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We present first results on the calculation of fermionic spectral functions from analytically continued
flow equations within the functional renormalization group approach. Our method is based on the same
analytic continuation from imaginary to real frequencies that was developed and used previously for
bosonic spectral functions. In order to demonstrate the applicability of the method also for fermionic
correlations we apply it here to the real-time quark propagator in the quark-meson model and calculate the
corresponding quark spectral functions in the vacuum.
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I. INTRODUCTION

The spectral properties of strongly interacting matter
under extreme conditions, as encountered in the early
Universe and compact stellar objects, are of fundamental
importance for identifying the relevant degrees of freedom
in the equation of state and respective transport properties.
Spectral functions are real-time quantities, while the under-
lying equilibrium state is commonly obtained from imagi-
nary-time (Euclidean) evaluations of the partition function.
In this setting, a thermodynamically consistent computa-
tion of the spectral properties poses a major challenge since
analytic continuations of the pertinent Euclidean n-point
functions are required. In relativistic theories this entails a
transition from Euclidean to Minkowski space-time; see
e.g., [1–4].
In the context of the strong interaction (QCD) quark

spectral functions are of particular interest. A Bayesian
reconstruction method has, for example, been used in [5]
and [6] to extract quark spectral functions from Euclidean
data obtained from Dyson-Schwinger equations. Within the
functional renormalization group (FRG), which incorpo-
rates thermal as well as quantum fluctuations, Euclidean
quark propagators have recently been calculated in [6]
and [7]. In the present work, we focus on the calculation of
real-time quark propagators. Instead of using numerical

reconstruction methods (see e.g., [8,9]), we perform the
analytic continuation on the level of the FRG flow
equations for retarded two-point correlation functions
which are then solved directly in the corresponding domain
of frequencies close to the real axis. Such analytic con-
tinuation methods have been put forward in [10] and
[11–13]. In [14–16] the approach was extended to a finite
temperature, finite quark chemical potential as well as to
finite spatial momenta and has been used to calculate
mesonic spectral functions within the quark-meson model.
The analytically continued FRG flow equations for the
corresponding two-point correlation functions were thereby
solved in a simple but thermodynamically consistent
and symmetry preserving truncation which in the long-
wavelength and static limit reduces to the leading-order
derivative expansion used for the underlying effective
potential. In [17] this approach was extended to calculate
in-medium vector- and axial-vector meson spectral func-
tions. For the first time we here present a FRG calculation
of fermionic spectral functions obtained from analytically
continued flow equations which can be solved numerically.
In a first step we restrict ourselves to the vacuum and to
vanishing external spatial momenta.
This work is organized as follows. In Sec. II we briefly

introduce the FRG framework and its application to the
quark-meson model. Our analytic continuation method and
the flow equation for the real-time quark propagator and the
spectral functions are discussed in Sec. III. We have solved
the flow equations using both a grid and a Taylor-expansion
method as discussed in Sec. IV where we also demonstrate
the particular advantages and disadvantages of either
method. Results for the quark mass and the mass dressing
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function are presented in Sec. V while respective results for
the quark propagator and the quark spectral functions are
shown in Sec. VI. Various sum rules, which can be derived
from the Lehmann representation of the quark propagator,
are discussed in Sec. VII. We close with our summary
and outlook in Sec. VIII. Further details are collected in the
Appendix.

II. FUNCTIONAL RENORMALIZATION
GROUP AND QUARK-MESON MODEL

The FRG is a nonperturbative approach that is used for
example in quantum and statistical field theory, in particu-
lar for strongly interacting systems; see e.g., [18–25] for
reviews. It is formulated in (continuous) Euclidean space-
time and combines Wilson’s idea of the renormalization
group in momentum space [26,27] with functional methods
in quantum field theory.
In the following we will use the formulation pioneered

by Wetterich [28] which aims at calculating the effective
average action Γk where k is the renormalization group
scale. At the ultraviolet (UV) scale k ¼ Λ, the effective
average action is basically given by the bare action S of the
chosen model and does not include any fluctuation effects.
By lowering the scale k the effects of quantum and thermal
fluctuations are gradually included until the full effective
action Γ ¼ Γk¼0 is obtained in the limit k → 0. The scale
dependence of Γk is given by the following flow equation,
also known as the Wetterich equation,

∂kΓk½ϕ;ψ ; ψ̄ � ¼
1

2
STr½∂kRkðΓð2Þ

k ½ϕ;ψ ; ψ̄ � þ RkÞ−1�; ð1Þ

where Rk is a regulator function that suppresses momentum

modes with momenta smaller than k,1 and Γð2Þ
k is the second

functional derivative with respect to the fields. Both Γð2Þ
k

and Rk can be represented as matrices in the field space of
bosonic and fermionic variables, and the supertrace runs
over field space as well as all internal indices also including
an integration over internal momenta.
We will apply this flow equation to the quark-meson

model as a low-energy effective theory for the chiral

aspects of QCD with two flavors [30,31]. It includes
quarks, the sigma meson and the pions as effective degrees
of freedom which interact via a Yukawa-type interaction.
We use the following ansatz for the effective average action
of the quark-meson model in Euclidean space-time,

Γk½ϕ;ψ ; ψ̄ � ¼
Z

d4x

�
ψ̄ðγμ∂μ þ hðσ þ iτ⃗ π⃗ γ5ÞÞψ

þ 1

2
ð∂μϕÞ2 þ Ukðϕ2Þ − cσ

�
; ð2Þ

with ϕ2 ¼ σ2 þ π⃗2. This approximation, which is the
leading order in a derivative expansion where the only
scale-dependent object is the effective potential Ukðϕ2Þ, is
also called the local potential approximation (LPA) [32,33].
When inserting this ansatz into the Wetterich equation, one
obtains the flow equation for the effective potential,

∂kUk ¼
1

2
Ið1Þk;σ þ

3

2
Ið1Þk;π − NcNfI

ð1Þ
k;ψ ; ð3Þ

where explicit expressions for the threshold functions Ik are
given in the Appendix. At the UV scale Λ we choose the
effective potential to be symmetric,

UΛðϕ2Þ ¼ 1

2
m2

Λϕ
2 þ 1

4
λΛðϕ2Þ2; ð4Þ

and then solve the corresponding flow equation numeri-
cally; see Sec. IV. The term cσ, which breaks chiral
symmetry explicitly and thus plays the role of the (up/
down) current quark mass in QCD, is added to the effective
potential in the infrared (IR) while spontaneous chiral
symmetry breaking occurs dynamically through the fer-
mionic fluctuations which are included by solving the flow
equation. The solution for the scale-dependent effective
potential is then used as input for the calculation of the
fermionic two-point function.
In order to obtain the flow equation for the quark two-

point function we take two functional derivatives of the
Wetterich equation, Eq. (1), with respect to the fermionic
fields which gives

