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A continuum approach to quark-antiquark bound-states is used to determine the electromagnetic form
factors of pionlike mesons with masses m0−=GeV ¼ 0.14, 0.47, 0.69, 0.83 on a spacelike domain that
extends to Q2 ≲ 10 GeV2. The results enable direct comparisons with contemporary lattice-QCD
calculations of heavy-pion form factors at large values of momentum transfer and aid in understanding
them. They also reveal, inter alia, that the form factor of the physical pion provides the best opportunity for
verification of the factorized hard-scattering formula relevant to this class of exclusive processes and that
this capacity diminishes steadily as the meson mass increases.
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I. INTRODUCTION

Perturbation theory in quantum chromodynamics
[QCD] is applicable to hard exclusive processes; and for
almost forty years the leading-order factorized result for the
electromagnetic form factor of a pseudoscalar meson
has excited experimental and theoretical interest. Namely
[1–4], ∃Q0 > ΛQCD such that

Q2F0−ðQ2Þ ≈
Q2>Q2

0
16παsðQ2Þf20−w2

0−ðQ2Þ; ð1Þ

where: f0− is the meson’s leptonic decay constant; αsðQ2Þ
is the leading-order strong running-coupling

αsðQ2Þ ¼ 4π=½β0 lnðQ2=Λ2
QCDÞ�; ð2Þ

with β0 ¼ 11 − ð2=3Þnf [nf is the number of active quark
flavors]; and

w0−ðQ2Þ ¼ 1

3

Z
1

0

dx
1

x
φ0−ðx;Q2Þ; ð3Þ

where φ0−ðx;Q2Þ is the meson’s dressed-valence-quark
distribution amplitude [DA]. This DA is determined by the
meson’s light-front wave function and relates to the
probability that, with constituents collinear up to the scale
ζ ¼ p

Q2, a valence-quark within the meson carries light-
front fraction x of the bound-state’s total momentum. Here,
ΛQCD ∼ 0.2 GeV is the empirical mass-scale of QCD.
Crucially, the value ofQ0 is not predicted by perturbative

QCD; but a hope that this scale might be as low as the
proton mass, mp, was influential in ensuring that the

continuous electron beam accelerator facility [CEBAF]
was planned with a peak beam energy of 4 GeV.
BeforeCEBAF began operations in 1994, littlewas known

about the charged-pion electromagnetic form factor,FπðQ2Þ.
A sound measurement of the pion’s charge radius had been
achieved by scattering high-energy pions from atomic elec-
trons [5–8]. However, owing to kinematic limitations on the
energy of the pionbeam and unfavorablemomentum transfer,
different methods are required to reach higher Q2. Electro-
production of pions from the nucleon can serve this purpose
and precise data had been obtained at Q2=GeV2 ¼ 0.35,
0.7 [9–11]; but it was not until 1997 that a long-planned
CEBAF experiment using this method collected data on
0.6 ≤ Q2=GeV2 ≤ 1.6 [12]. Analyses of subsequent experi-
ments, which reached Q2 ¼ 2.45 GeV2 by capitalising on
higher beam energies available at a CEBAF exceeding
original expectations, are described in Refs. [13–16].
However, no signal for the behaviour in Eq. (1) has yet been
claimed. Consequently, experiments planned and approved at
the upgraded Jefferson Lab [JLab 12] aim for precision
measurements of FπðQ2Þ to Q2 ¼ 6 GeV2 and have the
potential to reach Q2 ≈ 8.5 GeV2 [17–19].
Equation (1) involves the meson’s DA, which is an

essentially nonperturbative quantity. Lacking reliable pre-
dictions for the pointwise form of φπðx;Q2Þ appropriate to
existing experimental scales, original expectations for
empirical values of Q2FπðQ2Þ that would confirm
Eq. (1) were based on the asymptotic profile [2–4]

