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In this paper, we generalize the concept of an effective Δm2
ee for νe=ν̄e disappearance experiments,

which has been extensively used by the short baseline reactor experiments, to include the effects of
propagation through matter for longer baseline νe=ν̄e disappearance experiments. This generalization is a
trivial, linear combination of the neutrino mass squared eigenvalues in matter and thus is not a simple
extension of the usually vacuum expression, although, as it must, it reduces to the correct expression in the
vacuum limit. We also demonstrated that the effective Δm2

ee in matter is very useful conceptually and
numerically for understanding the form of the neutrino mass squared eigenstates in matter and hence
for calculating the matter oscillation probabilities. Finally, we analytically estimate the precision of this
two-flavor approach and numerically verify that it is precise at the subpercent level.

DOI: 10.1103/PhysRevD.98.093001

I. INTRODUCTION

Since the discovery that neutrinos oscillate [1,2], tremen-
dous progress has been made in understanding their proper-
ties. The oscillation parameters are all either well measured
or will be with the advent of next generation experiments.
As the final parameters are measured, precision in the
neutrino sector becomes more important than ever.
In vacuum, an effective two-flavor oscillation picture was

presented in Ref. [3] for calculating the νe → νe disappear-
ance probability, which introduced an effective Δm2,

Δm2
ee ≡ cos2θ12Δm2

31 þ sin2θ12Δm2
32; ð1Þ

which precisely and optimally determines the shape of
the disappearance probability around the first oscillation
minimum. That is, even in the three-flavor framework,
for νe disappearance in vacuum (P0), the two-flavor
approximation

P0ðνe → νeÞ∶ ≈ 1 − sin22θ13sin2Δee;

where Δee ≡ Δm2
eeL=ð4EÞ; ð2Þ

is an excellent approximation at least over the first oscil-
lation. Δm2

ee has been widely used by the short baseline
reactor experiments, Daya Bay [4], and RENO [5] in their
shape analyses around the first oscillationminimumandwill
be precisely measured to better than 1% in the medium
baseline JUNO [6] experiment.
The matter generalization of the three-flavor νe disap-

pearance probability in matter (Pa) can also be adequately
approximated by a two-flavor disappearance oscillation
probability in matter,

Paðνe → νeÞ ≈ 1 − sin22θ13

�
Δm2

ee

Δcm2
ee

�
2

sin2bΔee;

where bΔee ≡ Δcm2
eeL=ð4EÞ; ð3Þ

and bx denotes the exact matter version of a variable and is a
function of the Wolfenstein matter potential [7]. This new

Δcm2
ee would be the dominant frequency, over the first

few oscillations, for νe disappearance at a potential future
neutrino factory [8] in the same way that Δm2

ee is for short
baseline reactor experiments. As we will find in Sec. II,

Δcm2
ee ≡ cm2

3 − ðcm2
1 þ cm2

2Þ
− ½m2

3 − ðm2
1 þm2

2Þ� þ Δm2
ee ð4Þ

satisfies all of the necessary criteria to describe νe disappear-
ance in matter in the approximate two-flavor picture of
Eq. (3) above and trivially reproduces Eq. (1) in vacuum.
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We will also discuss an alternate expression Δcm2
EE,

which numerically behaves quite similarly but is somewhat
less useful analytically.
The layout of this paper is as follows. In Sec. II, we

define the matter version of Δm2
ee denoted Δcm2

ee. We
review the connection between the three-flavor and two-
flavor expressions in Sec. III, which naturally leads to a

slightly different expression dubbed Δcm2
EE. In Sec. IV, we

show how the natural definition of Δcm2
ee matches the

expression given from a perturbative description of oscil-
lation probabilities. We analytically and numerically show
that both expressions are very close in Sec. V. We perform
the numerical and analytical calculations to show the

precision of this definition of Δcm2
ee compared with other

definitions of Δm2
ee in matter in Sec. VI. Finally, we end

with our conclusions in Sec. VII, and some details are
included in the Appendixes.

