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We compute the heavy quarkonium mass of / # 0 (angular momentum) states, with otherwise arbitrary

quantum numbers, with next-next-to-next-to-leading logarithmic (N3LL) accuracy. This constitutes

the first observable in heavy quarkonium for which two orders of the weak-coupling expansion

sensitive to the ultrasoft scale are known and the resummation of ultrasoft logarithms is made. We also

obtain, for the first time, resummed N>LL expressions for the different fine and hyperfine energy splittings
of these states, which are not sensitive to the ultrasoft scale but still require resummation of (hard)
logarithms. We do this analysis for the equal and non-equal mass cases. We also study an alternative
computational scheme that treats the static potential exactly. We then perform a comprehensive
phenomenological analysis: we apply these results to the n = 2, [ = 1 bottomonium, B, and charmonium

systems and study their convergence.
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I. INTRODUCTION

The heavy quarkonium mass has been computed with
increasing accuracy in the limit of very large mass (i.e., in
the strict weak-coupling approximation) over the years. If n
represents the principal quantum number and [ the orbital
angular momentum, in this paper we exclusively consider
non-S-wave states (i.e., those states with [ # 0). Typically,
we will use the notation “P-wave” to refer to non-S-wave
states (unless explicitly stated otherwise). The heavy
quarkonium mass of the P-wave states has been computed
in Ref. [1] to next-to-leading order (NLO), in Ref. [2] to
NNLO, in Ref. [3] the In @, term of the N*LO, in Refs. [4,5]
with N3LO accuracy for the equal mass case and in Ref. [6]
for the nonequal mass case. For the n =2 and [/ =1 fine
splitting in the equal mass case, the N°LO expression was
obtained in Ref. [7] and the hyperfine in Ref. [8] (for
arbitrary quantum numbers and equal masses).
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Once the spectrum has been obtained with N3LO
accuracy, one can move to the next step: the computation
of the heavy quarkonium mass with N*LL accuracy by the
resummation of the large logarithms. This is one of the
main purposes of this paper, and we achieve this goal for
arbitrary P-wave states. Most of the necessary ingredients
are already available in the literature. The ultrasoft renorm-
alization group (RG) analysis of the potentials relevant for
the P-wave states were obtained with N®LL accuracy in
Ref. [9]. These results, together with the detailed compu-
tations in Ref. [6], allow us to obtain the mass of the excited
states with NLL accuracy. We also achieve this precision
for the fine and hyperfine P-wave splittings for the first
time. Crucial to obtain this last result is the knowledge of
the potential to N3L.0, of the structure of the potential in
terms of Wilson loops, and the confirmation that no
ultrasoft effects enter at this order. The above results are
obtained using the effective field theory (EFT) named
potential nonrelativistic QCD (pNRQCD) [10,11] (for
reviews see [12,13]).

The cancellation of the leading renormalon of the pole
mass and the static potential, first found in Ref. [14], and
later in [15,16], led to the realization [16] that using
threshold masses [16-20] (which explicitly implement
the cancellation of the renormalon in heavy quarkonium
observables) improves the convergence of the perturbative
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series. This makes these very precise computations
useful not only for academical purposes but also for
phenomenological applications. The applicability of a
weak-coupling analysis to the first P-wave heavy quar-
konium excited state (n =2, [ =1) is an open issue.
Originally, they were studied in Refs. [21-24], where the
outcome of the analysis was qualitatively positive. These
analyses had NNLO accuracy and used the Upsilon
counting [25], which effectively introduces the cancella-
tion of renormalon but does not use threshold masses.
An analysis of the fine splittings, which are directly
renormalon free, was done in Ref. [7]. Beyond NNLO
there is only a preliminary phenomenological analysis in
N3LO using the Upsilon counting [4] and the more
recent analysis [26].

On the phenomenological side, one of the purposes of
this paper is to study the P-wave states of heavy quarko-
nium for bottomonium, charmonium and B, (but specially
bottomonium) to clarify if a weak-coupling description
for them is appropriate, and, if so, to which extent.
Nonperturbative corrections are parametrically smaller than
the perturbative terms we neglect, and depend on how one
treats the perturbative expansion. Therefore, we refrain of
incorporating nonperturbative effects until we get a more
clear understanding of the asymptotic behavior of the
perturbative series. Actually, this is one of the reasons
we do a strict perturbative analysis in this paper: We believe
it is important to study pure perturbative predictions before
start including nonperturbative effects. We also study
separately the effect of the pure ultrasoft contributions,
when they appear, as those contributions are the ones
expected to be more sensitive to nonperturbative dynamics.
The threshold mass we will use is the RS’ mass [18]. We
also want to quantify the impact of the resummation of
logarithms in the heavy quarkonium spectrum: for the first
time we have two terms of the weak-coupling expansion
that depend on the ultrasoft logarithmic resummation.

Besides the aforementioned phenomenological analysis
performed at strict weak coupling, we also study the
convergence of an alternative computational scheme that
reorganizes the perturbative expansion of the weak-
coupling computation. This scheme is characterized by
solving the Schrodinger equation including the static
potential exactly (to the order it is known). This incorpo-
rates formally subleading terms in the leading-order (LO)
solution. On the other hand the relativistic corrections to the
spectrum are included perturbatively. This working scheme
performs a partial resummation of higher-order effects.
This may accelerate the convergence of the perturbative
series. This is indeed the effect seen in (most of) the cases
where it has been applied (spectrum and decays)
[23,24,27,28] (the acceleration is somewhat more marginal
in the analysis in Ref. [29]). This scheme naturally leads to
the organization of the computation in powers of v, the
relative velocity of the heavy quark in the bound state.

A. pNRQCD

Integrating out the soft modes in NRQCD [30,31], we
obtain the EFT named pNRQCD [10]. The most general
pNRQCD Lagrangian compatible with the symmetries of
QCD that can be constructed with a singlet and an octet
(quarkonium) fields, as well as an ultrasoft gluon field to
NLO in the multipole expansion has the form [10,11]

‘CpNRQCD = /d3rTr{S*(i60 — hy(r,p.Pg.S;. Sz))s

+ OT(lDO - ho(rv P, PR! Sl’ SZ))O}
+ VA (r)Tr{O'r - gES + S'r - gEO}

Vv . .
+ #Tr{olr -gEO+O'Or - gE}
1 <
—ZGZI/G’M + Z‘_]iip‘Ih (1.1)
i=1
P’ Pi
h’s(r’ pvPR7SI’SZ) = 2m, +m+ Vs<r7 p’PR’SbSZ)’
(1.2)
(5.0 PSSy = 2 PRy b b sy )
o\, P, PR, 72m, M oL, P, FR,D1,972),
(1.3)
(.0 o1y y02)  yn
Vi=VOp—— - 44 Hoe
my nmy ml m2 mymy
(1.4)
(1,0) (0.1) (2.0) 0.2) (1,1)
Vo Vo Vo Vo Vo
L e e ST
nmy nmy my ms nmiymy
(1.5)
where iDyO = 00 — g[Ay(R, 1), 0], Pg = —iVy for the
singlet, Pr = —iDr for the octet (where the covariant
derivative is in the adjoint representation), p = —iV,,
mmy (1.6)
mp + my

and M = my + m,. We adopt the color normalization

S = S1./+/N., 0= 0°T/\/Tp, (1.7)

for the singlet field S(r, R, ) and the octet field O%(r, R, 7).
Here and throughout this paper we denote the quark-
antiquark distance vector by r, the center-of-mass position
of the quark-antiquark system by R, and the time by .
Both, 4, and the potential V; are operators acting on the
Hilbert space of a heavy quark-antiquark system in the
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singlet conﬁguration.] According to the precision we are
aiming for, the potentials have been displayed up to terms
of order 1/m?2.? The static and the 1/m potentials are real-
valued functions of r = |r| only. The 1/m? potentials have
an imaginary part proportional to 6 (r), which we will
drop in this analysis, and a real part that may be decom-
posed as:

VOO = VED S VED, e = ved v
v = v+ v, (1.9)
o) _ L, 5 00 @0, LT | o)
Vs =501V (N + Vi () — + V(). (1.10)
(02 2,3 | 02
Vg —{pz, ()}+V ()7+V, (r), (1.11)
an_ 1 (L1
Vi __i{pl'P%sz (r)}
L,-L,+L,-L
—V(ng”(r)( e Vv, (1L12)
Viy) = V(L - Sy, (1.13)
v — vy (L, - S, (1.14)
1,1 1
V(SD) :V(L s)( )L Sy _VL sl)( )L2'Sl
+ Ve (8,8, + v (mS(r).  (1.15)

where, S| =6,/2, S, =6,/2, Li=rxp;, L, =rxp,
and S;,(r) = %% _ 5, . 5,. Note that neither L, nor L,
correspond to the orbital angular momentum of the particle
or the antiparticle.

Due to invariance under charge conjugation plus m; <
m, interchange we have

v (r) = vO(p), (1.16)
This allows us to write
]Therefore, in a more mathematical notation: h — fz,

V(r,p) = V(¥ p). We will however avoid this notation in
order to facilitate the reading.

Actually, we also have to include the leading correction to the
nonrelativistic dispersion relation for our calculation of the

spectrum:
1 1
oV, =— , 1.8
(g g (18)

and use the fact there is no O(a,/m?) potential.

y.0)  yO.1) (1.0

(1.17)

Invariance under charge conjugation plus m; <> m, also
implies

Vel = vt v = VR,
VEO () = Vi (rmy o my),

Vis () = ViE (rimy o my),

V(Lll’Slz(r) = V(le’;])(r;ml < my) (1.18)

For the precision of the computation of the spectrum
reached in this paper, we can neglect the center-of-mass
momentum, i.e., we set Pg = 0 in the following and thus
Li=rxp,=rxp=L,Ly=rxp,=-rxp=-L.