φπðx;Q2Þ ≈
Λ2
QCD=Q

2≃0
φ∞ðxÞ ¼ 6xð1 − xÞ; ð4Þ

in which case

Q2FπðQ2Þ ≈
Q2¼4 GeV2

0.15: ð5Þ
*leichang@nankai.edu.cn
†cdroberts@anl.gov

PHYSICAL REVIEW D 98, 091505(R) (2018)
Rapid Communications

2470-0010=2018=98(9)=091505(7) 091505-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.091505&domain=pdf&date_stamp=2018-11-29
https://doi.org/10.1103/PhysRevD.98.091505
https://doi.org/10.1103/PhysRevD.98.091505
https://doi.org/10.1103/PhysRevD.98.091505
https://doi.org/10.1103/PhysRevD.98.091505


This prediction is a factor of 2.7 smaller than the empirical
value quoted at Q2 ¼ 2.45 GeV2 [15]: 0.41þ0.04

−0.03 .
Recently, however, continuum and lattice-QCD [lQCD]

studies of the pseudoscalar meson bound-state problem
have revealed that φπðx;Q2 ∼ ð2mpÞ2Þ is a concave func-
tion, much broader than φ∞ owing to emergent mass
generation in the standard model [20–29]. Using this
information, a continuum calculation of FπðQ2Þ on a large
domain of spacelike momenta predicted [30] that the
approved JLab 12 experiments [17,31] are capable of
validating Eq. (1) because the estimate in Eq. (5) is too
small by a factor of approximately two.
lQCD validation of this prediction would be welcome.

However, owing to competing demands [e.g., large lattice
volume to represent light pions, small lattice spacing to
reach large Q2, and high statistics to compensate for
decaying signal-to-noise ratio as form factors drop rapidly
with increasing Q2], lQCD results with pion masses near
the physical value, mπ , are currently restricted to small-Q2:
0 < Q2 ≲ 0.25 GeV2 [32,33]. Such analyses provide infor-
mation about the pion’s charge radius, but do not address
the questions of whether and at which scale Eq. (1) is
empirically applicable. No lQCD predictions at mπ are
available on the full domain accessible to JLab 12, but new
results exist on Q2 ≲ 6 GeV2 at bound-state mass-squared
values m2

0− ≈ 10m2
π, 25m2

π [34,35]. Herein, employing the
continuum approach to the QCD bound-state problem that
was used [30] to calculate the pion form factor and
reconcile its behaviour with Eq. (1), we discuss how these
modern lQCD results bear on validation of this hard
scattering formula and related issues.

II. COMPUTING PSEUDOSCALAR MESON
FORM FACTORS

At leading order in the systematic, symmetry-preserving
Dyson-Schwinger equation [DSE] approximation scheme
described in Refs. [36–38], viz. rainbow-ladder [RL] trun-
cation, the elastic form factor of a pionlike system con-
stituted from degenerate current-quarks is given by [39–43]

KμF0−ðQ2Þ ¼ Nctr
Z

d4k
ð2πÞ4 χμðkþ pf; kþ piÞ

× Γ0−ðki;piÞSðkÞΓ0−ðkf;−pfÞ; ð6Þ

where Q is the incoming photon momentum, pf;i ¼ K�
Q=2, kf;i ¼ kþ pf;i=2, p2

f;i ¼ −m2
0− , and the trace is over

spinor indices. The other elements in Eq. (6) are the dressed-
quark propagator, SðpÞ, which, consistent with Eq. (6), is
computed with the rainbow-truncation gap equation; and the
0−-meson Bethe-Salpeter amplitude Γ0−ðk;PÞ and unampu-
tated dressed-quark-photon vertex, χμðkf; kiÞ, both com-
puted in RL truncation. [The impact of corrections to the RL
computation is understood [44,45]. The dominant effect is a

modification of the power associated with the logarithmic
running in Eq. (1). That running is slow and immaterial to
the present discussion; but its effect can readily be incorpo-
rated when important.]
The leading-order DSE result for the pseudoscalar

meson form factor is now determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation. We
use that explained in Refs. [46,47]:

Kα1α
0
1
;α2α02

¼ GμνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ð7aÞ

GμνðkÞ ¼ G̃ðk2ÞTμνðkÞ; ð7bÞ

with k2TμνðkÞ ¼ k2δμν − kμkν and (s ¼ k2)

