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We study universal spatial features of certain nonequilibrium steady states corresponding to flows of
strongly correlated fluids over obstacles. This allows us to predict universal spatial features of far-from-
equilibrium systems, which in certain interesting cases depend cleanly on the hydrodynamic transport
coefficients of the underlying theory, such as η=s, the shear viscosity to entropy density ratio. In this work
we give a purely field-theoretical definition of the spatial collective modes identified earlier and proceed
to demonstrate their usefulness in a set of examples, drawing on hydrodynamic theory as well as
holographic duality. We extend our earlier treatment by adding a finite chemical potential, which
introduces a qualitatively new feature, namely damped oscillatory behavior in space. We find interesting
transitions between oscillatory and damped regimes and we consider critical exponents associated with
these. We explain in detail the numerical method and add a host of new examples, including fully
analytical ones. Such a treatment is possible in the large-dimension limit of the bulk theory, as well as in
three dimensions, where we also exhibit a fully analytic nonlinear example that beautifully illustrates the
original proposal of spatial universality. This allows us to explicitly demonstrate how an infinite tower of
discrete modes condenses into a branch cut in the zero-temperature limit, converting exponential decay
into a power-law tail.
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I. INTRODUCTION

Holographic duality as a tool for applications to
strongly coupled field theories is most effective whenever
one is able to identify universal quantities or mechanisms
which do not depend on the precise details of the bulk
theory employed, as encoded for example in the couplings
appearing in the bulk action, but instead rely on universal
gravitational physics, such as that associated with black
hole horizons. A striking example of this universality,
namely the universal ringdown of deformed horizons,
has taught us a great deal about the thermalization of
strongly coupled field theories with holographic duals.
Linear infalling perturbations of black hole horizons in the
bulk are characterized by a set of complex-frequency
modes, the so-called quasinormal modes (QNM) [1–4].
Physically admissible modes must satisfy regularity at the
future horizon and decay (usually exponentially) as a

function of time. These modes are ubiquitous in our
exploration of strongly coupled quantum matter via holo-
graphic duality, not least because they manifest them-
selves as nonanalytic features in field-theory correlation
functions, most commonly as poles in retarded correlation
functions. By studying the dispersion relations of these
poles, that is by calculating their complex frequencies
ωðkÞ ∈ C as a function of real momentum, much can be
deduced about the relaxation dynamics of the dual field
theories, including all the information about the hydro-
dynamic effective description of the system, that is
transport coefficients, dispersion relations, and so forth.
In this paper, continuing recent work of [5], we study

a similarly universal set of modes, which govern the
behavior of nonequilibrium steady states of strongly
coupled field theories with holographic duals. These
modes reverse the relationship of frequency and momen-
tum described above. In other words we are interested
in the analytic properties of correlation functions in the
complex momentum plane, kðωÞ ∈ C, as a function of
real frequency. As is described in detail below, these
modes, which we term stationary collective modes
(SCM), are generically independent and distinct from
QNM. However, as we see, for relativistic field theories,
they can be related to QNM via a procedure involving
Lorentz transformations and analytic continuation.
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The physical significance of these modes is broad and
universal.1 In this work, as in [5], our main interest is in
spatial features of nonequilibrium quantum matter, but like
QNM, these modes crop up in many places, and in fact
variants have already been encountered in [8–14]. Suppose
a strongly coupled field theory with a holographic dual is
set up to flow across an obstacle, as might be achieved, for
example, by applying a thermal gradient or an electric field.
Suppose furthermore that this flow is disrupted by some
obstacle, in other words that translation invariance along
the flow is broken. In this case the system arranges itself
in such a way that there exists an asymptotic flow velocity,
vL, far from the obstacle and “to the left” and a generally
different asymptotic flow velocity, vR, far from the obstacle
and “to the right.” See Fig. 1 for an illustration. In between
these asymptotic regions the flow is complicated and
strongly nonlinear. Nevertheless, as we show, the spatial
approach towards the asymptotic regions can be universally
characterized using nonanalytic features of correlation func-
tions in the complex momentum plane. Holographically
these correspond to linear modes of the perturbed black hole
which are both regular at the future horizon and which decay
appropriately as one of the asymptotic spatial regions is
approached. These modes are what we call spatial collective
modes (SCM), as they correspond to collective excitations
governing the spacelike relaxation of the strongly coupled
theory.
In situations where the underlying theory enjoys a boost

invariance, an alternative point of view on these types of
steady states is provided by transforming into the frame
where the fluid on the upstream side of the obstacle is at
rest. In this frame, then, the physical picture is one of
dragging a codimension one obstacle through a fluid at rest,
building up a bow wave in front and leaving a wake behind,

whose spatial and temporal profiles are precisely what is
captured universally by the SCM described in this paper.
A fixed position in the fluid at rest experiences modes
which grow exponentially with time until the obstacle
arrives (the bow wave), and then decay exponentially in
time after the obstacle recedes (the wake). This alternative
point of view is schematically depicted in Fig. 2.
We give the definition of these SCM in full generality,

underlining their universal appeal, but we also find it
instructive to illustrate this fact by exhibiting these modes
in a number of interesting contexts, both analytically and
numerically. Two such contexts in which we have in fact
analytical control over the spectrum of SCM is the three-
dimensional Bañados–Teitelboim–Zanelli (BTZ) black
hole, as well as the Schwarzschild black brane in a large
number of dimensions d → ∞. In both cases we find that
the SCM are purely decaying, in other words that their
defining complex momenta are in fact purely imaginary.
This is not a general feature of such modes, and we go on to
demonstrate that oscillatory decaying modes which also
have a nonvanishing real part of the complex momentum in
fact exist. We find the requisite modes in certain regimes of
the dual field theory at nonzero charge density, that is in a
state that is dual to a bulk Reissner-Nordström black brane.
A second major focus of this paper is a more detailed

treatment of the numerical construction of nonequilibrium
steady states dual to four-dimensional black branes with
non-Killing horizons. Pursuing holographic insights into
the physics of nonequilibrium steady states has proven
to be a fruitful endeavour, as evidenced for example in
[15–28], which all underline the efficiency of the holo-
graphic approach to far-from-equilibrium physics by
elegantly exposing fascinating features such as emerging
effective temperatures, nonequilibrium fluctuation rela-
tions, which are highly nontrivial to derive from a
microscopic approach based on field theory methods.
Holography serves both to reformulate the underlying
nonequilibrium problem in terms of a well-posed system

FIG. 1. Schematic illustration of the nonequilibrium steady
state corresponding to flow across an obstacle. Far to the left
(x → −∞) and far to the right (x → þ∞) the flow returns to a
steady, homogeneous flow, different on each side. In the vicinity
of the obstacle (hatched region) the flow is nonlinearly deformed.
Connecting these two regions is a set of spatial collective modes
which describe the exponential (and sometimes oscillatory)
spatial relaxation back to equilibrium.

FIG. 2. Schematic illustration of the nonequilibrium steady
state of the type depicted in Fig. 1 in a boosted frame where the
upstream fluid is at rest (here we have allowed for a fluid flow
incident angle θ). This corresponds to the time-dependent process
of dragging a codimension one obstacle (hatched region) through
a fluid at rest. As in Fig. 1 the fluid returns to a steady
homogeneous flow far from the obstacle, and the spatial
collective modes describe this process, indicated here by the
spatial profiles of a bow wave and a wake.

1Nontrivial predictions for nonequilibrium behavior based on
equilibrium modes also are at the heart of the Kibble-Zurek
mechanism [6,7]. This analogy was pointed out previously in [5].
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of partial differential equations, suitable for numerical
solution, as well as to expose mechanisms and universal
features through analytical insight. In this work we strive
to combine both numerical and analytical insights into a
quite general picture of the kind of situation described in
[5], namely stationary flows over obstacles, first intro-
duced in [27] and termed “stationary quenches”.
These solutions were employed and briefly described

in our first publication [5], and we wish to supply a more
detailed treatment of both the properties of these in-
triguing solutions as well as the numerical methods
employed in their construction as full nonlinear solutions
to the bulk Einstein equations. The method is a variant of
the Einstein DeTurck method of [29] that applies to
situations in which the generators of the bulk horizon
are not Killing fields. This is essential for the nonequili-
brium steady states we wish to construct, as these have
broken translation invariance in the direction of the flow
as mentioned above. We also present a three-dimensional
example, based on the Janus solution of [30], where both
the nonlinear and the linear analysis can be carried out
fully analytically, beautifully confirming our proposal of
SCM in detail; that is we are able to exhibit exactly the
dominant modes governing the spatial relaxation towards
the left and right asymptotic regions. In fact, we demon-
strate that the black Janus solution itself should be viewed
as a backreacted version of the entire tower of SCM of
the three-dimensional (BTZ) black hole, which we also
construct analytically. Once this is appreciated, the spec-
trum of SCM can in fact be recovered as an inverse
Laplace transform of the nonlinear solution and is seen
to coincide precisely with the aforementioned tower of
SCM of the three-dimensional black hole.
The large array of examples we present in this paper

underscore the ubiquity of the modes proposed and defined
in [5], and we conclude with an outline of further contexts
and situations were they have promising applications. In
particular as emphasized in [5] some of the dominant
modes decay universally with a length proportional to η=s,
presenting new opportunities to experimentally determine
this ratio for strongly interacting many body systems.
The structure of this paper is as follows. In Sec. II we

give a definition of SCM from a purely field-theoretic
perspective focusing on translation symmetry breaking,
followed by a simple example drawn from hydrodynamic
diffusion. We then work out the complete theory of SCM
in charged hydrodynamics before doing the same in bulk
Einstein-Maxwell theory. The remainder of Sec. II serves to
illustrate the general definitions with a host of examples,
notably a fully analytic treatment in the large-dimension
limit of the bulk, as well as the three-dimensional case. In
the latter we have constructed a fully nonlinear example,
based on the black Janus solution, and we dedicate Sec. III
to a detailed study of this illuminating example. Section IV
is dedicated to a detailed description of the numerical

method employed in constructing examples of nonlinear
steady states where an analytical treatment is not possible.
This part can be seen as a detailed companion to the
original publication [5]. The final Sec. V, recaps the most
salient features of our analysis and gives an outlook of
some interesting future directions. Certain technical details
throughout are relegated to two the Appendices to avoid
overly complicating the main thrust of the paper.

II. UNIVERSAL MODES IN GRAVITY
AND HYDRODYNAMICS

Our first task is to characterize the modes which play the
central role in this paper. These modes achieve for breaking
spatial translations what quasinormal modes achieve for the
breaking of time translations.
When a system is perturbed by adding a time-dependent

source, one can extract universal features of the late-time
decay by studying certain modes in the complex frequency
plane, the QNM. This is to be contrasted with our non-
equilibrium steady states, where the system is perturbed
along a distinguished spatial direction. Then its universal
spatial relaxation at large distances from the disturbance is
given by SCM, to be defined below.

A. Definition of stationary collective modes

Let us commence with a seemingly standard discussion,
namely the evaluation of expectation values of operators in
the interaction (“Dyson”) representation of a quantum field
theory. Let us suppose we have the four-momentum vector
Pμ of the undeformed theory, such that a Heisenberg
picture operator is given by

ΦðxμÞ ¼ e−iPμxμΦeiPμxμ : ð2:1Þ

Correspondingly we have the Heisenberg equation of
motion for the evolution operator

∂μΦðxÞ ¼ i½Pμ;Φ� ⇔ ∂Uðx; x0Þ
∂xμ ¼ iPμUðx; x0Þ: ð2:2Þ

Usually in quantum field theory, one takes the zero
component of this equation to define the time evolution
of the system in question, and interprets the spatial
components as giving the momentum of the system
governed by its Hamiltonian evolution. For reasons that
become clear, we continue with the covariant treatment for
the time being. We then have the formal solution

Uðx; x0Þ ¼ P exp

�
i
Z

x

x0

Pμdx0μ
�

ð2:3Þ

in terms of the path-ordered exponential function, in the
sense that one should interpret the integral as being along a
parametric curve xμðsÞ with xμðsiÞ ¼ xμ0 and xμðsfÞ ¼ xμ

and the operators appearing being ordered in increasing
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order with respect to the parameter s. Say we now deform
the theory by adding a term

Uðx; x0Þ → UHeisðx; x0Þ ¼ P exp

�
i
Z

x

x0

ðPμ þ pμÞdx0μ
�
;

ð2:4Þ

where we have emphasized that we naturally obtain
the evolution operator of the deformed theory in the
Heisenberg picture. It is then customary to switch to
the interaction representation, where states evolve accord-
ing to the undeformed theory, i.e., with respect to U, while
operators evolve according to

ΦðxμÞ ¼ U†intðx; x0ÞΦðx0ÞUintðx; x0Þ; ð2:5Þ

with

Uintðx; x0Þ ¼ P exp

�
i
Z

x

x0

pμdx0μ
�
; ð2:6Þ

where the xμ dependence of pμ itself is governed only by
the undeformed evolution operator Uðx; x0Þ. This con-
struction is particularly useful if we are interested in
evaluating the influence of a perturbation on expectation
values of the system. Let us examine this for our operatorΦ
above, with respect to the deformation pμ. We have

hΦðxÞi¼
�
Pexp

�
−i
Z

x

x0

pμdx0μ
�
ΦPexp

�
i
Z

x

x0

pμdxμ
��

¼hΦðxÞi0− i
Z

x

x0

h½ΦðxÞ;pμðx0Þ�i0dx0μþ���

ð2:7Þ

up to first order in the deformation. The subscript 0 on the
correlator indicates that the expectation value is to be
evaluated in the undeformed state.Wenowdescribe a familiar
example,whereoneadds an explicitly time-dependent term to
the Hamiltonian of the system, before turning to the less
familiar example that is the focus of this work.

