bottomonium and charmonium. For completeness, we also
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show the prediction of the strict weak-coupling analysis of
ρ for the Bc states. Note that, in this case, the leading-order
theoretical prediction is different to the equal mass case
[cf. Eq. (5.4)]. This provides an extra motivation to measure
this ratio.

C. Hyperfine splitting

Finally, we consider the hyperfine splitting of the
P-wave states. We show our results in Fig. 9. The strict
weak-coupling prediction of the hyperfine splitting is
perfectly compatible with experiment. The resummation
of (hard) logarithms is a tiny effect and does not affect this
conclusion. Surprisingly enough, this is also true for
charmonium (then we conjecture that the prediction we
give for the P-wave Bc, compatible with zero, is also
robust). This could be accidental. The key issue for the
agreement is that the expectation value of the relativistic
potential is small. We ellaborate on this issue in Sec. VII.

VI. ALTERNATIVE COUNTING APPROACH

In the previous section, we have confronted the strict
weak-coupling theoretical predictions with the experimen-
tal values of the masses of the n ¼ 2, l ¼ 1 excitations for

bottomonium, charmonium and Bc. For bottomonium, the
convergence was somewhat marginal. On the other hand
the predictions were consistent with experiment (for the ρ
ratio the situation was somewhat worse but still consistent
with the expected size of higher-order relativistic correc-
tions). For charmonium and Bc the situation was signifi-
cantly worse. Only for the hyperfine case there was
agreement with experiment.
We now study a computational scheme that reorganizes

the perturbative expansion such that it performs a selective
sum of higher-order corrections (such scheme was already
applied in [27–29]). We want to test if such scheme could
improve/accelerate the convergence. In this method, we
incorporate the static potential exactly (to a given order) in
the leading-order Hamiltonian (the explicit ν dependence of
the static potential appears at N3LO and partially cancels
with the explicit ν dependence of Eq. (3.6), the ultrasoft
correction):

�
p2

2mr
þ Vð0Þ

N;RS0 ðr; νÞ
�
ϕð0Þ
nl ðrÞ ¼ Eð0Þ

nl ϕ
ð0Þ
nl ðrÞ; ð6:1Þ

where the static potential will be approximated by a
polynomial of order N þ 1,
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Vð0Þ
N;RS0 ðr; νÞ ¼

(ðVð0Þ
N þ 2δmðNÞ

RS0 Þjν¼ν ≡P
N
n¼0 VRS0;nα

nþ1
s ðνÞ if r > ν−1r

ðVð0Þ
N þ 2δmðNÞ

RS0 Þjν¼1=r ≡P
N
n¼0 VRS0;nα

nþ1
s ð1=rÞ if r < ν−1r :

ð6:2Þ

Vð0Þ
N is the static potential defined inEq. (A1).We implement

the renormalon cancellation working in the RS0 scheme.
Expressions for δmRS0 can be found inRef. [27]. In principle,
wewould like to takeN as large as possible (though we also
want to explore the dependence on N). In practice, we take
the static potential at most up to N ¼ 3, i.e., up to Oðα4sÞ.
This is the order to which the coefficients VRS0;n are
completely known.
Taking different values for νr and νf in Eq. (6.2), we

obtain the most relevant limits:
(a) The case νr ¼ ∞, νf ¼ 0 is nothing but the on-shell

static potential at fixed order, i.e., Eq. (A1). Note that
theN ¼ 0 case reduces to a standard computation with
a Coulomb potential, for which we can compare with
analytic results for the matrix elements. We use this
fact to check our numerical solutions of the Schrö-
dinger equation.

(b) The case νr ¼ ∞ (with finite nonzero νf) is nothing
but adding an r-independent constant to the static
potential.

(c) The case νr ¼ finite (and, for consistency, νr ≥ νf).
We expect this case to improve over the previous
results, as it incorporates the correct (logarithmically
modulated) short distance behavior of the potential.
This has to be done with care in order not to spoil the
renormalon cancellation. For this purpose it is com-
pulsory to keep a finite, nonvanishing, νf, otherwise
the renormalon cancellation is not achieved order by
order in N, as it was discussed in detail in Ref. [55].

We have explored the effect of different values of νf in
our analysis. Large values of νf imply a large infrared
cutoff. In this way, our scheme becomes closer to an MS-
like scheme. Such schemes still achieve renormalon can-
cellation, yet they jeopardize the power counting, as the
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residual mass δmRS0 does not count as mv2. As a conse-
quence, consecutive terms of the perturbative series
become bigger. Therefore, we prefer values of νf as low
as possible, with the constraints that one should still obtain
the renormalon cancellation, and that it is still possible to
perform the expansion in powers of αs.
The energy Eð0Þ

nl in Eq. (6.1) correctly incorporates the
NNLO corrections to the spectrum associated to the static
potential. It also includes higher-order corrections (those
generated by the iteration of the static potential). In order
for this computational scheme to make sense, it first
requires that the N → ∞ converges, or at least that the
error is small compared with the relativistic correction. We