∂kΓ
ð2Þ
k;ψ̄ψ ¼ 1

2
Trð∂kRBðq⃗ − p⃗ÞDϕϕðq − pÞΓð3Þ

ψ̄ψϕDψ̄ψðqÞΓð3Þ
ψ̄ψϕDϕϕðq − pÞ

þ ∂kRFðq⃗þ p⃗ÞDψ̄ψðqþ pÞΓð3Þ
ψ̄ψϕDϕϕðqÞΓð3Þ

ψ̄ψϕDψ̄ψðqþ pÞ
þ ∂kRBðq⃗ − p⃗ÞDϕϕðq − pÞΓð3Þ

ψ̄ψϕDψ̄ψðqÞΓð3Þ
ψ̄ψϕDϕϕðq − pÞ

þ ∂kRFðq⃗þ p⃗ÞDψ̄ψðqþ pÞΓð3Þ
ψ̄ψϕDϕϕðqÞΓð3Þ

ψ̄ψϕDψ̄ψðqþ pÞÞ; ð5Þ

1While the FRG flow for the effective average action explicitly contains the regulator Rk, physics at k → 0 should not depend on a
particular choice. For an up-to-date discussion of how to devise optimized regulators in a particular truncation where this can be quite
nontrivial, see [29].
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see Fig. 1 for a diagrammatic representation. Therein,
q ¼ ðq0; q⃗Þ is the internal and p ¼ ðp0; p⃗Þ the external

momentum, D ¼ ðΓð2Þ
k þ RkÞ−1 is the full regulated propa-

gator, the vertex functions Γð3Þ
ψ̄ψϕ are obtained from the

ansatz in Eq. (2), and the remaining trace represents a
summation over all internal indices as well as an integration
over internal momenta. Explicit expressions for the vertex

functions Γð3Þ
ψ̄ψϕ as well as for the bosonic and fermionic

regulator functions, RB and RF, are given in the Appendix.
As in the original studies [13–15], here we use three-
dimensional regulator functions which only regulate spatial
momenta but not the energy components at the expense of
some breaking of the Euclidean Oð4Þ symmetry. This
breaking was assessed and found to be negligible for
external momenta well below the UV cutoff scale Λ in
the Euclidean two-point functions, with still reasonably
small and only quantitative effects in the timelike domain
after analytic continuation [13]. While this can be avoided
in principle [34,35], the three-dimensional regulators allow
us to perform the integration over the internal energy
component or the corresponding Matsubara sum at finite
temperature analytically which tremendously simplifies
the analytic continuation procedure discussed in the next
section.

III. ANALYTIC CONTINUATION
AND SPECTRAL FUNCTIONS

In the UV, the Euclidean quark two-point function is
given by

Γð2Þ;E
Λ;ψ ðp0; p⃗Þ ¼ −iγ0p0 − iγ⃗ p⃗þhσ; ð6Þ

with Hermitian γ-matrices as can also be seen from Eq. (2).
We perform the analytic continuation by treating the
Euclidean energy variable as a general complex argument
z ¼ ip0, so that with z ¼ ωþ iϵ one obtains two-point
functions with retarded boundary conditions in the limit
ϵ → 0.2 We note that the resulting retarded propagator is
analytic in the upper-half complex energy plane, as
expected. To reproduce the standard form of the Dirac
operator we furthermore introduce an overall minus sign as
compared to Euclidean conventions adopted in (6), to write

Γð2Þ
Λ;ψðz; p⃗Þ ¼ γ0zþ iγ⃗ p⃗−hσ; ð7Þ

where we formally kept the Euclidean γ⃗’s which are usually
changed to be anti-Hermitian (by replacing γ⃗ → iγ⃗) in
Minkowski space-time, of course. Based on this Dirac
structure, we therefore make the following ansatz for the
scale-dependent quark two-point function:

Γð2Þ
k;ψðω;p⃗Þ¼ γ0Ckðω;p⃗Þþ iγ⃗ ˆ⃗pAkðω;p⃗Þ−Bkðω;p⃗Þ; ð8Þ

with ˆp⃗≡ p⃗=jp⃗j. The dressing functions can be obtained
from the full two-point function as follows:

Akðω; p⃗Þ ¼ −
1

4
trðiγ⃗ ˆp⃗Γð2Þ

k;ψðω; p⃗ÞÞ; ð9Þ

Bkðω; p⃗Þ ¼ −
1

4
trðΓð2Þ

k;ψ ðω; p⃗ÞÞ; ð10Þ

Ckðω; p⃗Þ ¼
1

4
trðγ0Γð2Þ

k;ψ ðω; p⃗ÞÞ: ð11Þ

The UV initial conditions for the dressing functions are
thus given by

AΛðω; p⃗Þ ¼ jp⃗j; ð12Þ

BΛðω; p⃗Þ ¼ hσ; ð13Þ

CΛðω; p⃗Þ ¼ ω: ð14Þ

The flow equation for the quark two-point function,

∂kΓ
ð2Þ
k;ψðω; p⃗Þ ¼ γ0∂kCkðω; p⃗Þ þ iγ⃗ ˆp⃗ ∂kAkðω; p⃗Þ

− ∂kBkðω; p⃗Þ; ð15Þ

then leads to flow equations for the individual dressing
functions of the form

∂kXkðω; p⃗Þ ¼ J ðXÞ
k;σψ ðω; p⃗Þ þ J ðXÞ

k;ψσðω; p⃗Þ
þ 3J ðXÞ

k;πψðω; p⃗Þ þ 3J ðXÞ
k;ψπðω; p⃗Þ; ð16Þ

with X ∈ fA;B; Cg. The explicit expressions for the
generalized loop functions J k herein are given in the
Appendix. In particular, the analyticity of the flow of these
dressing functions in the upper half of the complex energy

FIG. 1. Diagrammatic representation of the flow equation for the quark two-point function, Eq. (5). Solid lines represent quark
propagators, dashed lines meson propagators. The crosses represent regulator insertions ∂kRk and the red circles the appropriate vertex
functions.

2In the imaginary parts of the flow equations for two-point
functions the limit ϵ → 0 can be taken exactly; see the Appendix.
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plane is evident from these expressions [cf. Eqs. (A7)–(A9)]
and guarantees that the correct analytic behavior of the
retarded propagator is maintained in the flow.
For later convenience we also write down the corre-

sponding expressions for the inverse of the quark two-point
function in Eq. (8), because we will need the imaginary
parts of the retarded quark propagator for the various
spectral functions,

Gk;ψðω; p⃗Þ¼ γ0G
ðCÞ
k;ψ ðω; p⃗Þþ iγ⃗ ˆ⃗pGðAÞ

k;ψðω; p⃗ÞþGðBÞ
k;ψðω; p⃗Þ;

with

GðAÞ
k;ψðω; p⃗Þ ¼

Akðω; p⃗Þ
C2
kðω; p⃗Þ − A2

kðω; p⃗Þ − B2
kðω; p⃗Þ

; ð17Þ

GðBÞ
k;ψðω; p⃗Þ ¼

Bkðω; p⃗Þ
C2
kðω; p⃗Þ − A2

kðω; p⃗Þ − B2
kðω; p⃗Þ

; ð18Þ

GðCÞ
k;ψ ðω; p⃗Þ ¼

Ckðω; p⃗Þ
C2
kðω; p⃗Þ − A2

kðω; p⃗Þ − B2
kðω; p⃗Þ

: ð19Þ

Note that this is not the regularized propagator

D ¼ ðΓð2Þ
k þ RkÞ−1 used in the loops, but the (retarded)

inverse of Γð2Þ
k;ψ in (8). As such, in the UV, it is given by

GΛ;ψðω; p⃗Þ ¼
γ0ωþ iγ⃗ p⃗þhσ

ðωþ iϵÞ2 − p⃗2 − h2σ2
; ð20Þ

as usual. At zero temperature, one generally has

Akðω; p⃗Þ ¼ jp⃗jZkðp2Þ; Ckðω; p⃗Þ ¼ ωZkðp2Þ; ð21Þ

i.e., both are determined by a single dimensionless renorm-
alization function Z of the invariant four-momentum p2.