1

Z2
2

G̃ðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmF ðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð8Þ

where γm ¼ 4=β0, ΛQCD ¼ 0.234 GeV, τ ¼ e2 − 1, and
F ðsÞ ¼ f1 − expð−s=½4m2

t �Þg=s, mt ¼ 0.5 GeV. Z2 is
the dressed-quark wave function renormalisation constant.
We employ a mass-independent momentum-subtraction
renormalisation scheme for the gap and inhomogeneous
vertex equations, implemented by making use of the scalar
Ward-Green-Takahashi identity and fixing all renormalisa-
tion constants in the chiral limit [48], with renormalization
scale ζ ¼ 2 GeV≕ ζ2.
The development of Eqs. (7), (8) is summarized in

Ref. [46] and their connection with QCD is described in
Ref. [49]; but it is worth reiterating some points. For
instance, the interaction is deliberately consistent with that
determined in studies of QCD’s gauge sector, which
indicate that the gluon propagator is a bounded, regular
function of spacelike momenta that achieves its maximum
value on this domain at s ¼ 0 [49–58], and the dressed-
quark-gluon vertex does not possess any structure which
can qualitatively alter these features [59–67]. It is specified
in Landau gauge because, e.g., this gauge is a fixed point of
the renormalization group and ensures that sensitivity to
differences between Ansätze for the gluon-quark vertex are
least noticeable, thus providing the conditions for which
rainbow-ladder truncation is most accurate. The interaction
also preserves the one-loop renormalization group behav-
iour of QCD so that, e.g., the quark mass-functions
produced are independent of the renormalization point.
On the other hand, in the infrared, i.e., s≲m2

p, Eq. (8)
defines a two-parameter model, the details of which
determine whether confinement and/or dynamical chiral
symmetry breaking [DCSB] are realised in solutions of the
dressed-quark gap equations.
Computations [46,47] reveal that many properties of

light-quark ground-state vector- and isospin-nonzero pseu-
doscalar-mesons are practically insensitive to variations of
ω ∈ ½0.4; 0.6� GeV, so long as
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ς3 ≔ Dω ¼ constant: ð9Þ

This feature also extends to numerous characteristics of the
nucleon and Δ-baryon [68,69]. The value of ς is chosen to
reproduce, as well as possible, the measured value of the
pion’s mass and leptonic decay constant; and in RL
truncation this requires

ς ¼ 0.82 GeV; ð10Þ

with renormalization-group-invariant current-quark mass

m̂u ¼ m̂d ¼ m̂ ¼ 6.6 MeV; ð11Þ

which corresponds to a one-loop evolved mass of mζ2 ¼
4.6 MeV. We will subsequently employ ω ¼ 0.5 GeV,
the midpoint of the insensitivity domain, and typically
report the response of results to a 20% variation in this
value.
TheRL approximation to the elastic electromagnetic form

factor of a pionlike pseudoscalar meson with mass m0− is
now obtained as follows. (i) Perform a coupled solution
of the dressed-quark gap- and meson Bethe-Salpeter-
equations, definedviaEqs. (7), (8), varying thegap equation’s
current-quark mass until the Bethe-Salpeter equation has a
solution at P2 ¼ −m2

0− , following Ref. [70] and adapting the
algorithm improvements from Ref. [71] when necessary.
(ii) With the dressed-quark propagator obtained thereby
and the same interaction, solve the inhomogeneous Bethe-
Salpeter equation to obtain the dressed-quark-photon vertex,
including its dependence on Q2, as described, e.g., in
Ref. [72]. (iii) Combine these elements to form the integrand
in Eq. (6) and compute the integral as a function of Q2 to
extract the form factor, F0−ðQ2Þ; an exercise first completed
in Ref. [41].
To connect the results thus obtained and Eq. (1), the

associated meson PDA at the same renormalization scale is
needed. It can be obtained from the meson’s Poincaré-
covariant Bethe-Salpeter amplitude following the methods
described in Refs. [24–26,73]. Namely, one computes the
leading nontrivial Mellin moment of the PDA via

n · Pf0−hξ2i ¼ 3trZ2

Z
d4k
ð2πÞ4

�
2n · k
n · P

�
2

× γ5γ · nSðkþ P=2ÞΓ0−ðk;PÞSðk − P=2Þ;
ð12Þ

with ξ ¼ ð2x − 1Þ, P2 ¼ −m2
0− , n2 ¼ 0, n · P ¼ −m0− ,

using the same Poincaré-covariant regularization of the
integral as in the bound-state equations. A convergence-
factor 1=½1þ k2r2� is included in the integrand to stabilize
the computation; the moment is computed as a function of
r2; and the final value is obtained by extrapolation to
r2 ¼ 0. This procedure is efficient and reliable [73]. Using
this moment, which is 1=5 when evaluated with φ∞, one
can reconstruct a realistic approximation to the PDA by
writing

