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In this paper, we study the entanglement entropy of a single interval on a cylinder in two-dimensional
TT̄-deformed conformal field theory (CFT). For such case, the (Rényi) entanglement entropy takes a
universal form in a CFT. We compute the correction due to the deformation up to the leading order of the
deformation parameter in the framework of the conformal perturbation theory. We find that the correction to
the entanglement entropy is nonvanishing in the finite temperature case, while it is vanishing in the finite size
case. For the deformed holographic large c CFT, which is proposed to be dual to a AdS3 gravity in a finite
region, we find the agreement with the holographic entanglement entropy via the Ryu-Takayanagi formula.
Moreover, we compute the leading order correction to the Rényi entropy, and discuss its holographic picture
as well.
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I. INTRODUCTION

The integrable quantum field theory allows us to under-
stand the nonperturbative aspects of the quantum field
theory. In a remarkable paper by Zamolodchikov [1], the
operator TzzTz̄ z̄ − T2

zz̄ of a two-dimensional(2D) quantum
field theory(QFT) was studied and its expectation value had
been shown to have an analytic form. Such deformation is
now called TT̄-deformation. The TT̄ deformation has some
interesting properties, as shown in various studies including
the spectrum and the S-matrix[2]. In particular, an inte-
grable QFT deformed by such operator was found to be still
integrable [2,3]. In [3], it was shown that the deformation of
the theory of 24 free scalars leads to the Nambu-Goto
action. In [4], Cardy explained the solvability of the
deformation by considering it as a stochastic process.
For other studies on the TT̄ deformation of a field theory,
see [5–7].
The TT̄ deformation of a 2D conformal field theory

(CFT) is of particular interest. To be more precise the TT̄
deformed CFT form a one-parameter family of the theories
T ðμÞ parametrized by μ ≥ 0. The original CFT sits on

μ ¼ 0. Moving infinitesimally from T ðμÞ to T ðμþδμÞ is
achieved by adding a term

δμ

Z
d2xðTðμÞT̄ðμÞ − ΘðμÞ2Þ ð1:1Þ

to the action of T ðμÞ, where

TðμÞ ¼−2πTðμÞ
zz ; T̄ðμÞ ¼−2πTðμÞ

z̄ z̄ ; ΘðμÞ ¼ 2πTðμÞ
zz̄ ð1:2Þ

are the stress tensor of T ðμÞ. In this case, the spectrum could
be determined explicitly. Considering the deformed CFTon
a cylinder of circumference L, the spectrum is

Enðμ; LÞL ¼ 2π

μ̃

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μ̃Mn þ μ̃2J2n

q �
; ð1:3Þ

where μ̃ ¼ μ
4πL2 is a dimensionless quantity and

Mn ¼ Δn þ Δ̄n −
c
12

; Jn ¼ Δn − Δ̄n ð1:4Þ

are the conformal dimensions and the spins of the primary
operators in the undeformed CFT. As the spectrum could be
imaginary for a fixed μ̃, the theory should have a UV cutoff.
It is certainly an interesting problem to find a UV
completion of such deformation.
On the other hand, the TT̄-deformation opens a new

window to study the AdS=CFT correspondence. It is a
double-trace deformation, and could change the boundary
condition of the AdS gravity. For a TT̄-deformed
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holographic CFT, McGough, Mezei, and Verlinde [8]
proposed that the dual AdS3 gravity should be defined
in a finite region, with the asymptotic boundary being at a
finite radial position. More precisely if a CFT i.e., T ð0Þ has
a gravity dual, then the theory T ðμÞ is dual to the original
gravitational theory with the new boundary at r ¼ rc. With
our convention, the relation between μ and rc is

μ ¼ 6R4

πcr2c
; ð1:5Þ

where R is the AdS radius, and c is the central charge of the
original CFT. This new correspondence has been checked
from various points of view. First of all, the spectrum (1.3)
is reproduced by considering the quasilocal energy of a
BTZ black hole of massMn and angular momentum Jn in a
spatial region r < rc. Second, the superluminal propaga-
tion of the perturbation of the stress tensor [9] can be
understood holographically by the metric perturbations
preserving Dirichlet boundary condition on the surface
r ¼ rc [10]. Moreover, the exact RG equation could be
understood holographically as well [8]. More on the
holographic interpretation of the TT̄ deformation can be
found in [11–19].1
In this paper, we would like to study the entanglement

entropy in the TT̄-deformed conformal field theory. In
particular we pay special attention to the entanglement
entropy in the deformed holographic CFT and investigate
its implication in the AdS=CFT correspondence. In a
holographic CFT, the entanglement entropy could be
captured by the area of the minimal surface via the Ryu-
Takayanagi(RT) formula [24,25]. When considering the
new duality proposed in [8], it seems that the RT-formula
still holds. We would like to use the entanglement entropy
to test their proposal. More concretely we are going to
compute the entanglement entropy of a single interval on a
cylinder in the TT̄-deformed CFT by using the conformal
perturbation method. We will investigate two cases: the one
at a finite temperature and the other one with a finite size.
We find that in the finite temperature case, there is indeed
nonvanishing correction from the deformation, while in the
finite size case, the correction is vanishing. We discuss the
holographic entanglement entropy via the RT formula and
find the consistent picture. Moreover we compute analyti-
cally the leading order correction to the Rényi entropy, and
discuss its holographic picture. We show that for the AdS3
gravity with a cutoff surface, the on-shell action includes a
cutoff-dependent term, which corresponds to the leading
order correction due to the TT̄-deformation in the partition
function in the CFT.

The remaining parts of the paper are organized as
follows. In Sec. II, we compute perturbatively the single-
interval (Renyi) entanglement entropy on a cylinder in the
deformed CFT. In Sec. III, we compute the holographic
entanglement entropy of a single interval in the BTZ black
hole and global AdS3 with a finite radius cutoff, and
compare with the field theory results. In Sec. IV, we show
that the on-shell action of the gravitational configuration in
a cutoff restrained region could be dual to the CFT partition
function with the leading order correction under the TT̄-
deformation. We end with discussions in Sec. V. In the
Appendix, we collect some technical details.
While this paper was in preparation, closely related

studies were presented in [26]. The authors in [26]
considered the entanglement entropy for an entangling
surface consisting of two antipodal points on a sphere.