1. Broken time translations

The familiar case usually involves the choice pμ ¼
hðtÞδμ0, which leads to the well-known result

δhΦðt;xÞi ¼ i
Z

t

−∞
h½Φðt;xÞ; hðt0Þ�i0dt0

¼
Z

∞

−∞
Fðt0ÞGRðt − t0;x − x0Þdt0dx0; ð2:8Þ

where in the second line we have specialized to an hðtÞ
given by an external source hðtÞ ¼ R FðtÞΦðt;xÞdx, and
we have introduced the retarded correlation function

GRðt − t0;x − x0Þ ≔ iθðt − t0Þh½Φðt;xÞ;Φðt0;x0Þ�i0: ð2:9Þ
The presence of the Heaviside function, which simply came
from extending the integration range to ð−∞;∞Þ, has the
important consequence that the Fourier transform ĜRðω;kÞ
is analytic in the upper-half complex frequency plane, but
may contain poles or branch cuts in the lower half plane.
Let us conclude this section by remarking that a system

with the deformed Hamiltonian H ¼ H0 þ hðtÞ does not
conserve energy, while momentum remains a conserved
quantity,

½H;E� ≠ 0; while ½H;Pi� ¼ 0; ð2:10Þ
which is a direct consequence of the Heisenberg equations
of motion (2.2) applied to the deformed Hamiltonian.

2. Broken spatial translations

We now consider situations in which translation invari-
ance is explicitly broken along a special direction s,
while it remains intact along the remaining spatial direc-

tions, xk. Let us define some coordinates by writing

x ¼ ðx · ŝ;xkÞ ¼ ðx;xkÞ. Let us thus examine the choice
of deformation pμ ¼ pðxÞsμ, for some spacelike vector
sμ ¼ ð0; ŝÞ, along which we assume spatial homogeneity to
be broken, while all other directions remain homogeneous.2

A particular example of such a situation is given by the type
of nonequilibrium steady states mentioned in the introduc-
tion, where we consider the stationary states of an interact-
ing quantum fluid flowing over an obstacle, the obstacle
being evidently the origin of the breaking of spatial
translations. This also explains the “parallel” superscript
which refers to the directions which are unbroken, i.e.,
parallel to the obstacle. This gives3

2An alternative picture of this situation may be given as
follows: let us, for argument’s sake, consider adding a termR
Fðx0Þϕðt; x0;xkÞdx0dxk to the Hamiltonian. Here x0 is the

special direction along which translation invariance is broken.
Then the exponent of the evolution operator (2.1) formally gets a
new contribution of the form

Ht − P · x → Ht − P · xþ
Z

t

−∞
Fðx0Þϕðt0; x0;xkÞdxdxkdt0:

Since we are interested in steady states, we may safely take
the t → ∞ limit. We now specialize to a source Fðx0Þ¼
Θðx−x0Þfðx0Þ. At this point, it becomes more natural to
actually think of the deformation as pertaining to the momentum
operator, so that

P · x → P · x −
Z

x

−∞
pðx0Þdx0

with pðx0Þ ≔ R
Fðt; x0;xkÞϕðt; x0;xkÞdtdxk. This is precisely the

spacelike case treated above.
3By assumption our system is in a steady state with respect to

the undeformed Hamiltonian. Therefore the entire time depend-
ence comes from the undeformed part of the Hamiltonian.
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δhΦðt;xÞi¼−i
Z

x·ŝ

−∞
h½Φðt;xÞ;pðx0Þ�i0sμdx0μ

¼−i
Z

x

−∞
h½Φðt;xÞ;pðx0Þ�i0dx0

¼
Z

∞

−∞
Fðx0ÞG½↘�ðt− t0;x−x0;xk−xk0Þdt0dx0:

ð2:11Þ

In the first line the upper limit of the integral instructs us to
integrate along the direction sμ up to the spatial position
x · ŝ of the operator we are interested in measuring. In the
second line we have introduced the parametrization
sμdxμ ¼ dx and written the limits on the integral accord-
ingly. The source FðxÞ now depends only on the spatial
direction x. Finally, in the last step we have written the
deformation as pðxÞ ¼ R Fðx · ŝÞΦðt;xÞdtdxk, and intro-
duced the “decay to the right” correlator

G½↘�ðx − x0Þ ¼ −iθðx − x0Þh½Φðt;xÞ;Φðt0;x0Þ�i0; ð2:12Þ

where we have suppressed the dependence with respect to
t − t0 and the remaining spatial directions for simplicity.
At first sight this looks very unfamiliar, taking the form of a
retarded correlation function with respect to some spatial
direction. We now explain why such a definition is useful.
We first note that the Fourier transform of this object

with respect to the special direction

Ĝ½↘�ðkÞ ≔
Z

dx
2π

G½↘�ðxÞe−ikx ð2:13Þ

is analytic in the lower half complex k plane, but may
show nonanalytic features, such as poles and branch cuts in
the upper half complex k plane. This corresponds to the
situation illustrated in Fig. 3 and gives rise to modes that are

decaying in the positive x direction. In other words, there is
an obstacle breaking spatial homogeneity in the special
direction, and we enquire about the spatial profile of the
expectation value of Φ to the right of the obstacle. The
relevant physical solutions contributing to this quantity are
therefore modes which have regular, i.e., decaying, behav-
ior as we approach the right asymptotic region x → þ∞,
while they are unconstrained as x → −∞.
The analytic structure discussed here parallels what is

found in the ω → 0 limit of [9], and we refer the reader to
this work for an insightful discussion. Illustrating further
the ubiquity of SCM, these authors study modes at complex
momentum in the context of equilibrium attenuation
lengths of a holographic plasma, while our present work
emphasizes the relevance of SCM to nonequilibrium
properties of stationary states.
The analogously defined correlator

G½↙�ðx − x0Þ ¼ iθðx0 − xÞh½Φðt;xÞ;Φðt0;x0Þ�i0 ð2:14Þ
instead involves only excitations which are regular as the
left asymptotic region x → −∞ is approached, while being
unconstrained for x → þ∞. The corresponding Fourier
transform

Ĝ½↙�ðkÞ ≔
Z

dx
2π

G½↙�ðxÞe−ikx ð2:15Þ

is analytic in the upper half complex k plane, while
allowing for nontrivial structure in the lower half complex
plane, illustrated in Fig. 3. In a further analogy to the
previous subsection, the system described here conserves
energy, but does not conserve momentum,

½H;E� ¼ 0; while ½H;Pi� ≠ 0: ð2:16Þ
Without anticipating too much of our discussion in

Sec. II E below, let us briefly remark that these modes

FIG. 3. Poles of the Fourier transform of the “decay to the right” correlation function, Ĝ½↘�ðkÞ, and of the decay to the left correlation
function, Ĝ½↙�ðkÞ, in this order, and as defined in the text. The blue contour corresponds to the region to the right of the obstacle, and the
green contour to the left.
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can be computed from a simple holographic prescription.
There SCM are found by studying linear modes around a
finite-v black brane background, which are regular at the
future horizon as well as regular for x → ∞ for G½↘�ðkÞ or
regular as x → −∞ for G½↙�ðkÞ, where x is the distin-
guished direction along which translational symmetry is
broken.
We now illustrate our definitions in various different

situations. We start with a simple example, namely the
hydrodynamic theory of diffusion. We then work out the
general description within a charged relativistic hydro-
dynamic effective theory before moving on to holography
in a number of different contexts. The latter remains
the focus of our paper, so we aim on giving a clear
prescription of how to compute these modes in theories
with holographic duals.

B. A simple hydrodynamic example

Let us furnish the definition above with a simple
example. Consider a diffusive linear fluctuation, nðt;xÞ,
obeying the equation

ðuμ∂μ −DΔμν∂μ∂νÞnðt;xÞ ¼ 0; ð2:17Þ

with diffusion constant D ≥ 0 where uμ is unit normed,
timelike and future directed, which wemay parametrize by a
(d − 1)-velocity, uμ ¼ γð1; vÞμ, where γ ¼ ð1 − v · vÞ−1=2.
The projector orthogonal touμ is given byΔμν ¼ ημν þ uμuν.
With the choice v ¼ 0 (2.17) reduces to the diffusion
equation. A defining feature of the modes we are interested
in is the absence of temporal growth or decay since we are
seeking the late time behavior of a system, and this may be
either steady or time oscillatory. A second defining feature of
the collective modes is unbounded growth in one spatial
direction. This is so that themode can grow in order tomatch
on to a source, such as an obstacle. Let us therefore single out
the coordinate x ¼ x · ŝ (see above), in which we permit
unbounded growth, andwe denote all other spatial directions
by xk in which we do not. For convenience we can
decompose in Fourier modes in t and xk,

nðt; x;xkÞ ¼
Z

dωdd−1kk
ð2πÞd n̂ðx;ω;kkÞeikk·xk−iωt; ð2:18Þ

and then the desired stationarity / temporal regularity con-
dition is expressed by Imω ¼ 0 and the desired spatial
regularity condition is expressed by Imkk ¼ 0, whilst
n̂ðx;ω;kkÞ may be unbounded in x. We make no restriction
on v in general, but for the sake of simplicity in this example
we restrict to flows which satisfy vk · kk ¼ 0. Solutions to
(2.17) are then given by

n̂ðx;ω;kkÞ ¼ Aþeαþx þ A−eα−x; ð2:19Þ

where

α� ¼ 1

2γD

 
v ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4D2k2k −

4Diω
γ

s !
þ viω: ð2:20Þ

With the given conditions on D, kk, ω one can prove that
Reαþ ≤ 0 when v ≥ 0 and so the associated mode (with
coefficientAþ) does not diverge as x → þ∞. Thus thismode
describes decay in the downstream direction. Similarly the
α− mode describes decay in the upstream direction.
In the notation of Sec. II A, the α− mode would appear as

a pole in Ĝ½↙�ðkÞ, while the αþ mode would appear as a
pole in Ĝ�↘�ðkÞ.
We note that kk ≠ 0 cannot induce a nonzero Imα− at

ω ¼ 0, but such oscillations are seen if ω ≠ 0; a source that
is oscillating in time leaves an imprinted pattern on both the
upstream and downstream sides of the flow, with a wave-
length set by the velocity of the flow itself.
Finally, let us remark that a similar hydrodynamic analysis

for the timelike case would appear to give rise to modes that
appear as poles both in the retarded and the advanced
correlation function. This is actually not the case, as the
diffusive nature of the hydrodynamic equation dictates a
direction of time and therefore selects one or the other of
the retarded or advanced correlation function depending on
the sign of D. In other words, one cannot run the diffusion
equation backwards in time without unphysically changing
the sign of the diffusion constant. There is an interesting link
with analyticity and causality underpinning this behavior,
which we further elaborate in the discussion section.

C. Charged hydrodynamics

Although we are mostly concerned with two- and three-
dimensional field theories, the analysis is easily performed
in d space-time dimensions. As usual in hydrodynamics we
begin by writing down the stress tensor and current in a
derivative expansion

Tμν ¼ Tð0Þ
μν þ Πð1Þ

μν þOð∂Þ2; ð2:21Þ

Jμ ¼ Jð0Þμ þ Jð1Þμ þOð∂Þ2; ð2:22Þ

where, up to first order, we have the Landau frame
expressions

Tð0Þ
μν ¼ εuμuν þ pΔμν; ð2:23Þ

Πð1Þ
μν ¼ −ησμν − ζΔμν∂ · u; ð2:24Þ

Jð0Þμ ¼ nuμ; ð2:25Þ

Jð1Þμ ¼ −σTΔμ
ν∂ν

�
μ

T

�
: ð2:26Þ
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Here the shear tensor is given by

σμν ¼ 2Δμ
ρΔν

σ

�
∂ðρuσÞ −

1

d − 1
ηρσ∂ · u

�
; ð2:27Þ

where ε is the energy density, p is the pressure, uμ is a
timelike unit-normalized d-velocity field while n is the
charge density. The tensor Δμν ¼ ημν þ uμuν projects
orthogonally to uμ. The quantities η and ζ are the shear
and bulk viscosities, and σ is the charge conductivity.
The energy-stress tensor and the current are subject to
conservation equations,

∂μTμν ¼ 0; ð2:28Þ
∂μJμ ¼ 0: ð2:29Þ

These conservation laws give rise to dþ 1 equations for the
dþ 2 unknowns contained in uμ, ε, p, n. Consequently,
this system of equations still needs to be closed by
specifying an equation of state pðT; μÞ. This equation of
state depends on the physical system under consideration,
but for the majority of this paper we are interested in
holographic field theories, which are conformal in the UV.
The required general conformal equation of state, and the
specific example of the conformal equation of state for the
Reissner-Nordström solution can be found in Appendix A
together with its associated transport coefficients.
In order to find the collective modes, we solve the

conservation equations for linear perturbations about a
long-range stationary state characterized by ε, p, n and a
(d − 1) velocity v, such that uμ ¼ γð1; vÞ where γ ¼ 1ffiffiffiffiffiffiffiffiffi

1−v·v
p .