Expressions for the N3LO potentials for the nonequal
mass case can be found in Ref. [6] for different bases of
potentials (on-shell, Wilson, Coulomb, Feynman matching
schemes). For illustration, we will work with the on-shell
basis of potentials where the potential proportional to L is
set to zero (for ease of reference we list them in
Appendix A). Nevertheless, we emphasize that the results
are independent of the chosen basis of potentials to N3LL
order. In the following section, we give the N’LL potentials
for the (un)equal mass case relevant for the P-wave
spectrum (see also [9]). The singlet potential V depends
on the factorization scales v, v and v V(v; vh,vus).3
Throughout this paper we will use the notation a; =
a;(V), ays = ay(vy), an = ag(vy). Large logarithms are
resummed setting v, ~ m, v ~ ma, and v, ~ ma?. We will
generically split the RG improved potential to N'LL into
the fixed-order result plus the correction generated by the
resummation of logarithms:

Vl}ngL(”;thVus) = Vs.NiLO( )+5V§ (IfleL(y;thl/us)’ (119)

such that 5VR§,LL

individual potential: V(19 etc.

(v;v,v) =0, and similarly for each

II. RENORMALIZATION GROUP RUNNING

We consider now the modifications of the N*LO poten-
tials needed to achieve the resummation of the large
logarithms for the P-wave spectrum.

A. Ultrasoft renormalization group running

The bare potential can be written in terms of the
renormalized potential and its counterterm in the following
way:

3Strictly speaking the v dependence is traded off by a
dependence in 1/r to the order we are working.
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Vg =V, +V,. (2.1) (RGE). The counterterm 6V for the NLL ultrasoft running
of V, was obtained in Eq. (35) of Ref. [9].* The RGE then
If the counterterm is determined in terms of the Wilson  reads
coefficients of the EFT, it is possible to resum the large
logarithms of the potentials associated to the ultrasoft scale v dv Viss = B, (2.2)
by solving the associated renormalization group equation  where
1 2 d
By = Cr <r2<Av>3 - Tm; .1 VIl 5 Zav(rgvo)

2o 447 ((f—”) ) ((rgrev) +a) )
x{ 30; 90; (CA<—43—7—27r> ?OTan>+O(a§’)}, (23)

and AV = VS,O) — V(. Solving this RGE, we obtain the RG improved (RGI) expressions for the static, the 1/m and the
1/m? momentum-dependent spin-independent potentials (as they do not depend on the hard scale).” We obtain

0)

VL (rivs) = VO (r;0) + V(5 1 1), (2.4)
Ve (riv) = VOO (150) 4+ 8V (15w, 1), (2.5)
Ve (rsvs) = VEV (rs0) + VD (1 v 1), (2.6)
Vi () = VD (r0) + 6V (m ), (2.7)

where V©), y(1.0), Vi)22.0> and Vi)12,1> are the fixed-order potentials. We collect them in Egs. (A1)—(AS5) for ease of reference.

The symmetries in Eq. (1.18) also apply to the N3LL potentials.
The functions 6Vrg are the corrections generated by solving Eq. (2.2). They read

Cia\3
5V1({Oc)}(r; U, Uys) = 17 (;—a“) (l + 3Z—S(a1 + 28, ln(ye“‘r)))F(y; Vgs)s (2.8)
r n
(1.0),. _ [, Caas\? o reth
SVRG (riv,vys) = [2( . ) (1 +2477 <a1+2ﬂoln(ye 2r
C,Cra? a,
+2 A2 1; (1 + 247: <01 + 2By 1n <ye““%r>>>}F(u; Vys) (2.9)
sV (r, CA“ 28, In(vers - 2.1
Vo ka1 v tus) = 1, (@ T 2B In(versn)) | F(vivy), (2.10)
5VI()22:(1)2G(}" U, Uyg) = < al + 2, ln(ye”r))>F(y; Vys)s (2.11)
where
2 (2 86, 1 1
Fluiv,) = C 2 (g —a)( 22 C(47 + 672) — 10T . 2.12
i) = Cr g {2 =) (55 s = (T +67) = 10T ) | 22

Note that these expressions should be truncated at the appropriate order in the expansion in a, for a given accuracy.

SVSGO) (731, vy,) corrects the NLL result in Ref. [9] because in By, some subleading terms in a,(1/r) of the potentials were
neglected, which are needed for a NLL precision.

“Confirmation of the counterterm in the context of VNRQCD [32] was obtained in Refs. [33,34] for the O(1/m) and O(1/m?),
potentials. Prior to this, the running of the static potential was computed at LL in Ref. [35] and at NLL in Ref. [36] and confirmed in
Ref. [37], whereas the complete LL ultrasoft running of the V was obtained in Ref. [38].

The contributions generated by Eq. (2.2) to V, that contribute to the P-wave spectrum will be discussed in Sec. II C.
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There are other operators in the pNRQCD Lagrangian
that could potentially contribute to the P-wave spectrum to
N3LL. These are

(1)

5Ly~ L STe B0 + - - (2.13)
my
and
M
5L, NWSTO'- (p xEYO“ + -+, (2.14)

1

where the dots stand for contributions needed to make the
Lagrangian density hermitian as well as the contribution
of the other heavy particle. Note that both operators are
spin dependent. Both operators can generate divergent
contributions that are absorbed by 1/m? deltalike potentials
(~1/7).

The contribution to the potential associated to the
operator in Eq. (2.13) is generated at second-order pertur-

bation theory with ultrasoft gluons: %~ . -%, and it
produces the following divergence:
L m e
SV~ mlngcg)c%)aus(AV)*%al -6,.  (2.15)

The contribution to the potential associated to the operator
in Eq. (2.14) is generated at second-order perturbation
theory with ultrasoft gluons of the following type:

r-E-. '”S;Z‘E, and produces the following divergence:

8V, N%lcg”aus(AV)%l ‘L. (2.16)
mj €

For P-wave state energies, we know that the expectation
value (L), is finite. This moves these contributions
beyond the N°LL accuracy we seek in this paper. Note
however, that 6V, actually contributes to the spectrum to
N3LL but only to S-wave energies (and in particular to the
hyperfine splitting [39,40]), since now (),_ is divergent.
oV, does not contribute to S-wave energies either; even
though (k),_, is divergent, the overall contribution is
multiplied by L, which again moves the contribution
beyond N°LL.

Overall, we do not consider these contributions here as
we are only interested in P-wave energies at NLL.
Therefore one only needs to consider the r-E---r-E
contributions up to two loops which we already dis-
cussed above.

B. Spin-dependent momentum-dependent potentials

The spin-dependent potentials do not receive ultrasoft
running, unlike the spin-independent ones. If we also

restrict ourselves to the momentum-dependent potentials,
they also do not receive potential running. Both statements
hold true for N’LL precision. On the other hand the spin-
dependent momentum-dependent potentials receive non-
trivial hard/soft running through the inherited NRQCD
Wilson coefficients coming from spin-dependent operators.
All boils down to a dependence on a single NRQCD
Wilson coefficient: ¢p (the dependence on cyg is trans-
formed in a dependence on ¢ since cg = 2cp — 1, [41]).
For the precision we seek, we need ¢ with NLL precision,
which is known at present [42,43]:

2
i ) Q, 4 v
C(F.,)NLL(V’ W) =2 3{1 +ﬁ (c, +301nm_112>

an—as (71 Yobi
+ o |
4n 2By 205
where c(Fi?LL(u, w) =777, 2= (a,/ay) P, vy ~m; is the
hard matching scale, ¢; = 2(C, + Cr) and the one- and
two-loop anomalous dimensions read

68 52
= 3@24 - jCATan-

(2.17)

Yo = 2Cy, (2.18)

We will also need cp at fixed order in powers of aj,
which can be obtained from the previous expression by
fixing vy, = v, ie., cg?NLo(y) = cSé?NLL(y, v). In this case,

o) = 1is trivial.

The spin-dependent potentials are unambiguous under the
field redefinitions considered in Ref. [6] (at least to the order
we are working at). They were originally computed in
Ref. [44] at NNLO, in Ref. [45] for the N*LO hyperfine
splitting, and in Ref. [46] the complete expression for
unequal masses was obtained. In principle, in order to
obtain the RGI expressions of these potentials one should
work in the EFT. We do not need to do that. The fact that we
know the dependence of the potentials in terms of the
NRQCD Wilson coefficients enables us to get them from old
computations. The spin-dependent potentials have been
defined in Egs. (1.13)—(1.15). Their renormalized expres-
sions read (renormalized NRQCD Wilson coefficients are
understood)

0 ,
Cro. .
ViXho(r) == Lrir- fim [ din(B1(0) 9B, (0

W
+ Lzr - (V, VO,

2.19
2r ( )
where
ir T
R tim [ B () % 9B, 0)) s
CrCra?
— ;ASa“(1+1n(rue7’5_1))+0(0!§)7 (2.20)
r
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C
r—';- (V,VO0)) = :3“ [1 +Z—;(a1 28, ln(rerE_l)} +O(@); (2.21)
(1.1) Cf:l) o r
VLZ’SI,RG(r) = _7”' : 711—{1;10/0 dtt{{gB (1) x gE,(0)), (2.22)
where
ir T ag(e' e /r) a, [(13 1 vr 5
P . 711_1;1‘;10 A dtl«gB] (l) X gEZ(O)»|M—S = —CFT 1 + ; % - Eln 61_71:' CA - §”fTF s (223)
and
(L) el i [T " 5
Vs, rg(r) = —"—if l'JTh_{EoA dt | {(gB;(1)gB5(0)) —?«931(0 gB2(0)) ], (2.24)
where
T o 5
0 i [ ar| (a4 (00BL0)) - (B (1) 900 || (225)
e MS
B Cra,(e*37 /r) a, [ (13 vr 5

The other potentials follow from the symmetry relations in
Eq. (1.18).

Note that the above potentials have N LL accuracy. This
is a new result. Additionally, we give expressions with
N3LO accuracy, O(a?), for the Wilson loops with chro-
momagnetic (and/or chromoelectric) insertions in the MS.
One can easily change to other schemes by changing e.g.,
cf,” from the MS to the lattice scheme (since the whole
potential is scheme independent). This enables a more
detailed comparison with lattice simulations at short dis-
tances. This research will be carried out elsewhere.

Overall, with very few new computations we have been
able to obtain the spin-dependent momentum-dependent
1/m? potentials with N*LL accuracy. The NNLL result was
originally obtained in Ref. [47].