φ0−ðx; ζ2Þ ¼ xαð1 − xÞα Γð2½αþ 1�Þ=Γðαþ 1Þ2; ð13Þ

with α chosen to reproduce the calculated value of ξ2. [The
error in this procedure is negligible compared with that
deriving from a 20% variation of ω in Eq. (9).]

III. RESULTS

We have computed the form factors of pionlike mesons
at four current-quark masses, corresponding to the physical
pion, the lQCD meson masses in Refs. [34,35], and one
larger value, obtained by choosing the next evenly-spaced
increment in current-quark mass. The results are reported in
Table I and Fig. 1.
We approached the task without sophistication, using

numerical solutions of the relevant gap and Bethe-
Salpeter equations to directly evaluate the integral in
Eq. (6). Owing to the analytic structure of some of the
functions involved [70,77], this algorithm fails on
Q2 ≳Q2

f, where Q2
f=GeV

2 ¼ 4, 5, 6, 7, respectively, for
each row in Table I. Reference [30] solved this problem by
using perturbation theory integral representations [PTIRs]
[78] for each matrix-valued function in Eq. (6), enabling a

TABLE I. Input current-quark masses [one-loop evolved from an associated value of m̂] for four pionlike mesons and related results
computed with ω ¼ 0.5� 0.1 GeV in Eqs. (8)–(10). hξ2i, α are defined in Eqs. (12), (13). Empirically [75]: fπ ¼ 0.092 GeV,
rπ ¼ 0.672ð8Þ fm. Regarding Row 2, the lQCD results at m0− ¼ 0.47 GeV [34] are associated with f0− ¼ 0.111ð2Þ GeV [76], r0− ¼
0.56ð1Þ fm [our estimate, using monopole fit to lattice results]; and concerning Row 3, Ref. [35] reports f0− ¼ 0.128 GeV, r0− ¼
0.498ð4Þ fm for m0− ¼ 0.69 GeV. [In the table, all dimensioned quantities listed in GeV, except r0− , in fm.]

ω ¼ 0.4 ω ¼ 0.5 ω ¼ 0.6

mζ2 m0− f0− r0− hξ2i α f0− r0− hξ2i α f0− r0− hξ2i α

0.0046 0.14 0.097 0.63 0.255 0.46 0.094 0.66 0.265 0.39 0.092 0.68 0.273 0.33
0.053 0.47 0.117 0.53 0.217 0.80 0.115 0.55 0.226 0.71 0.115 0.56 0.229 0.68
0.107 0.69 0.135 0.47 0.196 1.05 0.133 0.49 0.207 0.92 0.133 0.49 0.211 0.87
0.152 0.83 0.147 0.43 0.180 1.28 0.145 0.45 0.193 1.09 0.145 0.45 0.200 1.00
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reliable computation of the electromagnetic form factor to
arbitrarily large-Q2. Constructing accurate PTIRs is, how-
ever, time consuming; and especially so here because one
would need to build new PTIRs for each function at every
one of the four current-quark masses. In completing the
panels in Fig. 1 we therefore adapted the procedure
introduced in Ref. [79], assuming that on the displayed
domain each form factor can be expressed as