II. DEFINING Δcm2
ee IN MATTER

In this section, we create a qualitative picture to derive

the Δcm2
ee presented in the previous section. We then verify

that it passes the necessary consistency checks.
Figure 1 gives the neutrino mass squared eigenvalues in

matter, cm2
i, as a function of the neutrino energy as well as

the value of their electron neutrino content, jbUeij2.
Neutrinos (antineutrinos) are positive (negative) energy
in this figure, and vacuum corresponds to E ¼ 0. From
the νe content, it is clear that for energies greater than a

few GeV Δcm2
32 will dominate the L/E dependence of νe

disappearance and similarly Δcm2
31 will dominate for

energies less than a few negative GeV, that is,

Δcm2
ee ¼

�cm2
3 − cm2

1; a=Δm2
21 ≪ −1cm2

3 − cm2
2; a=Δm2

21 ≫ 1
; ð5Þ

where a ¼ 2
ffiffiffi
2

p
EGFNe is the matter potential, GF is

Fermi’s constant, Ne is the electron density, and thecm2
i=2E are the exact eigenvalues which are calculated

in Ref. [9]; see also Appendix A. This is independent of
mass ordering.
We note that cm2

2 and cm2
1 are approximately constant

for a=Δm2
21 ≪ −1 and a=Δm2

21 ≫ 1, respectively. This

suggests defining Δcm2
ee as follows,1

Δcm2
ee ≡ cm2

3 − ðcm2
1 þ cm2

2 −m2
0Þ; ð6Þ

where m2
0 ≡ cm2

2ða ¼ −∞Þ ¼ cm2
1ða ¼ þ∞Þ

¼ Δm2
21c

2
12; ð7Þ

using the (convention dependent) asymptotic values for the
eigenvalues shown in Table I. By construction, this repro-
duces Eq. (5) for ja=Δm2

21j ≫ 1 and is applicable for both

mass orderings. The sign of Δcm2
ee determines the mass

ordering.
It is also useful to note that m2

0 can be written as

m2
0 ¼ Δm2

ee − ½m2
3 − ðm2

1 þm2
2Þ�: ð8Þ

Then, as suggested by Eq. (4), Δcm2
ee can also be written in

the following simple and easy-to-remember form,

Δcm2
ee−Δm2

ee¼ðcm2
3−m2

3Þ− ðcm2
1−m2

1Þ− ðcm2
2−m2

2Þ;
ð9Þ

FIG. 1. Upper panel: the eigenvalues as a function of energy for
ρ ¼ 3 g/cc and the normal ordering (NO). Positive energies refer
to neutrinos, while negative energies refer to antineutrinos; E ¼ 0
refers to the vacuum. The νe content of each eigenvalue is shaded
in orange, while the νμ and ντ content is shaded in black. The

magenta (cyan) arrows indicate how Δcm2
ee (Δcm2

21) changes
with energy. Lower panel: the νe content of each mass eigenstate,
jÛeij2, as a function of neutrino energy.

TABLE I. The mass squareds in matter for various limits of a in
the NO. See Eqs. (5.3) and (5.4) of Ref. [11] or Table 4 of
Ref. [10]. Adding the same constant to all entries in this table
does not affect oscillation physics. Our convention is that in
vacuum m2

1 ¼ 0.

a → −∞ a ¼ 0 a → þ∞

cm2
3

Δm2
eec213 þ Δm2

21s
2
12 Δm2

31 aþ Δm2
ees213 þ Δm2

21s
2
12cm2

2
Δm2

21c
2
12 Δm2

21 Δm2
eec213 þ Δm2

21s
2
12cm2

1
aþ Δm2

ees213 þ Δm2
21s

2
12

0 Δm2
21c

2
121Note that m2

0 is identical to λb ¼ λ0 from Ref. [10].
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where recovery of the vacuum limit is manifest. In the
following sections, we will address in more detail why
the definition of Eq. (4) works for all matter potentials
including ja=Δm2

21j ≪ 1.

Here, we will use Eq. (4) to rewrite the cm2
i’s in matter as

a function of the two relevantΔcm2’s:Δcm2
ee andΔcm2

21. By
properties of the trace of the Hamiltonian,2 we have

cm2
3 þ cm2

2 þ cm2
1 ¼ Δm2

31 þ Δm2
21 þ a: ð10Þ

Then, together with Eq. (6) above,

cm2
3 ¼ Δm2

31 þ
1

2
aþ 1

2
ðΔcm2

ee − Δm2
eeÞ;