We then consider time-independent perturbations of the
form

εðxμÞ ¼ εþ δεeikσx
σ
; ð2:30Þ

pðxμÞ ¼ pþ δpeikσx
σ
; ð2:31Þ

nðxμÞ ¼ nþ δneikσx
σ
; ð2:32Þ

uμðxμÞ ¼ uμ þ δuμeikσx
σ
: ð2:33Þ

The modes we are interested in are time independent in the
laboratory frame, namely the frame in which we have a
steady state; that is they have kμ ¼ ð0;kÞ in the frame
where uμ ¼ γð1; vÞ. Inserting these perturbations into the
energy-stress tensor, we find

δTμν
ð0Þ ¼ ðuμuνδεþ Δμνδpþ 2ðεþ pÞuðμδuνÞÞeikσxσ ;

ð2:34Þ

δΠμν
ð1Þ ¼

�
−2ηΔρðμδuνÞ þ

�
2η

d − 1
− ζ

�
Δμνδuρ

�
ikρeikσx

σ
:

ð2:35Þ

The conservation equations (2.28) then give

ikμδT
μν
ð0Þ þ ikμδΠ

μν
ð1Þ þOðk3Þ ¼ 0; ð2:36Þ

ikμJ
μ
ð0Þ þ ikμJ

μ
ð1Þ þOðk3Þ ¼ 0: ð2:37Þ

Finally let us use the equation of state to define the
susceptibilities

α1 ¼
�∂μ
∂ε
�

n
−
μ

T

�∂T
∂ε
�

n
; α2 ¼

�∂μ
∂n
�

ε

−
μ

T

�∂T
∂n
�

ε

ð2:38Þ
and

β1 ¼
�∂p
∂ε
�

n
; β2 ¼

�∂p
∂n
�

ε

: ð2:39Þ

We now have all formulas and definitions in place to
determine our SCM. Once an equation of state is specific
these quantities can be found explicitly; see for example A
for the case of the conformal equation of state in d
dimensions. In the following, it is most convenient to split
the analysis into different channels, according to whether
the velocity field perturbation is transverse or longitudinal
with respect to the momentum.

1. Transverse channel

We start with the transverse channel, that is velocity field
perturbations δu, such that k · δu ¼ 0. We find

ðk · uÞδn − iσΔk2ðα1δεþ α2δnÞ ¼ 0; ð2:40Þ
ðk · uÞuνδεþ kμΔμνðβ1δεþ β2δnÞ þ ðεþ pÞðk · uÞδuν

− iηΔk2δu
ν ¼ 0; ð2:41Þ

where here and below we use the shorthand

Δk2 ¼ kμkνΔμν: ð2:42Þ
Let us first examine the case when k · u ¼ 0, i.e., when the
momentum of the perturbation, in addition to being trans-
verse to δu, is also transverse to the background flow
velocity. First we note that the stress tensor conservation,
contracted with u, gives the relation

ðk · uÞδε ¼ −ðεþ pÞk · δu ð2:43Þ
i.e., that k · u ¼ 0 implies that the perturbation is transverse
k · δu ¼ 0. Assuming this is the case, the charge conser-
vation equation gives

δn ¼ −
α1
α2

δε ð2:44Þ

which when plugged back into the stress tensor conserva-
tion tells us that
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δuμ ¼ α2β1 − α1β2
iηα2

kμ

k2
δε: ð2:45Þ

However, this contradicts our assumption that δu is normal
to k, implying that our system of equations has no solution
unless the quantity in the numerator above vanishes. As we
see below, this combination of susceptibilities is related to
the charge diffusion constant, which is generically nonzero.
We conclude that no nontrivial mode for k · u ¼ 0 exists. We
may thus proceed with our analysis, assuming k · u ≠ 0.
In order to make further progress, we start by projecting

Eq. (2.41) onto uμ, keeping in mind that the normalization
condition on the flow velocity implies that u · δu ¼ 0. We
immediately find that δε ¼ 0. Projecting (2.41) onto k, we
discover in addition that δn ¼ 0. Notice that this follows
from the fact that Δ2

k ≠ 0, since both contributing terms are
positive definite for our choice of kμ in the lab frame. We
are thus left with the nontrivial condition

½ðεþ pÞðk · uÞ − iηΔk2 �δuμ ¼ 0: ð2:46Þ

Writing

uμ ¼ γð1; vÞ; kμ ¼ ð0;kÞμ; ð2:47Þ

so that v · k ¼ vk cos θ, we conclude that there is a non-
trivial transverse mode with dispersion relation

ðεþ pÞ kv cos θffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p − iηk2
1 − ðv sin θÞ2

1 − v2
þOðk3Þ ¼ 0;

ð2:48Þ

for which

δε ¼ δn ¼ 0; δuμ ≠ 0; ðwith k · δu ¼ 0Þ: ð2:49Þ

This concludes our analysis of the transverse channel.
Let us now turn to the longitudinal channel.

2. Longitudinal channel

A longitudinal perturbation satisfies δuμ ¼ δuLΔμνkν=k,
where k ¼ ffiffiffiffiffiffiffiffiffi

kμkν
p

is the norm of the spacelike momentum.
As we argued above, without loss of generality we can take
k · u ≠ 0 in the longitudinal channel and we do so from
now on. There are three independent modes in this channel,
which we determine as follows. We first substitute the form
of δuL into the dynamical equations (2.36). These then take
the form of a scalar equation (the current conservation
equation) and a vector equation (the stress tensor con-
servation equation). We may use the equation of state to
eliminate δp from these, and finally project the vector
equation first onto kμ and then onto uμ. This results in the
following system of three linear equations,

0
BB@

k · u 0 ðεþ pÞ Δ2
k
k

−iσΔ2
kα1 k · u − iσΔ2

kα2 n
Δ2

k
k

Δ2
k
k β1

Δ2
k
k β2

Δ2
kðεþpÞ
k2 ðk · u − iΔ2

kγsÞ

1
CCA

×

0
B@

δε

δn

δuL

1
CAþ

0
B@

0

OðkÞ3
OðkÞ3

1
CA ¼ 0; ð2:50Þ

expanded in small momentum k and where we have defined

γs ≡
d−2
d−1 2ηþ ζ

εþ p
: ð2:51Þ

Note that the first of these equations corresponds to the
conservation of energy and is exact in k. The second of
these is the charge conservation equation and is correct to
second order in k with order k3 terms truncated. The
remaining equation is correct to second order in k. A
physical mode, that is a hydrodynamic SCM, corresponds
to a nontrivial solution of this linear equation, in other
words an eigenmode with eigenvalue 0. Each eigenvalue is
a polynomial in k and the vanishing of this polynomial
gives the dispersion relation of a nontrivial longitudinal
SCM admitted by the system of equations (2.28).
We now explicitly construct the eigenvalues and asso-

ciated eigenmodes for the system (2.50), working order by
order in k. Specifically, denoting the matrix multiplying
ðδε; δn; δuLÞT in (2.50) by M, we wish to solve

M · VI ¼ λIVI; ð2:52Þ

where I ¼ 1, 2, 3 labels the eigenmode. As in the transverse
channel we have v · k ¼ vk cos θ. Next we expand as
follows in powers of k,

M ¼ Mð1ÞkþMð2Þk2 þOðkÞ3; ð2:53Þ

VI ¼ Vð0Þ
I þ Vð1Þ

I kþOðkÞ2; ð2:54Þ

λI ¼ λð1ÞI kþ λð2ÞI k2 þOðkÞ3; ð2:55Þ

v → vI ¼ vð0ÞI þ vð1ÞI kþOðkÞ2: ð2:56Þ

Then we solve the eigenmode equation (2.52), where at

each order setting λðnÞI ¼ 0 determines vðn−1ÞI for the mode
in question labeled by I. Note that in the results that follow

we have fixed a freedom to shift Vð1Þ
I by a multiple of Vð0Þ

I ,
and we have done so simply by looking for the most
compact presentation.
At OðkÞ we have the following eigenmode problem,

Mð1Þ · Vð0Þ
I ¼ λð1ÞI Vð0Þ

I ; ð2:57Þ
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which we solve directly to obtain V0
I and λ

ð1Þ
I . Each solution

to this leading order problem picks a different physical

mode, with λð1ÞI ¼ 0 corresponding to the leading order part
of its dispersion relation. In the following we treat each in
turn, denoting cθ ≡ cos θ and sθ ≡ sin θ, for compactness.

a.Diffusive mode
In this case the fluctuations, up to first order in the

momentum expansion, have dispersion relation and
eigenmodes, given by

v ¼ i
Dαβ

cθ
kþOðkÞ2; ð2:58Þ

fδε; δn; δuLgð0Þ ¼ f−β2; β1; 0g; ð2:59Þ

fδε; δn; δuLgð1Þ ¼
�
0; 0; iβ2

Dαβ

εþ p

�
; ð2:60Þ

where we have defined a diffusion constant and the speed
of sound,

Dαβ ¼ σ
α2β1 − α1β2

c2s
; c2s ≡ β1 þ

n
εþ p

β2: ð2:61Þ

We may think of this mode as primarily accounting for
charge density perturbations since, for example, in a
conformal theory (β2 ¼ 0, see Appendix A) it consists
solely of δn, even at nonzero background velocities. In
more general theories, we still have a diffusive (purely
imaginary) dispersion relation for charge fluctuations,
which are, however, coupled to nontrivial energy and
velocity fluctuations.

b.Soundlike modes
For soundlike modes the fluctuations, up to first order in

the momentum expansion, take the form

v ¼ �v0 þ iΓ
ð1 − s2θv

2
0Þ2

2cθ
γ0kþOðkÞ2; ð2:62Þ

fδε; δn; δuLgð0Þ ¼ fð1 − s2θv
2
0Þγ20ðεþ pÞ;

ð1 − s2θv
2
0Þγ20n;∓ cθγ0v0g; ð2:63Þ

fδε; δn; δuLgð1Þ ¼ γ30ð1 − s2θv
2
0Þ
�
0;�icθv0

Γ − γs
β2ðεþ pÞ ;

−
i
2
γ0ð1 − ð1þ c2θÞv20ÞΓ

�
; ð2:64Þ

where we have introduced a second diffusion constant

Γ≡ γs þ
σβ2ðα1 þ n

εþp α2Þ
c2s

; ð2:65Þ

and where γ0 ¼ 1ffiffiffiffiffiffiffiffi
1−v2

0

p for a speed of sound modified by the

angle of incidence,

v0 ¼
csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ss2θ þ c2θ

q : ð2:66Þ

Note that this mode does not contain any δn component for
neutral backgrounds μ ¼ n ¼ 0.
Let us now further explain why we used the terminology

diffusive and soundlike for our SCM, which will also show
that Γ is related to conventional sound attenuation.

c.Relation to conventional hydrodynamic modes
Our SCM in the laboratory frame are defined to have

vanishing imaginary part of the frequency and appear for
complex values of momentum. For simplicity we here
restrict to zero frequency. More generally one can also
consider SCM with nonzero frequency similar to the
equilibrium modes studied in [9]. Due to the underlying
Lorentz symmetry it is possible, at least formally, to
transform these modes back into the rest frame of the
fluid. There they can be analytically continued into modes
which satisfy dispersion relations, more conventionally
associated with hydrodynamic modes, or in the gravity
case, hydrodynamic quasinormal modes. In this way the
diffusive SCM is related to ordinary charge diffusion in the
fluid rest frame where this mode obeys the dispersion
relation ω ¼ −iDαβq2. Similarly the soundlike SCM is
related via boost and analytic continuation to a standard
sound mode with dispersion relation ω ¼ �csq − i Γ

2
q2.

We emphasize once more that this procedure relies on the
Lorentz symmetry of the underlying theory, as well as
analytic continuation, and fails for a nonrelativistic theory.
In general, i.e., in the absence of Lorentz symmetry, the
SCM considered in this paper are physically distinct from
and independent of quasinormal modes.

D. Neutral hydrodynamics

Here we review briefly the special case of a neutral fluid,
which we discussed in a previous publication [5]. In the
present context the results of [5] can be recovered simply as
the limit of zero charge density, n → 0, of the charged case.
For completeness we repeat the salient equations here. [5]
did not consider charge density fluctuations, as there was
no bulk gauge field. In that case, only the soundlike mode
arises, whose dispersion relation indeed corresponds to the
n → 0 limit of (2.62).