C.V, and Vglz’n potentials

The remaining potentials we need to consider are V,
and V<Slz’1>. At O(ay) they are proportional to &(r), which
does not contribute to the spectrum of [ # O states to the
order we work (the deltalike potential contribution van-
ishes at first and second order in perturbation theory). At
O(a?), potentials proportional to In k (or reg 1/7 in
position space) are generated in the NRQCD-pNRQCD
matching. Such potentials generate nonzero contributions
to the spectrum of / # 0 states. We know them at leading
nonvanishing order, which is all we need. We need them

|
both for the spin-dependent and the spin-independent
potentials.

The spin-dependent potential has been computed with
N3LL accuracy in Ref. [39,40]. We are only interested in
the term proportional to reg r%, which reads

11 . 87Cp 1 1T oo b 7
V(s2,R)G(r): 3 | 485 CE-")C;)_ _7+ZCA ,
(2.27)
where
! re ! / Pk i Ink (2.28)
——Treg— = e . .
4n 83 (2x)3
The correction to the fixed-order potential comes from
considering the difference between c;”cf) evaluated at vy,

and at v, = 1.

The spin-independent V, is at present unknown with
N3LL accuracy (indeed, it is the missing link to obtain the
complete N3LL spectrum for a general S-wave energy),
since the O(a?) of the delta potential is not known. This
does not affect our analysis, since the term proportional to
53)(r) does not contribute to the energy of P-wave states.
On the other hand, we know the term proportional to reg%
with enough accuracy, as it can be deduced from the k
dependence of the NNLL result. It reads
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2,0 02 1,1
VE,RG)(”) VE,RCZ(’)_l_VE.RG)(”):-”CF —ire 1 ki[)(2> LL (2.29)
m? m3 mymy  mymy | 4w gr3 k™ ) i) .
where
d - |t a o A\ () @ o (m (] _ni2) _4 2 > 2
kaDg)k:y:—ﬂoﬁ+_ CF - ](() ,((>+_ m—2 §Tfnfcl(>_§<CA+CF>[Ck ]2—ECA[CF)]2
my (1 _hi(1 1 1
+m_1<§Tfnfcl( _g(CA‘f'CF)[Ck >] __CA[CF)F)]
24 (C 2
(my +my)* 4 <_A_ CF) @ [111(—-‘) n 1} (2.30)
mymy 3 2 V3 Ays

(c,({i) = 1 because of reparametrization invariance [48]) and
the gauge independent combination of NRQCD Wilson
coefficients

_hl(i hi(i i
&' w) ="w) + e )

20 32C -3¢
=726 (S -1 (231
¢ +<13+13CA)[ o] @231)
was computed in Refs. [49,50].
Finally, note that the ultrasoft contribution to V, in
Eq. (2.30) is 1/N? suppressed and that Eq. (2.30) is the
expression in the on-shell scheme.

III. TOTAL SHIFT ON THE ENERGY LEVELS

The P-wave spectrum at N3LO was obtained in
Refs. [4,5] for the equal mass case and in Ref. [6] for the
unequal mass case. The resulting expression for Eysy o can
be found in Appendix B. From the RGI potentials discussed
in Sec. II we obtain the N'LL shift in the energy levels

ExiLL (v th, Vig) = ExiLo + 8ERG (Vs U, Vag ) INiLL- (3.1)
where Eyi o = Exi (v, v,v). The explicit expressions of
the fixed-order and resummed energies can be found in
Appendices B and C.
The LO and NLO energy levels are unaffected by the RG
improvement, i.e.,
SERG|LL = OERG|nLL = 0. (32)
We now determine the variations with respect to the
NNLO and N3LO results. We are here interested in the
corrections associated to the resummation of logarithms.
In order to obtain the spectrum of a P wave at NNLL
and N3LL, we need to add the following energy shift to
the NNLO and N3LO spectrum (strictly speaking we

only compute the piece that contributes to the P-wave
spectrum):

ag\ 2
SERGINNLL = <nl|5V§,SNLL|nl> = E§ <ﬂ) dcy, (3.3)

which was computed in Ref. [38] for equal masses,
and

SErg oL = <”l|5V§§3LL‘”Z>

1
0 0
F2Anll VY = Vo) e Vi )

+ [0Eus (v, vug) = SE (v, v))] (3:4)

c ag 2 ag 3
:En l:(;) 5C2+ <;> (2ﬁ05C2LD+5C3) . (35)

Note that <nl|5Vf§3LL]nl> includes (nl|8VRGy L |nl).
Let us also note that the first term in Eq. (3.4), besides
the N3LO ultrasoft corrections to the momentum-
dependent potentials, also contains the In k contributions
associated to V, and Vg discussed in Sec. IIC. In
the second term of Eq. (3.4), we only have to consider
the LL ultrasoft running of the momentum-dependent
potentials and the LL (hard) running of the spin-
dependent potentials. The first and second terms in
Eq. (3.4) are computed in the same way we did in
Ref. [6]. We add the last term in Eq. (3.4) in order to
account for the evaluation at the ultrasoft scale of the
ultrasoft energy:
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. Ay |2 1 5
5E}il(l/’yus> = _Eg . |:§C%Lr€l +§CA <L1-/ub — Ly +6>

2 4C,Cp 8 1
Ay AT o2
% ( > T P\ @i

8550 C, 5
o2 (cp—=A) (L, —L.+>])],
+3n F( d 2)( e us+6):|

(3.6)

where L, =In“2" + §,(n+1), and LE are the non-
Abelian Bethe logarithms. Numerical determinations of
these non-Abelian Bethe logarithms for /# 0 can be
found in Ref. [5]. o

InEq.(3.5), E§ = 555 L, = Inyetr + Sy (n + ).
We split the éc; coefficients into a Coulomb-like and a
non-Coulomb-like contribution,

dc; = 6¢§ + ocke, (3.7)
for i = 2, 3. The corrections dc§ are given in Eqs. (C7) and
(C8). They are generated by the ultrasoft corrections to the
static potential. The relativistic ultrasoft contribution to 6¢375
is produced by Egs. (2.9)—(2.11), plus the ultrasoft part of
Eq. (2.30) and Eq. (3.6), to the appropriate order. Explicit

J
ag\* 1
5E21 = Eg <;> [ln CFa

+ In?

FOy

IV. FINE AND HYPERFINE SPLITTING

The results of the previous section apply to a general
state with / # 0. Now we would like to study in more detail
the fine and hyperfine splittings of P-wave states. Note that
these splittings do not depend on the ultrasoft scale at the
order at which we are working. In principle, this means
that we do not have to rely on the assumption that the
ultrasoft scale can still be handled in the weak-coupling
approximation (otherwise the power counting of the non-
perturbative corrections changes). If one assumes that
mv? > Aqcp, the complete expression for the leading
nonperturbative expression was computed in [511° (earlier

®We profit to correct Eq. (3.6) of that reference that should read

{a,G?) a; 79139056
m3(Craty )2 &, 1437897825

Ayp(new) = —

The change is produced by an algebraic mistake in
VHF (annihilation) (the “~3” should be zero). This makes the
1/N? correction vanish in Egs. (1.7) and (3.1), changes 29 — 32
in Eq. (3.2) and Eq. (3.6) to the expression above.

(—8.22467D, — 13.1595X s — 244.684) |.

expressions for these quantities can be found in Egs. (C13)
and (C14). The hard contribution to 5c373 is generated by the

(nontrivial) hard/soft running of the relativistic potentials
encoded in the NRQCD Wilson coefficients. The explicit
expressions can be found in Eq. (C15) and Eq. (C19). The
former only receives contributions from the spin-dependent
potentials, whereas the latter receives contributions from both
the spin-dependent and the spin-independent potentials. The
spin-dependent and spin-independent contributions from the
running of the Wilson coefficients can be found in Eq. (C21)
and Eq. (C22), respectively.

Note that, throughout this paper, we have introduced a
change of the basis of spin operators with respect to
the basis used in Ref. [6] to compute the spectrum for
different masses: {S,S;} — {S.S™} where the symmetric
and antisymmetric spin operators are S =S; + S, and
S™ =S, —S,. We find that the latter basis suits better the
description of the heavy quarkonium spectrum since
(S~) = 0. We give the expressions of the N°LO energy in
the new spin basis in Appendix B.

From the N°LL computation we can obtain the large logs
of O(af) for the expansion of the mass in powers of a; at
the scale v = mCray. For the n = 2, [ = 1 state and equal
masses, it reads (with ny = 3)

(81.4171D, — 2.193258), + 160.084X, 5 — 7160.10)

(3.8)

partial results can be found in [52]). In any case, we will not
try to incorporate nonperturbative effects in this paper,
lacking a more clear understanding of the behavior of the
perturbative series.

A. Fine splitting
In general, we find for s =1 and [ # 0 (following
standard heavy quarkonium spectroscopy we define n, =
n — 1 for P-wave states):

c( % 2 SD.h SD.h
=E; . [6cy | j=de5 ]
3
+Ef (%) K&gnh‘f’zﬁo&gnh% +&n <%L»h _Lu>>
S

- <5c§D~h +2B08cSPM L, +E, <%Lyh —LU> )
. aS

J

/]’ (4.1)

where j is the quantum number associated to the combi-
nation of operators J = L + S.
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For different masses and n = 2 we find:

atCym’ a 209 2 —-a,(r1 PC v
1’P;))—E(1’P;) =23 4(D,|,-D,|,)z77 |1 _Yz s 71 _PiCa 1 i
507~ E07) = L4, - en 1+ (2 (G -5 )po+ 2 (2B

v mymy 11C
+2CA+2CF)+2(2ﬁo—CA)1nm Coa —Cyln 11/2 2_ 3A+2CF)]
r“FWs h
m2 + m2 v 27z 215\ 16C
i )y 41 -
SRRtV ) ey [ <ﬁ0< YnCra, 3 18) 3 ﬂ

N 2mymy v 22 215
1 1 21 2py | 41 -t )12
HUGHD =G+ D)= [ +4 <ﬁ°< "aCrm, 3 T 18>+ cr

16
—2C4( In +— mzlnﬂ—l—mlln@ +—
m,Cra, mim, 78 78 3

— c 2
b (Y_l_ﬁl A__Z cA<m21n_+m11n_>+2cA+2cF)>” (4.2)
s Uh v

2p ,5(2) mymy h

where D, = 1/2(S,(r)). Note that the equal mass case is obtained just by taking m; = m, = m.