cm2
2 þ cm2

1 ¼ Δm2
21 þ

1

2
a −

1

2
ðΔcm2

ee − Δm2
eeÞ: ð11Þ

We make the typical definition Δcm2
21 ≡ cm2

2 − cm2
1; then,

cm2
1¼

1

4
a−

1

4
ðΔcm2

ee−Δm2
eeÞ−

1

2
ðΔcm2

21−Δm2
21Þ

cm2
2¼Δm2

21þ
1

4
a−

1

4
ðΔcm2

ee−Δm2
eeÞ

þ1

2
ðΔcm2

21−Δm2
21Þ

cm2
3¼Δm2

31þ
1

2
aþ1

2
ðΔcm2

ee−Δm2
eeÞ; ð12Þ

which implies

Δcm2
31¼Δm2

31þ
1

4
aþ3

4
ðΔcm2

ee−Δm2
eeÞ

þ1

2
ðΔcm2

21−Δm2
21Þ

Δcm2
32¼Δcm2

31−Δcm2
21: ð13Þ

We can also use Δcm2
ee to estimate Δcm2

21 except near

a ≈ 0. For ja=Δm2
21j ≫ 1, either cm2

2 ¼ m2
0 or cm2

1 ¼ m2
0.

Then,

Δcm2
21 ≈ jcm2

2 þ cm2
1 − 2m2

0j
≈ Δm2

21ja12=Δm2
21 − cos 2θ12j þOðΔm2

21Þ; ð14Þ
where we have made the natural definition,

a12 ≡ 1

2
ðaþ Δm2

ee − Δcm2
eeÞ; ð15Þ

as the effective matter potential for the 12 sector as was used
in Ref. [12]. For this derivation, Eq. (11) is needed.
The asymptotic eigenvalues in Table I can also be used to

obtain a simple approximate expression for Δcm2
ee, when

jaj ≫ Δm2
ee:

Δcm2
ee ≈ Δm2

eeja=Δm2
ee − cos 2θ13j: ð16Þ

These two asymptotic expressions forΔcm2
ee andΔcm2

21,
Eqs. (16) and (14), respectively, which were obtained with
only general information of the neutrino mass squareds in
matter here, will be compared to the expressions obtained
using the approximations of Refs. [11] and [10] in Sec. IV.

III. THREE-FLAVOR TO TWO-FLAVOR
PROBABILITIES

Instead of studying the asymptotic behavior of Δcm2
ee,

we instead focus on explicitly connecting the three-flavor
expression with the two-flavor expression. The exact three-
flavor νe disappearance probability in matter Paðνe → νeÞ
is given by

1 − Pa ¼ 4jbUe3j2½jbUe1j2sin2bΔ31 þ jbUe2j2sin2bΔ32�
þ 4jbUe1j2jbUe2j2sin2bΔ21

¼ sin22bθ13½c2b12sin2bΔ31 þ s2b12sin2bΔ32�

þ c4b13sin22bθ12sin2bΔ21; ð17Þ

where we have used sij ¼ sin θij and cij ¼ cos θij. As was
shown in Ref. [13], Eq. (17) can be rewritten without
approximation, as

1 − Paðνe → νeÞ
¼ c4b13sin22bθ12sin2bΔ21

þ 1

2
sin22bθ13h1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sin22bθ12sin2bΔ21

q
× cosð2bΔEE þ bΩÞi; ð18Þ

where bΩ ¼ arctanðcos 2bθ12 tan bΔ21Þ − bΔ21 cos 2bθ12 and

Δcm2
EE is a new frequency defined by

Δcm2
EE ≡ cos2bθ12Δcm2

31 þ sin2bθ12Δcm2
32: ð19Þ

For jEj greater than a few GeV, Δcm2
21 ≫ Δm2

21 (see
Fig. 1), and therefore bθ12 ≈ 0 or π=2, which makesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin22bθ12sin2bΔ21

q
≈ 1 and bΩ ≈ 0. Hence,

1 − Paðνe → νeÞ ≈ sin22bθ13sin2bΔEE;

2Explicitly, in the flavor basis, we have that 2EtrðHÞ¼
trðUMU†þAÞ¼ trðUU†MÞþtrðAÞ¼Δm2

31þΔm2
21þa. In the

matter basis, the trace of the Hamiltonian is 2EtrðHÞ ¼
trðÛ M̂ MÛ†Þ ¼ trðÛÛ†M̂Þ ¼ P

i
cm2

i.
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in agreement with Eq. (3) in this energy range.3 Also in this
energy region, it is clear that4

Δcm2
EE ≈

�Δcm2
31; a ≪ Δm2

21

Δcm2
32; a ≫ Δm2

21:
ð20Þ

Using the explicit results from Ref. [9], it is simple to
show, without approximation, that

Δcm2
EE ¼ ðcm2

3 − cm2
aÞðcm2

3 − cm2
1Þðcm2

3 − cm2
2Þ

ðcm2
3Þ2 − cm2

3
cm2

a − β þ cm2
1
cm2

2

; ð21Þ

where

β≡ Δm2
eec213Δm2

21c
2
12 ¼ cm2

1
cm2

2
cm2

3=acm2
a ≡ aþ Δm2

ees213 þ Δm2
21s

2
12:

Note5 thatcm2
3ða → ∞Þ → cm2

a and
cm2

1ða → −∞Þ → cm2
a.