show the result of the computation of Eð0Þ
21 for bottomonium

in Fig. 10 setting νr ¼ ∞ (setting νr ¼ 1 GeV does not
change the qualitative picture) and νf ¼ 1 or 0.7 GeV. We
do not see convergence for νf ¼ 1 GeV but we get it for
νf ¼ 0.7 GeV. Either way, it is worth emphasizing that, for
N ¼ 3, the νf ¼ 1 and 0.7 GeV are consistent with each
other, as we can see in Fig. 10 (left). This shows a mild
dependence on νf. On the other hand, the dependence on ν
is still large. We can also compare with the strict weak-
coupling expansion result. We do so in Fig. 10 (right). We
find a difference of order 60 MeV. This difference appears
to be very stable under ν or νf variations. The origin of this
constant shift is not clear to us at present. Setting νr ¼
1 GeV does not qualitatively change the picture. Overall,

we take Eð0Þ
nl ∼ 9.8 GeV as the leading Oðv2Þ solution.

Note that this number still suffers from sizable uncertainties
(∼� 60 MeV if looking to the scale variation or the
difference with the strict weak-coupling evaluation).
Once we have the leading Oðv2Þ solution, we can

consider the incorporation of the relativistic and ultrasoft
corrections, which will scale, at most, as Oðv4Þ. With the
accuracy of this work, we only have to take the expectation
value of δV where

δV ¼ Vs − Vð0Þ ð6:3Þ

stands for the relativistic potential (Vs is the total singlet
potential) that contributes up to N3LL and also add the
ultrasoft correction from Eq. (3.6). Overall the mass of the
bound states reads

Mðn;l;jÞ¼m1þm2þEð0Þ
nl þð0Þhn;ljδVjn;lið0Þ þδEus

nl;

ð6:4Þ

where Eð0Þ
nl counts as v2, ð0Þhn; ljδVjn; lið0Þ counts as v4

(including also v4αs corrections) and δEus
nl as v

5. Eq. (6.4) is
numerically correct with N3LL precision and incorporates
extra subleading terms (albeit in an incomplete way). If one
sets νh ¼ νus ¼ ν one also recovers the N3LO result
incorporating some extra subleading terms. For notation
purposes we will label the results obtained using Eq. (6.4)
as NiLLðNÞ where N stands for the order at which the static
potential (we introduce exactly in the Schrödinger equa-
tion) is truncated and iwill be 2 or 3 depending on the order
at which the relativistic and ultrasoft corrections are
included. A similar counting will apply to the NiLOðNÞ
result, where we do not perform the logarithmic resumma-
tion by setting νh ¼ νus ¼ ν.
Note that the correction to the static potential generated

by the resummation of ultrasoft logarithms obtained in
Eq. (2.8) is not incorporated in Eq. (6.2) but rather added to
Eq. (6.3) as part of the correction.7

Overall, this computational scheme resums a subset of
subleading corrections in the hope that they would account
for the bulk of such subleading terms. This could be so if
the higher-order corrections that we infer from our
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FIG. 10. Left panel: Plot of 2mb þ Eð0Þ
21 for bottomonium using Vð0Þ

N;RS0 for N ¼ 0 (red), 1 (green), 2 (blue), 3 (black). Dashed lines are

computed with νf ¼ 0.7 GeV and continuous lines with νf ¼ 1 GeV. Right panel: Plot of 2mb þ Eð0Þ
21 for bottomonium using Vð0Þ

N;RS0 for
N ¼ 3. Dashed lines are computed with νf ¼ 0.7 GeV and continuous lines with νf ¼ 1 GeV. Blue lines correspond to the black lines
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7Adding Eq. (2.8) to Eq. (6.2) would redefine the leading
Oðv2Þ solution. We do not explore this line of research in this
paper.
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knowledge of the static potential are indeed responsible for
the leading corrections.
The expressions we use for the relativistic potential

(valid also in the unequal mass case) are taken from
Ref. [6], which uses the computation of the 1=m potential
obtained in Ref. [56]. For ease of reference we quote them
in Appendix A. We can use any of the bases for the
potentials presented in that paper, which were referred as:
Wilson, onshell, Coulomb or Feynman. At strict N3LO they
all yield the same result. Since the computational scheme
we implement in this section partially resums higher orders
some dependence on the basis of potentials shows up. We
have checked that, for the set of bases we consider, the
dependence is quite small.
The computation of the relativistic corrections opens

new issues compared with the static potential. In the case
of the static potential, the natural scale is ν ∼ 1=r, except in
the Oðα4sÞ term where also the ultrasoft scale νus appears.