GðAÞ
k;ψðω; p⃗Þ and GðCÞ

k;ψ ðω; p⃗Þ are then essentially the same,
likewise. Here we keep them formally distinct, never-
theless, so that their flow equations can be readily extended
to finite temperature and density in the future.
The quark spectral function can be obtained from the

retarded propagator by taking the imaginary part,

ρk;ψðω; p⃗Þ ¼ −
1

π
ImGk;ψðω; p⃗Þ; ð22Þ

and therefore has the same Dirac structure as the propagator
and the two-point function,

ρk;ψðω; p⃗Þ ¼ γ0ρ
ðCÞ
k;ψ ðω; p⃗Þ þ iγ⃗ ˆp⃗ ρðAÞk;ψðω; p⃗Þ þ ρðBÞk;ψ ðω; p⃗Þ:

ð23Þ

In the UV, the quark spectral function is given by

ρΛ;ψ ðω; p⃗Þ ¼ sgnðωÞðγ0ωþ iγ⃗ p⃗þhσÞδðω2 − p⃗2 − h2σ2Þ:
ð24Þ

The individual components of the spectral function can
then be obtained directly from the imaginary parts of the
corresponding propagator components,

ρðXÞk;ψ ðω; p⃗Þ ¼ −
1

π
ImGðXÞ

k;ψψ̄ðω; p⃗Þ; ð25Þ

with X ∈ fA;B; Cg. At zero temperature, ρðAÞk;ψðω; p⃗Þ and

ρðCÞk;ψ ðω; p⃗Þ are essentially the same as well; one then usually
writes

ρðCÞk;ψ ðω; p⃗Þ ¼ ωρðZÞk;ψðp2Þ; ρðAÞk;ψðω; p⃗Þ ¼ jp⃗jρðZÞk;ψðp2Þ:
ð26Þ

We also note that the spectral function ρðCÞk;ψ ðω; p⃗Þ is an even
function of ω while ρðAÞk;ψ ðω; p⃗Þ and ρðBÞk;ψðω; p⃗Þ are odd:

ρðCÞk;ψ ð−ω; p⃗Þ ¼ ρðCÞk;ψ ðω; p⃗Þ;
ρðAÞk;ψð−ω; p⃗Þ ¼ −ρðAÞk;ψðω; p⃗Þ;
ρðBÞk;ψð−ω; p⃗Þ ¼ −ρðBÞk;ψðω; p⃗Þ: ð27Þ

The Lehmann representation of the retarded propagator is
given by

Gk;ψðω; p⃗Þ ¼ −
Z

∞

−∞
dω0 ρk;ψðω0; p⃗Þ

ω0 − ω − iϵ
: ð28Þ

It can be used to derive various sum rules for the spectral
functions as discussed in Sec. VII below.
In the following we will set the spatial external momen-

tum to zero for simplicity in this first study, p⃗ ¼ 0, which

implies GðAÞ
k;ψðω; 0Þ≡ 0 and ρðAÞk;ψðω; 0Þ≡ 0 as well, and

drop the corresponding second argument in all momentum-
dependent functions. The quark propagator can then be
decomposed as

Gk;ψðωÞ ¼ Gþ
k ðωÞΛþ þG−

k ðωÞΛ−; ð29Þ

with Λ� ¼ ð1� γ0Þ=2 and

G�
k ðωÞ ¼

1

2
trðGk;ψðωÞΛ�Þ: ð30Þ

With these we define the associated quark and antiquark
spectral functions,

ρ�k ðωÞ ¼∓ 1

π
ImG�

k ðωÞ; ð31Þ
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such that ρþk ð−ωÞ ¼ ρ−k ðωÞ. These are then related to the
previously defined quark spectral functions by

ρþk ðωÞ þ ρ−k ðωÞ ¼ 2ρðCÞk;ψ ðωÞ;
ρþk ðωÞ − ρ−k ðωÞ ¼ 2ρðBÞk;ψðωÞ; ð32Þ

and can be expressed in terms of the dressing functions of
the two-point function as

ρþk ðωÞ ¼
1

π

ImCk − ImBk

ðReCk − ReBkÞ2 þ ðImCk − ImBkÞ2
; ð33Þ

ρ−k ðωÞ ¼
1

π

ImCk þ ImBk

ðReCk þ ReBkÞ2 þ ðImCk þ ImBkÞ2
: ð34Þ

IV. NUMERICAL IMPLEMENTATION

The flow equations for the effective potential, Eq. (3),
and for the dressing functions of the quark two-point
functions, Eq. (16), are solved using two different methods:
the grid method and the Taylor method. Both methods use
the same input parameters which are summarized in
Table I. These parameters are chosen so as to reproduce
physical vacuum values for the pseudoparticle masses and
the pion decay constant in the IR; see Table II. We note that
there are small differences between the IR values obtained
from the grid method and the Taylor method which,
however, will not play any role in the following since
we will only focus on qualitative differences in the results
from these two methods; see also [36] for a comparison of
different numerical implementations.

A. Grid method

The idea of the grid method is to discretize the field
variable ϕ2 ¼ σ2 þ π⃗2 on a grid in field space; see [31] for
details. The flow equation for the effective potential then
turns into a set of coupled ordinary differential equations

which can be solved using standard methods. The global
minimum σ0 of the effective potential in the IR determines
the expectation value of σ which is identified with the
pion decay constant, σ0 ≡ fπ , at this leading order in the
derivative expansion.
The flow equation for the dressing functions of the quark

two-point function can then be solved using the scale-
dependent effective potential as an input. Since the flow
equation for the two-point function does not couple differ-
ent grid points, it is sufficient to use only one grid point ϕ2

i
which corresponds to the location of the global minimum
at some chosen scale k. In the following we are mostly
interested in the IR and therefore choose ϕ2

i ¼ σ20;IR. We
also note that the flow equation for the two-point function is
solved down to k ¼ 0 by using an extrapolation of the flow
of the effective potential for k < kIR ¼ 40 MeV. The same
technique is used for the Taylor method.
One of the advantages of the grid method is that it does

not restrict the shape of the effective potential and therefore
allows for an almost arbitrary order of mesonic self-
interactions (limited only by the number of grid points).
In particular, possible secondary minima of the potential
can be resolved which allows us to study first-order phase
transitions straightforwardly.
One possible issue with the grid method arises when

solving the flow equation for the retarded two-point func-
tion. As discussed in the Appendix, the k-integration of the
flow equation for the imaginary part of the two-point
function, which is closely connected to the spectral function,
collapses to a sum over a few scales ki due to the appearance
of Dirac delta functions. This means that for a given energy
ω, the spectral function may receive only a single contri-
bution from some intermediate scale k > kIR. Since the flow
equation is always evaluated at the IR minimum ϕ2

i ¼ σ20;IR,
and also at k > kIR, this contribution does not correspond to
the actual scale-dependent minimum of Ukðϕ2Þ. We will
show, however, that the difference in the IR between spectral
functions obtained from either the grid or Taylor method
(where this problem does not occur) is reasonably small.

B. Taylor method

There are different versions of the Taylormethod available
in the literature. The general idea is to use an expansion in
the form of a Taylor series around some value of the field
ρ≡ ϕ2. The chosen expansion point may be constant (see
e.g., [37]) or it may be scale dependent as discussed in the
following. We first write the effective potential as

Ukðρ; σÞ ¼
XK
n¼0

1

n!
an;kðρ − ρ0;kÞn − cσ; ð35Þ

where the expansion point ρ0;k is the scale-dependent
minimum and we choose K ¼ 5. We use the same ansatz
for the flow equation of the effective potential,

TABLE I. Parameter set chosen for the quark-meson model;
cf. Eq. (2).

Λ=MeV mΛ=Λ λΛ c=Λ3 h

1000 0.794 2.00 0.00175 3.2

TABLE II. Observables obtained in the vacuum at an IR scale
of kIR ¼ 40 MeV when using the grid method (first row) and the
Taylor method (second row).