In the low energy limit, when jcm2
3j ≫ jcm2

jj for
j ¼ ð1; 2; aÞ, a first order perturbative expansion incm2

j=
cm2

3 gives

Δcm2
EE ≈ cm2

3 − ðcm2
1 þ cm2

2 −m2
0Þ; ð22Þ

consistent with our previous definition, Eq. (6). In fact,

Δcm2
ee and Δcm2

EE differ by less than < 0.3% for all values
of matter potential.
In vacuum (E ¼ 0), it is known that Eq. (2) is an

excellent approximation over the first couple of oscilla-
tions, see e.g., Ref. [15], further verifying the use of this
two-flavor approximation. The analysis of this paper can be
trivially extend away from vacuum region using the matter
oscillation parameters.

IV. RELATION TO DMP APPROXIMATION

While Eq. (6) is a compact expression that behaves as

we expect Δcm2
ee ought to, it is not simple due to the

complicated expressions for the eigenvalues, in particular
the cosð1

3
cos−1…Þ part of each eigenvalue; see

Appendix A. In order to both verify the behavior of

Δcm2
ee for ja=Δm2

eej ≪ 1 and provide an expression that
is simple, we look to approximate expressions of the
eigenvalues.

In Refs. [10,11] and [12] Denton-Minakata-Parke
(DMP) simple, approximate, and precise analytic expres-
sions were given for neutrino oscillations in matter. In the
DMP approximation6 through zeroth order, the definition

of Δcm2
ee given in Eq. (6) can be shown to be

Δcm2
ee ≈ fm2

3 − ðfm2
1 þ fm2

2 −m2
0Þ≡ Δfm2

ee;

¼ cos2θ̃12Δfm2
31 þ sin2θ̃12Δfm2

32;

¼ Δm2
ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ13 − a=Δm2

eeÞ2 þ sin22θ13

q
; ð23Þ

where θ̃12 and θ̃13 are excellent approximations for thematter

mixing angles bθ12 and bθ13 and Δfm2
31 and Δfm2

32 are the

corresponding approximate expressions for Δcm2
31 and

Δcm2
31 fromRef. [10] and reproduced inAppendixB below.7

The approximation has corrections to the eigenvalues of
Oðϵ02Þ where ϵ0 ¼ sinðθ̃13 − θ13Þs12c12Δm2

21=Δm2
ee. jϵ0j <

0.015 and is equal to zero in vacuum. Equation (23) provides
a very simple means to modify the vacuum Δm2

ee to get the
corresponding expression in matter.
In the DMP approximation, all three expressions,

Eq. (23), for Δfm2
ee can be shown to be analytically

identical. This is, however, not true for the exact eigen-
values and mixing angles in matter; there are small
differences between these expressions (quote fractional
differences.). We use the first line of Eq. (23) for our
definition Δm2

ee in matter, because this definition allows
us a general understanding of the three neutrino eigenval-
ues in matter [see Eqs. (12) and (13)]. We now verify that
this definition ofΔm2

ee in matter meets all the other criteria
we need it to.
First, we see that by using the DMP zeroth order

approximation Δfm2
ee is just the matter generalization of

the vacuum expression, Δm2
ee ¼ cos2θ12Δm2

ee þ sin2Δm2
32,

and provides a connection to why the definition of Eq. (6)
works for ja=Δm2

21j < 1 also.
Asymptotically, as ja=Δm2

eej ≫ 1, in this approximation
scheme,

Δfm2
ee → Δm2

eeja=Δm2
ee − cos 2θ13j; ð24Þ

in agreement with Eq. (16).

3Note sin2 2θ̂13 > ĉ413 sin
2 2θ̂12 except when jEj < 1.1 GeV;

see Fig. 6. We take ρ ¼ 3 g/cc throughout the article.
4This statement is made under the assumption that θ̂12 → π=2

(0) as a → ∞ð−∞Þ. In fact, there is a small correction to
this assumption. In this limit, sin2θ̂12 ¼ 1 −Oðϵ02Þ, where
ϵ02<3×10−4, [14].

5Also note that cm2
a is identical to λa from Ref. [10].