8

The case of the relativistic potentials is quite different. They
are much more dependent on the hard, and above all, the
ultrasoft scale (on the other hand they are formally
insensitive to the pole mass renormalon). Moreover, in
order for the computation with the static potential to be a
more or less reasonable approximation we need to have at
least three or more terms (also important is the resumma-
tion of soft logarithms). For the case of the relativistic
potentials, we have at most two terms. This, together with a
much stronger scale dependence, can trigger that ineffi-
ciencies of the description of the relativistic potentials get
amplified when computing the expectation values. In this
respect, for the first time, we have two terms of the
perturbative expansion of the (relativistic) potentials, for
which the complete resummation of large logarithms is

known. This allows us to compare fixed-order with RGI
results. We do this comparison in Fig. 11. We observe that
the resummation of logarithms happens to be crucial to get
consistent results between the strict and the alternative
counting scheme. It makes the correction much smaller too
(which is good news for the validity of the velocity
expansion), and, as we will see next, it helps in getting
reasonable agreement with experiment.

VII. PHENOMENOLOGY: n= 2, l = 1.
ALTERNATIVE COUNTING APPROACH

We now repeat the analysis of Sec. V but using the
predictions obtained in the previous section. We first plot
our prediction of ΔSI in Fig. 12. The bulk of the difference
with the strict weak-coupling computation comes from the
different results of the static solution. On the other hand, the
relativistic corrections are similar. We emphasize again that
for this to be the case, the resummation of large logarithms
is crucial. The final result is compatible with experiment
within uncertainties.
We now turn to the fine splittings. We remark that they

are renormalon-free observables. Indeed, the results are
virtually insensitive to νf, so by default we will use
νf ¼ 1 GeV. Therefore, they are a cleaner place than

Eð0Þ
21 to test the convergence of truncating at N the static

potential. We show such plot in Fig. 13 (left). In the left
figures, we plot the fine splitting with NNLO(N) accuracy.
This figure effectively draws (up to a constant) h1=r3i21 for
bottomonium using different N’s, which allows us to check
the convergence associated to the static potential. The
convergence is somewhat marginal. Things improve con-
siderably when we include higher-order corrections to the
NNLO(3) result. We show the results in Fig. 13 (right).
Moving from NNLO(3) to NNLL(3) (incorporating the
resummation of large hard logarithms) makes the result
more scale independent and closer to experiment. Going to
N3LLð3Þ or N3LOð3Þ improves the result. They are quite
scale independent, quite close among them, and in quite
good agreement with experiment. For Eð13P1Þ − Eð13P0Þ
the N3LLð3Þ theoretical result hits the experimental value
at the scale of minimal sensitivity. For Eð13P2Þ − Eð13P1Þ,
the N3LLð3Þ theoretical result is around 5 MeV above the
experimental value at the scale of minimal sensitivity.
Overall, the agreement with experiment is quite remark-
able. If we compare with the strict weak-coupling results,
they typically yield smaller values than the alternative
computational approach, and show a larger factorization
scale dependence. Nevertheless, the N3LO and N3LL
results in the strict weak-coupling approximation are in
reasonable agreement with the N3LOð3Þ and N3LLð3Þ
result obtained in this alternative computational approach
at the scale of minimal sensitive of both. If we look to the
difference between the NNLL(3) and N3LLð3Þ the differ-
ence is small. On the other hand the difference between
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FIG. 11. Plot of the ð0Þhn; ljδVjn; lið0Þ þ δEus
nl contribution to

ΔSI for bottomonium with N3LL (continuous black line),
N3LLð3Þ (continous blue line), N3LO (dashed black line),
N3LOð3Þ (dashed blue line) precision, evaluated with
νr ¼ ∞GeV, νf ¼ 1 GeV, νus ¼ 1 GeV. Alternative plots with
νr ¼ 1 GeV or νf ¼ 0.7 GeV change little.

8If one considers the RGI expression ultrasoft logs already
appear at Oðα3sÞ.
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NNLO(3) and N3LOð3Þ is bigger. In both cases, they
converge to experimental value.
Note that the N3LO=LLðNÞ result is the sum of a

N3LO=LLðNÞ contribution coming from the potential and
a N3LO=LLðNÞ contribution coming from the NRQCD

Wilson coefficients, neglecting crossed terms, which are
subleading.
We now consider the hyperfine splitting, Δ, defined in