σ0 ≡ fπ mπ mσ mψ

93.5 MeV 138 MeV 509 MeV 299 MeV
90.1 MeV 139 MeV 534 MeV 288 MeV
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∂kUkðρÞ ¼
XK
n¼0

1

n!
∂kU

ðnÞ
k ðρ0;kÞðρ − ρ0;kÞn; ð36Þ

where ∂kU
ðnÞ
k ðρ0;kÞ denotes the nth derivative of the flow

equation for the effective potential with respect to ρ,
evaluated at ρ0;k. From these two equations one can obtain
flow equations for the coefficients an and for ρ0;k, which are
given by

∂kan;k ¼ ∂kU
ðnÞ
k ðρ0;kÞ þ anþ1;k∂kρ0;k: ð37Þ

When using that ∂σUkðρ; σÞjσ¼ ffiffiffiffiffi
ρ0;k

p ¼ 0, we find

a1;k ¼ c=ð2 ffiffiffiffiffiffiffi
ρ0;k

p Þ. By taking the RG-scale derivative of
this relation one can express the flow equation for the scale-
dependent minimum in terms of the flow equation for a1;k,
which gives

∂kρ0;k ¼ −
∂kU

ð1Þ
k ðρ0;kÞ

a2;k þ c=ð4ρ3=20;k Þ
: ð38Þ

The same Taylor expansion can also be used for the
mesonic two-point functions; see e.g., [13]. For the quark
two-point function, which in the UV contains a term hσ, we
will use a Taylor expansion in terms of σ0;k instead of ρ0;k.
The quark two-point function can then be written as

Γð2Þ
ψ ;kðσÞ ¼

XL
n¼0

1

n!
cn;kðσ − σ0;kÞn; ð39Þ

where we use L < 5. We can make a similar ansatz for the
flow equation,

∂kΓ
ð2Þ
ψ ;kðσÞ ¼

XL
n¼0

1

n!
∂kΓ

ð2Þ;ðnÞ
k ðσ0;kÞðσ − σ0;kÞn; ð40Þ

where ∂kΓ
ð2Þ;ðnÞ
k ðσ0;kÞ denotes the nth derivative of the flow

equation for the two-point function with respect to σ,
evaluated at σ0;k. From these two equations we can obtain
flow equations for the coefficients cn;k which are given by

∂kcn;k ¼ ∂kΓ
ð2Þ;ðnÞ
k ðσ0;kÞ þ cnþ1;k∂kσ0;k: ð41Þ

This Taylor method has the advantage that it always uses
an expansion around the scale-dependent minimum of the
effective potential. In this way, the two-point function only
receives contributions that correspond to the local mini-
mum at a given scale, in contrast to the grid method where
the contributions are in general not evaluated at the global
minimum for intermediate RG scales k. In the next sections
we will present results obtained from both methods and
discuss their differences.

V. MASSES AND DRESSING FUNCTIONS
Bk(ω) AND Ck(ω)

We will first study the flow of the Euclidean (curvature)
masses as obtained from the effective potential using the
grid method and the Taylor method, which are then used as
input for the flow equation of the two-point function; see
Fig. 2. Explicitly we have

m2
π;k ¼ 2U0

k; m2
σ;k ¼ 2U0

k þ 4U00
kϕ

2; m2
ψ ;k ¼ h2ϕ2:

ð42Þ

When evaluated at the scale-dependent global minimum of
the effective potential, σ0;k, these expressions represent the
Euclidean curvature masses. When using the grid method
as implemented in this work, however, the flow equation
for the two-point function is always evaluated at the IR
minimum σ0;IR while the Taylor method uses the scale-
dependent minimum σ0;k. The scale-dependent masses can
of course also be obtained when using the grid method and
evaluating Eq. (42) at σ0;k. The masses then essentially
agree with the ones obtained from the Taylor method;
see Fig. 2.
We note that the quark mass obtained from the grid

method using a fixed value of ϕ2 ¼ ρ0;IR is constant while
when using the Taylor method the quark mass is almost
zero in the UVand then significantly increases at the chiral
symmetry breaking scale of k ≈ 600 MeV where also the
pion and the sigma mass become different. The masses
obtained from both methods agree reasonably well in the
IR, i.e., up to the small deviations recorded in Table II
which could be compensated by a small readjustment of the
UV parameters.
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Taylor at 0,k
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FIG. 2. Flow of the Euclidean (curvature) masses mσ;k (blue),
mπ;k (yellow) andmψ ;k (green) [cf. Eq. (42)], as obtained from the
effective potential UkðρÞ using the grid method with ρ ¼ ρ0;IR
(solid lines), the Taylor method with ρ ¼ ρ0;k (dashed lines) and
the grid method with ρ ¼ ρ0;k (dotted).
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Wewill now study the flow of the mass dressing function
Bk divided by the renormalization function Zk [see
Eq. (21)] of the retarded quark two-point function, as
introduced in Eq. (8). At ω ¼ 0, where they are both real,
their ratio is shown in Fig. 3 where we compare the result
from the grid method with those from the Taylor method for
different expansion orders L. When using the grid method,
we have Bk¼Λ ¼ hσ0;IR ¼ 299 MeV while for the Taylor
method we have Bk¼Λ ¼ hσ0;UV ¼ 8.9 MeV. Despite this
large difference in the UV, both methods give approxi-
mately the same result in the IR, except for the Taylor
method with L ¼ 0. Note that the Taylor method at order
L ¼ 0 here produces a result that would agree with that
from the grid method, if the scale-dependent minimum σ0;k
was used in the latter in the place of the IR minimum σ0;IR
that appears for example in the derivatives of the effective
potential and in the initial condition for Γð2Þ which contains
hσ; see Eq. (13). Such a simple modification of the grid
method would neglect contributions to the flow that arise
from the k dependence of the gliding minimum σ ¼ σ0;k on
the other hand. By comparison with the Taylor results,
where these contributions are contained in the second term
in Eq. (41) and are thus absent at L ¼ 0, we see that they
are by no means negligible but contribute substantially to
the dynamical mass generation. Already the L ¼ 1 result
is close to those from the higher orders in the Taylor
expansion, however, and hence captures the main effect.
We also note that the flow of the ratio Bk=Zk in the static
limit resembles the flow obtained for the quark mass
parameter in Fig. 2 for the higher Taylor orders quite well.
In Fig. 4 we compare the flow of Bk=Zk at ω ¼ 0 with

the flow of the scale-dependent quark pole mass mP
ψ ;k

which is obtained as the (lowest) value of ω that solves

BkðωÞ ¼ CkðωÞ in the range where both dressing functions
are still real and thus in the IR describes the stable single-
particle contribution to the quark propagator here. We find
that the pole mass starts to deviate from Bk=Zk for k≲
400 MeV and that the pole mass is several MeV larger than
the ω ¼ 0 value of Bk=Zk in the IR. In general, a difference
between the pole mass and the mass function Bk=Zk at
ω ¼ 0 is to be expected since Bk=Zk has a nontrivial ω
dependence which is seen in Fig. 5 where we plot the real
parts of B and C (in the IR) over p2

0. With increasing
negative values of p2

0 ¼ p2 here, i.e., deeper in the timelike
region, both B and C increase as long as they remain real
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Taylor, L=3
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FIG. 3. The mass dressing function Bk divided by the renorm-
alization function Zk [see Eq. (21)], both at ω ¼ 0 (and p⃗ ¼ 0)
where they are real vs the scale k obtained from the grid method
and the Taylor method for different orders L.
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FIG. 4. The flow of the mass dressing function Bk divided by
the renormalization function Zk at ω ¼ 0 and of the quark pole
mass as obtained by using the grid method and the Taylor method
with L ¼ 4.
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FIG. 5. The real part of the functions Bk and Ck for k → 0 as
obtained by using the grid method and the Taylor method with
L ¼ 4. We note that the quark mass obtained from the potential is
the same as the value for B in the limit p0 → ∞.
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until nonzero imaginary parts develop at their peak position
as discussed in the next section.
For positive p2