6In the notation of DMP, Δfm2
ee ≡ Δλþ− ¼ cos2ψΔλ31þ

sin2ψΔλ32; see Eq. A.1.7 of Ref. [10]. Also, θ̃12 ¼ ψ and fm2
i ¼

λi in DMP; see Ref. [12].
7The notation is such that, while both x̂ and x̃ are quantities in

matter, x̂ denotes the exact quantity and x̃ denotes the zeroth order
approximation from DMP, and x̃ is an excellent approximation
for x̂.
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Similarly for Δfm2
21, from DMP,

Δfm2
21 ¼ Δm2

21½ðcos 2θ12 − ã12=Δm2
21Þ2

þ sin22θ12cos2ðθ̃13 − θ13Þ�1=2; ð25Þ

where ã12 ≡ ðaþ Δm2
ee − Δfm2

eeÞ=2 and

cos2ðθ̃13 − θ13Þ ¼
Δfm2

ee þ Δm2
ee − a cos 2θ13

2Δfm2
ee

: ð26Þ

Asymptotically, ja=Δm2
21j ≫ 1, we have

Δfm2
21→

����Δm2
21 cos2θ12−

1

2
ðaþΔm2

ee−Δfm2
eeÞ

����; ð27Þ

again in agreement with Eq. (14). So, everything discussed
in Sec. II is consistent with the simple and compact DMP
approximation.
In the next section, we will analytically and then

numerically show that the fractional difference between

the two expressions, Δfm2
ee and Δfm2

EE, is small.

V. COMPARISON OF THE TWO EXPRESSIONS

As previously shown, the vacuumΔm2
ee can be written in

two equivalent ways:

Δm2
ee ¼ c212Δm2

31 þ s212Δm2
32;

¼ m2
3 −m2

1 −m2
2 þm2

0:

The two expressions can be seen as two choices for the how
to relate these to the matter version: one is to elevate each
eigenvalue to its matter equivalent (everything except m2

0),
and the other is to elevate each term including the mixing

angles. We refer to the former as Δcm2
ee and the latter

as Δcm2
EE.

To understand how these expressions differ, we carefully
examine their difference,

ΔEe ≡ Δcm2
EE − Δcm2

ee

¼ cm2
1 þ c2b12Δcm2

21 − c212Δm2
21: ð28Þ

We now quantify the difference between these expressions
using DMP. If both expressions provide good approxima-
tions for the two-flavor frequency in matter, then the
difference between them should be small. At zeroth order,
the difference is

Δð0Þ
Ee ¼ fm2

1 þ c2
1̃2
Δfm2

21 − c212Δm2
21 ¼ 0; ð29Þ

so these expressions are exactly equivalent at zeroth order.

At first order, the eigenvalues receive no correction,
but θ̃12 does. From Ref. [14], we have that the first order
correction is

θ̃ð1Þ12 ¼ −ϵ0Δm2
eete13

� s2e12
Δfm2

31

þ
c2e12

Δfm2
32

�
; ð30Þ

where tij ¼ tan θij. This leads to a correction of

Δð1Þ
Ee ¼ te13s212c212 sin 2θ13a ðΔm2

21Þ2
Δfm2

32Δfm2
31

: ð31Þ

As expected, ΔEe ∝ a for small a. Also, we can verify that

ΔEe=Δcm2
ee is always small by seeing that a=Δcm2

ee
remains finite. The only case where te13 ∝ a is for

a → ∞, but Δfm2
32Δfm2

31 ∝ a2, thus ΔEe is always small.

Δð1Þ
Ee provides an adequate approximation of the differ-

ence between Δcm2
ee and Δcm2

EE as shown in Fig. 2.
A precise estimate of the difference requires the second
order correction to θ̃12 given explicitly in Ref. [14] along
with the second order corrections to the eigenvalues from
DMP. This is because this difference ΔEe depends strongly
on the asymptotic behavior of θ̃12, which only becomes
precise beyond the atmospheric resonance at second order.
The result of this is also shown in Fig. 2, which shows that
first order is not sufficient to accurately describe the
difference, but second order is. We see that for neutrinos
the expressions agree to ≲0.3%, and the agreement is ∼3
orders of magnitude better for antineutrinos.

FIG. 2. The fractional difference between the two expressions is
shown in the red solid curve. The green dashed curve shows the
difference through first order, and the blue dash-dotted curve
shows the difference through second order. Note that at zeroth
order in DMP the difference is exactly zero. DMP2 is hard to see
as it is on top of exact.
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In the next section, we will investigate how well the two-
flavor approximation, Eq. (3), works numerically for both
the depth and position over the first oscillation minimum
for νe disappearance for all values of the neutrino energy.