We have checked that in the limit v, = v we recover the result at N’LO obtained in Eq. (26) of Ref. [7].

Finally we can obtain the leading large logarithms for the fixed-order contribution by expanding ay, in terms of a,. The
leading loganthmlc resummation contains all terms of order a*" In" a,, while the NLO resummation contains all terms of

order aa In" a,. Setting v, = /mym, and v = 2Cpm,a, we obtain the higher-order logarithms:

N4 1\ 72C% ( 8m? 23C2 2 4934,C
E(1°P;) — E(13P; — (%) F "Dl —pl|=CA_Z 0 B3PoCa
( ) ( )|>O 3)xlogs 2<7[> n(CFas> 926 m1m2< |/ |J) 4 ”ﬂOCA+ 36
myn;
—2C4(Cp —26y) In2 +2C4Cp + pyCr — —- (ﬂo +2C4)1In }
89C2 4 5054,C
+(j(j+1)—j’(j’+1>>[— 6A—gnZﬁocA+$+2CA<4ﬁo—cA>ln2

—m,. m mym
+2CACF+2ﬁ0CF+CA(ﬁ0+CA)<m721n_l_ln lzzﬂ}

L +my my 4my;
B () e () ESG 1y 5+ 1)+ €
2\, Cra, 9% JU JU 0 A
4m?
o (420D, = D) (43)
|
B. Hyperfine splitting In practice, we will use this expression only for the case

The hyperfine splitting of P-wave states is defined in the ~ =2 and [ =L

following way: 1 1
A=A, =E(1 Pl)—§(5E(13P2) +3E(1°P)) + E(1°Py)).

An,l = ( l ) E(n3l)c.o.g.’ (44) (46)
For general radial and [ # 0 angular quantum numbers,

where the “center of gravity” average reads and different masses, we find at fixed order

20-1 3 20 +1 5 mCtal(1—5y)
3072 1) j T Bl A=~ Cy—8n;Tp). (4.7
3(2[ + 1) E(n lj=l—1) + 3(2[ + 1) E(n lj=l) n,l 9m1m27tl(l—|— 1)(21+ 1)1’13( A nf F) ( )
ﬂ (n lj:l+l ). (4.5) We have checked that Eq. (4.7) for m; = m, = m recovers
321+1) the result obtained in Ref. [8]. Note that the hyperfine

( 3l)cog
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TABLE 1. Experimental values of the heavy quarkonium

masses, A and the fine splittings in MeV.

) cb(1P) ce(1P)
System bb(1P) (exp) (exp) (exp)
h('Py) 9899.3(8) e 3525.38(11)
10CPy) 9859.44(42)(31) e 3414.71(30)
7.GP) 9892.78(26)(31) “e 3510.67(5)
1203P,) 9912.21(26)(31) e 3556.17(7)
A —0.57(84) e +0.08(13)
21CP) —x0(PPy) 32.49(93) 95.96 (30)
12CPy) =y CPy)  19.10025) o 45.5 (1)

splitting for P-wave states is O(a;) suppressed compared
with the hyperfine splitting of S-wave states. This sup-
pression is indeed seen experimentally (actually, experi-
mentally, the suppression is stronger than expected. For a
discussion on this issue, see [53]).

The resummation of logarithms can be easily obtained
by incorporating the nontrivial running of the NRQCD
Wilson coefficients. The general N3LL result for a P-wave
state reads

10.0 |

9.9
9.8

Ag(bb) (GeV)

9.7
9.6
9.5

9.90

9.851

Ag(bb) (GeV)

9.80

9.75 &

1.5 2.0 2.5 3.0 3.5 4.0
v (GeV)

2Crar (1=6))
ARG:— m; Cpa 10 Ci—8n.T 10
" Gyl (14 1)@l ) A 8T )

(4.8)

Note that this quantity is positive, because it is one of the
few places where light-fermion effects are more important
than non-Abelian effects.

Since we only have the first order in the logarithmic
expansion, we can only compute terms that are ;™" In" a.
Setting vy, = \/m;m, and v = 2m,Cra, we obtain for a P
wave

A MGG CA=8T ) (1=60) ]
nllna; 9”2m1m2n3 l(l+ 1)(2l+ 1) CFas

C;ax } (4.9)

V. PHENOMENOLOGY OF n=2,1=1 STATES
AT STRICT WEAK COUPLING

We now confront our results with the experimental
values of the spectrum [54] for n = 2, [ = 1 states, which
we list in Table I. We use the modified renormalon

x {1 ~ &5 (2C, +3f,)In
4

9.95 ¢
9.90
9.85
9.80
9.75
9.70
9.65
9.60

Ag(bb) (GeV)

10.05 |
10.00
9.95

9.90 [

Agi(bb) (GeV)

]

9.85
9.80

9.75 E

FIG. 1. Plots for Ag; in the RS’ scheme with v, = 1 GeV for bottomonium. Upper left, upper right and lower left panels: Plots for
vy =2, 1and 0.7 GeV respectively. The red line is the experimental value, the black-dashed line is 21, gy’ The orange-dotted, purple
dot-dashed, green-dashed and black-dashed lines are A, evaluated at LO-N3LO, respectively. The solid-green and solid-black lines are
the NNLL and N3LL result respectively, and the dotted-black line is the N*LL result without SEY;. Lower right panel: Comparison of
the v, = 2 GeV (green), v; = 1 GeV (orange) and v, = 0.7 GeV (black) lines. For each case, the dashed line is the N3LO result and the

solid line the N3LL one.
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subtracted scheme (RS’), as defined in Ref. [18] for the
heavy quark masses and the static potential. The RS’
scheme eliminates the leading renormalon of the pole mass
and the static potential, introducing a new factorization
scale, vy, which is formally smaller than, or of the order of,
the soft energy regime. We refer to Ref. [ 18] for extra details.
The values for the bottom and charm quark masses used in
this paper are those determined in Ref. [29]. For the strong
coupling we take a,(M.) = 0.1184(12) from Ref. [54].

A. Spin-independent energy combination

We first consider the following energy combination,
which is free of spin-dependent effects:

1
) +_Mhb7

1
Ag=—(5M M M
51 12(5 +3 + 1

Xb2 Xb1 Xbo (51)
and similarly for charmonium and B,.

This quantity allows us to visualize the gross features of
the spectrum of any P-wave state. We consider first
bottomonium. In Fig. 1, we compare the strict weak-
coupling prediction with experiment. We show both the

Agi(co) (GeV)

Ag(cc) (GeV)

Agi(co) (GeV)

Agi(cc) (GeV)

fixed-order and RGI expressions. The former can be found
in Eq. (B1) and the latter in Eq. (C1). We have explored the
dependence of the result with vy, v and the order of
truncation of the computation. We produce plots with
vp=2GeV, vy =1GeV and vy = 0.7 GeV. For refer-
ence, we take the vy = 1 GeV case. In this case, the fixed-
order result approaches the experimental number as we
increase the order of truncation of the computation (albeit
the size of the consecutive terms is almost equal, i.e., the
convergence is marginal). Indeed, the N*LO result agrees
with experiment at v~ 1.2 GeV and shows a relatively
mild scale dependence. The resummation of logarithms
produces nontrivial results at NNLL and N3LL. We observe
that most of the effect of the RGI is due to the ultrasoft
gluons. At NNLL the effect of resummation of logarithms
is marginal. At N3LL the effect is important. At this
order, there is relatively good agreement with experiment.
At v~ 2.2 GeV there is agreement with experiment and
the scale variation is of order ~ £ 50 MeV in the range
v = 1-4 GeV. In this respect, the resummation of loga-
rithms (in particular ultrasoft logarithms) does not spoil the
agreement with data, though it makes the shift between the

FIG. 2. Plots for Ag; in the RS’ scheme with v, = 1 GeV for charmonium. Upper left, upper right and lower left panels: Plots for
vy = 2,1and 0.7 GeV respectively. The red line is the experimental value, the black-dashed line is 2m,, gg. The orange-dotted, purple dot-
dashed, green-dashed and black-dashed lines are A, evaluated at LO-N3LO, respectively. The solid-green and solid-black lines are the
NNLL and N3LL result respectively, and the dotted-black line is the N3LL result without SES;. Lower right panel: Comparison of the
vy =2 GeV (green), v, = 1 GeV (orange) and vy = 0.7 GeV (black) lines. For each case, the dashed line is the N3LO result and the solid

line the N3LL one.

094003-11



PESET, PINEDA, and SEGOVIA

PHYS. REV. D 98, 094003 (2018)

NNLL and N3LL bigger putting into question the con-
vergence of the perturbative expansion. Finally, the biggest
point of concern is the applicability of the weak-coupling
computation at the ultrasoft scale. We roughly asses the
importance of this effect by subtracting 5E,,, to the N’LL
result. The effect is small (this happens both for the RGI
and the fixed-order computation). Overall, the uncertainties
of the computation do not allow us to see if the resumma-
tion of the large logarithms improves the result or not. We
have also explored the dependence of the result on v;.
Choosing a larger value, v, = 2 GeV, does not change the
qualitative picture. It makes it slightly more convergent but
at the prize of making the corrections and scale dependence
bigger (note though that v, =2 GeV is an unnatural value
for vy, as the power counting demands v, < soft scale,
which we do not expect to happen for vy =2 GeV).
Remarkably, for the smaller value v, = 0.7 GeV, the size
of the higher-order corrections is very small, except for the
N3LL result, where the incorporation of the large (ultrasoft)
logarithms and of the ultrasoft correction brings the result
quite close to experiment. In the last plot in Fig. 1, we
combine the N3LL and N3LO results for different values of
vs. We observe that smaller values of v4 produce smaller v

70K T T T T T

-

Ag(Be) (GeV)

Ag(B;) (GeV)

scale dependence (we remark again the warning of choos-
ing a too high value of vy). They are all consistent among
them and with experiment. Indeed, the three N°LL lines
cross at

Ag; ~9.885 GeV, (5.2)
quite close the experimental value Ag; ~ 9.900 GeV ~ M, .
The three N>LO lines cross at Ag; ~ 9.850 GeV, also quite
close the experimental value. As a final remark, in all cases,
at v <1 GeV, there is a strong scale dependence.

