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Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS,
Laboratoire Lagrange, 06 304 Nice, France

(Received 7 May 2018; published 16 October 2018)

One points out that a metric used as a General Relativity filled by a massless scalar φ solution in several
studies, and that would have been a generalization of the Janis-Newman-Winicour spherical solution to the
rotating case, does not solve the corresponding Einstein equation Rab ¼ ∂aφ∂bφ. As a consequence, the
(conformally related) Krori-Bhattacharjee spacetime is not a vacuum Brans-Dicke solution.
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Let us consider a spacetime filled by a massless scalar φ.
The general relativity (GR) equation reads

Rab ¼ ∂aφ∂bφ: ð1Þ
Regardless of (1), or of any other field equation, the

following metric

ds2 ¼ −Vηðdt − wdϕÞ2 − 2wðdt − wdϕÞdϕ

þ V1−ηΣ
�
dr2

Δ
þ dθ2 þ sin2θdϕ2

�
ð2Þ

i.e., writing in extenso the metric tensor components, with
the usual index notation ðx0; x1; x2; x3Þ ¼ ðt; r; θ;ϕÞ,

g00 ¼ −Vη;

g03 ¼ −wð1 − VηÞ;
g33 ¼ 2w2 − w2Vη þ V1−ηΣsin2θ;

g11 ¼ V1−η Σ
Δ
;

g22 ¼ V1−ηΣ; ð3Þ
where η ∈ ½0; 1� and

w ¼ asin2θ;

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2μrþ a2;

Vðr; θÞ ¼ 1 −
2μr
Σ

; ð4Þ

describes a naked singularity spacetime for η < 1 (μ being
an integration constant, related to the field’s Arnowitt-
Deser-Misner mass m by m ¼ ημ). The η ¼ 1 case corre-
sponds to the Kerr metric, with angular momentum a, in

Boyer-Lindquist coordinates. The a ¼ 0 case corresponds
to the Janis-Newman-Winicour (JNW)metric [1] butwritten
using Campanelli-Lousto (CL) coordinates [2].1 The
metric (2) can then be interpreted as a rotating generalization
of the JNW metric.
For the purpose of studying astrophysical issues related

to the (hypothetical) existence of naked singularities, the
metric (2), considered as a solution of (1) with the scalar

φðr; θÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
lnVðr; θÞ ð5Þ

in previous papers (see later), where k is a numerical factor,
was used in Ref. [3] (dealing with accretion disk dynam-
ics), in Ref. [4] (dealing with lensing effects), and also
recently in Ref. [5] (dealing with frame dragging and tidal
effects). However, any scalar metric that solves (1) should
also satisfy the Klein-Gordon equation

□φ ¼ 1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
gab∂bφÞ ¼ 0 ð6Þ

as a direct consequence (stress tensor conservation) of (1).
The point is that a lengthy, but straightforward, calculation
yields

□ðlnVÞ ¼ 1ffiffiffiffiffiffi−gp
�
∂1

� ffiffiffiffiffiffi−gp
Vg11

∂1V

�
þ ∂2

� ffiffiffiffiffiffi−gp
Vg22

∂2V

��

¼ −4μ2a2Vη P
Q
; ð7Þ

where
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1The link between the isotropic form and the CL form of the
JNWmetric can be obtained from 4rr̄ ¼ ð2r̄þ μÞ2, where r̄ is the
isotropic radial coordinate and r the (CL like) radial coordinate
used in this Comment [2].
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P ¼ ð1þ 3cos2θÞr4 − 8μr3cos2θ

þ 2a2ð1þ cos2θÞr2cos2θ þ a4sin2θcos4θ;

Q ¼ ðr2 − 2μrþ a2cos2θÞ3ðr2 þ a2cos2θÞ2: ð8Þ

Thence, Eq. (6) is not solved by (5) with the metric (2).
Therefore, the metric (2) cannot solve (1) with the
scalar (5).
Let us also remark that, even specifying to the θ ¼ π=2

symmetry plane, one has □ðlnVÞ ≠ 0. Incidentally, the
calculation to perform then is substantially shorter
directly specifying to this plane, taking into account that
θ enters the metric components (3) just through sin2 θ
terms. (See the main steps of the detailed calculation in the
Appendix.)
To clarify where the scalar metric (2)–(5), used in

Refs. [3–5], is coming from, it is worth reminding that
massless scalar filled GR solutions are related to vacuum
Brans-Dicke (BD) solutions. Indeed, considering a scalarΦ
and a metric ḡab, it is well known that, in a four-
dimensional spacetime, the conformal transformation

gab ¼ Φḡab

leads, for any constant ω, to the identity

Z �
ΦR̄−

ω

Φ
ð∂̄ΦÞ2

� ffiffiffiffiffiffi
−ḡ

p
d4x¼

Z �
R−

1

2
ð∂φÞ2

� ffiffiffiffiffiffi
−g

p
d4x;

where

φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
lnΦ:

This means that the vacuum BD action of the BD
gravitational field ðΦ; ḡabÞ identifies with the GR action,
with gravitational field gab, but filled by the (matter source)
massless scalar φ. From this correspondence, it is shown in
Ref. [6] that (2)–(5) are conformally related to a scalar
metric, claimed in Ref. [7] to be a vacuum BD solution.
However, it is worth pointing out that the scalar-metric
“solution” proposed in Ref. [7] was obtained by the authors
from the Brans class I spherical solution [8,9], by using a
method that allowed Newman and Janis to recover Kerr’s
metric from Schwarzschild’s (by performing some complex
coordinate transformation) [10]. The point is that the
authors of Ref. [7] never proved that the same method,
but applied to a BD vacuum solution, should return another
vacuum BD solution.2 The fact that the metric (2) does not
solve (1) with the scalar (5) shows that the scalar metric

proposed by Ref. [7] is actually not a vacuum BD solution,
despite the [7] authors’ claim.3

While (7) proves that the metric (2) does not solve (1)
with the scalar (5), one could ask if there is nevertheless
another scalar function ψðr; θÞ, such that Rab ¼ ∂aψ∂bψ
for the metric components (3). If it were the case, one
should have R00 ¼ R03 ¼ R33 ¼ 0 everywhere in the
spacetime. However, a direct calculation [the explicit
expressions of the connection components of (3) are
required here], specified for convenience to the θ ¼ π=2
plane, shows that

R00 ¼ −2
ηð1 − ηÞμ2a2

r6
V2η−3:

Hence, the metric (2) cannot solve (1), whatever the
considered stationary axisymmetric scalar φðr; θÞ.
All the expressions obtained here are consistent with the

fact that one should have (i) R00 ¼ 0 for η ¼ 1 [Kerr
solution, for which Rab ¼ 0, and in this case let us note that
the r.h.s. of (5) vanishes] and (ii) R00 ¼ 0 and □φ ¼ 0 for
a ¼ 0 (JNW solution).

APPENDIX: EXPLICIT CALCULATION OF
□ðlnVÞ IN THE θ =π=2 PLANE

We detail here the main steps of the calculation of
□ðlnVÞ (that does not require explicit connection compo-
nent calculations) in the symmetry plane. Substantial
simplifications occur then, thanks to the fact that θ enters
the relevant functions through sin2 θ terms. Indeed, any first
derivative with respect to θ then yields sin θ cos θ as a
factor, that vanishes in the plane. This is not true of course
for second derivatives with respect to θ, i.e., for ∂2∂2 terms.
From the first line of (7), and using (3),

□ðlnVÞ ¼ 1

Δg11 sinθ

�
sinθ∂1

�
Δ
V
∂1V

�

þ sinθ

�
1

V
∂2∂2Vþ ∂2

�
1

V

�
∂2V

�
þ cosθ

V
∂2V

�
:

Hence, in the symmetry plane

□ðlnVÞ ¼ 1

Δg11

�
∂1

�
Δ
V
∂1V

�
þ 1

V
∂2∂2V

�
:

For the ∂2∂2V term, one obtains

2Let us emphasize that the authors of Ref. [10] explicitly wrote
in their paper: “there is no simple, clear reason for the series of
operations performed on the tetrad to yield a new (different from
Schwarzschild) solution of the Einstein’s equations.” They just
quoted that this happens to be the case in the very specific
example they considered (GR and its Schwarzschild solution).

3Let us mention that the Brans class I solution reported in
Refs. [8,9] differ by a sign in the exponent entering the scalar (the
correct form being the Ref. [9] one). The form used in Ref. [7] to
derive their “solution” is the Ref. [8] one, as it can be shown using
the Campanelli-Lousto [2] radial coordinate. The sign is cor-
rected in Ref. [6] for making the solution proposed by Ref. [7]
coherent with the Brans class I solution, but as reported in
Ref. [9], in the nonrotating case.
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∂2∂2V ¼ 2μr∂2

�
1

Σ2
∂2Σ

�

¼ 2μ

r3
∂2∂2Σ

¼ −
4μa2

r3
∂2ðsin θ cos θÞ

¼ 4μa2

r3
:

For the ∂1ðΔV ∂1VÞ term, one can directly replace θ by
π=2 in the involved quantities, since no derivative with
respect to θ is involved. A direct calculation yields, since

V ¼ 1 − 2μ
r , then

∂1

�
Δ
V
∂1V

�
¼ 4μa2

μ − r
r4V2

:

Hence, reinserting, one obtains

□ðlnVÞ ¼ −4
μ2a2

r6
Vη−3;

which is the expression obtained from (7) and (8) in the
θ ¼ π=2 case.
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