Eq. (4.6). It starts giving a nonzero contribution at
N3LO=N3LL. This observable is sensitive to hreg 1

r3i (the

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0

20

40

60

80

GeV

E
1

3
P

1
1

3
P

0
M

eV

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
GeV

E
1

3
P

1
1

3
P

0
M

eV

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
GeV

E
1

3
P

2
1

3
P

1
M

eV

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
GeV

E
1

3
P

2
1

3
P

1
M

eV

0

20

40

60

0

10

20

30

40

50

60

0

20

40

60

80

FIG. 13. Plots for the P-wave fine splittings in bottomonium in the RS0 scheme with νf ¼ 1 GeV and νh ¼ mb;RS0 . Red band is the
experimental value. Left-up panel: Plot of Eð13P1Þ − Eð13P0Þ with NNLO(N) accuracy with N ¼ 0 (dotted red line), 1 (dashed green
line), 2 (dash-dotted blue line), 3 (continuous black line). Left-bottom panel: Plot of Eð13P2Þ − Eð13P1Þ with NNLO(N) accuracy with
N ¼ 0 (dotted red line), 1 (dashed green line), 2 (dash-dotted blue line), 3 (continuous black line). Right-up panel: Plot of Eð13P1Þ −
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N3LO and N3LL expression for the fine splitting is also
sensitive to thematrix element of this operator).We can then
check the convergence in N by computing the N3LOðNÞ
result (i.e., the matrix element) for different N’s. We show
the outcome in the left panel of Fig. 14. The convergence is
similar to the fine case. Corrections are large and so is the ν
scale dependence. The resummation of the hard logarithms
improve the agreementwith experiment, still the strict weak-
coupling result shows a better agreement with experiment.
In the above computation, we only have the first term of the
perturbative expansion in the strict weak-coupling limit. We
conjecture that higher-order terms of the relativistic potential
will compensate this behavior. In other words, we do not
know the shape of the relativistic corrections with enough
accuracy at short distances. This introduces large errors
when producing expectation values of them. In this respect,
it is interesting to seewhat lattice simulations can add to this
discussion. The hyperfine splitting is specially clean, as it
only depends on VS2 . Indeed, for P-wave states, any
dependence on the delta potential vanishes and only the r
dependence (at nonzero r) is relevant. Lattice determinations
of VS2 were obtained in [57,58]. In the first reference, the
lattice simulations were basically compatible with zero (up
to a lattice version of δðrÞ, which obviously does not
contribute to the hyperfine). The second reference gives a
parametrization which has a nontrivial r dependence (with
no delta potential). This could give a large contribution to the
hyperfine splitting and, thus, making the theoretical pre-
diction incompatible with the experimental figure, which is
approximately zero.9

Finally we study ρ ratio. We show our results in Fig. 15.
The LO(N) and LL(N) results are equal (for any N) to the
strict weak-coupling computation. For the NLO(3) and

NLL(3) results, we consider two options: Directly consid-
ering the ratio between the energy differences or treating
the OðαsÞ correction to the relativistic potential perturba-
tively. At small scales the difference between both
approaches becomes significant, specially for the NLO(3)
result, which approaches the experimental result. At
present, the spread of values depending on the truncation
does not allow us to reach definite conclusions. Differences
with experiment are of order 20%, in principle achievable
with higher-order corrections.
The issues discussed above deserve further dedicated

studies. Indeed, to settle (some of) them, it would be very
interesting to compute the next correction in the weak-
coupling expansion of the relativistic potential that con-
tributes to this observable. This is a complicated task but
within reach. Indeed, for the future, the fine and hyperfine
splittings are ideal candidates for dedicated analyses aiming
at Oðmv6Þ precision. This is in principle feasible, and may
lead to precise predictions with small errors.
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FIG. 15. Plot of ρ for bottomonium. We plot the LO ¼ LOðNÞ
(dotted red line), LL ¼ LLðNÞ (dashed green line), NLO(3) (dot-
dashed blue line) and NLL(3) (solid black line) results (the latter
two treating the OðαsÞ correction to the relativistic potential
perturbatively). The NLO(3) and NLL(3) result from the energy
differences are the long-dashed blue and black lines respectively.
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FIG. 14. Plots of Δ, the hyperfine splitting for P-wave bottomonium, in the RS0 scheme with νf ¼ 1 GeV and νh ¼ mb;RS0 . Red band
is the experimental value. Left panel: Plot of Δ with N3LOðNÞ accuracy with N ¼ 0 (dotted red line), 1 (dashed green line), 2 (dash-
dotted blue line), 3 (continuous black line). Right panel: Plot of Δ with N3LOð3Þ accuracy (continuous green line) and N3LLð3Þ
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9Nevertheless, it is not that clear whether the lattice simu-
lations of [58] at short distances cannot indeed be parametrized
by a delta potential. A.P. acknowledges discussions with Gunnar
Bali on this point.
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VIII. CONCLUSIONS