For completeness, we also show the results for charmo-
nium and B, in Figs. 2 and 3 (and for the renormalon-free
combination A7) — ALY /2~ A9 /2 in Fig. 4) but in
those cases the errors are so large that we do not aim to any
serious phenomenological analysis. At most we can give an
estimate of

AP ~6.75 GeV. (5.3)
This number is obtained from the approximate crossing
of the three different curves in the lower-right panel in
Fig. 3. For the case of bottomonium and charmonium

Ag(Be) (GeV)

Ag(Be) (GeV)

FIG.3. Plots for Ag; in the RS’ scheme with v = 1 GeV for B,.. Upper left, upper right and lower left panels: Plots forv, = 2, I and
0.7 GeV respectively. The black-dashed line is m,, gy + m gy . The orange-dotted, purple dot-dashed, green-dashed and black-dashed
lines are Ag; evaluated at LO-N3LO, respectively. The solid-green and solid-black lines are the NNLL and N3LL result respectively, and
the dotted-black line is the N*LL result without SES}. Lower right panel: Comparison of the vy =2 GeV (green), v, = 1 GeV (orange)
and v, = 0.7 GeV (black) lines. For each case, the dashed line is the N3LO result and the solid line the N3LL one.
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40k
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FIG. 4. Plots for A% — A" /2 — AL /2 in the RS’ scheme with v, = 1 GeV. Upper lefi, upper right and bottom lefi panels: Plots
for vy =2, 1 and 0.7 GeV respectively. The orange-dotted, purple dot-dashed, green-dashed and black-dashed lines are the LO-N*LO
results respectively. The solid-green and solid-black lines are the NNLL and N3LL result respectively, and the dotted-black line is the
N3LL result without OE%}. Bottom right panel: Comparison of the v = 2 GeV (green), vy = 1 GeV (orange) and vy = 0.7 GeV (black)
lines. For each case, the dashed line is the N3LO result and the solid line the N3LL one.

this gave a reasonable estimate. Such value and the exper-
imental masses of bottomonium and charmonium yields

A — ALY 12— A9 12~ 60 MeV.

B. Fine splitting

The E(1°P;) — E(1°P;) energy differences are interest-
ing objects for study, they are free of renormalon effects
(we take vy = 1 GeV for reference but the result is quite
insensitive to this) and also of ultrasoft effects. In this paper,
we have obtained, for the first time, theoretical expressions
with relative NLL precision (i.e., we have two terms of the
weak-coupling expansion and we also know the RGI
expression for them). We would like to see how well
our theoretical predictions compare with experiment.

We first start with bottomonium, which, in principle, is
the system where the weak-coupling approach should work
better. We plot the strict weak-coupling predictions in
Fig. 5. We expect the large logarithms to be resummed
around v ~ soft scale, of order 1 GeV. Indeed, we observe a
much better agreement at those scales, and results com-
patible with experiment, assuming that the relative size of
the uncomputed O(mv®) corrections is of order 20%—30%.
We also observe that the resummation of (hard) logarithms

produces a sizable effect but of the order of uncertainties.
At those scales we also observe convergence of the
expansion (the N3LL correction is smaller than the
NNLL correction). If we repeat the analysis for charmo-
nium the numbers we get are quite low when compared
with experiment. We show them in Fig. 6. In principle, this
confirms the expectation that charmonium P-wave states
can not be described by a weak-coupling analysis. For
completeness, we also show the prediction of the strict
weak-coupling analysis for the fine splitting of the P-wave
B, states in Fig. 7.
We also study the ratio

_ E(1°P,) — E(1°Py)
P = E@13P,) - E(I°P,)
_ ﬂ 6(m; —my)?

_ O(a,).
5 5(m? + 10mymy + ) ()

(5.4)

One can speculate that this observable is cleaner in the
sense that the NR matrix element cancels in the ratio at the
leading nonvanishing order. Nevertheless, this observable
is also sensitive to the wave function at the next order. We
show the result in Fig. 8. There is a difference with
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FIG. 5. Plots for the P-wave fine splittings in bottomonium in the RS’ scheme with v, = 1 GeV and v}, = m,, gy The red band is the
experimental value. The dashed-green, dashed-black, solid-green, and the solid-black lines are the NNLO, NNLL, N3LO and N3LL

results respectively. Left panel: Plot of M, - Mno' Right panel: Plot of M, — My, .
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FIG. 6. Plots for the P-wave fine splittings in charmonium in the RS’ scheme with v, = 1 GeV and v}, = m_rg. The red band is the
experimental value. The dashed-green, dashed-black, solid-green, and the solid-black lines are the NNLO, NNLL, N3LO and N3LL

results respectively. Left panel: Plot of MM1 - Mmo' Right panel: Plot of M, —M Y,
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FIG. 7. Plots for the P-wave fine splitting in B,. in the RS’ scheme with v, = 1 GeV and vy, = 2my, ggm, gs'/(Mprs + M gs'). The
dashed-green, dashed-black, solid-green, and the solid-black lines are the NNLO, NNLL, N3LO and N3LL results respectively. Left

panel: Plot of My ;3py — My (13p,)- Right panel: Plot of My (13p,) — Mp (13p,)-

experiment of order 25%. The resummation of hard  the case of charmonium is larger, since the theoretical
logarithms does not improve the agreement with data (it  prediction is more or less equal as for bottomonium but the
actually makes it slightly worse, specially for the L.  experimental value of p is significantly different for
result). The difference between theory and experiment in ~ bottomonium and charmonium. For completeness, we also
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FIG. 8. Plots of p expanded in powers of a; in the RS’ scheme with v, = 1 GeV. The red line is the experimental value. We start the
counting at the leading nonvanishing order. Then, the dashed-green, dashed-black, solid-green, and solid-black lines are the LO, LL,
NLO and NLL results respectively. Upper left panel: Plot for bottomonium with vy, = m,, grs. Upper right panel: Plot for charmonium

with v, = m, gy . Bottom panel: Plot for B. with v, = 2my, grym.rs/(Mprs + MeRs)-

show the prediction of the strict weak-coupling analysis of
p for the B, states. Note that, in this case, the leading-order
theoretical prediction is different to the equal mass case
[cf. Eq. (5.4)]. This provides an extra motivation to measure
this ratio.

C. Hyperfine splitting

Finally, we consider the hyperfine splitting of the
P-wave states. We show our results in Fig. 9. The strict
weak-coupling prediction of the hyperfine splitting is
perfectly compatible with experiment. The resummation
of (hard) logarithms is a tiny effect and does not affect this
conclusion. Surprisingly enough, this is also true for
charmonium (then we conjecture that the prediction we
give for the P-wave B,., compatible with zero, is also
robust). This could be accidental. The key issue for the
agreement is that the expectation value of the relativistic
potential is small. We ellaborate on this issue in Sec. VIL

VI. ALTERNATIVE COUNTING APPROACH

In the previous section, we have confronted the strict
weak-coupling theoretical predictions with the experimen-
tal values of the masses of the n = 2, [ = 1 excitations for

bottomonium, charmonium and B,. For bottomonium, the
convergence was somewhat marginal. On the other hand
the predictions were consistent with experiment (for the p
ratio the situation was somewhat worse but still consistent
with the expected size of higher-order relativistic correc-
tions). For charmonium and B, the situation was signifi-
cantly worse. Only for the hyperfine case there was
agreement with experiment.

We now study a computational scheme that reorganizes
the perturbative expansion such that it performs a selective
sum of higher-order corrections (such scheme was already
applied in [27-29]). We want to test if such scheme could
improve/accelerate the convergence. In this method, we
incorporate the static potential exactly (to a given order) in
the leading-order Hamiltonian (the explicit v dependence of
the static potential appears at N°LO and partially cancels
with the explicit v dependence of Eq. (3.6), the ultrasoft
correction):

2
1Y 0 0 0) ,(0
2m + VEV,)RS’(F; v) ¢£:1) (r) = EEd)d’Ell)(r)’

(6.1)

where the static potential will be approximated by a
polynomial of order N + 1,
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FIG. 9. Plots for the P-wave hyperfine splitting A in the RS’ scheme with v, =1 GeV. The red line is the experimental
value, the solid-green line the N3LO result and the solid-black line is the N3LL result. Upper left panel: Plot for
bottomonium with vy, = my,ry. Upper right panel: Plot for charmonium with v, = m.gry. Lower panel: Plot for B. with
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(0) (N) — \"N nt1 : —1
0 (VN +26mpg)]my =D om—o Vrs w7 (v) if r >0
Virs (130) = { (6.2)

(V) 289 ocryr = S0 Vit (1) i 7 <7,

[

(b) The case v, = oo (with finite nonzero vy) is nothing
but adding an r-independent constant to the static
potential.

(c) The case v, = finite (and, for consistency, v, > vy).
We expect this case to improve over the previous
results, as it incorporates the correct (logarithmically
modulated) short distance behavior of the potential.
This has to be done with care in order not to spoil the
renormalon cancellation. For this purpose it is com-
pulsory to keep a finite, nonvanishing, vy, otherwise
the renormalon cancellation is not achieved order by
order in N, as it was discussed in detail in Ref. [55].

We have explored the effect of different values of vy in
our analysis. Large values of v, imply a large infrared

Vg\?) is the static potential defined in Eq. (A1). We implement
the renormalon cancellation working in the RS’ scheme.
Expressions for dmgg can be found in Ref. [27]. In principle,
we would like to take N as large as possible (though we also
want to explore the dependence on N). In practice, we take
the static potential at most up to N = 3, i.e., up to O(a?).
This is the order to which the coefficients Vgg , are
completely known.

Taking different values for v, and v, in Eq. (6.2), we
obtain the most relevant limits:

(a) The case v, = oo, vy = 0 is nothing but the on-shell
static potential at fixed order, i.e., Eq. (Al). Note that
the N = 0 case reduces to a standard computation with
a Coulomb potential, for which we can compare with aree
analytic results for the matrix elements. We use this  cutoff. In this way, our scheme becomes closer to an MS-
fact to check our numerical solutions of the Schro-  like scheme. Such schemes still achieve renormalon can-
dinger equation. cellation, yet they jeopardize the power counting, as the
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FIG. 10. Left panel: Plot of 2m,, + E(z(;) for bottomonium using VEV)RS'

computed with v, = 0.7 GeV and continuous lines with v, = 1 GeV. Right panel: Plot of 2m,, + E;I
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for bottomonium using V

N = 3. Dashed lines are computed with v, = 0.7 GeV and continuous lines with v = 1 GeV. Blue lines correspond to the black lines

of the left panel. Black lines are computed at strict weak coupling.

residual mass dmgg does not count as mv>. As a conse-
quence, consecutive terms of the perturbative series
become bigger. Therefore, we prefer values of vy as low
as possible, with the constraints that one should still obtain
the renormalon cancellation, and that it is still possible to
perform the expansion in powers of a;.