1. Transverse channel

The analysis for the transverse mode proceeds as for the
charged case above, resulting in the unmodified transverse
mode dispersion relation

ðεþ pÞ kv cos θffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p − iηk2
1 − ðv sin θÞ2

1 − v2
þOðk3Þ ¼ 0;

ð2:67Þ

which was given previously in [5].
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2. Longitudinal channel

a.Diffusive mode
We again have a diffusive mode with dispersion relation

v ¼ i Dαβ

cθ
kþOðkÞ2, and mode structure

fδε; δn; δuLgð0Þ ¼ f−β2; β1; 0g; ð2:68Þ

fδε; δn; δuLgð1Þ ¼
�
0; 0; iβ2

Dαβ

εþ p

�
: ð2:69Þ

The constant Dαβ is defined as before, and the speed of
sound reduces to c2s ≡ β1. This mode is primarily a charge
diffusion mode, and was consequently not considered in the
analysis of the neutral fluid in [5].

b.Soundlike modes
Finally, we have the sound mode with dispersion relation

v ¼ �v0 þ iΓ ð1−s2θv20Þ2
2cθ

γ0kþOðkÞ2 and mode structure

fδε; δn; δuLgð0Þ ¼ fð1 − s2θv
2
0Þγ20ðεþ pÞ; 0;∓ cθγ0v0g;

ð2:70Þ
fδε; δn; δuLgð1Þ

¼ γ30ð1 − s2θv
2
0Þ
�
0; 0;−

i
2
γ0ð1 − ð1þ c2θÞv20ÞΓ

�
:

ð2:71Þ
We can solve the dispersion relation for k to obtain

k ¼ −i
εþ p

d−2
d−1 ηþ 1

2
ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20

p
cos θ

ð1 − ðv0 sin θÞ2Þ2
ðv ∓ v0Þ þOðkÞ2;

ð2:72Þ
which is the form given in [5]. We now move on to a
different arena in which we can characterize our SCM in a
detailed fashion, namely holography. Since this is a micro-
scopic theory going beyond the hydrodynamic limit, we are
also able to illustrate SCM that are not captured by a
hydrodynamic effective theory.

E. AdS Reissner-Nordström

Since we would like to compute modes pertaining to
steady states of a finite-temperature finite charge system,
the appropriate bulk theory is Einstein-Maxwell. We start
from such a theory in the bulk in the conventions of [31],

Sbulk ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p 	
1

2κ2

�
Rþ dðd − 1Þ

L2

�
−

1

4g̃2
F2



:

ð2:73Þ
Here g̃ is the Maxwell coupling and κ ¼ 8πGN . The
relevant background is the Reissner-Nordström black hole
in AdS space, with line element given by

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dxidxi
�
; ð2:74Þ

where L is the AdS radius and

fðzÞ ¼ 1 −
�
1þ z2hμ

2

γ̃2

��
z
zh

�
d
þ z2hμ

2

γ̃2

�
z
zh

�
2ðd−1Þ

:

ð2:75Þ
In the expression for fðzÞwe have introduced the dimension-
dependent constant γ̃, defined as

γ̃2 ¼ ðd − 1Þg̃2L2

ðd − 2Þκ2 : ð2:76Þ

In these coordinates the conformal boundary is located at
z ¼ 0, and we denote the position of the horizon by zh.
The scalar potential is nontrivial and given by

At ¼ μ

	
1 −

�
z
zh

�
d−2


; ð2:77Þ

and the Hawking temperature by the expression

T ¼ 1

4πzh

�
d −

ðd − 2Þz2hμ2
γ̃2

�
: ð2:78Þ

Now, we boost along the planar horizon direction by uμ.
Writing the boostedmetric in ingoing Eddington-Finkelstein
coordinates we have

ds2boosted ¼
L2

z2
ð−fðzÞðuμdxμÞ2 þ 2uμdxμdzþ ΔμνdxμdxνÞ;

ð2:79Þ
where

Δμν ¼ ημν þ uμuν and uμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ð1; vÞ: ð2:80Þ

The Greek indices μ, ν refer to boundary coordinates, i.e.,
μ, ν ¼ v, x, y, while the Latin indices encompass all of the
coordinates. To construct the spatial collective modes
from the bulk perspective, we linearly perturb the metric.
We take the following ansatz for the perturbations:

δgabðz; xμÞdxadxb ¼ hμνðzÞeikσxσdxμdxν; ð2:81Þ

δAaðz; xμÞdxa ¼ HμðzÞeikσxσdxμ: ð2:82Þ

There are no perturbations that involve the radial direction z
by our choice of axial gauge.
For the sake of specificity in the calculations, which we

eventually perform numerically, we boost the metric in the
x direction

v ¼ ð0; vx; 0Þ: ð2:83Þ
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The perturbations (2.81) give rise to a set of coupled
ordinary differential equation (ODEs) in z in the Einstein
and Maxwell equations. It is most convenient to organize
them into a transverse and longitudinal channel with
respect to the obstacle.4 The hxy, hvy and Hy belong to
the transverse channel, whereas hvv, hxx, hyy and Hv, Hx

belong to the longitudinal channel. The two channels
cannot mix and thus form two sets of mutually decoupled
linear differential equations.
We must also specify boundary conditions. We prescribe

Dirichlet boundary conditions at the UV boundary ensuring
all sources are set to 0. In analogy with a similar procedure
for calculating black hole quasinormal modes, we require
regularity on the future event horizon, and in addition
regularity in one of the two asymptotic directions [5]. For a
detailed discussion, the reader may refer back to Sec. II A.
We have not been able to solve the equations analytically.5

We therefore solve these ODEs numerically, utilizing a
double-sided shooting method. We specify input boundary
and horizon data and then integrate the equations on one side
from the boundary, and on the other from the horizon to a
common midpoint. In order to have a solution the numerical
values obtained by integrating from both sides must match at
the midpoint for the functions and whenever a component
equation is of second order, also their first derivatives. This is
achieved by finding suitable values of the input data via a
Newton-Raphson routine. The routine changes the values we
initially specify incrementally, until the midpoint solutions
are a match up to a certain precision we specify. In our case,
for most solutions, the threshold for an acceptable solution
was chosen such that the absolute value of the difference at
the midpoint was less than 10−8.
In the concrete calculations we report on below, we

choose d ¼ 3, that is we work in AdS4 and to simplify
things further, we choose L ¼ zh ¼ 1 and units in which
g̃2 ¼ 2κ2 ¼ 1.

1. Transverse channel

The ODEs in the transverse channel are given by the
following expressions,

ikxγhvy þ μvγHy þ
ðf − 1Þvγ2

z2
ðz2hvyÞ0

þ 1þ ðf − 1Þγ2
z2

ðz2hxyÞ0 ¼ 0; ð2:84Þ

μγðz2ðhvy þ vhxyÞÞ0 þ k2xγ2Hy þ 2ikxvγH0
y − ðfH0

yÞ0 ¼ 0;

ð2:85Þ

ikxμvγ2

f
Hy þ μγH0

y þ
k2xγ2

f
hvy þ

2ikxvγ
zf

ðzhvyÞ0

þ f
f0
vγ2

z2
ðz2ðhxy þ vhvyÞÞ0

þ 1

z3
ðz2ðhvy − zh0vyÞÞ0 ¼ 0; ð2:86Þ

where f is the metric function defined in (2.75), and primes
denote derivatives with respect to z. Just like the QNM
case, our holographic model UV completes the hydro-
dynamic analysis given above. In other words, we expect to
find modes corresponding to the hydrodynamic poles we
exhibited above, as well as an infinite tower of additional
nonhydrodynamic modes which are specific to the holo-
graphic model we analyze. More specifically, in the trans-
verse channel, we expect to find the hydrodynamic shear
diffusion mode calculated in Sec. II C 1, given by the
dispersion relation

k ¼ −i
ϵþ p
η

v cos θ þOðk2Þ; ð2:87Þ

as well as a tower of higher nonhydrodynamic modes. In
fact we see a fascinating interplay of hydrodynamic poles
and nonhydrodynamic poles, which gives rise to a rich
analytic structure in the complex momentum plane recently
observed in [32]. Such an analytic continuation suggests a
path for a definition of QNMs in terms of hydrodynamic
resummations, as indeed has been already explored in [33]
for the Müller-Israel-Stewart theory [34,35]. The neutral
case (μ ¼ 0) has been reported previously in [5] and so we
are mostly interested in the behavior of these modes at
finite chemical potential μ.
In Fig. 4 we plot the spectrum of spatial collective

modes, as a function of asymptotic flow velocity, for values
of μ ¼ 1 (left panel) and μ ¼ 1.5 (right panel). We show the
imaginary part of the complex momentum k in suitable
units along the vertical axis as a function of asymptotic flow
velocity v along the horizontal axis. The red dashed line
represents the dispersion relation given by hydrodynamics
(2.87). It can be seen that indeed one of the modes we find
numerically corresponds to hydrodynamic shear diffusion
in the low k limit, while there exist, as expected, higher
nonhydro poles. It is of particular interest to notice the pole
collisions that take place between the hydrodynamical
mode and a nonhydrodynamical mode for a critical value
of the background flow velocity v ¼ vcritical as indicated by
turquoise diamonds in Fig. 4: initially the poles have purely
imaginary momentum k (shown in orange), while, at the
critical velocity vcritical, the poles collide with the resulting
mode (shown in blue) acquiring a real part of k.
This pole collision is the SCM analog of similar QNM

collisions, encountered previously in [36–39]. The rel-
evance to nonequilibrium phase transitions, as is also the
case here, was first noted in [37]. Accordingly we find that

4For a detailed covariant treatment of this decomposition, for a
general incident angle, see Supplemental Material of [5].

5Although, see Sec. II G for the AdS3 case, where analytical
solutions can in fact be obtained.
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the vanishing of the real part as one approaches the critical
point follows a power law

Rek ¼ Aðvcritical − vÞα; ð2:88Þ

where A is a proportionality coefficient, vcritical is the critical
velocity at which the transition occurs, and α is the critical
exponent. We can numerically extract from this relation the
value of the critical exponent α. By defining fðvÞ ¼ ðRekÞ2
one can see that the following function,

αðvÞ ¼ 1

2

	
1 −

f00ðvÞfðvÞ
ðf0ðvÞÞ2



−1
; ð2:89Þ

where a prime denotes a derivative with respect to v, gives
the critical exponent α in (2.88) when evaluated at the
critical velocity, i.e., α ¼ αðvcÞ. We use this relation to plot
the behavior of the critical exponent. By plotting the
behavior of this combination of derivatives for the range
of velocities at which there exists a real part of the
momentum (see Fig. 5), one can see that it converges to
1
2
as we approach the critical velocity. This corresponds to

the value of the critical exponent one might expect from a
mean-field theory of this transition.
We also analyzed how the critical velocity depends on the

dimensionless ratioμ=T. The results are shown in Fig. 6. One
can see that for very low μ=T (the high-temperature limit) the
critical velocity approaches values nearing 1.

2. Longitudinal channel

The perturbation equations in the longitudinal channel
are unwieldy and unenlightening, so we do not give them
here. We repeat a similar analysis as in the transverse case,
mutatis mutandis.

From the hydrodynamic analysis in Sec. II C 2, in the
longitudinal channel we expect to find hydrodynamic
sound modes

k ¼ −i
2 cos θ

Γð1 − sin2 θv20Þ2γ0
ðv ∓ v0Þ þOðk2Þ; ð2:90Þ

as well as a charge diffusion mode

k ¼ −i
cos θ
Dαβ

vþOðk2Þ: ð2:91Þ

FIG. 4. Spectrum of SCMs in the transverse channel for values of μ ¼ 1.0 (left panel) and μ ¼ 1.5 (right panel). The motion of the
imaginary part of the complex momentum is shown as a function of background velocity. Parts of the spectrum where the mode is purely
imaginary are shown in orange, while blue dots correspond to the parts where the mode has nontrivial imaginary and real parts. These
behaviors transition into each other at the collision points indicated by turquoise diamonds. The red dashed line shows the SCM as
predicted in our charged hydrodynamic effective theory.

FIG. 5. The critical exponent in the transverse channel for
μ ¼ 1.0, exhibited by the function αðvÞ defined in (2.89). It can
be seen that the mean-field value of α ¼ 1=2 is approached at the
critical velocity, vc.
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The numerical spectrum of bulk SCMs in the longitudinal
channel for μ ¼ 1.0 and μ ¼ 1.5 is given in Fig. 7. The
modes we calculate show good agreement with hydro-
dynamics (2.90) and (2.91) in the regime of small k, as
required by hydrodynamics, and these are shown in Fig. 7
as the green and red dashed lines, respectively. As in the
transverse case, we can again observe a pole collision at a
certain critical velocity, indicated in Fig. 7 by yellow and
turquoise diamonds. In the case indicated by the turquoise

diamond the two sound and charge diffusion poles collide,
after which the resulting pole has a nonzero value of Re k.
Both these poles are visible within a hydrodynamical
analysis, and their point of collision appears to be well
approximated by the extrapolation of their first order in
hydrodynamics dispersion relation as we discuss below.
Within a purely hydrodynamical analysis, however, one
does not observe the actual collision, the two modes
remaining distinct through the would-be collision point.
The yellow diamond corresponds to a collision between
the hydrodynamic sound mode and a nonhydro SCM,
which shows oscillatory behavior for small flow velocities,
i.e., v < vc, contrasting with the behavior of the collision
between the two hydrodynamical modes marked in
turquoise.
As shown in Fig. 8, the value of the critical exponent

again converges to 0.5 as one approaches the critical
velocity. This is in agreement with what we found in the
transverse channel and, again, with expectations from
mean-field theory. The numerical error in the computation
of the expression (2.89) becomes more pronounced as we
go further away from the critical point, as evidenced by the
noisier data.
Likewise, the dependence of the critical velocity on μ=T

(Fig. 9) is rather similar to the transverse case. In Fig. 9 we
also show a hydrodynamic estimate for this collision
obtained simply by equating the analytic expressions for
kðvÞ for the one of the sound modes (2.90) with the
diffusion mode (2.91), at normal incidence,

vhydroc ¼ � v0
1 − Γγ0

2Dαβ

: ð2:92Þ

FIG. 6. Behavior of the critical velocity for flows of a holo-
graphic plasma at finite charge density as a function of μ=T,
above which the transverse channel SCM wave vector develops a
real part, and the spatial relaxation becomes oscillatory. For
specific values of μ=T these transitions are shown by the
turquoise diamonds in Fig. 4.