0 ¼ p2, i.e., in the spacelike region, C
becomes pure imaginary because it is defined as CðzÞ ¼
zZðzÞ with z ¼ ip0 in the Euclidean domain, while B
monotonically decreases with the Euclidean p2. Because
the explicit flow of the two-point function vanishes when
p2 ≫ Λ2, B approaches gσ0;IR ¼ mψ in Table II. In the grid
method the IR value of σ0 is the same as its UV value which
means that also Bk remains at its UV initial condition,
Eq. (13), so that Bk does not flow at all in this case. In
the Taylor method one starts with a small value for
Bk¼Λ ¼ hσ0;UV, as mentioned above, but the flow of σ0;k
leads to an implicit residual flow also for Bk at asymp-
totically large momenta as seen explicitly in Eq. (41) (for
L ≥ 1). This contribution ensures that Bk eventually
approaches the corresponding infrared value of the quark
mass parameter in Table II with the Taylor method as well.

VI. QUARK SPECTRAL FUNCTION

We now turn to the flow of the different quark spectral
functions: ρðBÞk;ψ , ρ

ðCÞ
k;ψ , ρk;þ and ρk;−. They all depend on the

dressing functions BkðωÞ and CkðωÞ. The infrared results,
as obtained with k → 0 from either the grid or Taylor
method, for real and imaginary parts of BðωÞ are shown in
Fig. 6, the corresponding ones for CðωÞ in Fig. 7.
The shapes of BðωÞ and CðωÞ which are also reflected

in the spectral functions can be explained by considering
the different particle processes that can occur within our
framework. These processes can already be read off from
the diagrammatic representation of the flow equation for
the two-point function (see Fig. 1) and are given by

ψ� → ψ þ π for ω ≥ Eψ þ Eπ; ð43Þ

ψ� → ψ þ σ for ω ≥ Eψ þ Eσ; ð44Þ
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FIG. 6. Real (left) and imaginary (right) parts of BðωÞ ¼ BkðωÞ, k → 0 from the grid or Taylor method at different orders L.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

R
e

C
[M

eV
]

[MeV]

Grid

Taylor, L=0

Taylor, L=1

Taylor, L=2

0 200 400 600 800 1000
0

50

100

150

200

Im
C

[M
eV

]

[MeV]

Grid

Taylor, L=0

Taylor, L=1

Taylor, L=2

FIG. 7. Real (left) and imaginary (right) parts of CðωÞ ¼ CkðωÞ, k → 0 from the grid or Taylor method at different orders L.
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ψ̄� → ψ̄ þ π for ω ≥ Eψ þ Eπ; ð45Þ

ψ̄� → ψ̄ þ σ for ω ≥ Eψ þ Eσ; ð46Þ

where ψ� denotes an off-shell quark with energy ω and
the other energies represent IR values. The process ψ� →
ψ þ π for example describes a quark with energy ω that can
“decay” into an on-shell quark with energy Eψ and a pion
with energy Eπ. These processes allow for a clear inter-
pretation of the shape of the real and in particular of the
imaginary part of BðωÞ and CðωÞ.
The real part of BðωÞ starts with a small positive slope at

small energies and monotonously increases up to the first
threshold at ω ¼ Eψ þ Eπ ≈ 420 MeV where the decay
channel into a quark and a pion opens up. A second, but
smaller change in the real part is visible at the second
threshold at ω ¼ Eψ þ Eσ ≈ 820 MeV where the process
ψ� → ψ þ σ becomes possible. The imaginary part of BðωÞ
stays at zero below the first threshold energy ω ¼ Eψ þ Eπ

since no decay channels are available and then starts to rise
quickly at the quark-pion threshold. The quark-sigma
process gives rise to a small kink in the imaginary part
at ω ¼ Eψ þ Eσ . Up to these energies the result obtained
from the grid method is in very good agreement with the
results from the Taylor method for L ≥ 1. For higher Taylor
orders L ≥ 3 we observe numerical difficulties at large
energies. The behavior of CðωÞ is analogous: below the
quark-pion threshold it stays real, with a rapidly increasing
imaginary part starting there and further kinks in real and
imaginary parts at the quark-sigma threshold. The leading
behavior at small ω is given by CðωÞ ¼ ZωþOðω2Þ with
Z ¼ Zk¼0ð0Þ ≈ 1.16. Note that both BðzÞ and CðzÞ are
analytic functions at z ¼ 0 as can be seen from their
Lehmann representation and the fact that their spectral
functions have no support there as we will discuss next.

We now turn to the quark spectral function ρðCÞk;ψ ðωÞ. It
starts in the UVas a simple delta function at the UV quark
mass parameter with strength 1=2 [cf. Eq. (24)] and flows
with k → 0 towards the infrared results shown in Fig. 8 as
obtained from the grid method and the Taylor method.
Although the UV values are very different [cf. Eq. (12)], the
spectral functions agree well in the IR, in particular for
higher Taylor orders like L ¼ 2. While the delta peak that is
connected to the quark pole mass with the Taylor method
moves from ω ≈ 9 MeV in the UV up to a value of ω ≈
316 MeV in the IR, the pole mass obtained from the grid
method changes with the flow only from ω ≈ 299 MeV in
the UV to ω ≈ 320 MeV in the IR. The remaining
discrepancy of about 4 MeV between the IR pole masses
could in principle be compensated by a slight readjustment
of the UV parameter as mentioned above. These single-
particle contributions at the physical mass are defined as
the solutions to BðωÞ ¼ CðωÞ and indicated by the vertical
lines in the figures.
The difference between curvature masses, obtained from

the effective potential and the physical pole masses, has
also been observed for mesons; see e.g., [14]. While the
two need not be the same of course, but differ whenever one
has frequency-dependent renormalization effects as those
in the ratio BðωÞ=ZðωÞ here, and explicitly demonstrated
in Fig. 5 above, the size of the difference is generally
determined by the relative distance of the closest singularity
above the single-particle pole. As such the effect observed
especially for the pions in the previous LPA studies was too
large. To reduce this artifact one has to go beyond the
leading order in the derivative expansion at least [38].
We should therefore be prepared for the possibility that
analogous improvements can also lead to similar quanti-
tative changes here. As a next step towards a fully self-
consistent calculation one should therefore extract these
scale-dependent wave function renormalization factors
and feed them back into the calculation by iteration in
the future as well.
We have already noted that the Taylor method at the

leading order, with L ¼ 0, misses an important qualitative
effect. Higher orders on the other hand appear to converge
quickly towards the grid result. We then generally have
quite compelling agreement between both methods in
the IR (provided the external frequency ω stays well below
the cutoff scale Λ). The remaining discrepancies can in fact
be considered as an indication of systematic uncertainties.
The particular advantage of the Taylor-expansion method is
that it provides a direct and more intuitive understanding of
the evolution of the spectral function with the flow at
intermediate scales k. To achieve this with the grid method
one would best stop the flow at some intermediate scale k̄
and study the behavior of the spectral functions in the fixed
background with σ ¼ σ0;k̄ given by the minimum of the
effective potential at this intermediate scale k̄. In the
following we focus on the physical results obtained at
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FIG. 8. The quark spectral function ρðCÞψ ðωÞ as a function ofω at
k ¼ 0 as obtained by using the grid method as well as the Taylor
method for different orders L.
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the end of the flow in the IR. Having established the
equivalence of the methods there, we restrict to the grid
results for clarity from now on.
As a first check note that ρðCÞψ ðωÞ is the positive

distribution that it has to be in a theory with a positive
state space, and one has the inequality