VI. PRECISION VERIFICATION

The goal of Δcm2
ee is to provide the correct frequency

such that the two-flavor disappearance expression, Eq. (3),
is an excellent approximation for νe disappearance over
the first oscillation in matter. In particular, we want this
expression to reproduce the position and depth of the first
oscillation minimum at high E (small L) correctly com-
pared to the complete three-flavor picture.

A. Numerical comparison

Using the definition of Δcm2
ee given in Eq. (6), we plot

in Fig. 3

�
Δcm2

ee

Δm2
ee

�2

ð1 − Paðνe → νeÞÞ verses bΔee; ð32Þ

for various values of the neutrino energy. Here, Paðνe → νeÞ
is evaluated using the exact oscillation probability given in
Ref. [9]. We see that this behaves like sin2bΔee as expected,
with increasing precision for increasing energy. Note the
approximate neutrino energy independence of this figure,
demonstrating the universal nature of the approximation

given in Eq. (3) using our definition of Δcm2
ee.

Next, we want to check that this two-flavor expression
reproduces the first oscillation minimum at high E (small L)
correctly compared to the complete three-flavor picture. The

minimumoccurswhen the derivate ofP is zero.Wenowhave
a choice: we can define the minimum when dPa=dL ¼ 0 or

dPa=dE ¼ 0. Since both bθ and Δcm2
ee are nontrivial func-

tions of E, the correct option is to use dPa=dL ¼ 0.
In order to numerically test the various expressions, we

find the location L of the first minimum by solving
dPa=dL ¼ 0 for a given E using the full three-flavor
expressions. We then convert the ðL;EÞ pair at the first

minimum into the corresponding Δcm2
ee using

Δcm2
eeL

4E
¼ π

2
: ð33Þ

Next, we compare the difference between this numeric
solution and the expressions presented in this paper,
Eqs. (4), (19), and (23). We also compare to the approxi-
mate analytic solution from Ref. [16] Hisakazu-Minakata
(HM); see Appendix C. This comparison is shown in
Fig. 4.
When determining the minimum from the exact expres-

sion, a two-flavor expression using only Δcm2
ee will get the

Δm2
31 and Δm2

32 terms correct including the matter effect
but will always be off byΔm2

21 terms. Thus, in Fig. 4, we do

FIG. 3. Here, we demonstrate the validity of the two-flavor
approximation by plotting Eq. (32) showing the expected
sinusoidal dependence. Here, Pa is the exact three-flavor νe
disappearance probability. Note the small deviations due to the 21
term that grow as the phase jΔ̂eej increases for small energies.

FIG. 4. We show the fractional error (δx=x) of various different

Δcm2
ee expressions with the precise numerical one determined

at the point where dPa=dL ¼ 0; see Eq. (33). For the exact

numerical expression, we ignore the Δcm2
21 term as no definition

will get it correct. The ee curve uses the formula from Eq. (4), and
the EE curve uses the formula from Eq. (19). The DMP curve
uses the zeroth order expressions [10] in the same formula, which
leads to the simple expression shown in Eq. (23). The HM curve
uses the expression from Ref. [16] and takes the absolute value to
get the sign correct for large E; see Appendix C. We have fixed
ρ ¼ 3 g/cc and assumed the NO. E > 0 corresponds to neutrinos,
E < 0 corresponds to antineutrinos, and E ¼ 0 corresponds to the
vacuum.

PETER B. DENTON and STEPHEN J. PARKE PHYS. REV. D 98, 093001 (2018)

093001-6



not include the effect of the 21 term, which will affect any
two-flavor approximation comparably.
We see that for either Eq. (6) or Eq. (23) the agreement is

excellent with relative error < 0.2%. In addition, the two
expressions clearly agree with each other to a higher level
of precision than is necessary. For the HM expression, the
agreement is good for antineutrinos and in the high energy
limit but is poor in a broad range near the atmospheric
resonance for neutrinos. In addition, we have modified the
HM expression by taking the absolute value so that the HM
expression asymptotically returns to the correct expression
past the atmospheric resonance for neutrinos.

We have also compared Δcm2
ee with the exact solution

including the Δm2
21 term and found agreement to better

than 1%.

B. Analytic comparison

We now analytically estimate the precision of the two-
flavor expression, for both the small E (large L) limit and
the large E (small L) limit.