FIG. 7. Spectrum of SCMs in the longitudinal channel for values of μ ¼ 1.0 (left panel) and μ ¼ 1.5 (right panel). As before purely
imaginary-k poles are shown in orange, while poles with both imaginary and real parts are shown in blue. In the longitudinal channel
there are two kinds of pole collisions, where these behaviors transition into one another, one indicated by turquoise diamonds, and the
other by yellow diamonds. Green and yellow lines show the predictions on the basis of our hydrodynamic effective theory.
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F. Spatial collective modes in a large number
of dimensions

In order to gain further analytic insight into the spectrum
of SCMs in holographic models, we turn our attention to
large-d general relativity [40–42]. In this approach one
gains a small parameter, 1=d, and an associated increase in
analytic control. In this limit the set of quasinormal modes
is partitioned by the scaling of their frequencies with d.

In particular, there is one family of light modes with ω ¼
Oðd0Þ and q ¼ Oðd1=2Þ, whose dispersion relations can be
constructed analytically. These modes are the focus of this
section.
The dispersion relations for the light modes in AdS were

given in [43] at charge neutrality, order by order in powers
of 1=d. In order to compute the corresponding SCM
dispersion relations we simply perform a Lorentz boost
to introduce a background velocity v, which transforms the
frequency and wave number ðω; qÞ of [43] to a perturbation
with zero frequency and wave number kðvÞ which we
analytically continue into the complex plane. Restricting
for simplicity to the case where q, v, k are all in the x
direction, the Lorentz transformation relates them as follows,

ω ¼ −γvk; q ¼ γk: ð2:93Þ

From these relations and the large-d scaling of ω, q
we immediately see that we should treat v ¼ Oðω=qÞ ¼
Oðd−1=2Þ, which is in keeping with the scaling of the speed
of sound for a conformal theory, cs ¼ Oðd−1=2Þ. We further
conclude that γ ¼ Oðd0Þ and thus k ¼ Oðd1=2Þ. Based on
these scalings, let us define the order d0 quantities,

k̄≡ kffiffiffi
d

p ; v̄≡ ffiffiffi
d

p
v: ð2:94Þ

Our goal is to now find k̄ðv̄Þ order by order in d−1 from the
dispersion relations given in [43]. This can be achieved by
replacing ω, q using (2.93) then converting to barred
quantities (2.94). We then expand

k̄ðv̄Þ ¼
X∞
i¼0

k̄iðv̄Þ
di

; ð2:95Þ

and solve for the coefficients k̄iðv̄Þ in the 1=d Taylor
expansion of the dispersion relation.

1. Transverse channel

The dispersion relation is given by [43]6

ω ¼ −iq̄2
�
1þ 1

d2
2ζð2Þq̄2 − 1

d3
4ζð3Þðq̄2 þ q̄4Þ

þ 1

d4
8ζð4Þðq̄2 þ 7q̄4 þ q̄6Þ þOðdÞ−5

�
; ð2:96Þ

where we have introduced the order d0 quantity, q̄≡ q=
ffiffiffi
d

p
.

At leading order in the conversion to SCMs we find the
following choice,

k̄0ðk̄0 þ iv̄Þ ¼ 0: ð2:97Þ

FIG. 8. The critical exponent in the longitudinal channel for
μ ¼ 1.0, as exhibited by the function αðvÞ defined in (2.89). As for
the analogous transition in the transverse channel Fig. 5, the mean-
field value α ¼ 1=2 is approached at the critical velocity, vc.

FIG. 9. Behavior of the critical velocity for flows of a holo-
graphic plasma at finite charge density as a function of μ=T, above
which the longitudinal channel SCM wave vector develops a real
part and the spatial relaxation becomes oscillatory. For specific
values of μ=T these transitions are shown by the turquoise
diamonds in Fig. 7. The dashed line indicates the hydrodynamic
estimate for this collision point, vhydroc , given in (2.92).

6In the notation of [43] q̄ ¼ k̂there and d ¼ Dthere − 1.
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Choosing k̄0 ¼ 0 results in a trivial k̄, and so this is a zeromode shifting themoduli of the equilibrium state. For the second root
of (2.97) we obtain a nontrivial mode, whosewave number k̄ðv̄Þ can bewritten in a reasonably compact way by identifying an
overall factor of γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1−v̄2=d
p ,

iγ
v̄
k̄ ¼ 1þ 2v̄2

ζð2Þ
d2

− 4v̄2ð1 − v̄2Þ ζð3Þ
d3

þ 2v̄2ð4 − 13v̄2 þ 4v̄4Þ ζð4Þ
d4

þOðd−5Þ: ð2:98Þ

From this expression we conclude that Rek̄ ¼ Oðd−5Þ.

2. Longitudinal channel

The dispersion relation is given by [43]

ω ¼ −iq̄2
	
1 −

1

d
−

1

d2

�
1 −

π2

3
q̄2
�
−

1

d3

�
1þ

�
4π2

3
þ 8ζð3Þ

�
q̄2 þ 4ζð3Þq̄4

�

−
1

d4

�
1þ

�
π2

3
−
π4

9
− 16ζð3Þ

�
q̄2 −

�
31π4

45
þ 36ζð3Þ

�
q̄4 −

4π4

45
q̄6
�


� q̄

	
1þ 1

d

�
1

2
þ q̄2

�
þ 1

d2

�
3

8
þ
�
π2

3
−
1

2

�
q̄2 −

1

2
q̄4
�

þ 1

d3

�
5

16
−
�
9

8
þ π2

6
þ 4ζð3Þ

�
q̄2 þ

�
3

4
þ π2 − 2ζð3Þ

�
q̄4 þ 1

2
q̄6
�

þ 1

d4

�
35

128
−
�
25

16
þ 3π2

8
−
4π4

45
− 2ζð3Þ

�
q̄2 þ

�
13

16
−
3π2

2
þ 29π4

45
− 5ζð3Þ

�
q̄4

−
�
5

4
þ 5π2

6
−
π4

15
þ 22ζð3Þ

�
q̄6 −

5

8
q̄8
�


þOðd−5Þ: ð2:99Þ

Similarly at order d0 we find

ik̄0ðk̄0 þ iðv̄� 1ÞÞ ¼ 0: ð2:100Þ

The choice k̄0 leads to a zero mode, while the other root leads to

iγk̄ ¼ ðv̄� 1Þ þ 1

d

	
−v̄�

�
1

2
− v̄2

�

þ 1

d2

	
�
�
7

8
þ v̄2

2
−
v̄4

2

�
þ ð2v̄� 4v̄2 þ 2v̄3Þζð2Þ




þ 1

d3

	
�
�
25

16
−
3v̄2

8
þ 3v̄4

4
−
v̄6

2

�
þ ð2v̄ − 8v̄3 ∓ 2ðv̄2 þ 2v̄4ÞÞζð2Þ

þ ð−4v̄þ 24v̄3 þ 4v̄5 � ð−2þ 8v̄2 þ 18v̄4ÞÞζð3Þ



þ 1

d4

	
�
�
363

128
−
11v̄2

16
−
7v̄4

16
þ 5v̄6

4
−
5v̄8

8

�
þ
�
4v̄þ 2v̄3 �

�
3v̄2

2
þ 6v̄4 − 2v̄6

��
ζð2Þ

þ ð−4v̄ − 16v̄3 − 36v̄5 � ð−5þ 10v̄2 − 55v̄4 − 6v̄6ÞÞζð3Þ

þ ð−34v̄ − 98v̄3 þ 100v̄5 þ 8v̄7 � ð−112v̄2 þ 38v̄4 þ 50v̄6ÞÞζð4Þ


þOðdÞ−5: ð2:101Þ

Once more, from this expression we conclude that Rek̄ ¼ Oðd−5Þ. We expect that Rek̄ ¼ 0 continues to all perturbative
orders in 1=d.

OVERCOMING OBSTACLES IN NONEQUILIBRIUM HOLOGRAPHY PHYS. REV. D 98, 086023 (2018)

086023-15



G. BTZ black hole

An example in which we can find the exact SCM
analytically [5] and without any approximation is the
three-dimensional BTZ black hole, dual to the thermal
ensemble of a two-dimensional relativistic CFT. We follow
the conventions of [44]. In particular, we study modes of a
probe scalar field, ϕðt; ρ;φÞ ∼ΦðρÞe−iωtþiqφ, of mass m in
the background

ds2 ¼ −
ρ2 − ρ2þ

l2
dt2 þ ρ2dφ2 þ l2

ρ2 − ρ2þ
dρ2: ð2:102Þ

This background has Hawking temperatures T ¼ ρþ
2πl2

which are related to its mass M as

M ¼ π2l2

4GN
T2: ð2:103Þ

The strategy here is to exploit the Lorentz invariance of the
underlying CFT2 to construct the SCM from the known
spectrumof quasinormalmodes [44–46]. For a scalar fieldϕ,
dual to an operator O of dimension Δ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2l2

p
,

the quasinormal modes occur in two integer series [44],

ωð�Þ
n ¼ �q − 4πiT

�
Δ
2
þ n

�
; n ∈ Z�: ð2:104Þ

We are, as before, interested in purely spatial modes at
complex momentum in a frame where the fluid has a finite
background velocity. The four-momentum of such a mode
is thus given by kμlab ¼ ð0; kÞμ in the lab frame. We can then
boost to the fluid rest frame to obtain

ω ¼ −γvk; q ¼ γk: ð2:105Þ

Plugging these values into Eq. (2.104) and solving for k, we
find two series of purely imaginary SCM at

k� ¼ i
4πT

γðv� 1Þ
�
Δ
2
þ n

�
: ð2:106Þ

We show the resulting SCM spectrum in Fig. 10.
Let us note that in this case there is an intuitive

explanation in terms of the relativistic Doppler shift. The
prefactor on the right-hand side of (2.106), namely T

γðv�1Þ,
can be interpreted as the Doppler shifted temperature

TDoppler ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1

v ∓ 1

r
T ð2:107Þ

experienced by an observer in relative motion measuring a
black-body spectrum, or equivalently the black-body spec-
trum with respect to a Doppler shifted wavelength if the
observer instead chooses to interpret the spectrum keeping

the temperature constant. This simple relationship between
the quasinormal modes and SCM is special to the BTZ
case. As one can easily verify, it depends crucially on
the fact that ω depends only linearly on momentum,
while any nonlinear correction term would spoil this simple
relationship. We have explicitly confirmed that our higher-
dimensional SCM do not follow a functional form that is
simply given by a Doppler shifted temperature. Finally, it is
clear that in nonrelativistic systemsno relationship relying on
boost symmetry is applicable.
Somewhat remarkably, in three dimensions we can

actually go further.