In this paper, the P-wave heavy quarkonium spectrum
has been obtained for the first time at strict weak coupling
with N3LL precision. We have obtained such precision for
the equal and nonequal mass cases and for the fine and
hyperfine splittings as well. We emphasize that these results
also give the Oðmα6s lnð1=αsÞÞ correction to the spectrum
(for P-wave states) for the first time. Remarkably, the
results we obtain are compatible with experiment, for
n ¼ 2, l ¼ 1 bottomonium, albeit with large uncertainties.
For the spin-independent energy combination ΔSI, defined
in Eq. (5.1), the convergence is somewhat marginal. For the
fine splitting, approximate agreement can be found at scales
of around 1 GeV, also for the hyperfine. In any case, the
uncertainties are large, to the point that the incorporation of
the resummation of logarithms produces energy shifts
which are inside the expected uncertainties. For charmo-
nium and Bc we have also performed exploratory studies.
We found that the scale dependence is larger and the
convergence worse. At this stage we refrain of trying
quantitative analyses of these states.
For ΔSI, the N3LL result is the maximal accuracy (in

analytic terms) that can be obtained in the foreseeable
future. For some specific (the fine and hyperfine) energy
splittings, it is still within reach (with a quite significant,
but finite, amount of effort) to go further analytically,
and obtain the complete Oðmα6sÞ result (or its RGI
expression, which however could be much more diffi-
cult). This implies computing the Oðv2Þ corrections to
the leading nonvanishing term. It would give a hint of
the size of the relativistic corrections, which is quite
compelling. We have already seen that present evalua-
tions of the ρ-ratio of the fine splittings are off by
around 25%, even though the description of the indi-
vidual energy splittings is quite reasonable. It would be
interesting to see the impact of the incorporation of
the Oðv2Þ corrections to this specific observable. For the
case of the hyperfine splitting at present only the
leading nonvanishing term is known. The present
evaluation agrees with experiment. Therefore, it is of
great interest to check if such agreement survives the
incorporation of higher-order corrections. Leaving aside
these energy differences, going beyond N3LL would
require to go to N4LO. For the gross spectrum, ΔSI , this
would require the much demanding computation of the
static potential with four-loop accuracy, other necessary
computations would also be quite difficult.
In view of the difficulty of obtaining complete higher-

order corrections, one will have to rely on approximations.
The first one, which we have already applied here, explores
selective resummations of higher-order corrections. We
incorporate the static potential (truncated to a given power
in αs) exactly in the Schrödinger equation [see Eq. (6.1)].
We take the result as the leading Oðv2Þ term. In order for

this approach to be sensible, this leading Oðv2Þ term has to
be more or less stable when truncating at different orders in
the static potential (for large N). With νf ¼ 1 GeV we do
not get a convergent pattern, though we get it for
νf ¼ 0.7 GeV, and both results are relatively close for N ¼
3 (as long as the scale ν is not very small). We observe that,
compared with the strict weak-coupling computation, we
find an almost constant shift downwards of order
∼60 MeV. At this point we do not have a clear explanation
for this fact, and only speculate that it may have to do with
inefficiencies in the renormalon cancellation in the static
potential. Leaving this problem aside, we consider the
incorporation of the relativistic corrections. These are
renormalon-free quantities but much more sensitive to the
hard, and above all, the ultrasoft scales. We can make
interesting observations. If we consider the relativistic
corrections to the energy without logarithmic resumma-
tion, we observe that they yield quite different results in
the alternative counting versus the strict weak-coupling
computation. The former generates a much bigger cor-
rection that deteriorates the agreement with data.
Remarkably, the resummation of logarithms fixes this
problem. After the resummation of logarithms both the
strict weak-coupling computation and the alternative
counting scheme yield consistent results for the relativistic
corrections of Eq. (5.1).
We also apply this alternative counting scheme to the

fine and hyperfine. They are free of renormalon and
ultrasoft effects. Therefore, they are potentially rather clean
observables. Also interesting observations can be made
here. The convergence of the static solution is still slow.
Nevertheless, a rather reasonable agreement with experi-
ment is obtained for the fine splittings after inclusion of the
OðαsÞ corrections to the potential. For the ρ ratio, however,
the situation is somewhat inconclusive and so is for the
hyperfine splitting. We conjecture that higher-order per-
turbation corrections can be important to obtain precise
predictions for these observables.
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APPENDIX A: THE POTENTIAL

We display here the MS renormalized expressions for the
NRQCD potentials necessary to compute the N3LO spec-
trum. The static potential reads
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Vð0Þ
N ðr; νÞ ¼ −

CfαsðνÞ
r

�
1þ

XN
n¼1

�
αsðνÞ
4π

�
n
anðν; rÞ

�
: ðA1Þ

For the seaked N3LO precision one can truncate at N ¼ 3 and the coefficients read

a1ðν;rÞ¼ a1þ2β0 lnðνeγErÞ;

a2ðν;rÞ¼ a2þ
π2

3
β20þð4a1β0þ2β1Þ lnðνeγErÞþ4β20ln

2ðνeγErÞ;

a3ðν;rÞ¼ a3þa1β20π
2þ5π2

6
β0β1þ16ζ3β

3
0þ

�
2π2β30þ6a2β0þ4a1β1þ2β2þ

16

3
C3
Aπ

2

�
lnðνeγErÞ

þð12a1β20þ10β0β1Þln2ðνeγErÞþ8β30ln
3ðνeγErÞ: ðA2Þ

The OðαsÞ term was computed in Ref. [59], the Oðα2sÞ in Refs. [60,61], the Oðα3sÞ logarithmic term in Ref. [62], the light-
flavour finite piece in Ref. [63], and the pure gluonic finite piece in Refs. [64,65]. In the normalization used in this paper,
specific expressions for the coefficients ai can be found in Appendix A of Ref. [6].
The complete set of relativistic potentials in the on-shell scheme with N3LO accuracy were obtained in the equal mass

case in Refs. [56,66] (for the NNLO result see Ref. [67]). For the unequal mass case (and for the specific renormalization
scheme we use in this paper) they were computed in Ref. [6]. The resulting expressions read