II. ENTANGLEMENT ENTROPY
IN TT̄-DEFORMED CFT

Let us consider a TT̄-deformed CFT living on some
manifold M. And we are interested in the entanglement
entropy of some subsystem A ∈ M. The entanglement
entropy is given by

SðAÞ ¼ lim
n→1

SnðAÞ; SnðAÞ ¼
1

1 − n
log

ZnðAÞ
Zn ; ð2:1Þ

where Z is the partition function on M, ZnðAÞ is the
partition function on the manifold MnðAÞ which is
obtained by gluing n copies of M together along A.
The precise definition of Mn and more details about the
above formulas can be found in [27]. In this work, we only
consider the small μ case, i.e., μ → 0. According to (1.1)
the action of the deformed CFT can be written as

S ¼ SCFT þ μ

Z
M
ðTT̄ − Θ2Þ; ð2:2Þ

where T, T̄ and Θ are the quantities of the original CFT.
Now we have

ZnðAÞ
Zn ¼

R
Mn e−SCFT−μ

R
Mn ðTT̄−Θ2Þ

½RM e−SCFT−μ
R
M
ðTT̄−Θ2Þ�n

: ð2:3Þ

Since μ is small, we further expand in terms of μ and get

ZnðAÞ
Zn ¼

R
Mn e−SCFTð1 − μ

R
MnðTT̄ − Θ2Þ þOðμ2ÞÞ

½RM e−SCFTð1 − μ
R
MðTT̄ − Θ2Þ þOðμ2ÞÞ�n :

ð2:4Þ
We know that in a CFT which is defined on a flat

manifold, any correlation function with Tμ
μ insertion is zero,

i.e., hTμ
μ…i ¼ 0. Later we will always consider the caseM

is a cylinder. Thus

1There is another interesting generalization of the TT̄ defor-
mation, the so-called TJ̄-deformation [20], which breaks the
Lorentz symmetry but is still solvable. For other relevant studies
on this kind of deformation, see [21–23].
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Z
M

e−SCFTΘ2 ∼ hΘ2iM ¼ 0; ð2:5Þ
Z
Mn

e−SCFTΘ2 ∼ hΘ2σiM ¼ 0; ð2:6Þ

with σ being the operator inducing the field identification
such that the adjacent replicas are pasted along A. After
some simple algebra, we get

ZnðAÞ
Zn ¼

� R
Mn e−SCFT

½RMe−SCFT �n
�

×
�
1−μ

Z
Mn

hTT̄iMn þnμ
Z
M
hTT̄iMþOðμ2Þ

�
:

ð2:7Þ
Notice that hTT̄iMn is only a function defined on Mn.

Actually we haveZ
Mn

hTT̄iMn ¼ n
Z
M
hTT̄iMn ; ð2:8Þ

from which we get

ZnðAÞ
Zn ¼

� R
Mn e−SCFT

½RMe−SCFT �n
�

×
�
1−nμ

Z
M
½hTT̄iMn−hTT̄iM�þOðμ2Þ

�
: ð2:9Þ

Then we can read the leading order correction to SnðAÞ

δSnðAÞ ¼
−nμ
1 − n

Z
M

½hTT̄iMn − hTT̄iM�: ð2:10Þ

Taking the n → 1 limit, we have the leading order correc-
tion to SðAÞ. In the following, let us consider two concrete
cases where δSðAÞ can be calculated.

A. Finite temperature

The first case is a 2D deformed CFT at a finite
temperature 1=β. The spatial direction is not compactified
and the manifold M on which the theory is defined is an
infinitely long cylinder with circumference β. We intro-
duce complex coordinate w ¼ xþ iτ and w̄ ¼ x − iτ on
the cylinder M, where x ∈ ð−∞;∞Þ and τ ∈ ð0; βÞ with
the identification τ ∼ τ þ β. The subsystem A is chosen to
be a single interval of length l which will be parallel to the
axis of the cylinder. The endpoints of A are put at
ðw; w̄Þ ¼ ð0; 0Þ and ðw; w̄Þ ¼ ðl; lÞ.
Consider the transformation

w → z ¼ e
2πw
β ; ð2:11Þ

which maps the cylinder to a plane C. The stress tensor
obeys the well-known transformation law

TðwÞ ¼
�
dz
dw

�
2

TðzÞ þ c
12

fz; wg; ð2:12Þ

where

fz; wg ¼
�
z000z0 −

3

2
z002

�
=z02 ð2:13Þ

is the Schwarzian derivative. There is a similar relation for
T̄. Using (2.12) and hTðzÞiC ¼ 0, we find

hTT̄ðw; w̄ÞiM ¼
�
c
12

�
2

fz; wgfz̄; w̄g

¼
�
c
12

�
2
�
2π2

β2

�
2

: ð2:14Þ

To obtain hTT̄ðw; w̄ÞiMn , one should consider the
following maps. The first map is

w → w0 ¼ e
2πw
β ; ð2:15Þ

which maps each sheet of Mn to a plane C. The interval A
on the cylinder M is mapped to an interval A0 on the
plane C whose endpoints become ðw0; w̄0Þ ¼ ð1; 1Þ and

ðw0; w̄0Þ ¼ ðe2πl
β ; e

2πl
β Þ. After this map Mn becomes a mani-

fold Cn which is obtained by gluing n copies of the plane C
together along A0. The next map is

w0 → z ¼
�

w0 − 1

w0 − e
2πl
β

�1
n

; ð2:16Þ

which maps Cn to a plane C. More about this map can be
found in Sec. III of [27]. Combining these two maps, we
find a map w → z relating Mn to the plane C. Once again
using (2.12) and hTðzÞiC ¼ 0, we find

hTT̄ðw; w̄ÞiMn ¼
�
c
12

�
2

fz; wgfz̄; w̄g: ð2:17Þ

In order to read the entanglement entropy, we only need
the information under the limit of n → 1. Expanding fz; wg
and fz̄; w̄g near n ¼ 1, we have

fz; wg ¼ −
2π2

β2
þ ðn − 1Þ 4π2ð1 − e

2πl
β Þ2e4πw

β

β2ðe2πw
β − e

2πl
β Þ2ðe2πw

β − 1Þ2
þOððn − 1Þ2Þ; ð2:18Þ

fz̄; w̄g ¼ −
2π2

β2
þ ðn − 1Þ 4π2ð1 − e

2πl
β Þ2e4πw̄

β

β2ðe2πw̄
β − e

2πl
β Þ2ðe2πw̄

β − 1Þ2
þOððn − 1Þ2Þ: ð2:19Þ

Then we find
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hTT̄ðw; w̄ÞiMn ¼
�
c
12