III. BLACK JANUS: A FULLY NONLINEAR
ANALYTIC EXAMPLE

As we have argued, SCMs describe steady states. But, up
to this point, the evidence we presented was numerical [5]
(see Sec. IV below for more details on the numerical
method employed in that work), due to the difficulty in
obtaining analytic solutions describing the requisite non-
linear steady states. In fact, analytical backgrounds illus-
trating the importance of SCM can be obtained. A
particularly sharp example of this is provided by the finite
T black Janus solution of [30]. This solution describes a
finite T defect solution created by turning on a step function
for a source of a scalar operator in the field theory. As
argued previously, the physics of the SCM is universal and
therefore independent of how they are excited, and here
that excitation is the spatial variation of the scalar source. In
fact, we now show that the black Janus solution may
globally be regarded as a self-consistently backreacted sum
of infinitely many SCMs. This makes it clear that at large
distances from the obstacle, as predicted from our analysis,

FIG. 10. First three modes of the spectrum of SCM of a neutral
CFT2 at temperature T, as deduced from the mode spectrum of
the boosted BTZ solution. The positive branches correspond to
kþ modes, while the negative branches correspond to k− modes.
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a single SCM dominates the spatial profile. We now
demonstrate this structure explicitly.
Having this analytic solution also allows us to take the

T ¼ 0 limit, where the SCMs coalesce in the complex k
plane and the Janus tail becomes power law. This emer-
gence of a branch cut from the coalescence of poles is
expected to be relevant also in other examples.
The black hole of [30] at temperature T may be written in

the following form,

ds2 ¼ fðμÞ2ð− sinh2ð2πTpÞdτ2 þ dp2 þ dμ2Þ; ð3:1Þ

ϕ ¼ ϕðμÞ; ð3:2Þ

where

fðμÞ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ k

p

2πT
cd
�

2πTμffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm

p ;m
�
; ð3:3Þ

e
1
2
ϕ ¼

1þ ffiffiffi
k

p
snð 2πTμffiffiffiffiffiffiffiffi

1þm
p ;mÞ

dnð 2πTμffiffiffiffiffiffiffiffi
1þm

p ;mÞ ; ð3:4Þ

where sn, cd and dn are Jacobi elliptic functions and m is
the elliptic modulus.7

This is a solution to the Einstein-massless scalar equa-
tions of motion for d ¼ 2 with negative cosmological
constant [30]. It is described by an angular coordinate μ

and a radial coordinate p. The angle is bounded by jμj ≤
μ0 ≡

ffiffiffiffiffiffiffiffi
1þm

p
2πT KðmÞ where K is the complete elliptic integral

of the first kind, the limit being saturated on the AdS
boundary. The defect itself can be reached by taking
p → ∞ at fixed μ. An illustration of the geometry and
the coordinates employed is given in Fig. 11.
Finally, the solution is parametrized by the elliptic

modulus m, which is the parameter that determines the
size of the step; i.e., it dictates the value of the scalar field
source on either side of the defect, through the relation

ϕð�μ0Þ ¼ �2 log

�
1þ ffiffiffiffi

m
pffiffiffiffiffiffiffiffiffiffiffiffi

1 −m
p

�
: ð3:5Þ

A. One-point functions

We first focus our attention on the CFT one-point
functions, which we compute by going to Fefferman-
Graham coordinates, ðt; x; ρÞ, near the boundary on either
side of the defect, i.e., μ ¼ �μ0. In the new coordinates the
boundary is given by ρ ¼ 0, and the coordinate trans-
formation is given by

τ ¼ tþOðρÞ4;

μ ¼ �μ0 þ cschð2πTxÞρ − 1

24
ð2πTÞ2csch3ð2πTxÞ

× ð5þ 3 coshð4πTxÞÞρ3 þOðρÞ4;

p ¼ −
1

πT
log ð� tanhðπTxÞÞ − πT cothð2πTxÞ

× cschð2πTxÞρ2 þOðρÞ4: ð3:6Þ

Note that we take x > 0 for all 0 ≤ p < ∞ at μ ¼ μ0 and
similarly x < 0 for all 0 ≤ p < ∞ at μ ¼ −μ0. We do not
consider the defect location x ¼ 0 directly. The metric and
scalar field in these coordinates are given by the expressions

ds2 ¼ dρ2

ρ2
−
�
1

ρ2
−
ð2πTÞ2

2

�
dt2 þ

�
1

ρ2
þ ð2πTÞ2

2

�
dx2

þOðρÞ2; ð3:7Þ

ϕ ¼ �
�
2 log

�
1þ ffiffiffiffi

m
pffiffiffiffiffiffiffiffiffiffiffiffi

1 −m
p

�
−

ffiffiffi
k

p ð2πTÞ2csch2ð2πTxÞ
1þ k

ρ2
�

þOðρÞ4; ð3:8Þ

where the upper sign corresponds to the right asymptotic
region and the lower sign to the left asymptotic region. There
is no ρ2 log ρ term since the source is constant on either side
of the defect. Going into the bulk, the metric eventually
becomes deformed by the scalar backreaction at order ρ2 as
we outline below. From the above results, using holographic
renormalization [47], we find the expectation values

hTabi ¼ ð2πTÞ2δab; ð3:9Þ

hOϕi ¼∓ 2

ffiffiffiffi
m

p ð2πTÞ2
1þm

csch2ð2πTxÞ: ð3:10Þ

FIG. 11. Coordinates for the black Janus solution. The defect is
located at the origin p ¼ 0. We reach the asymptotic regions on
either side by taking p → ∞with angular coordinate μ ¼ �μ0. In
the asymptotic regions the scalar field approaches the limiting

value ϕð�μ0Þ ¼ �2 logð1þ
ffiffiffi
m

pffiffiffiffiffiffiffi
1−m

p Þ.

7This is denoted k in the original references, but we prefer
to relabel it m in order to avoid any confusion with the
momentum k.
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B. Extracting the SCM

We begin our comparison by studying the behavior of the
one-point functions. For this we recall that the spectrum of
SCM for a scalar field on BTZ was computed in (2.106). In
the present analysis we only need the v ¼ 0 cases.
Specializing to a massless field, we have Δ ¼ 2, whence

k�n ¼ �i4πTð1þ nÞ: ð3:11Þ

Then, we can explicitly see that (3.10) can be expressed as
a linear sum of these modes, on either side of the defect.
On the x > 0 side of the defect we have

hOϕi ¼
X∞
n¼0

Aþ
n eik

þ
n x with Aþ

n ¼ −
8
ffiffiffiffi
m

p ð2πTÞ2
1þm

ðnþ 1Þ;

ð3:12Þ

and on the x < 0 side of the defect we have

hOϕi ¼
X∞
n¼0

A−
n eik

−
n x with A−

n ¼ 8
ffiffiffiffi
m

p ð2πTÞ2
1þm

ðnþ 1Þ:

ð3:13Þ

For large distances from the obstacle one readily sees that
the solution falls off exponentially in either direction with a
characteristic length scale k−0 ¼ 4πT to the left and jkþ0 j ¼
4πT to the right, in other words according to the dominant
SCM in either sector.
The above one-point functions combined with metric and

scalar boundary conditions are sufficient to determine the full
bulk solution. Thus, the one-point functions tell us that the
bulk black Janus solution is simply the result of summing
infinitely many SCMs and matching at a defect boundary
condition. It may be tempting to then conclude that the full
bulk metric is a linear sum of SCMs, in the way that the one-
point functions are. However this is only true asymptotically,
near the AdS boundary. Specifically, up to and including
stress-tensor and expectation-value order in the small ρ
expansion there is no trace of backreaction of the modes.
However, moving to higher powers in ρ one encounters
nonlinear backreaction (presented here for the x > 0 side),

δðds2Þ ¼ −
�
Aþ
0

16

�
2

csch4ð2πTxÞðdt2 þ dx2Þρ2 þOðρÞ4;

ð3:14Þ
where δðds2Þ is the difference between the linearized and
the fully backreacted metric, e.g., δðds2Þ ¼ ds2 − ðds2Þlin.
Subsequently, at even higher powers of ρ, the scalar modes
can interact with each other resulting in nonlinear adjust-
ments to the ϕ profile,

δϕ ¼ −
2

3

�
Aþ
0

16

�
3

csch6ð2πTxÞρ6 þOðρÞ8; ð3:15Þ

with the δ notation defined as an obvious extension of the
above. Thus we regard the black Janus solution as a self-
consistently backreacted solution resulting from the linear
sum of infinitely many BTZ SCMs.

1. Zero-temperature limit and analytical structure

Finally, we comment on the T ¼ 0 limit. Here the
expectation value (3.10) becomes power law in x rather
than exponential,

hOϕi ¼∓ 2

ffiffiffiffi
m

p
1þm

1

x2
; ðT ¼ 0Þ; ð3:16Þ

and in this limit the SCMs appear to accumulate at the
origin (3.11), which becomes in fact a branch point,
conforming with the usual intuition of power laws coming
from branch cuts.
We can make this precise by writing the expectation

value as a Laplace transform

hOϕi ¼
Z

∞

0

AðsÞe−sxds: ð3:17Þ

Note that we are specializing in the modes to the right of the
obstacle, but an analogous formula obviously exists for the
modes on the left. We are interested in the function AðsÞ
which describes the density of SCM in the complex
momentum plane. We can calculate this using the usual
Bromwich inversion formula

AðsÞ ¼ 1

2πi

Z
γþi∞

γ−i∞
hOϕðxÞiesxdx; ð3:18Þ

substituting the form of hOϕðxÞi for black Janus, i.e.,
Eq. (3.10). We start with the finite-temperature case, which
results in a sum of delta functions,

AðsÞ ¼
X∞
n¼0

Aþ
n δðs − snÞ; with sn ¼ 4πTð1þ nÞ

ð3:19Þ

for Aþ
n as defined above. Evidently we have recovered a

discrete infinity of modes. Plugging this back into (3.17),
we find

hOϕi ¼
X∞
n¼0

Aþ
n e−snx ¼

X∞
n¼0

Aþ
n eik

þ
n x: ð3:20Þ

In other words, we recover the discrete set of purely
imaginary SCM ascending the positive imaginary momen-
tum axis of (3.12) by means of the Laplace transform.
Repeating now the same procedure for the zero-temperature
expression for hOϕðxÞi we find

AðsÞ ¼ 2

ffiffiffiffi
m

p
1þm

s; ð3:21Þ
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i.e., a continuum of modes emanating from s ¼ 0. This
spectral density, translated into the complex k plane, corre-
sponds to a continuum of modes lying on a branch cut along
the positive imaginary k axis emanating from a branch point
k ¼ 0. Let us finally remark that this coincides, as expected,
with the naive continuum limit in Eq. (3.11), i.e., taking
T → 0, and defining a continuum variable s ¼ Tn. This
analytic structure is illustrated in Fig. 12.

IV. NONLINEAR SOLUTIONS: STEADY STATES
WITHOUT KILLING HORIZONS

In a previous publication [5], two of the authors con-
structed a class of nonequilibrium steady states, and
pointed out the relevance of SCM to their spatial asymp-
totic behavior. In this section, we give more details about
the numerical aspects of the construction.
In what follows we construct a holographic example of a

nonlinear nonequilibrium steady state. Our goal is twofold:
on the one hand we wish to demonstrate the role played by
the spatial collective modes that have been explored in this
paper, and on the other, we wish to supply more detail on
the actual numerical construction employed to obtain the
fully nonlinear solutions. Specifically we demonstrate that
the approach to equilibrium at long distances is governed
by the SCM.
We construct non-Killing black brane solutions corre-

sponding to flow-past-obstacle steady states in the dual
field theory. Solutions of this type, stationary quenches,8

have been constructed before [27]. Indeed our results for
this section draw on the methods introduced in [27].
Here we elaborate on the numerical techniques we used,
which extend those of [27] to include transverse velocity
and supersonic asymptotic flow velocities. This extension
is necessary so that we may compare to our transverse and
supersonic collective modes.

A. Numerical method

Oneway to understand the method is to consider a steady
state formed by waiting for a time-dependent process to
settle down. This is an inefficient way to access the steady
state, and offers little control over which steady state is
reached, since the resulting steady state at late times will
have its moduli governed by the chosen initial conditions.
Specifically, the moduli are a set of numbers which label
the flowing solutions, and so for instance dictate the left
and right asymptotic energy densities, velocities and
incident angles. Instead, one may skip to the end and look
directly for the stationary solution. In this case there are no
initial conditions to determine which solution is obtained,
and so the moduli must be fixed by other means. In this
work the moduli are conveniently fixed by imposing
additional boundary conditions at points behind the future
event horizon, following [27]. We find that three boundary
conditions are required to fix three moduli, which we think
of as an asymptotic flow velocity, an asymptotic energy
density and an asymptotic incident angle, and we go into
some detail on these choices below.
We denote our bulk metric as gab with a; b ¼ 0;…; 3 and

boundary directions labeled by μ; ν ¼ 0;…; 2. To keep
things as simple as possible we use the boundary metric
itself, γμν, in order to produce an obstacle,

FIG. 12. Analytic structure in the complex momentum plane for the black Janus solution. At finite temperature we have two sectors of
SCM along the positive and negative imaginary axis [we summarize all poles, that is both those of G½↘�ðkÞ and G½↙�ðkÞ in the same
figure]. In the T → 0 limit these condense into a continuum in the form of two branch cuts along positive and negative imaginary axes.
This continuum, for example, manifests itself as a power-law decay at large distances (3.16) or as a discontinuity in the spectral
representation of the two-point function.

8Other interesting discussions and constructions of non-Killing
black holes are provided by [28,48–52]. Nonlinear solutions with
time-dependent horizons have been studied earlier, for example in
the work of [53].
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γμν ¼ ημν þ sμνðxÞ; ð4:1Þ

which depends nontrivially only on one boundary direc-
tion, x. As is apparent from the rest of this paper, the
interesting spatial behavior we observe is expected to be

fully universal [5] and would manifest itself in many other
ways of introducing an obstacle. Our present choice of
obstacle as a boundary metric deformation allows us to
consider a minimal bulk theory of pure gravity in AdS4,
with no matter fields required. To deal with the usual gauge
issues we adopt the Einstein-DeTurck or “generalized
harmonic” equations [29,54,55], and we recommend these
references for further details. Briefly, one introduces a

FIG. 14. Convergence tests of the numerical method for non-
Killing black branes describing NESS. We show the approach to
the continuum limit of the ξa vector, whose maximum value on
the numerical grid approaches 0 as a power law with order (a) 4.4,
(b) 4.2, (c) 4.2.

