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Recently, the covariant formulation of the Tolman-Oppenheimer-Volkoff (TOV) equations for studying
the equilibrium structure of a spherically symmetric compact star in the presence of the pressure anisotropy
in the interior of a star was presented in Ref. [1]. It was suggested there that the anisotropic solution of these
equations can be obtained by finding, first, the solution of the common TOV equations for the isotropic
pressure, and then by solving the differential equation for the anisotropic pressure whose particular form was
established on the basis of the covariant TOVequations. It turns out that the anisotropic pressure determined
according to this scheme has a nonremovable singularity Π ∼ 1

r2 in the center of a star, and, hence, the
corresponding anisotropic solution cannot represent a physically relevant model of an anisotropic compact
star. A new scheme for constructing the anisotropic solution, based on the covariant TOV equations is
suggested, which leads to the regularly behaved physical quantities in the interior of a star. A new algorithm
is applied to build model anisotropic strange quark stars with the MIT bag model equation of state.
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The presence of the pressure anisotropy in the interior of
a compact star should be considered more like a common
feature than an exception. The sources of the pressure
anisotropy can be very different such as the existence of a
solid core, the relativistic nature of the nuclear interaction at
high densities, the presence of strong magnetic fields inside
a star, etc. The equilibrium configuration of a spherically
symmetric anisotropic compact star can be studied on the
basis of the TOV equations, generalized considering the
pressure anisotropy [2]. Recently, these equations were
presented in the covariant form with the help of 1þ 1þ 2
covariant formalism in Ref. [1]. There are several strategies
to find solutions to these equations. One strategy is to set
the anisotropy parameter in the specific preassigned form,
which, together with the equation of state (EOS), can be
used to find the energy density μ, the transverse p⊥ and
radial pr pressures, and the unknown metric functions A, B
(in notations of Ref. [1]). An example of such an approach
can be found, e.g., in Ref. [2]. The other strategy is to
somehow reduce the problem to the isotropic case, and then
to build the anisotropic solution by properly modifying the
obtained isotropic one. Such an approach was followed,
e.g., recently in Refs. [3,4]. Yet another strategy was
suggested in Ref. [1] and is based on the separation of
the isotropic and anisotropic degrees of freedom in the
covariant TOV equations. After the separation, these
equations take the form [cf. Eqs. (35) in Ref. [1]]
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where P ¼ BðρÞp and P ¼ BðρÞΠ, p≡ prþ2p⊥
3

and Π≡
2ðpr−p⊥Þ

3
are the isotropic and anisotropic pressure, respec-

tively. The isotropic pressure terms are gathered in the
left-hand side (lhs) and the anisotropic pressure terms are
collected in the right-hand side (rhs) of the first equation.
Note the difference in sign in the last term in the lhs, and
in the first term and in the term with P in the brackets in
the rhs of the first equation, compared to the correspond-
ing Eq. (35) in Ref. [1]. Equations (1) are nothing else
than the rewritten Eqs. (23) of Ref. [1], and the difference
in sign can be readily checked. Based on the structure of
the covariant TOV equations (1), the following algorithm
for constructing the anisotropic solution was proposed in
Ref. [1]. First, to find the solution of the common TOV
equations, supplemented with the EOS M ¼ MðPÞ, for
the isotropic pressure P at vanishing P. In this way, there
will be determined the coordinate dependence of the
functions P, K, and M. Then the obtained solution of the
TOV equations in the isotropic case should be substituted
into the equation for the anisotropic pressure P:

P;ρ þ P2 − P

�
−2PþM − 3Kþ 1
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�
¼ 0: ð2Þ
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While the equation for K in this scheme is of the
Bernoulli type and admits formal integration, the equation
for the isotropic pressure P, in view of the arbitrariness of
the EOS M ¼ MðPÞ, can be integrated only numerically.
For this reason, finding the anisotropic pressure P, in the
general case, also requires numerical integration.
In order to check this algorithm for constructing the

anisotropic solution, we will rewrite the covariant TOV
equations in this scheme in the usual form with the radial
coordinate r as an independent variable. The TOV equa-
tions in the isotropic case read (using the notations of
Ref. [1] and the system of units with c ¼ 1)

p;r þ G
ðμþ pÞðmðrÞ þ 4πpr3Þ

rðr − 2GmðrÞÞ ¼ 0; ð3Þ

m;r ¼ 4πμr2: ð4Þ

Note that the differential equation for the metric function
BðrÞ was rewritten in terms of the local mass functionmðrÞ
which are related by BðrÞ ¼ ð1 − 2GmðrÞ

r Þ−1. Equations (3)
and (4), supplemented with the EOS μ ¼ μðpÞ, should be
solved together with the initial conditions pð0Þ ¼ p0,
mð0Þ ¼ 0, p0 being the central isotropic pressure.
Equation (2), after straightforward transformations, takes
the form

Π;r þ
Π
r

�
G
mðrÞ þ 4πðμþ 2pþ ΠÞr3

r − 2GmðrÞ þ 3

�
¼ 0: ð5Þ

Note that solution of Eqs. (3)–(5) should lead to the
singularity-free physical quantities in the interior of a star.
As follows from Eq. (5), the gradient Π;r will be finite at
r ¼ 0, if Π ∼ rα, α ≥ 1 at r → 0. Given this asymptotic
behavior and taking into account thatmðrÞ ∼ r3 at r → 0, in
the leading order approximation on small r, Eq. (5) reads
Π;r þ 3Π

r ¼ 0, which can be fulfilled only if α ¼ −3, i.e.,
Π ∼ 1

r3 at r → 0, which contradicts to the constraint α ≥ 1.
If the anisotropic pressure Π has a singularity at the origin,
then the term with Π in the numerator of the fraction in the
brackets in the lhs of Eq. (5) is of relevance as well, and,
after retaining it, in the leading order approximation one
gets

Π;r þ
3Π
r

þ 4πGΠ2r ¼ 0: ð6Þ

Substituting in the last equation Π ¼ Crα, one can see that
it can be satisfied at any small r, only if α ¼ −2, and,
simultaneously,C ¼ 2

πG. Therefore, the anisotropic pressure
Π, determined according to Eq. (5), has a nonremovable
singularity Π ∼ 1

r2 at r ¼ 0, and, hence, the corresponding
anisotropic solution cannot represent a physically relevant
model of an anisotropic compact star. Note that this
conclusion was reached on the basis of a general

asymptotic analysis of Eq. (5) only under the assumption
that the energy density μ and the isotropic pressure p are
regular functions at the center of a star. This analysis does
not rely on any specific form of the functions μ and p.
In order to get the regularly behaved anisotropic pressure

at the center of a star, let us present the equation relating the
isotropic P and anisotropic P pressures in Eq. (1) in a
different form by carrying the term ð1

4
−KÞM to the rhs:
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A new algorithm for constructing the anisotropic sol-
ution of the covariant TOV equations consists of the
following. First, it is necessary to find the isotropic pressure
from the differential equations

P;ρ þ P2 − P
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supplemented by the EOS M ¼ MðPÞ. Obtained in this
way functions P, K, and M should be substituted in the
differential equation for the anisotropic pressure

P;ρ þ P2 − P
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Note that in this new setup Eqs. (8) for finding the
isotropic pressure are different from the common TOV
equations in the isotropic case. Precisely, the equation for
the isotropic pressure with the radial coordinate as an
independent variable reads [cf. Eq. (3) for the common
TOV equations]

p;r þG
ðμþ pÞðmðrÞ þ 4πpr3Þ

rðr − 2GmðrÞÞ −
GmðrÞμ

rðr − 2GmðrÞÞ ¼ 0;

ð10Þ

while the second equation in (8) goes over to Eq. (4). It is
also interesting to notice that Eq. (9) has no trivial solution
with P≡ 0, and, hence the pressure anisotropy represents
an essential feature of such a class of compact stars.
After straightforward transformations, Eq. (9) for the

anisotropic pressure with the radial coordinate as an
independent variable takes the form
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Π;r þ
Π
r