The energy EES) in Eq. (6.1) correctly incorporates the
NVLO corrections to the spectrum associated to the static
potential. It also includes higher-order corrections (those
generated by the iteration of the static potential). In order
for this computational scheme to make sense, it first
requires that the N — oo converges, or at least that the
error is small compared with the relativistic correction. We
show the result of the computation of E<201) for bottomonium
in Fig. 10 setting v, = oo (setting v, = 1 GeV does not
change the qualitative picture) and vy = 1 or 0.7 GeV. We
do not see convergence for vy = 1 GeV but we get it for
vy = 0.7 GeV. Either way, it is worth emphasizing that, for
N =3, the vy = 1 and 0.7 GeV are consistent with each
other, as we can see in Fig. 10 (left). This shows a mild
dependence on ;. On the other hand, the dependence on v
is still large. We can also compare with the strict weak-
coupling expansion result. We do so in Fig. 10 (right). We
find a difference of order 60 MeV. This difference appears
to be very stable under v or v, variations. The origin of this
constant shift is not clear to us at present. Setting v, =
1 GeV does not qualitatively change the picture. Overall,

we take EES) ~9.8 GeV as the leading O(v?) solution.
Note that this number still suffers from sizable uncertainties
(~£60 MeV if looking to the scale variation or the
difference with the strict weak-coupling evaluation).

Once we have the leading O(v?) solution, we can
consider the incorporation of the relativistic and ultrasoft
corrections, which will scale, at most, as O(v*). With the
accuracy of this work, we only have to take the expectation
value of 0V where

oV=v,-vO (6.3)
stands for the relativistic potential (V is the total singlet
potential) that contributes up to N°LL and also add the
ultrasoft correction from Eq. (3.6). Overall the mass of the
bound states reads

M(n.1,j) =m, +my+EY +O(n, 1|6V

nl

n, 1)) 4 SE%

nl®

(6.4)

© sV

(including also v*a; corrections) and SEY as v°. Eq. (6.4) is
numerically correct with N3LL precision and incorporates
extra subleading terms (albeit in an incomplete way). If one
sets v, = v, =v one also recovers the N°LO result
incorporating some extra subleading terms. For notation
purposes we will label the results obtained using Eq. (6.4)
as N'LL(N) where N stands for the order at which the static
potential (we introduce exactly in the Schrodinger equa-
tion) is truncated and i will be 2 or 3 depending on the order
at which the relativistic and ultrasoft corrections are
included. A similar counting will apply to the N'LO(N)
result, where we do not perform the logarithmic resumma-
tion by setting v;, = v, = V.

Note that the correction to the static potential generated
by the resummation of ultrasoft logarithms obtained in
Eq. (2.8) is not incorporated in Eq. (6.2) but rather added to
Eq. (6.3) as part of the correction.’

Overall, this computational scheme resums a subset of
subleading corrections in the hope that they would account
for the bulk of such subleading terms. This could be so if
the higher-order corrections that we infer from our

4

where E\; counts as v, O(n,1|6V|n,1)*) counts as v

"Adding Eq. (2.8) to Eq. (6.2) would redefine the leading
O(v?) solution. We do not explore this line of research in this
paper.
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FIG. 11. Plot of the O(n,1|6V|n,1)*) + SE% contribution to
Ag; for bottomonium with N?LL (continuous black line),
N3LL(3) (continous blue line), N®LO (dashed black line),
N3LO(3) (dashed blue line) precision, evaluated with
v, = 00GeV, vy =1 GeV, vy, = 1 GeV. Alternative plots with
v, =1GeV or vy = 0.7 GeV change little.

knowledge of the static potential are indeed responsible for
the leading corrections.

The expressions we use for the relativistic potential
(valid also in the unequal mass case) are taken from
Ref. [6], which uses the computation of the 1/m potential
obtained in Ref. [56]. For ease of reference we quote them
in Appendix A. We can use any of the bases for the
potentials presented in that paper, which were referred as:
Wilson, onshell, Coulomb or Feynman. At strict N°LO they
all yield the same result. Since the computational scheme
we implement in this section partially resums higher orders
some dependence on the basis of potentials shows up. We
have checked that, for the set of bases we consider, the
dependence is quite small.

The computation of the relativistic corrections opens
new issues compared with the static potential. In the case
of the static potential, the natural scale is v ~ 1/r, except in
the O(a?) term where also the ultrasoft scale v, appears.®
The case of the relativistic potentials is quite different. They
are much more dependent on the hard, and above all, the
ultrasoft scale (on the other hand they are formally
insensitive to the pole mass renormalon). Moreover, in
order for the computation with the static potential to be a
more or less reasonable approximation we need to have at
least three or more terms (also important is the resumma-
tion of soft logarithms). For the case of the relativistic
potentials, we have at most two terms. This, together with a
much stronger scale dependence, can trigger that ineffi-
ciencies of the description of the relativistic potentials get
amplified when computing the expectation values. In this
respect, for the first time, we have two terms of the
perturbative expansion of the (relativistic) potentials, for
which the complete resummation of large logarithms is

*If one considers the RGI expression ultrasoft logs already
appear at O(a3}).

known. This allows us to compare fixed-order with RGI
results. We do this comparison in Fig. 11. We observe that
the resummation of logarithms happens to be crucial to get
consistent results between the strict and the alternative
counting scheme. It makes the correction much smaller too
(which is good news for the validity of the velocity
expansion), and, as we will see next, it helps in getting
reasonable agreement with experiment.

VII. PHENOMENOLOGY: n=2,[=1.
ALTERNATIVE COUNTING APPROACH

We now repeat the analysis of Sec. V but using the
predictions obtained in the previous section. We first plot
our prediction of Ag; in Fig. 12. The bulk of the difference
with the strict weak-coupling computation comes from the
different results of the static solution. On the other hand, the
relativistic corrections are similar. We emphasize again that
for this to be the case, the resummation of large logarithms
is crucial. The final result is compatible with experiment
within uncertainties.

We now turn to the fine splittings. We remark that they
are renormalon-free observables. Indeed, the results are
virtually insensitive to vy, so by default we will use
vp =1 GeV. Therefore, they are a cleaner place than

Eg?) to test the convergence of truncating at N the static
potential. We show such plot in Fig. 13 (left). In the left
figures, we plot the fine splitting with NNLO(N) accuracy.
This figure effectively draws (up to a constant) (1/r3),, for
bottomonium using different N’s, which allows us to check
the convergence associated to the static potential. The
convergence is somewhat marginal. Things improve con-
siderably when we include higher-order corrections to the
NNLO(3) result. We show the results in Fig. 13 (right).
Moving from NNLO(3) to NNLL(3) (incorporating the
resummation of large hard logarithms) makes the result
more scale independent and closer to experiment. Going to
N3LL(3) or N°LO(3) improves the result. They are quite
scale independent, quite close among them, and in quite
good agreement with experiment. For E(13P,) — E(1°P,)
the N3LL(3) theoretical result hits the experimental value
at the scale of minimal sensitivity. For E(1°P,) — E(1°P;),
the N°LL(3) theoretical result is around 5 MeV above the
experimental value at the scale of minimal sensitivity.
Overall, the agreement with experiment is quite remark-
able. If we compare with the strict weak-coupling results,
they typically yield smaller values than the alternative
computational approach, and show a larger factorization
scale dependence. Nevertheless, the N3LO and N3LL
results in the strict weak-coupling approximation are in
reasonable agreement with the N°LO(3) and N3LL(3)
result obtained in this alternative computational approach
at the scale of minimal sensitive of both. If we look to the
difference between the NNLL(3) and N*LL(3) the differ-
ence is small. On the other hand the difference between
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FIG. 12. Plot of Ag; evaluated with N3LL (continuous black line), N3LL(3) (dash-dotted blue line), N°LO (dashed black line) and
N3LO(3) (dotted blue line) precision. All lines are computed with v, = coGeV and vy = 1 GeV and Left panel with v r=1GeV and
Right panel with vy = 0.7 GeV.

NNLO(3) and N’LO(3) is bigger. In both cases, they
converge to experimental value.

Note that the N3LO/LL(N) result is the sum of a
N3*LO/LL(N) contribution coming from the potential and
a N*LO/LL(N) contribution coming from the NRQCD

E(13P;-13Py) (MeV)

E(1%P,-13P)) (MeV)

Wilson coefficients, neglecting crossed terms, which are

subleading.
We now consider the hyperfine splitting, A, defined in

Eq. (4.6). It starts giving a nonzero contribution at
N’LO/N’LL. This observable is sensitive to (reg-k) (the

E(13P,-13Py) (MeV)

E(13P,-13P;) (MeV)
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FIG. 13. Plots for the P-wave fine splittings in bottomonium in the RS’ scheme with v, = 1 GeV and vy, = m;, gg'. Red band is the
experimental value. Left-up panel: Plot of E(13P,) — E(13P,) with NNLO(N) accuracy with N = 0 (dotted red line), 1 (dashed green
line), 2 (dash-dotted blue line), 3 (continuous black line). Left-bottom panel: Plot of E(13P,) — E(13P;) with NNLO(N) accuracy with
N = 0 (dotted red line), 1 (dashed green line), 2 (dash-dotted blue line), 3 (continuous black line). Right-up panel: Plot of E(1°P,) —
E(13P,) with NNLO(3) accuracy (dashed green line), NNLL(3) accuracy (dashed black line), N*LO(3) accuracy (continuous green
line) and N®LL(3) accuracy (continuous black line). Right-bottom panel: Plot of E(13P,) — E(13P}) with NNLO(3) accuracy (dashed
green line), NNLL(3) accuracy (dashed black line), N’LO(3) accuracy (continuous green line) and N3LL(3) accuracy
(continuous black line).
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FIG. 14. Plots of A, the hyperfine splitting for P-wave bottomonium, in the RS’ scheme with v, = 1 GeV and v}, = m,, gs'. Red band
is the experimental value. Left panel: Plot of A with N>LO(N) accuracy with N = 0 (dotted red line), 1 (dashed green line), 2 (dash-
dotted blue line), 3 (continuous black line). Right panel: Plot of A with N3LO(3) accuracy (continuous green line) and N3LL(3)

accuracy (continuous black line).