FIG. 13. A sketch of the domain used for the numerical
construction of holographic nonequilibrium steady states. The
spatial field theory direction is compactified using coordinate ρ as
defined in (4.11). The ×’s mark the points where boundary
conditions are imposed to fix moduli of the solution. The gray
filled region schematically indicates the presence of the obstacle,
in the sense that far to the left or to the right the bulk is described
by an equilibrium solution with spatial collective modes.

FIG. 15. Flow profiles for solution (a): subsonic-to-subsonic nonequilibrium steady flow at incidence parameter θ ¼ π=4. In this case
the fluid is rarefied, refracted and sped up by the obstacle. Note that vyL ¼ vyR. The tails visible in these spatial profiles are the spatial
collective modes.
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reference metric ḡab and a vector ξa ¼ gbcðΓa
bc − Γ̄a

bcÞ and
modifies the equations of motion,

Rab −∇ðaξbÞ þ 3gab ¼ 0: ð4:2Þ

To define our reference metric we first introduce
Schwarzschild-AdS4 boosted by a 2-velocity β with
corresponding 3-vector uμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−δijβiβj
p ð1;βÞ, written in

ingoing Eddington-Finkelstein coordinates,

ds2Schw ¼ 1

z2
ð−fðzÞðuμdxμÞ2 þ 2uμdxμdzþ ΔμνdxμdxνÞ;

ð4:3Þ

f ≡ 1 −
z3

z3h
; ð4:4Þ

where Δμν ≡ ημν þ uμuν. This metric also introduces the
holographic coordinate z chosen such that the conformal

boundary is defined by the double pole at z ¼ 0. We
choose our reference metric to be this solution manually
adjusted to match the boundary metric choice (4.1) in the
following way,

d̄s2 ¼ ds2Schw þ z−2sμνðxÞdxμdxν; ð4:5Þ

which is not a metric which solves the Einstein equations
in general. We ensure that the source components are
orthogonal to uμ,

sμν ¼ Δμ
ρΔν

σSρσ: ð4:6Þ

In this way uμ is still unit norm, γμνuμuν ¼ −1, despite the
presence of the obstacle, sμνðxÞ. For concreteness we adopt
a particularly simple choice of source,

sμν ¼ Sμν ¼ sðxÞnμnν; ð4:7Þ

FIG. 16. Flow profiles for solution (b): subsonic-to-subsonic nonequilibrium steady flow at normal incidence. Here the fluid is rarefied
and sped up by the obstacle. The tails visible in these spatial profiles are the spatial collective modes.
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FIG. 17. Flow profiles for solution (c): supersonic-to-supersonic nonequilibrium steady flow at normal incidence. Here the fluid is
compressed and slowed through its encounter with the obstacle. The tails visible in these spatial profiles are the spatial collective modes.
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where nμ ¼ ðβ2x þ β2yÞ−1=2ð0;−βy; βxÞ with a Gaussian
choice

sðxÞ ¼ Ae−Bx
2 ð4:8Þ

and free parameters A, B. At this point we also introduce
the angle of incidence parameter in the reference metric as

tan θ ¼ βy=βx: ð4:9Þ
We emphasize that βi, zh and θ are simply reference metric
parameters, and do not directly correspond to a final velocity,
energy density or angle of incidence in the resulting solution.
Finally, we find it convenient to factor out the leading

divergence in the bulk metric, defining instead hab through

habðz; xÞ≡ z2gabðz; xÞ: ð4:10Þ

1. Implementation details

To aid the construction of flows that are infinitely
extended and inhomogeneous in the x direction, we
compactify using a coordinate ρ,

x ¼ ρ=l
1 − ρ2

ð4:11Þ

with ρ ∈ ½−1; 1�. The other nontrivial direction is labeled
by the holographic coordinate z ∈ ½0; zmax� with the

conformal boundary of AdS at z ¼ 0 and the set z ¼
zmax should be entirely behind the future event horizon of
the solution, Hþ. The parameter l allows us to adjust the
overall scale of the grid relative to the characteristic size of
the inhomogeneities. In practice, typical choices of l are
Oð1Þ in our simulations. Finally there is no dependence in
the remaining two directions, t, y. The resulting domain is
shown in Fig. 13.
We use Dirichlet boundary conditions to fix hab to be the

conformal boundary metric (4.1) at z ¼ 0 for all ρ. As
discussed we must also introduce data which fix the moduli
of the solution, as in [27]. This is introduced as additional
Dirichlet data behind the horizon in the corners of the grid,
at z ¼ zmax; ρ ¼ �1 for some metric components. Roughly
speaking we have three moduli fixing boundary conditions
because we have three solution moduli: an energy density, a
velocity and an angle of incidence for the flow. Specifically,
at these points we set hab ¼ z2ḡab as indicated in
Table below:

Asymptotic v Upstream Downstream

Subsonic htt, hty htz
Supersonic htt, hty, htz � � �

While the above choices work well in practice, in the
sense that the numerical method converges to a solution to
the Einstein equations, we do not have a rigorous under-
standing of why these particular choices work where
certain others do not. For instance, the choice we arrived
at for the supersonic case amounts to a specification of all
three moduli in the upstream asymptotic region; it would be
interesting to understand the connection to the character of
the corresponding problem in fluid dynamics. Finally we
impose Neumann boundary conditions on all fields along
the remaining points of the ρ ¼ �1 edges. The remaining
points at z ¼ zmax are left free to obey the equations of
motion.
We utilize a regularly spaced discretization of ρ, z with

Nρ, Nz grid points respectively, taking Nρ ¼ 4Nz. We
adopt sixth-order finite difference approximations of the
derivative operators. The resulting system of equations is
solved iteratively using the Newton method. The Jacobian
is computed numerically, utilizing a second-order center-
difference stencil for taking derivatives of the equations,
which is slower to compute but results in considerably
better convergence of the Newton method than the first-
order finite difference. Computing the Jacobian can be sped
up by restricting the difference computation to only the
affected areas, i.e., roughly speaking in a stencil-sized box
around the varied grid point. The resulting sparse linear
system is then solved directly using the LU-factorization
algorithm provided by UMFPACK [56].
The initial guess for the Newton method is taken to be

the reference metric, together with a low amplitude (A)
source. Once obtained we use small A solutions as initial

FIG. 18. Comparing the asymptotics of solution (a) to the
spatial collective modes appropriate to each asymptotic equilib-
rium region. The points are given by derivatives of the spatial
profiles of solution (a), according to the definition (4.15). The
spatial collective modes are shown by the colored solid lines.
Note that a nonhydrodynamic mode is excited in the transverse
channel on the downstream side.
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guess metrics for larger A solutions. In all cases we find it is
convenient to start at low resolutions (typically Nρ ¼ 80,
Nz ¼ 20), and then use sixth-order-interpolated versions of
these as solution guesses for higher resolutions. The
interpolated guess converges in one or two Newton steps
to a solution. In this fashion we have obtained solutions up
to Nρ ¼ 520, Nz ¼ 130, limited ultimately here by the
memory required for the direct linear solver, but a reso-
lution that is more than sufficient for our requirements.
For a selection of representative solutions [examples

(a)–(c) defined later in Sec. IV B] we have carried out
convergence tests, looking at the approach to the continuum
limit of the vector ξa. This is shown in Fig. 14 demonstrating
results consistent with fourth-order convergence.

B. Results

With solutions obtained our next task is to interpret the
results from the CFT perspective. Our first task is to read

off the one-point function of the CFT stress tensor, hTμνi,
from the bulk solutions. The details of this calculation are
set out in Appendix B, and we quote the main result here
for convenience,

hTμνi ¼
1

2
∂3
zhμνjz¼0 þ

γμν
z3h

þ Vμν; ð4:12Þ

where Vμν is a known term which vanishes outside the
obstacle. With hTμνi in hand, we solve the following
eigenvalue problem at each point x along the flow,

hTμ
νiUν ¼ −ϵUμ γμνUμUν ¼ −1; ð4:13Þ

and define the local flow velocities

vx ≡Ux

Ut ; vy ≡Uy

Ut : ð4:14Þ

Note that it is not always possible to solve (4.13) within the
obstacle region where the flow becomes strongly nonlinear.

FIG. 19. Matching the downstream asymptotics of the subsonic flow solution (b) (left column) and the supersonic flow solution
(c) (right column) to spatial collective modes. Upper panels show the leading pole structure in the complex-k plane as computed in [5] in
the neutral case of relevance here, and in Sec. II E with finite charge density. Lower panels show the asymptotic behavior of ε using log-
linear axes. The black dots are the nonlinear solutions and the solid lines are the spatial collective modes. As vR is increased through cs
the hydrodynamic spatial collective mode (red) transitions from downstream to upstream and the long-range behavior downstream
jumps to the longest nonhydrodynamic mode (blue).
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For illustrative purposes we restrict our attention to three
different points in moduli space.
(a) Subsonic flow at nonzero angle of incidence. The

parameters used are zh ¼ 0.975, βx ¼ 0.15, βy ¼
0.15, A ¼ 1.0, B ¼ 3.0, l ¼ 0.5. The corresponding
ε, vx, vy are shown in Fig. 15.

(b) Subsonic flow at zero angle of incidence, θ ¼ 0. The
parameters used are zh ¼ 0.975, βx ¼ 0.6, βy ¼ 0.0,
A ¼ 0.1, B ¼ 2.9618, l ¼ 0.5. The corresponding ε,
vx are shown in Fig. 16.

(c) Supersonic flow at zero angle of incidence, θ ¼ 0. The
parameters used are zh ¼ 0.975, βx ¼ 0.8, βy ¼ 0.0,
A ¼ 0.1, B ¼ 3.0, l ¼ 0.5. The corresponding ε; vx

are shown in Fig. 17.
The imprint of the spatial collective modes is already

apparent in the flow profiles of Figs. 15–17. To demonstrate
this more clearly we take derivatives of the data in order
to extract the decay length and compare it to the modes of
Sec. II E, given the specific asymptotic equilibrium
approached. Specifically, for some quantity f we define

κfðxÞ≡ −
1

ε1=3
∂2
xf

∂xf
: ð4:15Þ

Then, if the asymptotic functional form of f is given by
f ¼ Cþ Ake−Imkx, the asymptotic value of κf is the wave
number itself, Imk=ε1=3 ¼ limx→�∞κfðxÞ. A comparison is
shown for the solution (a) in Fig. 18, illustrating the
existence of these modes in the flow profile, including a
mode which is of nonhydrodynamic origin.
Next, we perform a similar analysis in order to inves-

tigate the asymptotic behavior of solutions (b) and (c). In
moving from (b) to (c) we move from subsonic to
supersonic flows and we expect to see the nonequilibrium
phase transition due to a complex-k mode crossing the real
axis. To illustrate this more clearly, we restrict to the
downstream side and subtract the asymptotic value. Then
on a log-linear plot, the slope gives the appropriate spatial
collective mode. This is shown together with the leading
pole structure in the complex-k plane for downstream (b)
and downstream (c), in Fig. 19.

V. SUMMARY AND DISCUSSION

Before moving to discuss open issues and future work,
let us pause to briefly recapitulate the salient features of this
work. In [5] two of us proposed a universal description of a
class of nonequilibrium steady states, motivated by holo-
graphic duality. This description relies on a set of modes,
the SCM, defined in the complex momentum plane, which
are spacelike cousins of quasinormal modes, used to
describe universal equilibration dynamics in holography
for systems excited by an explicit time-dependent pertur-
bation. The SCM, instead, describe the spatial relaxation
of nonequilibrium steady states, and are excited by spatial

inhomogeneities. The behavior away from the source is
universal in the sense that it depends only on the theory and
the asymptotic configuration that is approached but not on
the details of the inhomogeneities.
In Sec. II A we gave a description of these modes from

the point of view of the boundary field theory, where they
appear notably as poles of correlation functions in the
complex momentum plane. We then embarked on a range
of calculations in order to illustrate SCM, in various
interesting contexts. The most complete understanding,
unsurprisingly, is obtained in holography. We explicitly
construct nonlinear solutions (based on the methods
described in [27]) by forcing the strongly coupled fluid
dual to Einstein gravity over an obstacle, modeled by
sourcing the boundary metric, and match the asymptotic
spatial behavior of such steady state solutions to the leading
SCM appearing in the complex momentum plane of the
relevant two-point functions. As we have pointed out these
are defined by boundary conditions which are regular at the
horizon and in one of the nontrivial spatial directions. We
have considered the SCM in a variety of systems and have
given a general numerical recipe for their calculation. There
are a number of contexts where we can determine the
spectrum of modes analytically, notably three-dimensional
holography (the BTZ black hole) and the large-D limit of
[43]. An interesting feature of all cases we considered is
that the SCM were always purely imaginary for a neutral
fluid, but could acquire nonzero real parts, that is represent
damped oscillatory behavior, at finite chemical potential.
We pointed out that there are interesting critical phenomena
at the points where pure decay transitions into damped
oscillations, producing nonequilibrium phase transitions of
the same flavor as those first described in [37]. Due to the
ubiquity of SCM as well as QNM we expect to find
examples of such transitions recurring in many more
contexts, and indeed we remark that similar phenomena
have already appeared in [36,39]. Each of these transitions
can be reduced to either a pole collision or an exchange of
dominance between poles. In the former case, the vanishing
of the real part of the mode proceeds with a critical
exponent 1=2. It would be of interest to develop a general
mean-field treatment of these phenomena, in the spirit of
the theory of dynamic critical phenomena of [57].
A particularly well-controlled case arises for three