�
2
��

2π2

β2

�
2

þ ðn − 1Þ
�
−
2π2

β2

��
4π2ð1 − e

2πl
β Þ2e4πw

β

β2ðe2πw
β − e

2πl
β Þ2ðe2πw

β − 1Þ2
þ H:c:

��

þOððn − 1Þ2Þ: ð2:20Þ

Plugging (2.14) and (2.20) into (2.10), then taking the
n → 1 limit, we get

δSðAÞ ¼ −μ
�
c
12

�
2 8π4

β4
ð1 − e

2πl
β Þ2

×
Z
M

�
e
4πw
β

ðe2πw
β − e

2πl
β Þ2ðe2πw

β − 1Þ2
þ H:c:

�
: ð2:21Þ

The integration is a little bit tricky and the details can be
found in the Appendix A. In the end, we obtain

δSðAÞ ¼
−μπ4c2l cothðπlβ Þ

9β3
: ð2:22Þ

In the “low temperature” limit, β ≫ l, the correction to

the entanglement entropy (2.22) is −π3c2μ
9β2

. In the “high

temperature” limit, β ≪ l, the correction is −π4c2lμ
9β3

. Actually,

at high enough energy, the deformed theory cannot be taken
as a local field theory and the above discussion breaks
down. Moreover, in order to compare with the bulk dual,
we have to take the large c limit carefully. It turns out that
we should keep μc finite in the large c limit [5,17]. Under
this limit, the correction of the entanglement entropy is
proportional to c, which could be compared with the
semiclassical action of the gravity.
Recall that the entanglement entropy of A in a CFTwith

the same setup is

S0ðAÞ ¼
c
3
log

�
β

πϵ0
sinh

�
πl
β

��
; ð2:23Þ

with ϵ0 the CFT cutoff. So to the leading order in μ, we
have

SðAÞ ¼ S0ðAÞ þ δSðAÞ:

It is remarkable that although our perturbative compu-
tation is to the leading order of μ and seems work for any
temperature, the parameter μ is of dimension of length
square. In the finite temperature case, there is a dimension-
less quantity

μ̃β ¼
μ

β2
; ð2:24Þ

which cannot be large. In terms of μ̃β, the change of the
entanglement entropy is

δSðAÞ ¼ −μ̃βπ3c2

9

πl
β
coth

�
πl
β

�
: ð2:25Þ

In fact, the leading order correction to the Rényi entropy
can also be worked out. The computation of it is more
tedious, and the details can be found in the Appendix B 1.
The final result is

δSnðAÞ ¼ −
π4c2lμðnþ 1Þ cothðπlβ Þ

18β3n
þ πc2μðn − 1Þðnþ 1Þ2

576n3ϵ2

−
π3c2μðn − 1Þðnþ 1Þ2ðcoshð2πlβ Þ − 7Þcsch2ðπlβ Þ

864β2n3

þ
π3c2μðn − 1Þðnþ 1Þ2coth2ðπlβ Þ logð

β sinhðπlβ Þ
2πϵ Þ

36β2n3
:

ð2:26Þ

When n ¼ 1, only the first term survives, and it gives the
leading order correction (2.22) to the entanglement entropy.
The second term diverges as 1=ϵ2 and does not depend on β
and l. The third term does not depend on the cutoff ϵ and
can have a finite contribution when n ≠ 1. The last term has

the form # logðβ sinhð
πl
β Þ

2πϵ Þ, recalling that logðβ sinhð
πl
β Þ

2πϵ Þ is the
original entanglement entropy.

B. Finite size

Another simple case is a 2D deformed CFT at zero
temperature but with a finite size L. The spatial direction is
now compactified, while the time direction is noncompact
so the manifold M is still an infinitely long cylinder with
circumference L. We introduce complex coordinate w ¼
xþ iτ and w̄ ¼ x − iτ on the cylinder M, where τ ∈
ð−∞;∞Þ and x ∈ ð0; LÞ with the identification
x ∼ xþ L. The subsystem A is chosen to be a single
interval of length l < L which will be vertical to the axis of
the cylinder. The endpoints of A are put at ðw; w̄Þ ¼ ð0; 0Þ
and ðw; w̄Þ ¼ ðl; lÞ.
The computation procedure is similar to the finite

temperature case. Using the map
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w → w0 ¼ tan

�
πw
L

�
; ð2:27Þ

which can also map the cylinder to a plane C, we obtain

hTT̄ðw; w̄ÞiM ¼
�
c
12

�
2

fw0; wgfw̄0; w̄g

¼
�
c
12

�
2
�
2π2

L2

�
2

: ð2:28Þ

The interval A on the cylinder M is mapped to an interval
A0 on the plane C whose endpoints become ðw0; w̄0Þ ¼
ð0; 0Þ and ðw0; w̄0Þ ¼ ðtanðπlLÞ; tanðπlLÞÞ. Combining with the
map

w0 → z ¼
�

w0

w0 − tanðπlLÞ
�1

n ð2:29Þ

yields a map w → z which relatesMn to the plane C. Then
we have

hTT̄ðw; w̄ÞiMn ¼
�
c
12

�
2

fz; wgfz̄; w̄g: ð2:30Þ

Expanding fz; wg and fz̄; w̄g near n ¼ 1, we find

fz; wg ¼ 2π2

L2
þ ðn − 1Þ π

2sin2ðπlLÞcsc2ðπwL Þcsc2ðπðl−wÞL Þ
L2

þOððn − 1Þ2Þ;

fz̄; w̄g ¼ 2π2

L2
þ ðn − 1Þ π

2sin2ðπlLÞcsc2ðπw̄L Þcsc2ðπðl−w̄ÞL Þ
L2

þOððn − 1Þ2Þ: ð2:31Þ

Then

hTT̄ðw; w̄ÞiMn ¼
�
c
12

�
2
��

2π2

L2

�
2

þ ðn − 1Þ 2π
2

L2

�
π2sin2ðπlLÞcsc2ðπwL Þcsc2ðπðl−wÞL Þ

L2
þ H:c:

��
þOððn − 1Þ2Þ: ð2:32Þ

Plugging (2.28) and (2.32) into (2.10), then taking the
n → 1 limit, we get

δSðAÞ¼μπ4c2sin2ðπlLÞ
72L4

×
Z
M

�
csc2

�
πw
L

�
csc2

�
πðl−wÞ

L

�
þH:c:

�
: ð2:33Þ

The integral involved is

Z
M

csc2
�
πw
L

�
csc2

�
πðl − wÞ

L

�

¼
Z

∞

−∞
dτ

Z
L

0

dxcsc2
�
πðxþ iτÞÞ

L

�

× csc2
�
πðl − ðxþ iτÞÞÞ

L

�
: ð2:34Þ

We first do the x integral. Fortunately the primitive function
can be found, which is

−
8iLe

2iπl
L ð1þ e

2iπl
L Þðlog ð1 − e

2iπðxþiτÞ
L Þ − log ð1 − e

2iπð−lþiτþxÞ
L ÞÞ

πð−1þ e
2iπl
L Þ3

þ 8iLe
2πðτþilÞ

L ð2e2πðτþilÞ
L − e

2iπðlþxÞ
L − e

2iπx
L Þ

πð−1þ e
2iπl
L Þ2ð−e2πτ

L þ e
2iπx
L Þðe2πðτþilÞ

L − e
2iπx
L Þ

: ð2:35Þ

The term on the second line has no contribution since
plugging x ¼ 0 or x ¼ L into it gives the same result.

The term on the first line has no contribution as well since
the two log terms always cancel each other. This is very
different from the finite temperature case. Thus we learn thatZ

M
csc2

�
πw
L

�
csc2

�
πðl − wÞ

L

�
¼ 0; ð2:36Þ

which means

δSðAÞ ¼ 0: ð2:37Þ
So to the leading order of μ, the entanglement entropy of A
is still

SðAÞ ¼ c
3
log

�
L
πϵ0

sin
�
πl
L

��
; ð2:38Þ

with ϵ0 the CFT cutoff.
On the contrary, the leading order correction to the Rényi

entropy in this case is not vanishing. The computation is
similar to the finite-temperature case, and the details can be
found in the Appendix B 2. And the result is

δSnðAÞ¼
πc2μðn−1Þðnþ1Þ2

576n3ϵ2

−
π3c2μðn−1Þðnþ1Þ2ð11cosð2πlL Þþ19Þcsc2ðπlLÞ

864L2n3

þπ3c2μðn−1Þðnþ1Þ2cot2ðπlLÞ logð
LsinðπlLÞ
2πϵ Þ

36L2n3
:

ð2:39Þ
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When n ¼ 1, it is vanishing as we expect. Let us compare it
with (2.26): the quadratic divergent terms (1=ϵ2) are the
same, which is independent of the finite temperature or
finite size; their logarithmic terms are the same under the
identification L ↔ iβ. The main difference between them
is that δSnðAÞ in the finite T case has an additional term

−
π4c2lμðnþ 1Þ cothðπlβ Þ

18β3n
; ð2:40Þ

which is nonzero when n ¼ 1.

III. GRAVITY DUAL

The AdS=CFT correspondence [28] states that the
gravitational theory living in the bulk is dual to a CFT
living on the asymptotic boundary of the AdS spacetime.
Especially the Ryu-Takayanagi formula [24,25] relates the
entanglement entropy in the CFT with the area of the
corresponding minimal surface in the gravitational theory.
The holographic entanglement entropy could be under-
stood as a generalized gravitational entropy [29].
For the AdS3=CFT2 correspondence, it has been found

that after imposing appropriate asymptotic boundary con-
dition [30], the AdS3 gravity could be dual to a 2D CFT
with central charge [31]

c ¼ 3R
2G

: ð3:1Þ

The authors of [8] proposed that under TT̄ deformation the
bulk dual gravitational theory should be defined by moving
the asymptotic boundary inwards with the radius being at

r2c ¼
6R4

μπc
: ð3:2Þ

Here R is the AdS radius and c is the central charge of the
dual CFT. In this case, we expect that the holographic
entanglement entropy is still given by the RT-formula,

SðAÞ ¼ Area of γA
4G

; ð3:3Þ

where γA is the minimal surface in the bulk whose
boundary is given by ∂A. In the cases we are considering
A is an interval, and γA is the geodesic whose endpoints
coincide with A’s.

A. BTZ black hole

A 2d CFT at high temperature is dual to a BTZ black
hole. According to [8] the TT̄ deformed CFT at high
temperature is naturally dual to a BTZ black hole with a
radial cutoff. The metric of Euclidean BTZ black hole is

ds2 ¼ r2 − r2þ
R2

dt2 þ R2

r2 − r2þ
dr2 þ r2dx2; ð3:4Þ

with R the AdS radius, rþ the position of the horizon, t
compactified as t ∼ tþ β: β ¼ 2πR2

rþ
is the temperature of

the black hole and the corresponding CFT.
Originally the boundary is located at r → ∞. Now we

move the boundary inwards to r ¼ rc where the TT̄
deformed CFT lives. On this new boundary, the metric is

ds2b ¼
r2c − r2þ
R2

dt2 þ r2cdx2

¼ r2c − r2þ
R2

�
dt2 þ R2r2c

r2c − r2þ
dx2

�
: ð3:5Þ

The black hole temperature is still β, which means the
temperature of the TT̄ deformed CFT is also β. So t is the
physical time of the deformed CFT, whose physical metric
shall be

ds2p ¼ dt2 þ R2r2c
r2c − r2þ

dx2: ð3:6Þ

At some time t0, we put the endpoints of the subsystem A
at ðt; xÞ ¼ ðt0; 0Þ and ðt; xÞ ¼ ðt0; δxÞ. According to (3.6),
the length of A is

l ¼ δxRrcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − r2þ

p : ð3:7Þ

What we are left to do is to find the geodesic distance λ
between ðr; t; xÞ ¼ ðrc; t0; 0Þ and ðr; t; xÞ ¼ ðrc; t0; δxÞ. To
achieve this we define the new coordinates

r ¼ rþ cosh ρ; t ¼ R2θ

rþ
; x ¼ Rτ

rþ
; ð3:8Þ

following which the metric (3.4) becomes

ds2 ¼ R2ðsinh2 ρdθ2 þ dρ2 þ cosh2 ρdτ2Þ; ð3:9Þ

which is the Euclidean version of global AdS3 metric. The
endpoints become ðρ; θ; τÞ ¼ ðρc; θ0; 0Þ and ðρ; θ; τÞ ¼
ðρc; θ0; rþδxR Þ with

rc ¼ rþ cosh ρc: ð3:10Þ

Now the geodesic distance λ can be easily found:

cosh

�
λ

R

�
¼ 1þ 2 cosh2 ρc sinh2

rþδx
2R

: ð3:11Þ

Plugging (3.10) and (3.7) into it, we find
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cosh