N3LO and N3LL expression for the fine splitting is also
sensitive to the matrix element of this operator). We can then
check the convergence in N by computing the N°LO(N)
result (i.e., the matrix element) for different N’s. We show
the outcome in the left panel of Fig. 14. The convergence is
similar to the fine case. Corrections are large and so is the v
scale dependence. The resummation of the hard logarithms
improve the agreement with experiment, still the strict weak-
coupling result shows a better agreement with experiment.
In the above computation, we only have the first term of the
perturbative expansion in the strict weak-coupling limit. We
conjecture that higher-order terms of the relativistic potential
will compensate this behavior. In other words, we do not
know the shape of the relativistic corrections with enough
accuracy at short distances. This introduces large errors
when producing expectation values of them. In this respect,
it is interesting to see what lattice simulations can add to this
discussion. The hyperfine splitting is specially clean, as it
only depends on V. Indeed, for P-wave states, any
dependence on the delta potential vanishes and only the r
dependence (at nonzero r) is relevant. Lattice determinations
of V¢ were obtained in [57,58]. In the first reference, the
lattice simulations were basically compatible with zero (up
to a lattice version of §(r), which obviously does not
contribute to the hyperfine). The second reference gives a
parametrization which has a nontrivial » dependence (with
no delta potential). This could give a large contribution to the
hyperfine splitting and, thus, making the theoretical pre-
diction incompatible with the experimental figure, which is
approximately zero.”

Finally we study p ratio. We show our results in Fig. 15.
The LO(N) and LL(N) results are equal (for any N) to the
strict weak-coupling computation. For the NLO(3) and

9Neveﬂheless, it is not that clear whether the lattice simu-
lations of [58] at short distances cannot indeed be parametrized
by a delta potential. A.P. acknowledges discussions with Gunnar
Bali on this point.

NLL(3) results, we consider two options: Directly consid-
ering the ratio between the energy differences or treating
the O(ay) correction to the relativistic potential perturba-
tively. At small scales the difference between both
approaches becomes significant, specially for the NLO(3)
result, which approaches the experimental result. At
present, the spread of values depending on the truncation
does not allow us to reach definite conclusions. Differences
with experiment are of order 20%, in principle achievable
with higher-order corrections.

The issues discussed above deserve further dedicated
studies. Indeed, to settle (some of) them, it would be very
interesting to compute the next correction in the weak-
coupling expansion of the relativistic potential that con-
tributes to this observable. This is a complicated task but
within reach. Indeed, for the future, the fine and hyperfine
splittings are ideal candidates for dedicated analyses aiming
at O(mv®) precision. This is in principle feasible, and may
lead to precise predictions with small errors.
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FIG. 15. Plot of p for bottomonium. We plot the LO = LO(N)

(dotted red line), LL = LL(N) (dashed green line), NLO(3) (dot-
dashed blue line) and NLL(3) (solid black line) results (the latter
two treating the O(a,) correction to the relativistic potential
perturbatively). The NLO(3) and NLL(3) result from the energy
differences are the long-dashed blue and black lines respectively.
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VIII. CONCLUSIONS

In this paper, the P-wave heavy quarkonium spectrum
has been obtained for the first time at strict weak coupling
with N3LL precision. We have obtained such precision for
the equal and nonequal mass cases and for the fine and
hyperfine splittings as well. We emphasize that these results
also give the O(mal1In(1/a,)) correction to the spectrum
(for P-wave states) for the first time. Remarkably, the
results we obtain are compatible with experiment, for
n = 2, [ = 1 bottomonium, albeit with large uncertainties.
For the spin-independent energy combination Ag;, defined
in Eq. (5.1), the convergence is somewhat marginal. For the
fine splitting, approximate agreement can be found at scales
of around 1 GeV, also for the hyperfine. In any case, the
uncertainties are large, to the point that the incorporation of
the resummation of logarithms produces energy shifts
which are inside the expected uncertainties. For charmo-
nium and B, we have also performed exploratory studies.
We found that the scale dependence is larger and the
convergence worse. At this stage we refrain of trying
quantitative analyses of these states.

For Ag,;, the N°LL result is the maximal accuracy (in
analytic terms) that can be obtained in the foreseeable
future. For some specific (the fine and hyperfine) energy
splittings, it is still within reach (with a quite significant,
but finite, amount of effort) to go further analytically,
and obtain the complete O(mal) result (or its RGI
expression, which however could be much more diffi-
cult). This implies computing the O(v?) corrections to
the leading nonvanishing term. It would give a hint of
the size of the relativistic corrections, which is quite
compelling. We have already seen that present evalua-
tions of the p-ratio of the fine splittings are off by
around 25%, even though the description of the indi-
vidual energy splittings is quite reasonable. It would be
interesting to see the impact of the incorporation of
the O(v?) corrections to this specific observable. For the
case of the hyperfine splitting at present only the
leading nonvanishing term is known. The present
evaluation agrees with experiment. Therefore, it is of
great interest to check if such agreement survives the
incorporation of higher-order corrections. Leaving aside
these energy differences, going beyond N3LL would
require to go to N*LO. For the gross spectrum, Ag;, this
would require the much demanding computation of the
static potential with four-loop accuracy, other necessary
computations would also be quite difficult.

In view of the difficulty of obtaining complete higher-
order corrections, one will have to rely on approximations.
The first one, which we have already applied here, explores
selective resummations of higher-order corrections. We
incorporate the static potential (truncated to a given power
in a,) exactly in the Schrodinger equation [see Eq. (6.1)].
We take the result as the leading O(v?) term. In order for

this approach to be sensible, this leading O(v?) term has to
be more or less stable when truncating at different orders in
the static potential (for large N). With v, = 1 GeV we do
not get a convergent pattern, though we get it for
vy = 0.7 GeV, and both results are relatively close for N =
3 (as long as the scale v is not very small). We observe that,
compared with the strict weak-coupling computation, we
find an almost constant shift downwards of order
~60 MeV. At this point we do not have a clear explanation
for this fact, and only speculate that it may have to do with
inefficiencies in the renormalon cancellation in the static
potential. Leaving this problem aside, we consider the
incorporation of the relativistic corrections. These are
renormalon-free quantities but much more sensitive to the
hard, and above all, the ultrasoft scales. We can make
interesting observations. If we consider the relativistic
corrections to the energy without logarithmic resumma-
tion, we observe that they yield quite different results in
the alternative counting versus the strict weak-coupling
computation. The former generates a much bigger cor-
rection that deteriorates the agreement with data.
Remarkably, the resummation of logarithms fixes this
problem. After the resummation of logarithms both the
strict weak-coupling computation and the alternative
counting scheme yield consistent results for the relativistic
corrections of Eq. (5.1).

We also apply this alternative counting scheme to the
fine and hyperfine. They are free of renormalon and
ultrasoft effects. Therefore, they are potentially rather clean
observables. Also interesting observations can be made
here. The convergence of the static solution is still slow.
Nevertheless, a rather reasonable agreement with experi-
ment is obtained for the fine splittings after inclusion of the
O(ay) corrections to the potential. For the p ratio, however,
the situation is somewhat inconclusive and so is for the
hyperfine splitting. We conjecture that higher-order per-
turbation corrections can be important to obtain precise
predictions for these observables.
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APPENDIX A: THE POTENTIAL

We display here the MS renormalized expressions for the
NRQCD potentials necessary to compute the N*LO spec-
trum. The static potential reads

094003-21



PESET, PINEDA, and SEGOVIA PHYS. REV. D 98, 094003 (2018)

Wi = -1 3 (5) 0,00 . (A1)

For the seaked N°LO precision one can truncate at N = 3 and the coefficients read
a(v;r)=a, +2pyIn(vesr),

2
a3 (v:r) = @+ B3+ (4a1 o+ 21 ) In (verer) + 410> (verer),

5 16
ay(v;r) = as +a,fin? +%ﬁoﬁ1 +164343 + (27z2ﬂ3 +6a,py+4a,p+2p, +?C§4n2) In(ve’sr)
+ (12a, 85+ 1080, )In? (ve’=r) + 8B3In3 (ver= ). (A2)

The O(a,) term was computed in Ref. [59], the O(a?) in Refs. [60,61], the O(a?) logarithmic term in Ref. [62], the light-
flavour finite piece in Ref. [63], and the pure gluonic finite piece in Refs. [64,65]. In the normalization used in this paper,
specific expressions for the coefficients a; can be found in Appendix A of Ref. [6].