dimensions, where we already pointed out that we can
construct the full spectrum of SCM analytically. As it turns
out, in this case we were able to find a full nonlinear
example analytically, namely the black Janus solution of
[30] and we point out that its spatial relaxation on either
side of the obstacle is precisely given by the leading SCM.
In fact one can go further and show that the entire black
Janus solution can be reexpressed as a sum over the full
spectrum of SCM of the BTZ black hole, which start out as
a linear superposition in the boundary, and construct the in-
filling bulk solution as a nonlinear backreacted version of
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the tower of modes. This is reviewed in detail in Sec. III
where we also point out that one can reconstruct the
spectrum SCM via an inverse Laplace transform of the
boundary expectation values of fields in the black Janus
solution of [30].
A subset of the SCM appearing in this work can be

constructed using a hydrodynamic effective theory, with
decay lengths depending on hydrodynamic transport coef-
ficients, such as η=s and various diffusion constants.
Interestingly we also exhibited cases where the hydro-
dynamic effective theory does not capture the leading
behavior in one or the other asymptotic direction, and
we see direct manifestations of higher SCM, as well as
interesting phase transitions between hydrodynamic and
nonhydrodynamic falloffs. The steady state thus encodes in
a time-independent way the hydrodynamic transport coef-
ficients, which may be read off from the spatial decay
properties of certain modes excited by the obstacle. In
particular the shear SCM decays with length proportional to
η=s and is thus a direct probe of the shear viscosity to
entropy density ratio of whatever strongly coupled fluid is
set up in such a steady state. Experimental evidence for
strongly coupled electron flow has been seen in PdCoO2

[58] and graphene [59]. In [5] we have estimated these
decay lengths for graphene at charge neutrality as well as
N ¼ 4 SYM, and we give a few more details about these
analyses here.9 For the transverse mode in first order neutral
hydrodynamics the dispersion relation is given by (2.67),
leading to a decay length for a flow v at normal incidence to
the obstacle (θ ¼ 0),

jImkj−1 ¼ η

s
c2

vT
; ð5:1Þ

where we have reintroduced the speed of light, c. To
estimate this length for graphene we utilize a number of
existing results in the literature. First, we introduce the
Fermi velocity via c ¼ vF which we take to be vF ¼
106 m=s as in the experimental results of [60]. Next we
utilize the value for η=s computed in kinetic theory in [61],
i.e., we take η=s ≃ 0.00815ðlogTΛ=TÞ2 ℏ

kB
with UV cutoff

TΛ ¼ 8.34 × 104 K. Finally we must provide v and T for
the experiment of interest. For flow velocities at around
v ≃ 104 m=s as in the setup of [62] we obtain jImkj−1 ≃
0.7 μm at standard temperature, while the experiments of
[63] obtain much higher velocities v ≃ 3 × 105 m=s giving
rise to jImkj−1 ¼ 15 nm at T ≃ 400 K. For comparison
we may consider the strongly interacting N ¼ 4 SYM
plasma with c ¼ 3 × 108 m=s, under the same conditions,
finding jImkj−1 ≃ 2 cm and jImkj−1 ≃ 0.4 mm in each

case. The main difference between the decay lengths in
the two theories arises from the quadratic scaling with the
speed of light in (5.1), rather than the minor differences
in η=s.
Let us now move on to a discussion of interesting open

issues as well as promising directions for future work.
Throughout this work we have emphasized parallels
between the SCM here and their timelike cousins, the
QNM. Let us now address some important differences. An
important conceptual point concerns the issue of causality.
From our construction one may get the impression that
there really exists a notion of a spatially retarded correlation
function as defined in II A, in complete analogy to the
temporally retarded, i.e., causal, one. This is not so, and our
construction should be seen more as a convenience in order
to exhibit a particular set of modes in the field theory,
essentially by defining correlation functions that are ana-
lytic in either the upper or lower half complex k plane. Note
that in the QNM context, for a stable system, the analyticity
in the complex ω plane really is dictated by causality; a
system reacts to a disturbance after the quench is applied,
and does not have a way of “knowing” that it will be
perturbed before it actually gets hit. In other words, only
modes decaying towards the future are physically relevant
and therefore only retarded correlation functions enter the
discussion. By contrast, for the “spatial quench” considered
here, the system does exhibit both modes that decay toward
positive x as well as negative x (although these modes are
generically different from one another). This becomes clear
if we consider such a steady state as something that is
formed at late times via a time-dependent process, since in
this case all parts of the system have had causal contact with
one another regardless of the flow velocity. Thus, even
though for much of the discussion we can think of the SCM
as being spacelike analogs of QNM with the special
direction x being treated like time, fundamentally the
equations both of the dual gravity and the field theory
are hyperbolic with respect to the time coordinate t and thus
the above causal restrictions apply.
The distinction between QNM and SCM is particularly

salient for nonrelativistic theories, where we cannot define
one as an analytic continuation of a boosted version of the
other. Note that this was the way we constructed the tower
of SCM in three dimensions. In looking for SCM about an
asymptotic state with flow velocity v we instead boosted
into a framewhere the fluid was at rest and solved the QNM
dispersion relation for the boosted values of the frequency
and momentum (2.105). The resulting mode necessarily
had complex momentum k, and could also have been
constructed directly by solving the perturbation equations
in the lab frame where the fluid has finite velocity v. In
other words, in the relativistic context we can consider
the dispersion relations of linear modes as being defined on
a C2 spanned by both complex ω and complex k and SCM

9We thank an anonymous referee of [5] for encouraging us to
produce such an estimate.
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and QNM are merely two different slices (real k and real ω
respectively) of the more general situation. This is not true
in the nonrelativistic context, which illustrates that generi-
cally the two really describe two different classes of
physical phenomena. For this reason it would be enlight-
ening to explore our construction of SCM in nonrelativistic
theories, perhaps starting from a hydrodynamic effective
treatment and then moving on to a model with non-
relativistic holography.
Other future directions of interest relate to decreasing

the amount of symmetry in the steady state, either by
increasing the codimension of the obstacle, or by adding
spatial inhomogeneities along the direction(s) of the
obstacle. In the most general setups one will likely have
to confront the issue of heating and whether a parametri-
cally large steady state region (both in space and time) can
be established [64,65].
Finally it will be important to study the issue of time

dependence, both in the sense of establishing the steady
state from an initial equilibrium state, say by gradually
switching on the obstacle, and in the sense of stability to
perturbations of the steady state itself (this latter question
has already been considered for steady states in ideal
hydrodynamics by [66]).
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APPENDIX A: EQUATIONS OF STATE

1. Conformal equation of state

For a conformal system at temperature T and chemical
potential μ in d-dimensions we have the following general
expression for the equation of state,

pðT; μÞ ¼ TdΦ
�
μ

T

�
; ðA1Þ

from which follows charge, entropy and energy densities
using standard thermodynamic relations,

nðT; μÞ≡
�∂p
∂μ
�

T
¼ Td−1Φ0; ðA2Þ

sðT; μÞ≡
�∂p
∂T
�

μ

¼ Td−2ðdTΦ − μΦ0Þ; ðA3Þ

ϵðT; μÞ≡ −pþ Tsþ μn ¼ ðd − 1ÞTdΦ: ðA4Þ

Note that here all instances of Φ and its derivatives are
evaluated at the argument μ=T. After some manipulations,
we may obtain the quantities defined in the hydrodynamic
analysis in Sec. II C,

β1 ¼
1

d − 1
; ðA5Þ

β2 ¼ 0; ðA6Þ

α1 ¼
T1−dΦ0

ðd − 1ÞðΦ0Þ2 − dΦΦ00 ; ðA7Þ

α2 ¼
−dT2−dΦ

ðd − 1ÞðΦ0Þ2 − dΦΦ00 : ðA8Þ

2. Reissner-Nordström AdSd + 1 equation of state

A strongly coupled fluid holographically dual to a
Reissner-Nordström AdSdþ1 black brane, as a solution to
the equations of motion of (2.73) with 2κ2 ¼ g̃2 ¼ L ¼ 1,
has the following conformal equation of state,

ΦðXÞ ¼ RðXÞd
�
1þ ðd − 2ÞX2

2ðd − 1ÞRðXÞ2
�
; ðA9Þ

where R is the positive solution of

R2 −
4π

d
R −

ðd − 2Þ2X2

2dðd − 1Þ ¼ 0: ðA10Þ

Using the above definitions this leads to the expressions

n ¼ ðd − 2Þμrd−20 ; s ¼ 4πrd−10 ; ðA11Þ

ϵ ¼ ðd − 1Þrd0
�
1þ d − 2

2ðd − 1Þ
μ2

r20

�
; ðA12Þ

where r0 ≡ TRðμTÞ gives the coordinate position of the
event horizon in a Schwarzschild coordinate system. For
completeness we finish this section by providing the
associated first order hydrodynamic transport coefficients
for this state,

η ¼ s
4π

; ζ ¼ 0; σ ¼
�

sT
ϵþ p

�
2

; ðA13Þ

where σ was computed in [67].
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APPENDIX B: EXTRACTING THE
HOLOGRAPHIC STRESS TENSOR

Once we have numerically constructed the NESS, as
described in Sec. IVA, we extract the one-point function of
the CFT stress tensor. Holographic renormalization is
readily performed in Fefferman-Graham (FG) coordinates,
where the one-point function is given by a term in the near-
boundary expansion there. However our numerical solu-
tions are not obtained in FG coordinates; rather, they are
obtained in coordinates defined by ξ ¼ 0. To compute the
stress tensor using existing holographic renormalization
results [47] we must find the coordinate map which relates
the two.

1. Near-boundary solution in FG coordinates

We seek the near-boundary solution in Fefferman-
Graham form so that we may use existing results for
holographic renormalization. Taking z; xμ to be such
coordinates, then by definition hzμ ¼ 0 and hzz ¼ 1.
Additionally, we compute the following near-boundary
expansion of the solutions to (4.2) at ξ ¼ 0 as

hμνðz; xÞ ¼ ημν þ sμνðxÞ þ hð2Þμν ðxÞz2 þ hð3Þμν ðxÞz3 þOðzÞ4;
ðB1Þ

where the hð2Þμν are given by

hð2Þ00 ðxÞ ¼
β2x

β2x þ β2y

2ð1þ sÞs00 − ðs0Þ2
8ð1þ sÞ2 ; ðB2Þ

hð2Þ0i ðxÞ ¼ 0; ðB3Þ

hð2Þij ðxÞ ¼
β2x

β2x þ β2y

2ð1þ sÞs00 − ðs0Þ2
8ð1þ sÞ2 ðηij þ sijðxÞÞ: ðB4Þ

Aside from constraints imposed by the conformal and

diffeomorphism Ward identities, the hð3Þμν ðxÞ are uncon-
strained, and in holographic renormalization yield the one-
point function of the stress tensor [47],

hTμνi ¼ 3hð3Þμν : ðB5Þ

a. Converting from FG to ξ = 0 coordinate system

From the above analysis we have an expression for the
CFT stress tensor in terms of data in a FG near-boundary

expansion. Let us map from FG to a new set of coordinates
near the boundary

t → tþ
X
n¼1

TnðxÞzn ðB6Þ

x → xþ
X
n¼1

XnðxÞzn ðB7Þ

y → yþ
X
n¼1

YnðxÞzn ðB8Þ

z → zþ
X
n¼1

ZnðxÞz1þn: ðB9Þ

We take the line element in near-boundary FG expansion
and apply these coordinate transformations. The resulting
near-boundary metric is then used to compute the vector ξ.
For the first few couple of orders we find the following
choices render ξ ¼ 0,

T1 ¼ γ; X1 ¼ γβx; Y1 ¼ γβy; ðB10Þ

Z1 ¼
γβxs0

16ð1þ sÞ ; ðB11Þ

T2 ¼ 0; X2 ¼ 0; Y2 ¼ 0; ðB12Þ

Z2 ¼
γ2β2xð64ð1þ sÞs00 − 57ðs0Þ2

1024ð1þ sÞ2 : ðB13Þ

We continue in this way to reach the order at which the
stress tensor enters, with expressions that are too cumber-
some to present here. The resulting metric in ξ ¼ 0
coordinates contains the sought after data defined through
the FG expansion, i.e., hTμνi, and so by identifying where
these terms appear allows us to extract the stress tensor
from a bulk solution in ξ ¼ 0 coordinates. We find

hTμνi ¼
1

2
∂3
zhμνjz¼0 þ

γμν
z3h

þ Vμν; ðB14Þ

where Vμν vanishes when s0 ¼ s00 ¼ s000 ¼ 0. Note that this
expression depends explicitly on the quantities zh, βi which
are introduced by the gauge ξ ¼ 0 through the reference
metric.
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