Vð1;0Þ
on−shellðrÞ
m1

þ Vð0;1Þ
on−shellðrÞ
m2

¼ C2
Fα

2
sðe−γE=rÞ
2r2

mr
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2
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��
: ðA3Þ

Vð2;0Þ
p2;on-shell

ðrÞ ¼ −
CFα

2
s

3π

1

r
CA ln ðνreγEÞ; ðA4Þ

Vð1;1Þ
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ðrÞ ¼ −
CFαsðe−γE=rÞ

r

�
1þ αs

4π

�
a1 þ

8

3
CA ln ðνreγEÞ

��
; ðA5Þ

The spin-dependent and Vr potentials relevant for P-wave
states can be found in Eqs. (2.19)–(2.24), Eq. (2.27) and
Eq. (2.29). For a P-wave state, the equal mass case is
trivially recovered by setting m ¼ m1 ¼ m2.

APPENDIX B: THE N3LO HEAVY
QUARKONIUM SPECTRUM

In thisAppendix, we collect the explicit expression for the
fixed order N3LO P-wave spectrum. The P-wave spectrum
at N3LO, was obtained in Ref. [4,5] for the equal mass case
and in Ref. [6] for the unequal mass case. It reads

EN3LOðn; l; s; jÞ ¼ EC
n

�
1þ αs

π
P1ðLνÞ þ

�
αs
π

�
2
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þ
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�
; ðB1Þ

P1ðLνÞ ¼ β0Lν þ
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2
; ðB2Þ
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ν þ
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P3ðLνÞ¼
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where ci ¼ cci þ cnci , Lν ¼ ln nν
2CFmrαs

þ S1ðnþ lÞ and

EC
n ¼ − mrC2

Fα
2
s

2n2 . Expressions for cc2 and cc3 can be found in
Eqs. (7.17) and (7.18) of Ref. [6] (see also Ref. [6] for
definitions and notation);
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where, in comparison to Ref. [6], we express the results in the spin basis fS;S−g:

S12 ≡ hS1 · S2i ¼
1

2
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Ds ≡ 1

2
hS12ðrÞi ¼

2lðlþ 1Þsðsþ 1Þ − 3XLS − 6X2
LS

ð2l − 1Þð2lþ 3Þ ; ðB7Þ

XLS ≡ hL · Si ¼ 1
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and finally
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Again, in comparison to Ref. [6], we express the results in the spin basis fS;S−g,
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where LH ¼ lnð n
CFαs

Þ þ S1ðnþ lÞ. The various Σ1, Σb, � � �,
above are finite sum functions, which are defined in
Appendix I of Ref. [6].
The other color functions ξSIX in Eq. (B9) are not affected

by the change of spin basis, and can be found in
Eqs. (I.15)–(I.21) of Ref. [6].
The case of equal masses is recovered by taking the limit

m ¼ m1 ¼ m2 in all the color functions involved in
Eq. (B9), except for ξFF (Eq. (I.18) in Ref. [6]), where
we shall add the anihilation diagrams and, for equal masses,
we obtain instead:

ξFF ¼
δl0
n

�
−2S12 þ

�
2S12 −

1

2

�
lnð2Þ þ 19

30

�
: ðB13Þ

Finally, we would like to mention that we can
check that the spectrum produced by the potentials
obtained in different matching schemes is equal.
Indeed, this check gives a nontrivial relation among
some finite sums that, even though we did not prove it
explicitly, holds true for any arbitrary set of quantum
numbers we tried:

S1ð2lÞ þ S1ð1þ 2lÞ − 2S1ðlþ nÞ þ 2lΣðkÞ
1 ðn; lÞ

þ 2ðlþ 1ÞΣðmÞ
1 ðn; lÞ ¼ 1: ðB14Þ

APPENDIX C: THE N3LL HEAVY
QUARKONIUM SPECTRUM

After adding the ultrasoft and soft/hard running to the
N3LO result, one obtains the N3LL P-wave spectrum. It
reads

EN3LLðn;l;s;jÞ

¼EC
n

�
1þαs

π
P̃1ðLνÞþ

�
αs
π

�
2

P̃2ðLνÞþ
�
αs
π

�
3

P̃3ðLνÞ
�
;