�
λ

R

�
¼1þ2

�
rc
rþ

�
2

sinh2
�
πl
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
rþ
rc

�
2

s �
: ð3:12Þ

When rc ≫ rþ, we can expand λ in terms of rþ=rc and
obtain

λ

4G
¼ R

2G
log

�
βrc sinhðπlβ Þ

πR2
þ πR2

βrc sinhðπlβ Þ

−
2π2R2l coshðπlβ Þ

β2rc
þO

��
rþ
rc

�
2
��

; ð3:13Þ

where we have used β ¼ 2πR2

rþ
to replace rþ by 2πR2

β . If we

consider the “high temperature” case β < l, the second
term in the parenthesis can be naturally ignored since it is
much smaller than the third term. On the other hand since
rc is very large, we can treat the third term as a small
quantity compared with the first term. This leads to

λ

4G
¼ R

2G
log

�
βrc sinhðπlβ Þ

πR2

�
−

R
2G

2π3R4l cothðπlβ Þ
β3r2c

¼ c
3
log

�
βrc sinhðπlβ Þ

πR2

�
−
π4c2μl
9β3

coth

�
πl
β

�
ð3:14Þ

after considering the relations c ¼ 3R=2G and (1.5). Now
as the cutoff boundary is at rc so the corresponding cutoff
in the field theory is ϵ ¼ R2=rc, then we find the perfect
match with the field theory result.

B. Global AdS

A 2d CFT at zero temperature with the spatial direction
compactified lives on the asymptotic boundary of the
global AdS3. So the TT̄ deformed CFT which we consid-
ered in Sec. II B is dual to the global AdS3 with a radial
cutoff. The metric of global AdS3 is

ds2 ¼ R2ð− cosh2 ρdt2 þ dρ2 þ sinh2 ρdϕ2Þ; ð3:15Þ

with ϕ compactified as ϕ ∼ ϕþ 2π. We put the boundary at
ρ ¼ ρc, on which the TT̄ deformed CFT lives. At some
time t0, the endpoints of the subsystem A are put at ðt;ϕÞ ¼
ðt0; 0Þ and ðt;ϕÞ ¼ ðt0; δϕÞ. Suppose that the total length of
the quantum system is L, then the length of A is given by

l ¼ δϕL
2π

: ð3:16Þ

The geodesic distance λ between ðρ; t;ϕÞ ¼ ðρc; t0; 0Þ
and ðρ; t;ϕÞ ¼ ðρc; t0; δϕÞ is given by

cosh

�
λ

R

�
¼ 1þ 2 sinh2 ρc sin2

�
πl
L

�
; ð3:17Þ

where we have used (3.16) to replace δϕ by 2πl=L. When
ρc ≫ 1 ↔ sinh ρc ≫ 1, we can expand λ in terms of
1=sinh ρc and obtain

λ

4G
¼ R

2G
log

�
2 sinh ρc sin

�
πl
L

�
þ 1

2 sinh ρc sinðπlLÞ

þO

��
1

sinh ρc

�
2
��

: ð3:18Þ

Now there is no other correction except that the cutoff
surface is moved inward. This fact is in accordance with the
fact that there is no correction to the entanglement entropy
from the TT̄ deformation in the finite size CFT in the
leading order of μ.
After the careful calculations on the bulk side, we notice

that the main difference between these two cases lies on the
difference between (3.7) and (3.16). (3.7) says that δx
depends on the cutoff rc when rþ ≠ 0 (i.e., 1=β ≠ 0), while
(3.16) shows that δϕ does not depend on the cutoff. In the
finite temperature case the leading order correction comes
actually from the rc dependence of δx.

IV. MORE GENERAL HOLOGRAPHIC PICTURE

In the above discussion on the holographic entangle-
ment entropy, we actually assumed the RT prescription.
This expectation turns out to be good. However, for the
single-interval Rényi entropy, we need to consider the
backreaction of the twist operator [29,32]. In the follow-
ing, we try to argue that the holographic picture is still true
for general configurations, using the method developed in
[33–36].
We start from the TT̄-deformed CFT defined on the

boundary metric

ds2 ¼ gabdxadxb: ð4:1Þ

It is dual to the gravitational theory living on a compact
sub-region of AdS. The metric of the bulk configuration
could be

ds2 ¼ dr2

r2
þ r2gabdxadxb: ð4:2Þ

We have set RAdS ¼ 1. The Poincaré coordinate is recov-
ered by setting ξ ¼ 1=r. In the Fefferman-Graham gauge,
the metric is expanded as

ds2 ¼ dρ2

4ρ2
þ gab

ρ
dxadxb: ð4:3Þ

Having fixed the leading order gð0Þ, the metric above is
characterized by the stress tensor of the classical Liouville
field [37]. In other words, the classical gravitational
solution is characterized by the stress tensor, which is
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determined by the conformal weights and the accessory
parameters in particular. In general, it is hard to find the
explicit form of the metric. In the following discussion we
denote the xa in Poincaré coordinate as z, z̄, while the xa in
FG coordinate is denoted as w, w̄.
For the TT̄-deformed holographic CFT, there is a certain

regulator surface at a fixed radial position. We choose the
regulator surface in the Poincaré coordinate, so that the
induced metric of the surface coincides with the one in
CFT. The regulator surface is located at