�
G
mðrÞ þ 4πðμþ 2pþ ΠÞr3

r − 2GmðrÞ þ 3

�

þ GmðrÞμ
rðr − 2GmðrÞÞ ¼ 0: ð11Þ

Now, assuming that Π ¼ C0rα, α ≥ 1 at r → 0, in the
leading order approximation one gets

Π;r þ
3Π
r

þ 4πGμ20r
3

¼ 0; ð12Þ

where μ0 ≡ μð0Þ is the energy density at the center of a star.
Equation (12) can be satisfied at small r, only if α ¼ 2 and

C0 ¼ − 4πGμ2
0

15
, i.e., Π ∼ r2 at r → 0. Therefore, the aniso-

tropic pressure, determined according to Eq. (11) in a new
scheme, is the regularly behaved function at the center of
a star.
In order to test this new algorithm, let us consider

anisotropic strange quark stars within the MIT bag model
with the massless quarks and the EOS μ ¼ 3pþ 4B, B
being the bag constant. The radius of a spherically
symmetric anisotropic star is determined from the condition
prðRÞ ¼ pðRÞ þ ΠðRÞ ¼ 0, where isotropic pðrÞ and
anisotropic ΠðrÞ pressures, together with the mass function
mðrÞ, are obtained by solving the differential equations (4),
(10), (11) with the initial conditions pð0Þ ¼ p0; mð0Þ ¼ 0;
Πð0Þ ¼ 0. The total mass of a compact star is found as
M ¼ mðRÞ. Table I presents the results of the numerical
determination of the total mass of an anisotropic strange
quark star in dependence on the central isotropic pressure
p0 at B ¼ 57 MeV=fm3. It is seen that even small central
pressures p0 < 1 MeV=fm3 produce heavy strange quark
stars with M > 6 M⊙ (M⊙ being the solar mass). This is
because the isotropic pressure, determined according to
Eq. (10), decreases considerably slower with the radial
coordinate r compared to that determined from the
common TOV equation (3). Another peculiarity is that
the total mass M decreases with the central pressure p0 for
the whole range of the central pressures under consider-
ation, contrary to the stability constraint dM

dp0
> 0. This

means that the obtained model massive anisotropic strange
quark stars are unstable with respect to radial oscillations.

To summarize, the proposed algorithm in Ref. [1] for
constructing the anisotropic solution of the TOVequations,
based on solving the common TOV equations for the
isotropic pressure and Eq. (2) for the anisotropic pressure
(in the covariant formulation), leads to the singularly
behaved anisotropic pressure at the center of a star, and,
hence, the corresponding anisotropic solution cannot re-
present a physically relevant model of an anisotropic
compact star. In this Comment, suggest a new scheme
for constructing the anisotropic solution, based on the
covariant TOV equations, which leads to the regularly
behaved anisotropic pressure in the interior of a star. This
algorithm has been tested with respect to anisotropic
strange quark stars within the MIT bag model. It turns
out that the new algorithm gives rise to massive anisotropic
strange quark stars with M ≳ 5 M⊙, which are unstable
with respect to radial oscillations.
In the end, it would also be correct to note that Ref. [1]

contains a number of other suggestions on constructing
solutions of the TOV equations in the anisotropic case,
mainly, in the analytical form, whose discussion is, how-
ever, beyond the scope of this Comment.
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TABLE I. The mass M of an anisotropic strange quark star (in
solar mass units), determined according to Eqs. (4), (10), and
(11), for different values of the central isotropic pressure p0

within the MIT bag model at B ¼ 57 MeV=fm3.

p0, MeV
fm3 M=M⊙

0.001 6.7338
0.01 6.7337
0.1 6.7321
1 6.7163
10 6.5722
20 6.4362
30 6.3199
40 6.2190
50 6.1305
60 6.0523
70 5.9827
80 5.9203
90 5.8640
100 5.8131
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