ðC1Þ

P̃1ðLνÞ ¼ P1ðLνÞ ¼ β0Lν þ
a1
2
; ðC2Þ

P̃2ðLνÞ ¼
3

4
β20L

2
ν þ

�
−
β20
2
þ β1

4
þ 3β0a1

4

�
Lν þ c̃2; ðC3Þ

P̃3ðLνÞ¼
1

2
β30L

3
νþ

�
−
7β30
8

þ7β0β1
16

þ3

4
β20a1

�
L2
ν

þ
�
β30
4
−
β0β1
4

þ β2
16

−
3

8
β20a1þ2β0c̃2þ

3β1a1
16

�
Lν

þ c̃3: ðC4Þ

The coefficients c̃i ¼ c̃ci þ c̃nci are split into contributions
from the static potential and those including the relativistic
corrections.
c̃ci only get contributions from the resummation of the

ultrasoft logarithms:

c̃c2 ¼ cc2 þ δcc2; ðC5Þ

c̃c3 ¼ cc3 þ δcc3; ðC6Þ

where cc2;3 are the coefficients computed for the fixed-order
spectrum in Eqs. (147) and (150) in Ref. [5] for (un)equal
masses, and δcc2;3

δcc2 ¼ −
πC3

A

6

2π

β0
ln
αus
αs

; ðC7Þ

δcc3 ¼
πC3

A

32

�
8

3

2π

β0
ln
αus
αs

ðβ0 − 2a1Þ

− 8π2
2π

β0

αus − αs
αs

×

�
8

3

β1
β0

1

ð4πÞ2 −
1

27π2
ðCAð47þ 6π2Þ − 10TfnfÞ

��
:

ðC8Þ

c̃nci get contributions from the ultrasoft resummation,
from the hard resummation, and from the difference of
evaluating the ultrasoft energy at the ultrasoft scale
(which is included in the ultrasoft part of the coef-
ficients), i.e.,

c̃nc2 ¼ cnc2 þ δcnc2 ; ðC9Þ

c̃nc3 ¼ cnc3 þ δcnc3 ; ðC10Þ

where cnc2;3 are the coefficients presented in the previous
section and computed for the fixed-order spectrum in
(Ref. [6]) Ref. [5] for (un)equal masses, and

δcnc2 ¼ δcnc;h2 þ δcnc;us2 ; ðC11Þ

δcnc3 ¼ δcnc;h3 þ δcnc;us3 ðC12Þ

where

δcnc;us2 ¼ 2πCACF

3n2

�
CF−

2n
2lþ1

ðCAþ4CFÞ
�
2π

β0
ln
αus
αs

;

ðC13Þ
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δcnc;us3 ¼ 2π

β0

αus − αs
αs

�
πβ0
3

�
C3
A

4

�
Lus −

5

6

�
− C3

FL
E
n

�
þ π3CACF

�
2CA

ð2lþ 1Þnþ CF

�
8

ð2lþ 1Þn −
1

n2

��

×

�
8

3

β1
β0

1

ð4πÞ2 −
1

27π2
ðCAð47þ 6π2Þ − 10TfnfÞ þ

β0
3π2

�
Lus −

5

6

���

þ πCF

3n2
2π

β0
ln
αus
αs

�
CFðCA − 2CFÞβ0

nð1 − δl0Þ
lðlþ 1Þð2lþ 1Þ þ 2CAa1

�
CF −

2n
2lþ 1

ðCA þ 4CFÞ
�

− CAβ0

�
CF −

4n
ð2lþ 1Þ2 ðCA þ CFð7þ 6lÞÞ þ 4n2

2lþ 1
ðCA þ 4CFÞ

�
Σbðn; lÞ −

π2

6

���

−
π2

3

�
C3
A

2
þ 4C2

ACF

ð2lþ 1Þnþ 2CAC2
F

�
8

ð2lþ 1Þn −
1

n2

���
αus
αs

Lνus − Lν

�
; ðC14Þ

where we have omitted the contribution of hreg 1
r3i to the S-wave spectrum.

The NNLL hard contribution of the spectrum coefficients is known for general quantum numbers,

δcnc;h2 ¼ −
2π2C2

Fð1 − δl0Þ
nð2lþ 1Þlðlþ 1Þ

m2
r

m1m2

�
δ½cð1ÞF cð2ÞF �Ds þ XLS

�
δcð2ÞF þ δcð1ÞF þ δcð1ÞS m2

2m1

þ δcð2ÞS m1

2m2

��

¼ 2π2C2
Fð1 − δl0Þ

nð2lþ 1Þlðlþ 1Þ
�
1 − z−

γ0
2

��
XLS þ

m2
r

m1m2

�
1þ z−

γ0
2

�
Ds

�
; ðC15Þ

where we have defined

δcðiÞF ¼ cðiÞF ðνh; νÞ − cðiÞF ðν; νÞ; ðC16Þ

δcðiÞS ¼ cðiÞS ðνh; νÞ − cðiÞS ðν; νÞ ¼ 2ðcðiÞF ðνh; νÞ − cðiÞF ðν; νÞÞ; ðC17Þ

δ½cð1ÞF cð2ÞF � ¼ cð1ÞF ðνh; νÞcð2ÞF ðνh; νÞ − cð1ÞF ðν; νÞcð2ÞF ðν; νÞ ðC18Þ

and truncated to the appropriate order.
Finally, the third-order hard coefficient is obtained from all the relativistic potentials except for Vr and VS2 , from which

we only obtain the P-wave contribution. We split it into a spin-dependent and a spin-independent piece,