The complete set of relativistic potentials in the on-shell scheme with N>LO accuracy were obtained in the equal mass
case in Refs. [56,66] (for the NNLO result see Ref. [67]). For the unequal mass case (and for the specific renormalization
scheme we use in this paper) they were computed in Ref. [6]. The resulting expressions read

on—shell + on—shell

yL0 (r) v (r)  Ciai(e7e/r) m, <
o 2n

a
14+= —
m m, 7,2 mom, + - (a ﬁo))
CrCua(e7e 89 49 4
_M{l +% (_CA ——Tpn;—Cp +§(CA +2CF)In (yren)> } (A3)

4m,r? 7 \36 36
2.0 CraZl
VE)Z,O)n-shell(r) =~ ;[ ;CA In (vrers), (A4)
(L) _ Crag(e7/r) a, 8 ;
sz,on-shell(r) =- . 1 +E ap +§CA In (vre'e) | 5, (A5)

The spin-dependent and V, potentials relevant for P-wave

states can be found in Egs. (2.19)—(2.24), Eq. (2.27) and )

Eq. (2.29). For a P-wave state, the equal mass case is Py(L,) = éﬁ%L?, + <_@ +/i+ 3/30611)LD +¢. (B3)
trivially recovered by setting m = m; = m,. 4 2 4 4

APPENDIX B: THE N3LO HEAVY
QUARKONIUM SPECTRUM

1 5, Tho 3
In this Appendix, we collect the explicit expression for the Py(L,) = EﬂSLE + (_ 8 + 16 + Zﬂ%al L}
fixed order NLO P-wave spectrum. The P-wave spectrum

3
at N*LO, was obtained in Ref. [4,5] for the equal mass case + (@ _bobr + P _ %ﬂ%al +2f0cs + 3p1ay ) L,

and in Ref. [6] for the unequal mass case. It reads 4 4 16 8 16

) +C3, (B4)
N C aS aS
Exio(n. s, j) = E; <1 +;P1(Lu) + <;> Py(L,)
3 J— (o nc — nv

n <ﬁ> P3(Lu)>’ (B1) where ¢; jzcl +cif Ly =Ingo+ S (n+1) and
d ES = —'"ZCTFZO' Expressions for ¢§ and ¢ can be found in
P\(L,) = foL, +ﬂ’ (B2) Egs. (7.17) and (7.18) of Ref. [6] (see also Ref. [6] for

2 definitions and notation);
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2m27z2C12p 1- 510 mpmy 8510
nc _ _ r D 1 X —S8
& mm,s {z<l+1><zz+1>( S*( i 2m%> “)* 3 }

T {—CF+m% [ 3CF+21+ 1 (CF‘F?) —4nCF510]}, (B5)

myni,

where, in comparison to Ref. [6], we express the results in the spin basis {S,S™}:

1
5125<Sl'sz>ZE(S(S"‘])—Sl(Sl+1)—52(S2+1))v (B6)
1 201+ 1)s(s + 1) = 3X 5 — 6X2
D, =~ B7
> Su(r) = (20— 1)(21 +3) ’ (B7)
L. .
Xps=(L-S)=5[j(j+1)=II+1)=s(s+ 1), (B8)
and finally
n
= 7°(Cr&ppe + CrCa(ERRa + &ra) + Ch Tan(gFan + éls:%:nf) - _ﬁocgc
+ Ciéana + CiCréanr + CACrT pn éarn, + CETrépr + Créipg)- (B9)
Again, in comparison to Ref. [6], we express the results in the spin basis {S,S7},
1 =3(1=6y) 2m? 8m? mym m?
SD __ 10 r 11702 1
=— D, + X S Op|2+3 In({ — , B10
FFE 3n{l(l—|—1)(2l+1) <m1m2 s+ LS) mymy 20 + z—m%n m3 (B10)
2m? 1-96 mym 3n n 1
SD r 10 2n(48y, — D D 1+—2)x I+
Fnf 9n2m1m2{l(l+1)(21+1){n< Sr2 S)+6< s\ e s N\ T g T2
m m 1
+2n{sl(1+n)+sl(2l—1)—2sl(zz+1)—z(2§")+z§ N+ nx, -2 )+6})]
11 1
+8510812 |:1+4H<E_Z_S (n—l) Sl(n)+nS2(n)>]}, (Bll)
2
SD my 1—510 2 mymy
—| D 1 X
FFA ™ mm2{1(1+1)(21+1)n [3( “L( * 2m3> LS)
x {2251 (204+1)=178,(1+n)=55,21 = 1) + 11[I(EP + =) = nZ, + =)
- - - SRS P (i e R Y Qe )
an 2020+1) 4(z<z+1)(2l+1))+6+2n<4m3 +3Lu =5 (2D, +Sn)
21+1 1 3 mi—-m3 m; 1 (mym,
—2X15( 2 21-1)-8,(/ -2 In—+—=In L
LS( ($1@=1) =S m)+ = =gy a1 2 M T2\ e ) TR
45,5, [_67 658,(n) 44nz 1 41
— [ 7L —+—
T3 T STt 3 6n 18

_|_

1 (5my —2m ) In( 222} = (5my —2my) In[ 22 : (B12)
m,—m, 2m, m,
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where Ly = In(g-) + Si(n + 1). The various X, %, - - -,
above are finite sum functions, which are defined in
Appendix I of Ref. [6].

The other color functions & in Eq. (B9) are not affected
by the change of spin basis, and can be found in
Egs. (I.15)—(1.21) of Ref. [6].

The case of equal masses is recovered by taking the limit
m = m; =m, in all the color functions involved in
Eq. (BY), except for &gp (Eq. (1.18) in Ref. [6]), where
we shall add the anihilation diagrams and, for equal masses,
we obtain instead:

_ 00 (_ _! 19
ST . ( 28, + (2812 2) 1n(2)+30>. (B13)

Finally, we would like to mention that we can
check that the spectrum produced by the potentials
obtained in different matching schemes is equal.
Indeed, this check gives a nontrivial relation among
some finite sums that, even though we did not prove it
explicitly, holds true for any arbitrary set of quantum
numbers we tried:

S (20) + S, (1+21) = 28, (1 + n) +21=0 (n, 1)

+2(1+ DEM (0, 0) = 1. (B14)

APPENDIX C: THE N°LL HEAVY
QUARKONIUM SPECTRUM

After adding the ultrasoft and soft/hard running to the
N3LO result, one obtains the N’LL P-wave spectrum. It
reads

Exsrp(n,ls,j)

=g (1422 )+ (%) P+ (%) P

a
Pl(Ll/) :PI(LZ/) :ﬁOLu+7l’

. ()

. 3 2 3

P,(L,) = Zﬁng + <—% +ﬂ4—1+ ﬁ3a1>Lu +&, (C3)
N 1 78 1Bpy 3

P;5(L,) :E/}SLE + (—?04_ 106 1+Zﬂ(2)a1 L;

/38 Pobr P 3 0 . 3piay
+<4 4 +16 8ﬂ0a1+2ﬁ0c2+ 16 L,

+35. (C4)

The coefficients ¢; = &§ + ¢} are split into contributions
from the static potential and those including the relativistic
corrections.

¢¢ only get contributions from the resummation of the
ultrasoft logarithms:

¢5 = c§ +ocs, (CS5)

T§ = ¢§ + 8¢5, (Co)
where ¢4 ; are the coefficients computed for the fixed-order
spectrum in Eqs. (147) and (150) in Ref. [5] for (un)equal
masses, and 6c$ 5

5§ = - ATy us c7
T B e ()
wCy [82m oy
¢ =TA 1220 T (g, -2
3 wLm a, P20
_gﬂzz_”"‘us %s
ﬂO A
88, 1 1
= ———(C4(47 + 67%) — 10T .
< (S~ e Cae7 68 =107 )

(C8)

¢¢ get contributions from the ultrasoft resummation,
from the hard resummation, and from the difference of
evaluating the ultrasoft energy at the ultrasoft scale
(which is included in the ultrasoft part of the coef-

ficients), i.e.,
C¢ = 5 + och’,

(C9)
03¢ = c5° + oc%S, (C10)
where ¢35 are the coefficients presented in the previous

section and computed for the fixed-order spectrum in
(Ref. [6]) Ref. [5] for (un)equal masses, and

8cle = 8" + 8¢5, (C11)
5che = 8N 4 5ehe (C12)
where
27C,C 2n 2. .
5 nc.us __ AV“F _ C 4C _1 j’
2 32 ( Py CataC) by a
(C13)
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2may — a; [nfy (C3 5 2C, 8 1
Scheus — =7 Tus s Al —C3LE 3c,C — ~ 4+ Cpl———
“ By aj [3 <4 "6 o | Catr (21+1)nJr F\@i+1)n n?

X<8ﬁ1 1 L (c,(47+622) - lon”.f)+%<L"s_5>>}

3f0 (4n)> 277° 372 6
7Cr2m Qs n(l—26y) 2n
a2 | Cp(Cy = 2C ) By O o ay( € C, +4C
+3n R [ F(Ca F)ﬂol(l+l)(2l+1)+ aar| Cp— 2l—|—1( A +4Cr)
Copol Crm =2 (Cat CrT 4 60)) + (o 4Cr) (2 (1) =
AP T 12 AT A+1 A AN AL
3 4CiCy 8 I\ /e
- AT 4 2C,CE | ———— )| (2L, - L 14
3{ +(21+1)n+ CACF<(21+1)n n2>]<as ) (C14)

where we have omitted the contribution of (reg %} to the S-wave spectrum.
The NNLL hard contribution of the spectrum coefficients is known for general quantum numbers,

2m2CE(1 = 8) m? N @ i by 8eWm, 8¢ m
5nc,h:_ F 10 r 5()<)D X 5() 5() N s "
©2 I+ DI+ U mynn, |68 €8 105 Xus\ 6+ 8ep + = =4 = 0

27[2C12p(1 - 510) 70 m2 70
= 1—772 X r 1 2 |D, ), C15
n<2z+1>z<z+1>< : )( +mm< e > ) (C15)

where we have defined

5c¥) = cg)(uh, V) — Cfpi) (v.v), (Cl6)
sy = e () = ¥ (w,v) = 2(c (v v) = P (v,0)), (C17)
S e?] = D v)ed (wnv) = ¢ wov) e (v.v) (C18)

and truncated to the appropriate order.
Finally, the third-order hard coefficient is obtained from all the relativistic potentials except for V, and V¢, from which

we only obtain the P-wave contribution. We split it into a spin-dependent and a spin-independent piece,

St = 5e3th + 53PN (C19)

where

27°CE(1 = 6y)  m?2 dn—(21+1) 1
e3Pt = £ L . Si(1 T ) (s (20=1) + S (21 +2)) + =k
€3 n(21+1)l(l+1)m1m2 ﬁO 1( +n)+ 4n 2( 1( )+ 1( + ))+ 1

2 (1) (2)
m k m n m 3611 2 oc ny oc m 1) (2
12" = n2) —nZf” 5 4 )> 7 } {XLS<5c}> +ac) + T >+5[c%)c<F)}DS}

5c(sl>m2 6c§2)m1> B sl ePD
12

1 s
5 (Bo + SCA)XL5<(5C(FI) + 5053)) + = (2C4 = 3py)

2m1 2m2

2 — (20 +1
—CA<2sl(z+n)+¥—sl(2z—1)—31(21+2)>
n
(1) B
ocr'm ocy'm 1
w ole 1, + s (L2 4 2L ) 4 ol 06, - 20| (C20)
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