ρðCÞψ ðωÞ ≥ jρðBÞk;ψðωÞj; ð47Þ

which is satisfied here as well. For the continuum con-
tributions this can be seen explicitly in Fig. 9 where we

show ρðBÞψ ðωÞ and ρðCÞψ ðωÞ together with the quark and
antiquark spectral functions [cf. Eq. (32)],

ρþðωÞ ¼ ρðCÞψ ðωÞ þ ρðBÞψ ðωÞ and

ρ−ðωÞ ¼ ρðCÞψ ðωÞ − ρðBÞψ ðωÞ;

which are therefore also both positive. The single-particle

contributions in ρðBÞψ ðωÞ and ρðCÞψ ðωÞ have the same
magnitude. Consequently, the quark spectral function
ρþðωÞ only exhibits one delta peak at positive energies,
representing a single quark, while the antiquark spectral
function ρ−ðωÞ only has a peak at negative energies for the
single-antiquark states.
The continuum parts of ρðCÞψ ðωÞ and ρðBÞψ ðωÞ related to the

various one-to-two-particle processes add up in ρ�ðωÞ,
which leads to an enhancement at large positive energies,
while they are subtracted from one another in ρ−ðωÞ and
hence suppressed there. The corresponding converse behav-

ior follows with ρðBÞψ ð−ωÞ¼−ρðBÞψ ðωÞ and ρðCÞψ ð−ωÞ¼
−ρðCÞψ ðωÞ for ω < 0. The slightly negative contributions

to ρðBÞψ ðωÞ in the range between the quark-pion and the

quark-sigma threshold are likely to be an artifact of the
present truncation.

VII. SUM RULES

The various sum rules as usual follow from expanding
the Lehmann representation in Eq. (28),

GψðωÞ ¼
Z

∞

−∞
dω0 ρψðω0Þ

ω − ω0 ; ð48Þ

for small and large ω. For large ω, this leads to

Gψ ðωÞ ¼
Z

∞

−∞
dω0 ρψðω0Þ

ω

�
1þ ω0

ω
þ � � �

�
ð49Þ

¼ γ0
1

ω

Z
∞

−∞
dω0ρðCÞψ ðω0Þ

þ 1

ω2

Z
∞

−∞
dω0ω0ρðBÞψ ðω0Þ þOð1=ω3Þ; ð50Þ

where we have used that the even moments of the odd

function ρðBÞψ ðωÞ and the odd moments of the even ρðCÞψ ðωÞ
both vanish. The leading order at large ω therefore
corresponds to

Z
∞

−∞
dωρðBÞψ ðωÞ ¼ 0; ð51Þ

Z
∞

−∞
dωρðCÞψ ðωÞ ¼ lim

ω→∞
ωGðCÞ

ψ ðωÞ ¼ lim
ω→∞

Z−1ðω2Þ: ð52Þ

In a renormalizable field theory, the integral of the spectral
density usually diverges logarithmically and the right-hand
side is then given by a formally ultraviolet divergent field
renormalization constant. Here, we note that the flow of the
two-point function generally vanishes for ω → ∞ and the

leading-order sum rule for ρðCÞk;ψ ðωÞ consistent with the UV
initial condition in Eq. (14) therefore reads

Z
∞

−∞
dωρðCÞk;ψ ðωÞ ¼ 1: ð53Þ

It is satisfied exactly in the UV by definition, where the
quark spectral function is given by

ρðCÞΛ;ψ ðωÞ ¼ YΛðδðω −mψ ;ΛÞ þ δðωþmψ ;ΛÞÞ ð54Þ

with YΛ ¼ 1=2. As fluctuations are included with integrat-
ing the flow down to some scale k, the weight of these free
single-(anti)particle contributions gets reduced in favor of
continuum contributions from processes that are possible
due to the interactions with fluctuations included above this
scale. Monitoring the sum rule (53) over the flow therefore
provides a valuable test of the consistency of the procedure.
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FIG. 9. The spectral functions ρðBÞψ ðωÞ and ρðCÞψ ðωÞ together
with the quark spectral function ρþðωÞ and the antiquark spectral
function ρ−ðωÞ in the IR as obtained with the grid method.
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For this purpose, we evaluate all sum rules numerically
up to the sum of the UV energies, ΛE ¼ Eψ ;Λ þ Eα;Λ≈
2324 MeV, since at this scale the FRG flow gives the first
contribution to the continuum and the strength of the Dirac
delta peak starts to decrease. During the flow, the quark and
meson energies decrease and the threshold of the continuum
moves to smaller energies until it reaches its IR value. When
applied to the quark spectral function obtained from the
grid method for example this then yields in the IR

Z
ΛE

−ΛE

dωρðCÞk¼0;ψðωÞ ≈ 1.094: ð55Þ

Herein, we have included the delta functions from the single-
particle contributions to the spectral function explicitly, with
scale-dependent pole mass mP

ψ ;k and residue Yk, by using

ρðCÞ;polek;ψ ðωÞ ¼ Ykðδðω −mP
ψ ;kÞ þ δðωþmP

ψ ;kÞÞ ð56Þ

with

Yk ¼
1

2
jð∂ωCkðωÞ − ∂ωBkðωÞÞjmψ ;k

j−1: ð57Þ

We find 2Yk¼0 ≈ 0.875 which means that approximately
88%of the sumrule is still providedby the single-particle and
antiparticle contributions, which only leaves less than half
of the sum rule for the continuum from the interactions here,
at T ¼ μ ¼ 0. The fact that the sum rule remains satisfied
numerically to a high degree all theway down to the infrared
demonstrates the consistency of the FRG approach in that it
also keeps the normalization intact, in addition to preserving
Dirac and symmetry structures.
At next-to-leading order, the expansion in Eq. (50)

corresponds to the energy-weighted sum rules for the
quark propagator,

Z
∞

−∞
dωωρðCÞψ ðωÞ ¼ 0; ð58Þ

Z
∞

−∞
dωωρðBÞψ ðωÞ ¼ lim

ω→∞
ω2

1

4
trGψ ðωÞ

¼ lim
ω→∞

ω2GðBÞðωÞ ¼ lim
ω→∞

BðωÞ
Z2ðω2Þ : ð59Þ

By the same argument as above, the flow for the two-point
function vanishes in this limit which is therefore here given
by the UV initial conditions in Eqs. (13) and (14) again.
The energy-weighted sum rule for the quark propagator
therefore here becomes

Z
∞

−∞
dωωρðBÞk;ψðωÞ ¼ mψ ;Λ: ð60Þ

Our parameters for the grid method in Table II imply for
the quark mass at the UV cutoff scale mψ ;Λ ¼ 299 MeV

(the quark mass parameter mψ is in fact scale independent
when using the grid code). For comparison, the numerical
value of the energy-weighted integral over ρðBÞðωÞ in the
infrared would correspond to mψ ;Λ ¼ 324.5 MeV. This
sum rule is therefore slightly violated, but only within an
error of about 9%.
The leading-order sum rule (52) for ρðCÞψ ðωÞ and the next-

to-leading-order sum rule (59) for ρðBÞψ ðωÞ are determined
by the purely perturbative behavior of the quark propagator.
Higher moments of the spectral functions diverge (more
than logarithmically) in the ultraviolet. The corresponding
contributions to the propagator are suppressed by powers of
1=ω2 relative to the leading ones at large ω and need to be
obtained from the operator product expansion.
Negative moments on the other hand will converge more

and more rapidly in the ultraviolet. As long as there are no
contributions to the spectral function from massless exci-
tations there will be no infrared divergences either. To
obtain these moments one expands Eq. (28) for small ω,