ξc ≈ beϕ; ð4:4Þ

where ϕ is the classical Liouville field, relating to the Weyl
factor, and

b2 ¼ μc
24π

: ð4:5Þ

There is a coordinate transformation between the FG
coordinate and the Poincaré coordinate [38]

ξ ¼ ρ1=2e−ϕ

1þ ρe−2ϕa2
; ð4:6Þ

where a ¼ ∂ϕ.
The semiclassical action of the gravitational theory is

I ¼ IEH þ IGH þ ICT; ð4:7Þ

including the Einstein-Hilbert term plus a negative cosmo-
logical constant, the Gibbons-Hawking term and the
counterterm. The counterterm cancels the power-law diver-
gence in the bulk integral and the boundary integral. More
concretely, the on-shell Einstein-Hilbert action reduces to

IEH ¼ −
c

96π

Z
dzdz̄ξ−2c ; ð4:8Þ

ξ−2c ¼ a4b2e−2ϕ þ 2a2 −
e2ϕ

b2
: ð4:9Þ

The Gibbons-Hawking term and the counterterm give

IGH þ ICT ¼ −
c

96π

Z
dzdz̄

�
e2ϕ

b2
þ 8∂∂̄ϕ

�
: ð4:10Þ

The final on-shell action is

I ¼ −
c

96π

Z
dzdz̄ð2a2 þ a4b2e−2ϕ − 8∂∂̄ϕÞ: ð4:11Þ

Note that as b → 0, the action above is just the
Liouville action, and the changes in the choice of cutoff
surface is subleading in b. Note also that there is an
ambiguity in the choice of the counter term, so the

linear order change in the bulk action does matter,
leaving the other potential terms depending on certain
regularization prescription.
To go further, we turn to calculate the above action in the

FG gauge with a proper regulator surface. It turns out that
the last part vanishes and the first part becomes

I1 ¼ −n
c

96π

Z
dwdw̄4

ffiffiffiffiffiffiffiffiffiffiffi
TLT̄L

p
: ð4:12Þ

The result above can be understood as follows

−
c

96π

Z
dzdz̄2a2z ¼ −

c
96π

Z
dwdw̄e−2ϕe2ϕ2a2w

¼ −n
c

96π

Z
dwdw̄4

ffiffiffiffiffiffiffiffiffiffiffi
TLT̄L

p
: ð4:13Þ

The TL is the Liouville stress tensor, related to the vacuum
expectation value of the CFT stress tensor by

hTiCFT ¼ −
1

2lp
TL: ð4:14Þ

The action above can be used to get the HRE when certain
conformal transformation has been made [34], and
lp ¼ 8πG.
The remaining part, which is associated to the regulator

surface and gives the correction to the HRE, can be
calculated by

I2 ¼ −
c

96π

Z
dzdz̄a4b2e−2ϕ

¼ −
cb2

96π

Z
dwdw̄a4we4ϕe−2ϕe−2ϕ

¼ −n
cb2

96π

Z
dwdw̄4TLT̄L: ð4:15Þ

Considering the fact that

c ¼ 12π

lp
¼ 3

2G
; ð4:16Þ

we find that the integrand from field theory side is

−
cb2

96π
4TLT̄L ¼ −

μc2

576π2
TLT̄L: ð4:17Þ

Recall the involved partition function Zn from the con-
formal perturbation theory, where the linear term in μ is just

−μhTT̄iCFT ¼ −μhTiCFThT̄iCFT
¼ −

μ

4l2p
TLT̄L ¼ −

μc2

576π2
TLT̄L: ð4:18Þ
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Thus at the linear level, the QFT partition function
calculated by the conformal perturbation theory matches
with the gravitational result.
Note that the discussion may apply to the more general

cases than the single-interval Rényi entropy. For example,
for the two-interval case [36,39] and the single-interval on a
torus case [36,40], the leading order correction in μ to the
Rényi entropy should match with the holographic compu-
tation as well.

V. DISCUSSION

In this paper we have calculated the entanglement
entropy of a single interval on a cylinder in the TT̄-
deformed CFT. We find that the leading order correction to
the entanglement entropy is nonzero in the finite temper-
ature case while it is vanishing in the finite size case. In the
dual bulk side it is expected naively that moving inwards
will certainly change the geodesic distances which means
the leading order correction should be nonzero in both
cases. However in the finite size case, the change of the
boundary could actually be taken into account by a
different cutoff. On the contrary, in the high temperature
case, such a change do modify the geodesic distance. Our
study supports the conjecture proposed in [8].
Unlike the work done in [26], our field theory results are

only valid when μ → 0. To obtain the finite μ results, we
need to know the partition function of the theory T ðμÞ on
M and Mn, which is a much harder job. It would be
definitely interesting to study this issue. On the gravity side,
the discussion in the present work relies also on the
condition that μ is very small. In the finite μ case, it is
not clear if the RT prescription can be applied naively. To
determine whether the RT formula is still valid or not, one

should go to the nonperturbative level. It is interesting to
consider the full version of this duality, saying arbitrary
geometry and finite deformation.
The holographic entanglement entropy in the standard

AdS=CFT correspondence has brought us many new
understandings of the holographic duality. The new duality
proposed in [8] is fascinating, and provides a new window
to study various problems in the AdS=CFT holography,
like holographic entanglement entropy, bulk recon-
struction, holographic complexity etc. We wish to address
these issues in the future.
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APPENDIX A: THE INTEGRAL

In this Appendix, we present the details of the integration
in Sec. II A. In order to work out the integral

Z
M

e
4πw
β

ðe2πw
β − e

2πl
β Þ2ðe2πw

β − 1Þ2

¼
Z

∞

−∞
dx

Z
β

0

dτ
e
4πðxþiτÞ

β

ðe2πðxþiτÞ
β − e

2πl
β Þ2ðe2πðxþiτÞ

β − 1Þ2
; ðA1Þ

we first do the τ integral. Luckily the primitive function can
be found to be

iβð e
2πl
β −1

−1þe
2πðxþiτÞ

β

þ e
2πl
β −e

4πl
β

e
2πl
β −e

2πðxþiτÞ
β

− ðe2πl
β þ 1Þðlog ðe2πðxþiτÞ

β − 1Þ − log ðe2πðxþiτÞ
β − e

2πl
β ÞÞÞ

2πðe2πl
β − 1Þ3

:

Plugging τ ¼ 0 or τ ¼ β into the term

e
2πl
β − 1

−1þ e
2πðxþiτÞ

β

þ e
2πl
β − e

4πl
β

e
2πl
β − e

2πðxþiτÞ
β

ðA2Þ

gives the same result, so this term has no contribution. The
term we shall analyze carefully is

−ðe2πl
β þ 1Þðlog ðe2πðxþiτÞ

β − 1Þ − log ðe2πðxþiτÞ
β − e

2πl
β ÞÞ: ðA3Þ

Let us first focus on

log ðe2πðxþiτÞ
β − 1Þ: ðA4Þ

Fixing x, when τ runs from 0 to β, e
2πðxþiτÞ

β runs around the

origin once with circular orbit of radius e
2πx
β . If the radius

e
2πx
β > 1, e

2πðxþiτÞ
β will run around 1 once, which means that

log ðe2πðxþiτÞ
β − 1Þ will contribute 2πi. It is demonstrated

explicitly in Fig. 1. So we have

log ðe2πðxþiτÞ
β − 1Þjτ¼β

τ¼0 ¼
	
0; x < 0 ↔ e

2πx
β < 1

2πi; x > 0 ↔ e
2πx
β > 1;

ðA5Þ

For the other logarithmic function, the discussion is
similar:
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log ðe2πðxþiτÞ
β − e

2πl
β Þjτ¼β

τ¼0 ¼
	
0; x < l ↔ e

2πx
β < e

2πl
β

2πi; x > l ↔ e
2πx
β > e

2πl
β :

Consequently, we have

gðxÞ≡ log ðe2πðxþiτÞ
β − 1Þ − log ðe2πðxþiτÞ

β − e
2πl
β Þjτ¼β

τ¼0 ¼

8>><
>>:

0; x < 0

2πi; 0 < x < l

0; l < x:

ðA6Þ

The value of gðxÞ can be easily seen from the contour in Fig. 2.

FIG. 1. e
2πðxþiτÞ

β runs on the orange circle clockwise, and ðe2πðxþiτÞ
β − 1Þ is represented by the red arrow. When moving the head of the

arrow around the orange circle once: in (a) the argument of the red arrow is added by 2π, so log ðe2πðxþiτÞ
β − 1Þjτ¼β

τ¼0 ¼ 2πi; in (b) the

argument of the red arrow does not change, so log ðe2πðxþiτÞ
β − 1Þjτ¼β

τ¼0 ¼ 0.

FIG. 2. Again e
2πðxþiτÞ

β runs on the orange circle clockwise. ðe2πðxþiτÞ
β − 1Þ is represented by the red arrow, and ðe2πðxþiτÞ

β − e
2πl
β Þ is

represented by the blue arrow. When moving the heads of the arrows around the orange circle once: in (a) the arguments of both arrows
will not change, which means gðxÞ ¼ 0; in (b) the argument of the red arrow is added by 2π, while the argument of the bule arrow does
not change, so we have gðxÞ ¼ 2πi; in (c) the arguments of both arrows are added by 2π, but their contributions cancle each other, so
gðxÞ ¼ 0.
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With these in hand, the integral turns out to be

Z
M

e
4πw
β

ðe2πw
β − e

2πl
β Þ2ðe2πw

β − 1Þ2
¼ βlðe2πl

β þ 1Þ
ðe2πl

β − 1Þ3
; ðA7Þ

and δSðAÞ is simplified to

δSðAÞ ¼ −
μπ4c2l cothðπlβ Þ

9β3
: ðA8Þ

APPENDIX B: CORRECTION
OF THE RÉNYI ENTROPY

1. Finite temperature

The leading order correction to SnðAÞ is given by (2.10).
We already have hTT̄ðw; w̄ÞiM and hTT̄ðw; w̄ÞiMn .
Previously we expand hTT̄ðw; w̄ÞiMn near n ¼ 1. Now
we need its exact form, which is given by

hTT̄ðw; w̄ÞiMn ¼
�
c
12

�
2

fz; wgfz̄; w̄g; ðB1Þ

where the Schwarzian derivatives fz; wg and fz̄; w̄g are
determined by the map

w → z ¼
�

e
2πw
β − 1

e
2πw
β − e

2πl
β

�1
n

: ðB2Þ

Then I ≡ hTT̄iMn − hTT̄iM can be obtained. Using w ¼
xþ iτ and w̄ ¼ x − iτ, we arrive at

δSnðAÞ ¼
−nμ
1 − n

Z
M

I

¼ −nμ
1 − n

Z
∞

−∞
dx

Z
β

0

dτIðx; τÞ: ðB3Þ

We first do the τ integral, and the primitive function of
Iðx; τÞ can be found. Let us call it Iðx; τÞ. As before there
are two kinds of terms in Iðx; τÞ: the terms with log and the
terms without log. The analyses of them are similar with
those in Appendix A. After some careful analyses we can
express the integral as

Z
∞

−∞
dx

Z
β

0

dτIðx; τÞ

¼ π4c2

36β4

�Z
0

−∞
dxFðxÞ −

Z
∞

0

dxFðxÞ

þ
Z

l

−∞
dxGðxÞ −

Z
∞

l
dxGðxÞ

�
; ðB4Þ

where

FðxÞ ¼ iβC1ðxÞðn2 − 1Þð−2πiÞ
2πn4ðe2πl

β − 1Þðe4πx
β − 1Þ3ðe2πl

β − e
4πx
β Þ3

; ðB5Þ

GðxÞ ¼ −iβC2ðxÞðn2 − 1Þð−2πiÞ
2πn4ðe2πl

β − 1Þðe2πl
β − e

4πx
β Þ3ðe4πl

β − e
4πx
β Þ3

: ðB6Þ

Here C1, C2 are two functions of x, and their expressions
are so long that we would not like to show them here.
Notice that FðxÞ has poles at x ¼ 0; l=2, andGðxÞ has poles
at x ¼ l=2; l. With a cutoff ϵ, the integral becomes

π4c2

36β4

�Z
−ϵ

−∞
dxFðxÞ−

Z l
2
−ϵ

ϵ
dxFðxÞ−

Z
∞

l
2
þϵ

dxFðxÞ

þ
Z l

2
−ϵ

−∞
dxGðxÞþ

Z
l−ϵ

l
2
þϵ

dxGðxÞ−
Z

∞

lþϵ
dxGðxÞ

�
: ðB7Þ

The primitive functions of FðxÞ and GðxÞ can also be
found, which are denoted by F ðxÞ;GðxÞ. Now the term in
the bracket becomes