First, if Δcm2
21 ≪ jΔcm2

eej, then at the nth oscillation
minimum, the ratio of the 21 term to the ee term is well
approximated by

Δm2
21

Δm2
ee
½ð2n − 1Þπ=4�2; ð34Þ

as derived in Appendix D. For the first (second) oscillation
peak, this yields an error estimate of< 2% (16%); this two-
flavor approach breaks down for n > 5 when the ratio
is > 1.

The second case is when Δcm2
21 ≃ jΔcm2

eej, which
occurs away from vacuum (high E, low L), and the ratio
of the 21 coefficients to the ee coefficient is

c4b13sin22bθ12
sin22bθ13 ¼ jbUe1j2jbUe2j2

jbUe3j2ð1 − jbUe3j2Þ
; ð35Þ

which is small away from vacuum as desired. In particular,
it is < 1 for jEj > 1 GeV. See Appendix D for details and
numerical confirmation of each region.

VII. CONCLUSIONS

In this paper, we have demonstrated that

Δcm2
ee ≡ cm2

3 − ðcm2
1 þ cm2

2Þ − ½m2
3 − ðm2

1 þm2
2Þ� þ Δm2

ee

≈ Δm2
ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ13 − a=Δm2

eeÞ2 þ sin22θ13

q
ð36Þ

is the matter generalization of vacuum Δm2
ee that has been

widely used by the short baseline reactor experiments Daya
Bay and RENO and will be precisely measured (< 1%) in

the medium baseline JUNO experiment. The exact and
approximate expressions in the above equation differ by no

more than 0.06%. Another natural choice called Δcm2
EE is

numerically very close to Δcm2
ee but does not provide the

ability to simply rewrite the eigenvalues as Δcm2
ee does.

For νe disappearance in matter, the position of the first
oscillationminimum, for fixed neutrino energyE, is given by

L ¼ 2πE

Δcm2
ee

; ð37Þ

and the depth of the minimum is controlled by

sin22bθ13 ≈ sin22θ13

�
Δm2

ee

Δcm2
ee

�
2

;

≈
sin22θ13

ðcos22θ13 − a=Δm2
eeÞ2 þ sin22θ13

: ð38Þ

This two-flavor approximate expression is not only simple
and compact, but it is precise towithin< 1% precision at the
first oscillation minimum.8

The combination of Δcm2
ee and Δcm2

21 is very powerful
for understanding the effects of matter on the eigenvalues
and the mixing angles of the neutrinos. In this article, we

have illuminated the exact nature of Δcm2
ee and Δcm2

21,
which were extensively used in DMP [10,12].
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APPENDIX A: EXACT EIGENVALUES

From Ref. [9], the exact eigenvalues in matter arecm2
i=2E, where the cm2

i are

8In Eq. (38), the exact and second approximations differ in value
by no more than 4 × 10−4, and the fractional difference is smaller
than 0.1% except for very large positive values of the energy where
the fractional difference is, however, never larger than 1%.
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cm2
1 ¼

w
3
−
1

3
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
−

1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
;

cm2
2 ¼

w
3
−
1

3
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
þ 1ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
;

cm2
3 ¼

w
3
þ 2

3
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
; ðA1Þ

where

w ¼ Δm2
21 þ Δm2

31 þ a;

x ¼ Δm2
31Δm2

21 þ a½Δm2
31c

2
13 þ Δm2

21ðc213c212 þ s213Þ�;
y ¼ aΔm2

31Δm2
21c

2
31c

2
12;

z ¼ cos

�
1

3
cos−1

�
2w3 − 9wxþ 27y

2ðw2 − 3xÞ3=2
�	

: ðA2Þ

Therefore,

Δcm2
ee ¼

4

3
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
−
w
3
þ Δm2

21c
2
12;

Δcm2
21 ¼

2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 3x

p
: ðA3Þ

Using Eq. (A3) in Eq. (A1) reproduces Eq. (12), as a
cross-check.

APPENDIX B: DMP APPROXIMATE
EXPRESSION

Here, we review the approximate expressions for the
mixing angles and eigenvalues derived in Ref. [10]. The
result of the 13 rotation yields