GψðωÞ ¼ −
Z

∞

−∞
dω0 ρψ ðω0Þ

ω0

�
1þ ω

ω0 þ � � �
�

ð61Þ

¼ −
Z

∞

−∞
dω0 ρ

ðBÞ
ψ ðω0Þ
ω0

− γ0ω

Z
∞

−∞
dω0 ρ

ðCÞ
ψ ðω0Þ
ω02 þOðω2Þ; ð62Þ

where we have again used that the even (odd) moments of

ρðBÞψ ðωÞ [ρðCÞψ ðωÞ] vanish. The nonvanishing ones then lead
to the leading-order sum rule,

Z
∞

−∞
dω

ρðBÞψ ðωÞ
ω

¼ −Gψ ð0Þ ¼
1

Bð0Þ ; ð63Þ

and the next-to-leading-order sum rule,

Z
∞

−∞
dω

ρðCÞψ ðωÞ
ω2

¼ −lim
ω→0

1

4

trðγ0GψðωÞÞ
ω

¼ −lim
ω→0

GðCÞ
ψ ðωÞ
ω

¼ Zð0Þ
B2ð0Þ : ð64Þ

Both sides of these sum rules are now scale dependent.
For the leading-order sum rule we start in the UV with

1=Bk¼Λð0Þ ¼ 1=mψ ;k¼Λ ≈ 3.344 × 10−3 MeV−1 and the
sum rule is trivially satisfied. More importantly, however,
in the IR we find 1=Bk¼0ð0Þ ≈ 2.744 × 10−3 MeV−1, and
this then compares very well with the numerical value of
the integral in Eq. (63) which gives 2.752 × 10−3 MeV−1.
Also the next-to-leading-order sum rule is trivially sat-

isfied in the UV, with Zk¼Λð0Þ ¼ 1 and 1=B2
k¼Λð0Þ ¼

1=m2
ψ ;k¼Λ ≈ 1.119 × 10−5 MeV−2. In the IR, on the other
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hand, we have Zk¼0ð0Þ ≈ 1.156 and Zk¼0ð0Þ=B2
k¼0ð0Þ ≈

8.706 × 10−6 MeV−2, very close to the numerical value of
the integral in Eq. (64) which gives 8.739 × 10−6 MeV−2 for
comparison.

VIII. SUMMARY AND OUTLOOK

In this work we have presented a framework to calculate
fermionic spectral functions within the functional renorm-
alization group approach. Our method is based on a
recently developed technique for the calculation of bosonic
spectral functions that uses a well-defined analytic continu-
ation procedure from imaginary to real energies. The fact that
no numerical analytic continuation method is needed repre-
sents a distinct advantage over other approaches that have to
rely on numerical reconstruction techniques like the maxi-
mum entropy method.
In the present study we applied this method to the quark-

meson model and calculated quark spectral functions in the
vacuum. The resulting flow equations for the real-time two-
point functions have been solved numerically using two
different methods: the grid method and the Taylor method.
Both methods produce consistent results when the corre-
sponding flow equations are integrated all the way down to
the infrared, with residual discrepancies serving as indi-
cations of the systematic uncertainties. Thereby, the grid
method by and large produces the more stable results, while
the Taylor method provides the more direct and intuitive
interpretation of the full scale dependence of the spectral
functions during the flow.
In particular, we studied the flow of the quark mass as

well as the quark and antiquark spectral functions. The
different particle processes which define the shape of the
spectral functions as well as the consistency with various
sum rules, derived from the Lehmann representation of the
quark propagator, have been discussed.
Although we have limited ourselves to the vacuum and

to vanishing spatial momenta in this first work on fermionic
spectral functions with the FRG, our approach can be
extended to finite temperature, finite chemical potential and
finite spatial momenta as already demonstrated for mesons.
These extensions will also allow for the calculation of
transport coefficients like the shear viscosity. Other exten-
sions that are left to future studies include the improvement
of thepresently used truncationby introducingwave function
renormalization factors or a scale-dependent Yukawa cou-
pling. Replacing the quarks here by nucleon fields and their
parity partners allows us to study the corresponding baryonic
spectral functions in the parity-doublet model with fluctua-
tions beyond mean-field as in [39] in order to describe the
liquid-gas transition of nuclear matter and the chiral tran-
sition at high baryon density in a unified framework. This can
then furthermore be extended to include vector and axial-
vector mesons along the lines of [17] and study their spectral
changes in dense nuclear matter.
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APPENDIX: DEFINITIONS
AND FLOW EQUATIONS

The three-dimensional bosonic and fermionic regulator
functions are given by

RB
k ¼ ðk2 − q⃗2Þθðk2 − q⃗2Þ; ðA1Þ

RF
k ¼ i=⃗q

� ffiffiffiffiffiffiffiffiffiffiffiffi
k2=q⃗2

q
− 1

�
θðk2 − q⃗2Þ: ðA2Þ

The threshold functions appearing in Eq. (3) are given by

Ið1Þσ;π ¼ k4

6π2
1

Eσ;π
; Ið1Þψ ¼ k4

3π2
1

Eψ
; ðA3Þ

where the effective quasiparticle energies read

Eα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

α

q
; α ∈ fπ; σ;ψg; ðA4Þ

and the effective meson masses have already been intro-
duced in Eq. (42). The three-point vertex functions appear-
ing in Eq. (5) are given by

Γð3Þ
ψ̄ψϕi

¼ h
�
1 for i ¼ 0

iγ5τi for i ¼ 1; 2; 3
: ðA5Þ

The generalized loop functions used in Eq. (16) are
defined as

J ðXÞ
k;αβðωÞ ¼

Z
d3q
ð2πÞ3 J

ðXÞ
k;αβðωÞ; ðA6Þ

with α; β ∈ fσ; π;ψg and X ∈ fA;B;Cg. The loop func-

tion JðAÞk;αβðωÞ is zero for vanishing external spatial momen-

tum, jp⃗j ¼ 0. JðBÞk;αβðωÞ and JðCÞk;αβðωÞ are given by
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JðBÞk;αβðωÞ ¼ −
1

ðωþ iϵþ Eα þ EβÞ
�kh2mψ

4E3
αEβ

−
1

ðωþ iϵþ Eα þ EβÞ2
�kh2mψ

4E2
αEβ

þ 1

ðωþ iϵ − Eα − EβÞ
�kh2mψ

4E3
αEβ

−
1

ðωþ iϵ − Eα − EβÞ2
�kh2mψ

4E2
αEβ

; ðA7Þ

JðCÞk;αψðωÞ ¼ −
1

ðωþ iϵþ Eα þ Eψ Þ
kh2

4E3
α

−
1

ðωþ iϵþ Eα þ EψÞ2
kh2

4E2
α

−
1

ðωþ iϵ − Eα − EψÞ
kh2

4E3
α

þ 1

ðωþ iϵ − Eα − Eψ Þ2
kh2

4E2
α
; ðA8Þ

and

JðCÞk;ψαðωÞ ¼ −
1

ðωþ iϵþ Eψ þ EαÞ2
kh2

4EψEα

þ 1

ðωþ iϵ − Eψ − EαÞ2
kh2

4EψEα
; ðA9Þ

with

� ¼
�þ for α ¼ σ or β ¼ σ

− for α ¼ π or β ¼ π
: ðA10Þ

These flow equations are very similar to the correspond-
ing equations obtained in a one-loop calculation; see e.g.,
[40]. We note that the limit ϵ → 0 in the definition of the
retarded two-point functions, Eq. (7), can be performed
analytically for the flow equation of the imaginary part of
the two-point functions. This can be seen by rewriting the
imaginary part of the loop functions by using the Dirac-
Sokhotsky identities,

lim
ϵ→0

Im
1

ωþ iϵ� Eα � Eβ
→ −πδðω� Eα � EβÞ; ðA11Þ

lim
ϵ→0

Im
1

ðωþ iϵ� Eα � EβÞ2
→ πδ0ðω� Eα � EβÞ:

ðA12Þ

The flow equation for the imaginary part of the retarded
two-point function then reduces to a sum over a few
values k0 that correspond to the scales where one of the
arguments of the delta function becomes zero; see [17]
for details.