F ð−ϵÞ þ F ðϵÞ þ F
�
l
2
þ ϵ

�

− F
�
l
2
− ϵ

�
− F ð∞Þ − F ð−∞Þ

þ Gðlþ ϵÞ þ Gðl − ϵÞ þ G
�
l
2
− ϵ

�

− G
�
l
2
þ ϵ

�
− Gð∞Þ − Gð−∞Þ: ðB8Þ

We find that

F ð∞Þ þ Gð∞Þ ¼ 0; ðB9Þ

F ð−∞Þ þ Gð−∞Þ ¼ 0; ðB10Þ

F
�
l
2
þ ϵ

�
− F

�
l
2
− ϵ

�
¼ OðϵÞ; ðB11Þ

G
�
l
2
− ϵ

�
− G

�
l
2
þ ϵ

�
¼ OðϵÞ: ðB12Þ

And

F ð−ϵÞ þ F ðϵÞ þ Gðlþ ϵÞ þ Gðl − ϵÞ

¼ −
2βlðn2 − 1Þ cothðπlβ Þ

n2
þ β4ðn2 − 1Þ2

16π3n4ϵ2

−
β2ðn2 − 1Þ2ðcoshð2πlβ Þ − 7Þcsch2ðπlβ Þ

24πn4

þ
β2ðn2 − 1Þ2coth2ðπlβ Þ logð

β sinhðπlβ Þ
2ðπϵÞ Þ

πn4
þOðϵ2Þ: ðB13Þ
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Multiplying the prefactor back, we finally get

δSnðAÞ ¼ −
π4c2lμðnþ 1Þ cothðπlβ Þ

18β3n
þ πc2μðn− 1Þðnþ 1Þ2

576n3ϵ2

−
π3c2μðn− 1Þðnþ 1Þ2ðcoshð2πlβ Þ− 7Þcsch2ðπlβ Þ

864β2n3

þ
π3c2μðn− 1Þðnþ 1Þ2coth2ðπlβ Þ logð

β sinhðπlβ Þ
2πϵ Þ

36β2n3

þOðϵÞ: ðB14Þ

2. Finite size

The discussion in this case is similar to the one in
Appendix B 1. Now we have

hTT̄ðw; w̄ÞiMn ¼
�
c
12

�
2

fz; wgfz̄; w̄g ðB15Þ

with the Schwarzian derivatives fz; wg and fz̄; w̄g deter-
mined by the map

w → z ¼
�

tanðπwL Þ
tanðπwL Þ − tanðπlLÞ

�1
n

: ðB16Þ

Defining I ≡ hTT̄iMn − hTT̄iM and using w ¼ xþ iτ;
w̄ ¼ x − iτ, we get

δSnðAÞ ¼
−nμ
1 − n

Z
M

I

¼ −nμ
1 − n

Z
∞

−∞
dτ

Z
L

0

dxIðx; τÞ: ðB17Þ

Now we first do the x integral, and the primitive function
of Iðx; τÞ can be found which is denoted as Iðx; τÞ. After
some efforts we can express the integral as

Z
∞

−∞
dτ

Z
L

0

dxIðx;τÞ¼ π4c2

2304L4

�Z
0

−∞
dτFðτÞ−

Z
∞

0

dτFðτÞ

þ
Z

0

−∞
dτGðτÞ−

Z
∞

0

dτGðτÞ
�
;

ðB18Þ

where

FðτÞ ¼ 64D1ðτÞLðn2 − 1Þ
n4ð−1þ e

2iπl
L Þðe4πτ

L − 1Þ3ð−e4πτ
L þ e

2iπl
L Þ3 ; ðB19Þ

GðτÞ ¼ 64D2ðτÞLðn2 − 1Þ
n4ð−1þ e

2iπl
L Þðe4πτ

L − 1Þ3ð−1þ e
4πτþ2iπl

L Þ3 : ðB20Þ

Here D1, D2 are two functions of τ. We should notice that
the form of the integral (B18) is slightly different from the
one of (B4), i.e., the G integral is changed from

R
l
−∞ −

R∞
l

to
R
0
−∞ −

R∞
0 . This difference is significant.

Now FðτÞ only has a pole at τ ¼ 0, so does GðτÞ. With a
cutoff ϵ, the integral becomes

π4c2

2304L4

�Z
−ϵ

−∞
dτFðτÞ −

Z
∞

ϵ
dτFðτÞ

þ
Z

−ϵ

−∞
dτGðτÞ −

Z
∞

ϵ
dτGðτÞ

�
: ðB21Þ

The primitive functions of FðτÞ and GðτÞ can be found out,
which are denoted as F ðτÞ;GðτÞ. Now the term in the
bracket becomes

F ðϵÞ þ F ð−ϵÞ − F ð∞Þ − F ð−∞Þ
þGðϵÞ þ Gð−ϵÞ − Gð∞Þ − Gð−∞Þ:

There are log terms in F ðτÞ and GðτÞ, so we should deal
with them very carefully. After figuring out everything
carefully, we finally get

δSnðAÞ¼
πc2μðn−1Þðnþ1Þ2

576n3ϵ2

−
π3c2μðn−1Þðnþ1Þ2ð11cosð2πlL Þþ19Þcsc2ðπlLÞ

864L2n3

þπ3c2μðn−1Þðnþ1Þ2cot2ðπlLÞ logð
LsinðπlLÞ
2πϵ Þ

36L2n3

þOðϵ2Þ: ðB22Þ

[1] A. B. Zamolodchikov, Expectation value of composite field
TT̄ in two-dimensional quantum field theory, arXiv:hep-th/
0401146.

[2] F. A. Smirnov and A. B. Zamolodchikov, On space of
integrable quantum field theories, Nucl. Phys. B915
(2017) 363.

BIN CHEN, LIN CHEN, and PENG-XIANG HAO PHYS. REV. D 98, 086025 (2018)

086025-12

http://arXiv.org/abs/hep-th/0401146
http://arXiv.org/abs/hep-th/0401146
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
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