Δfm2
ee¼Δm2

ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos2θ13−a=Δm2

eeÞ2þsin22θ13

q
; ðB1Þ

cos 2θ̃13 ¼
Δm2

ee cos 2θ13 − a

Δfm2
ee

: ðB2Þ

The 21 rotation yields

Δfm2
21 ¼ Δm2

21½ðcos 2θ12 − a12=Δm2
21Þ2

þ cos2ðθ̃13 − θ13Þsin22θ12�1=2; ðB3Þ

cos 2θ̃12 ¼
Δm2

21 cos 2θ12 − ã12

Δfm2
21

; ðB4Þ

where we similarly define ã12 ≡ ðaþ Δm2
ee − Δfm2

eeÞ=2.
Finally, from Eqs. (B1) and (B3), it is straightforward to
show that

Δfm2
31 ¼ Δm2

31 þ
1

4
aþ 1

2
ðΔfm2

21 − Δm2
21Þ

þ 3

4
ðΔfm2

ee − Δm2
eeÞ: ðB5Þ

The remaining two oscillation parameters, θ̃23 ¼ θ23 and
δ̃ ¼ δ, remain unchanged in this approximation. We note
that for each parameter above x̃ provides an excellent
approximation for bx.
We also note two additional useful expressions:

sin 2θ̃13 ¼ sin 2θ13

�
Δm2

ee

Δfm2
ee

�
; ðB6Þ

sin 2θ̃12 ¼ cosðθ̃12 − θ12Þ sin 2θ12
�
Δm2

21

Δfm2
21

�
: ðB7Þ

APPENDIX C: ALTERNATE EXPRESSION

An alternate approximate expression was previously
provided in Ref. [16]; the expression from that paper is

Δfm2
ee;HM¼ð1− rAÞΔm2

eeþ rA

�
2s213
1− rA

Δm2
31− s212Δm2

21

�
;

ðC1Þ

where rA ≡ a=Δm2
31. This expression clearly has a pole at

a ¼ Δm2
31, which is the atmospheric resonance for neu-

trinos. In addition, past the resonance, for a > Δm2
31, the

sign is incorrect as Δfm2
ee;HM < 0 for the NO. Thus, we

take the absolute value in our numerical studies.
In Fig. 2 of Ref. [16], the author compared Eq. (C1) with

the minimum obtained via solving dPa=dE ¼ 0, whereas
we have argued in Sec. VI that a better comparison is
obtained by solving dPa=dL ¼ 0 for fixed E.

APPENDIX D: PRECISION IN
DIFFERENT RANGES

In this Appendix, we further expand upon the discussion
in Sec. VI B.
The exact three-flavor expression in matter from Eq. (17)

can be written as

1 − Pa ¼ sin22θ13

�
Δm2

ee

Δcm2
ee

�
2

sin2bΔee

þ CðEÞc4b13sin22bθ12sin2bΔ21; ðD1Þ

where CðEÞ ≃ 1 contains the correction between the first
and second terms. For the two-flavor approximation to be
valid, the 21 term, CðEÞc4b13sin22bθ12sin2bΔ21, must be small

compared to the two-flavor ee term, sin22bθ13sin2bΔee. As in
Sec. VI B, we consider two cases.
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First, if Δcm2
21 ≪ jΔcm2

eej, then at the nth oscillation
minimum, the ratio R1 of the 21 term to the ee term is

R1 ¼
CðEÞc4b13sin22bθ12sin2bΔ21

sin22bθ13
≈
Δm2

21

Δm2
ee
½ð2n − 1Þπ=2�2

�
CðEÞc4b13c2ðbθ13−θ13Þ sin

2Δ21

Δ2
21

�
;

where the approximation uses the DMP zeroth order
expression, the bθ13 ≈ θ̃13 approximation of Eq. (B6), and
s213 ≈ Δm2

21=Δm2
ee. The CðEÞ term contains the effect of

combining the bΔ31 and bΔ32 terms and is just under 1 within
a few GeVof the vacuum. Since all of the terms in the right
square bracket are < 1,

R1 ≈
Δm2

21

Δm2
ee
½ð2n − 1Þπ=4�2: ðD2Þ

We numerically confirmed that Eq. (34) is correct to within
∼10% near vacuum as shown in Fig. 5.

The second case is when Δcm2
21 ≃ jΔcm2

eej, which
occurs away from vacuum. In this case, we compare the
ratio R2 of the coefficients, which is

R2 ¼
c4b13sin22bθ12
sin22bθ13 ¼ jbUe1j2jbUe2j2

jbUe3j2ð1 − jbUe3j2Þ
: ðD3Þ

Away from vacuum, bθ12 ≃ π=2 (0) for neutrinos (antineu-
trinos) (see e.g., Fig. 1 of Ref. [10]), which makes the
numerator of R2 very small. The remaining part is
1=ð4tan2bθ13Þ. This part is large only when bθ13 → 0.
Since bθ12 → 0 faster than bθ13, we always have R2 ≪ 1
as desired. See Fig. 6 for a numerical verification that R2 is
small away from the vacuum.
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