[1] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179
(1977).

[2] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133
(1996).

[3] M. Asakawa, T. Hatsuda, and Y. Nakahara, Prog. Part. Nucl.
Phys. 46, 459 (2001).

[4] D. Dudal, O. Oliveira, and P. J. Silva, Phys. Rev. D 89,
014010 (2014).

[5] S.-x. Qin and D. H. Rischke, Phys. Rev. D 88, 056007
(2013).

[6] C. S. Fischer, J. M. Pawlowski, A. Rothkopf, and C. A.
Welzbacher, Phys. Rev. D 98, 014009 (2018).

[7] A. K. Cyrol, M. Mitter, J. M. Pawlowski, and N. Strodthoff,
Phys. Rev. D 97, 054006 (2018).

[8] R.-A. Tripolt, P. Gubler, M. Ulybyshev, and L. von Smekal,
arXiv:1801.10348.

[9] A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink,
arXiv:1804.00945.

[10] S. Floerchinger, J. High Energy Phys. 05 (2012) 021.
[11] N. Strodthoff, B.-J. Schaefer, and L. von Smekal, Phys. Rev.

D 85, 074007 (2012).

[12] K. Kamikado, N. Strodthoff, L. von Smekal, and J.
Wambach, Phys. Lett. B 718, 1044 (2013).

[13] K. Kamikado, N. Strodthoff, L. von Smekal, and J.
Wambach, Eur. Phys. J. C 74, 2806 (2014).

[14] R.-A. Tripolt, N. Strodthoff, L. von Smekal, and J.Wambach,
Phys. Rev. D 89, 034010 (2014).

[15] R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D
90, 074031 (2014).

[16] R.-A. Tripolt, L. von Smekal, and J. Wambach, Int. J. Mod.
Phys. E 26, 1740028 (2017).

[17] C. Jung, F. Rennecke, R.-A. Tripolt, L. von Smekal, and J.
Wambach, Phys. Rev. D 95, 036020 (2017).

[18] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363,
223 (2002).

[19] J. Polonyi, Central Eur. J. Phys. 1, 1 (2003).
[20] J. M. Pawlowski, Ann. Phys. (Amsterdam) 322, 2831 (2007).
[21] B.-J. Schaefer and J. Wambach, Phys. Part. Nucl. 39, 1025

(2008).
[22] P. Kopietz, L. Bartosch, and F. Schutz, Lect. Notes Phys.

798, 1 (2010).
[23] J. Braun, J. Phys. G 39, 033001 (2012).

FERMIONIC SPECTRAL FUNCTIONS WITH THE … PHYS. REV. D 98, 094002 (2018)

094002-13

https://doi.org/10.1007/BF00655090
https://doi.org/10.1007/BF00655090
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/S0146-6410(01)00150-8
https://doi.org/10.1016/S0146-6410(01)00150-8
https://doi.org/10.1103/PhysRevD.89.014010
https://doi.org/10.1103/PhysRevD.89.014010
https://doi.org/10.1103/PhysRevD.88.056007
https://doi.org/10.1103/PhysRevD.88.056007
https://doi.org/10.1103/PhysRevD.98.014009
https://doi.org/10.1103/PhysRevD.97.054006
http://arXiv.org/abs/1801.10348
http://arXiv.org/abs/1804.00945
https://doi.org/10.1007/JHEP05(2012)021
https://doi.org/10.1103/PhysRevD.85.074007
https://doi.org/10.1103/PhysRevD.85.074007
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1140/epjc/s10052-014-2806-6
https://doi.org/10.1103/PhysRevD.89.034010
https://doi.org/10.1103/PhysRevD.90.074031
https://doi.org/10.1103/PhysRevD.90.074031
https://doi.org/10.1142/S0218301317400286
https://doi.org/10.1142/S0218301317400286
https://doi.org/10.1103/PhysRevD.95.036020
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.2478/BF02475552
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1134/S1063779608070083
https://doi.org/10.1134/S1063779608070083
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1088/0954-3899/39/3/033001


[24] B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R.
Rapp, and P. Senger et al., Lect. Notes Phys. 814, 11 (2011).

[25] H. Gies, Lect. Notes Phys. 852, 287 (2012).
[26] K. G. Wilson, Phys. Rev. B 4, 3184 (1971).
[27] K. Wilson and J. B. Kogut, Phys. Rep. 12, 75 (1974).
[28] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[29] J. M. Pawlowski, M. M. Scherer, R. Schmidt, and S. J.

Wetzel, Ann. Phys. (Amsterdam) 384, 165 (2017).
[30] D. Jungnickel andC.Wetterich, Phys.Rev.D53, 5142 (1996).
[31] B.-J. Schaefer and J. Wambach, Nucl. Phys. A757, 479

(2005).
[32] D. F. Litim, J. High Energy Phys. 11 (2001) 059.
[33] J. Braun, Phys. Rev. D 81, 016008 (2010).

[34] J. M. Pawlowski and N. Strodthoff, Phys. Rev. D 92,
094009 (2015).

[35] J. M. Pawlowski, N. Strodthoff, and N. Wink, Phys. Rev. D
98, 074008 (2018).

[36] J. M. Pawlowski and F. Rennecke, Phys. Rev. D 90, 076002
(2014).

[37] A. J. Helmboldt, J. M. Pawlowski, and N. Strodthoff,
Phys. Rev. D 91, 054010 (2015).

[38] N. Strodthoff, Phys. Rev. D 95, 076002 (2017).
[39] J. Weyrich, N. Strodthoff, and L. von Smekal, Phys. Rev. C

92, 015214 (2015).
[40] M. Kitazawa, T. Kunihiro, and Y. Nemoto, Phys. Rev. D 89,

056002 (2014).

TRIPOLT, WEYRICH, VON SMEKAL, and WAMBACH PHYS. REV. D 98, 094002 (2018)

094002-14

https://doi.org/10.1007/978-3-642-13293-3
https://doi.org/10.1007/978-3-642-27320-9
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/j.aop.2017.06.017
https://doi.org/10.1103/PhysRevD.53.5142
https://doi.org/10.1016/j.nuclphysa.2005.04.012
https://doi.org/10.1016/j.nuclphysa.2005.04.012
https://doi.org/10.1088/1126-6708/2001/11/059
https://doi.org/10.1103/PhysRevD.81.016008
https://doi.org/10.1103/PhysRevD.92.094009
https://doi.org/10.1103/PhysRevD.92.094009
https://doi.org/10.1103/PhysRevD.98.074008
https://doi.org/10.1103/PhysRevD.98.074008
https://doi.org/10.1103/PhysRevD.90.076002
https://doi.org/10.1103/PhysRevD.90.076002
https://doi.org/10.1103/PhysRevD.91.054010
https://doi.org/10.1103/PhysRevD.95.076002
https://doi.org/10.1103/PhysRevC.92.015214
https://doi.org/10.1103/PhysRevC.92.015214
https://doi.org/10.1103/PhysRevD.89.056002
https://doi.org/10.1103/PhysRevD.89.056002