F0−ðQ2Þ ¼ 1

1þQ2=m2
V
A0−ðQ2Þ; ð14aÞ

A0−ðQ2Þ ¼ 1þ a1Q2 þ a22Q
4

1þQ4ða22=b2uÞ ln½1þQ2=Λ2
QCD�

; ð14bÞ

where mV is the appropriate, computed vector meson mass
and a1, a2, bu are determined via a least-squares fit to the
computed results on Q2 ≤ Q2

f. The ω ¼ 0.5 GeV values
are (masses in GeV, a1;2 coefficients in GeV−2, bu
dimensionless)

m0− mV a1 a2 bu
0.14 0.77 −0.14 0.50 2.12

0.47 0.93 −0.16 0.54 2.00

0.69 1.10 −0.22 0.68 1.94

0.83 1.21 −0.22 0.81 1.89

: ð15Þ

(Empirical values for mV=GeV in rows 1 and 3 are [75]:
0.775, 1.02.)
We validated this approach by using it to reanalyze the

physical-pion results in Ref. [30]. This is the most chal-
lenging case because it requires extrapolation from Q2 ¼
4 GeV2 → 10 GeV2 to complete a curve on the domain
depicted in Fig. 1(a). Selecting only Q2 ≤ 4 GeV2 results
from Ref. [30], then, on the domain depicted, the obtained
extrapolation function and the direct PTIR result are indis-
tinguishable within any sensible measure of parameter
sensitivity. (We used �5% at Q2 ¼ 10 GeV2.)
The results in Fig. 1(a) confirm the analysis in Ref. [30].

Namely, the calculated FπðQ2Þ agrees semiquantitatively
with the prediction of the hard-scattering formula, Eq. (1),
when the PDA appropriate to the empirical scale is used.
The difference between these two curves is explained by a
combination of higher-order, higher-twist corrections to
Eq. (1) on the one hand and, on the other, shortcomings in

(a) (b)

(c) (d)

FIG. 1. Elastic form factors of pionlike pseudoscalar mesons. (a) physical pion, mπ ¼ 0.14 GeV; (b) mass-degenerate quarks,
mesonmass ¼ 0.83 GeV; (c) mesonmass ¼ 0.47 GeV; and (d) mesonmass ¼ 0.69 GeV. Curves in each panel. Solid black curve
within grey bands—our prediction: obtained with w ¼ 0.5� 0.1 GeV in Eq. (8); long-dashed green curve—single-pole vector meson
dominance result obtained with vector meson mass, mV , computed consistent with the form factor prediction [see Eq. (15)]; and dot-
dashed blue curve within blue bands—result from hard-scattering formula, Eq. (1), computed with the consistent meson decay constant
and PDA. (a). Dotted purple curve—Eq. (1) computed with the consistent pion decay constant and asymptotic DA, φ∞ðxÞ ¼ 6xð1 − xÞ;
filled-circles and -squares—data described in Ref. [15]; and filled gold diamonds and green triangle—projected reach and accuracy of
forthcoming experiments [18,74]. For comparison, the dashed red curve in the other panels is the black curve from (a), viz. the physical-
pion form factor prediction. (c) filled blue diamonds, lQCD results in Ref. [34]; and (d) filled blue circles, lQCD results in Ref. [35].
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the rainbow-ladder truncation, described above. Hence, as
explained in Ref. [30], one should expect dominance of
hard contributions to the pion form factor forQ2 ≳ 8 GeV2.
Notwithstanding this, the normalization of the form factor
is fixed by a pion wave-function whose dilation with
respect to φ∞ðxÞ is a definitive signature of DCSB.
In addition to the preceding observations, the panels in

Fig. 1 expose numerous features relating to the evolution of
these elastic form factors with meson mass.

(i) The charge radius decreases with increasing mass,
i.e., the bound-states become more pointlike; and
r0− ∝ 1=f0− , up to lnm0−-corrections. This is illus-
trated in Fig. 2(a) and explained elsewhere [80].
r0− is an intrinsic length-scale in these systems.

The meson becomes a more highly correlated state
as it diminishes. Hence, steadily increasing values of
Q2 are required to reach the domain upon which
Eq. (1) provides a useful guide to F0−ðQ2Þ.

(ii) This last feature is readily apparent in Fig. 1.
Proceeding anticlockwise from ðAÞ → ðCÞ →
ðDÞ → ðBÞ, the mismatch increases between the
direct calculation [solid black curve] and the result
obtained using Eq. (1) with the appropriate f0− ,
φ0−ðx;Q2Þ [dot-dashed blue curve].