δcnc;h3 ¼ δcSI;h3 þ δcSD;h3 ðC19Þ

where

δcSD;h3 ¼ 2π2C2
Fð1 − δl0Þ

nð2lþ 1Þlðlþ 1Þ
m2

r

m1m2

��
β0

�
S1ðlþ nÞ þ 4n − ð2lþ 1Þ

4n
−
1

2
ðS1ð2l − 1Þ þ S1ð2lþ 2ÞÞ þ lΣðkÞ

1

þ lΣðmÞ
1 − nΣðkÞ

2 − nΣðmÞ
2 þ π2n

6
þ ΣðmÞ

1

�
−
3a1
4

��
XLS

�
δcð1ÞF þ δcð2ÞF þ δcð1ÞS m2

2m1

þ δcð2ÞS m1

2m2

�
þ δ½cð1ÞF cð2ÞF �Ds

�

þ 1

12
ðβ0 þ 8CAÞXLS

�
ðδcð1ÞF þ δcð2ÞF Þ þ δcð1ÞS m2

2m1

þ δcð2ÞS m1

2m2

�
−
δ½cð1ÞF cð2ÞF �Ds

12
ð2CA − 3β0Þ

− CA

�
2S1ðlþ nÞ þ 2n − ð2lþ 1Þ

2n
− S1ð2l − 1Þ − S1ð2lþ 2Þ

�

×

�
δ½cð1ÞF cð2ÞF �Ds þ XLS

�
δcð1ÞF m2

2mr
þ δcð2ÞF m1

2mr

��
þ 1

3
δ½cð1ÞF cð2ÞF �S12ð7CA − 2β0Þ

�
ðC20Þ
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¼ 2π2C2
Fð1 − δl0Þm2

r

lðlþ 1Þð2lþ 1Þnm1m2

ð1 − z−CAÞ
��

Dsðz−CA þ 1Þ þm1m2

m2
r

XLS

�

×

�
β0

�
−lΣðkÞ

1 ðn; lÞ − ðlþ 1ÞΣðmÞ
1 ðn; lÞ þ nðΣðkÞ

2 ðn; lÞ þ ΣðmÞ
2 ðn; lÞÞ − π2n

6
− 1

�

þ a1 þ
z−β0−

γ0
2 − 1

z−
γ0
2 − 1

CA þ CF

2
−
z−β0−CA − 1

z−CA − 1

CALH

2
þ β0 − CA

2

�
2lþ 1

2n
− 2S1ðlþ nÞ þ S1ð2l − 1Þ þ S1ð2lþ 2Þ − 1

��

þ 1

2
Dsðz−CA þ 1Þ

�
−
β0
3
þ z−β0−CA þ 1

z−CA þ 1
ðCA þ CFÞ − CA

�
2lþ 1

2n
−
8

3
− 2S1ðlþ nÞ þ S1ð2l − 1Þ þ S1ð2lþ 2Þ

þ z−β0−CA þ 1

z−CA þ 1
LH þ ðz−β0−2CA − 1Þ

z−2CA − 1
ln
m1m2

4m2
r

��
þ z−CA

2ðz−CA − 1Þ
αh − αs

αs

�
γ1
2β0

−
β1CA

β20

��
Dsz−CA þm1m2

2m2
r
XLS

�

−
CAðz−β0−CA − 1Þ

z−CA − 1
XLS

�
m2

2mr
ln

m1

2mr
þ m1

2mr
ln

m2

2mr

�
þ 4

3
S12

�
β0
2
−
7CA

4

�
ðz−CA þ 1Þ

�

−
2π2CAC2

Fð1 − δl0Þz−
γ0
2

ðlðlþ 1Þð2lþ 1ÞnÞ
mr

m1m2

�
Dsmrz−

γ0
2 þm1m2

2mr
XLS

��
αh
αs

Lνh − Lν

�
; ðC21Þ

δcSI;h3 ¼ π2C2
Fð1−δl0Þ

nð2lþ1Þlðlþ1Þ
m2

r

m1m2

��
m1

m2

þm2

m1

��
−

5

12
CAðz−2CA−1Þþ1

3
Tfnf

�
z−2CA −1þ

�
20

13
þ32

13
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�
½1− z

−13CA
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���
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