(iii) The failure of the Eq. (1) prediction to increase inmag-
nitude as quickly as the direct calculation is explained
by a feature of the meson PDA’s h1=xi-moment,

illustrated in Fig. 2(b). Namely, f0−w0− is roughly
constant on the domain of meson masses considered:
with ω ¼ 0.5 GeV, the integrated relative difference
between the computed m0− -dependence and the
mean value is just 3%. Consequently, the prediction
of the hard-scattering formula is weakly varying on
m0− ∈ ½0.1; 0.9� GeV, whereas the form factor itself
rises steadily with m0− , owing primarily to the de-
creasing radius [increasing f0−] of the system.

Evidently, therefore, the growing Higgs-generated
current-quark mass drives away the domain where-
upon the exclusive hard-scattering formula is appli-
cable for the associated bound state. This property, viz.
that with growing mass, increasingly larger values of
Q2

0 are required in order to enter the domain of validity
for hard-scattering formulas, is also found in the
treatment of γγ� → neutral–0−-meson transition form
factors [45].

It is worth noting, too, that the minimum of the
f0−w0− curve occurs in the neighbourhood of
the s-quark current-mass. This is a consequence of
the fact, shown elsewhere [81] and evident from the
values of α0− in Table I, that φ0−ðx;Q2Þ ≈ φ∞ðxÞ in
this neighborhood.Withmasses increasing away from
this domain, f0−w0− becomes a linear function, up to
lnm0−-corrections.

(iv) Notwithstanding these facts, the direct calculation’s
deviation from the trajectory defined by the single-
pole vector-meson-dominance [VMD] prediction
[long-dashed green curve] also increases with
m0− , and in each case the departure begins at a
steadily decreasing value ofQ2. These effects owe to
a shift to deeper timelike values of the ground-state
vector-meson mass, so that this resonance contribu-
tion to the dressed-quark-photon vertex diminishes
in importance for the meson-photon coupling, and
parallel alterations in the pseudoscalar meson’s
internal structure. Such deviation from the VMD
prediction is a crucial prerequisite to entering the
validity domain of Eq. (1).

Comparing Figs. 1(c), 1(d), it seems that the lQCD results
in Refs. [34,35] are mutually inconsistent: the lighter meson
mass in Ref. [34] is associated with an elastic form factor
which is larger inmagnitude than that describing the internal
structure of the heavier 0−þ-meson in Ref. [35]. We have
insufficient information to resolve this issue; but can observe
that whilst the low-scale results from both studies match our
predictions, onlyRef. [34] is consistentwith our calculations
on the domain of larger-Q2.

IV. SUMMARY AND CONCLUSIONS

We employed the leading-order approximation in a sym-
metry-preserving, continuum analysis of the quark-antiquark
bound-state problem to determine electromagnetic form
factors of pionlike mesons with masses m0−=GeV ¼ 0.14,

(a)

(b)

FIG. 2. (a) f0−r0− as a function of meson mass. It is nearly
constant over a large range [80,82]. Black star—empirical value
for the pion; green diamond—lQCD [34]; and green circle—
lQCD [35]. (b) f0−w0− : w0− is the h1=xi-moment in Eq. (3). This
function takes a minimum value in the neighbourhood of the
s-quark current-mass and then evolves toward linear growth with
m0− , up to logarithmic corrections. The dotted black line marks
the mean value. The bands in both panels describe the range of
results obtained for ω ∈ ½0.4; 0.6� GeV.

MASS DEPENDENCE OF PSEUDOSCALAR MESON ELASTIC … PHYS. REV. D 98, 091505 (2018)

091505-5



0.47, 0.69, 0.83 on a spacelike domain that extends to
Q2 ≲ 10 GeV2; and simultaneously computed the parton
distribution amplitudes of each system. The results exposed
an array of novel features, with relevance to experiment and
also ab initio lattice-QCD studies of these systems. Of
particular significance is the conclusion that the form factor
of the physical pion provides the best opportunity for
verification of the leading-order, leading-twist factorised
hard-scattering formula for such exclusive processes. This
is because the lower bound, Q0, of the domain upon
which that formula is valid increases quickly with growing
m0− , i.e., more generally, the inflating mass-scale intro-
duced by increasing Higgs-generated current-quark masses
drives away the domain whereupon any relevant exclusive

hard-scattering formula is applicable for the associated pion-
like bound state.
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