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AdS/CFT models have achieved considerable success in describing hadronic properties such as masses
and Regge trajectories. Even if the minimal vertex that couples photons to structureless spin-zero fields is
used, one still ends up with electromagnetic form factors of hadrons that are in fair to good agreement with
experiment. However, contradicting both experiment and naive expectation, this minimal model gives zero
for hadronic electric and magnetic polarizabilities. We show here that if effective vertices are used, and
axial and vector mesons are allowed to propagate as intermediate states, then the static polarizabilities can
in principle be computed from AdS/CFT.
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Following the Maldacena revolution [1], hundreds of
papers have been written over the last two decades in
attempts to build a theory of hadronic structure based upon
the correspondence between anti–de Sitter/conformal
field theory (AdS/CFT) with strongly interacting systems
described at a fundamental level by quantum chromody-
namics (QCD). Also called the gauge-gravity corre-
spondence, it allows extraction of information about
four-dimensional strongly coupled gauge theories by map-
ping them onto gravitational theories in five dimensions
where, because of the weak coupling, they may be solved
much more easily. In the semiclassical approximation, the
QCD generating functional of the quantum field theory is
given by the minimum of the classical action of the 5D
theory at the 4D asymptotic border of the 5D space. Thus,
in principle one can compute physical observables in a
strongly coupled gauge theory in terms of a weakly coupled
classical gravity theory, which encodes information of
the boundary theory. In the so-called bottom-up approach,
a 5D holographic dual to QCD is constructed and
quantitative predictions for soft hadronic quantities are
deduced. A current state of the field and references can be
found in the review by Brodsky et al. [2] in which the
authors also discuss an interesting connection between
light-front dynamics, its holographic mapping to gravity in
a higher-dimensional AdS space, and conformal quantum
mechanics. This approach sheds additional light on the
confinement dynamics in QCD in the limit of massless

quarks. A different set of topics can be found in the review
by Kim and Yi [3].
Nevertheless, one must not forget the limitations of the

AdS/CFT approach. This implicitly relies upon a large-Nc
approach, which means all calculations in the bulk are at
the tree level. These are easily performed, hence the
attractiveness of the approach. On the other hand, the
suppression of loops could lead to an inaccurate description
of physical processes in certain circumstances. So, for
example, tensor structures present in actual scattering
amplitudes (as will be needed here) could potentially be
generated by loops but are not seen at the tree level.
Moreover, since the real holographic dual to QCD is
unknown, one must fall back upon physically motivated
prescriptions for the dual theory. This suggests that naive
attempts to model hadronic quantities will inevitably fail at
some level.
Hadronic polarizabilities seem to be where the canonical

AdS/CFT approach fails. The simplest of these quantities
are αE and βM which are, respectively, the static electric and
magnetic dipole polarizabilities of the charged pions. These
characterize the induced dipole moments of the pion during
γπ Compton scattering [4,5]. The moments are induced via
the interaction of the photon’s electromagnetic field with
the quark substructure of the pion. The incident photon can
be thought of as creating the polarizing fields and the
outgoing photon carries information of the extent to which
the hadron has been polarized. αE is the proportionality
constant between the γ’s electric field and the induced
electric dipole moment, while βM is similarly related to the
γ’s magnetic field and the induced magnetic dipole
moment. A more pointlike and strongly bound system will
be less polarizable than an extended, weakly bound system.
As such the polarizabilities are fundamental hadronic
characteristics and in principle computable using the many
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approximate methods used to solve QCD. This should also
be true for AdS/CFT but a calculation of pionic polar-
izabilities by Marquet et al. [6] in an arbitrary background
dilaton field yielded exactly zero for both quantities. This is
in contradiction with the observed experimental values [5].
An earlier calculation by Gao and Xiao [7] in an AdS/CFT
hard-wall model also yielded zero (although these authors
do not explicitly mention polarizability).
At one level this is surprising. Naively, a minimal

model that couples photons to structureless spin-zero
fields should not yield any structure information at all.
However one quickly realizes that the fields in the bulk
are allowed to oscillate in all possible ways subject to
boundary conditions, and this endows the “shadow” in 4D
endowed with structure. Earlier, in the work of Grigoryan
and Radyushkin [8], the vertex was shown to be dressed
in a manner that resembles a generalized vector meson
dominance model. This and other efforts result in electro-
magnetic form factors of hadrons that are in fair to good
agreement with experiment. A reasonable shape of the
pion form factor suggests that the model correctly reflects
an important aspect of the pion’s quark substructure. One
can go further: as shown by de Teramond et al. [9]
exploring three-point functions in a different kinematic
regime leads to generalized parton distributions (GPDs)
that lie within the range of acceptable GPD parametriza-
tions which are consistent with the data. Nevertheless,
this minimal AdS/CFT model, whether or not VMD
improved, can go only so far. Zero polarizability falsely
suggests that the pion is an elementary particle; obviously
its compositeness is inadequately reflected and one there-
fore needs to extend the model.
The goal of the present paper is to incorporate hadronic

polarizabilities into AdS/CFT by suggesting additions to
the basic QCD gravity dual. This will involve the
introduction of effective vertices consistent with Lorentz
and discrete symmetries. In principle the vertices are
computable in approximations to QCD [10]. We shall
also permit vector and axial vector mesons to propagate as
intermediate states. As the simplest nontrivial possibility,
consider the Compton scattering of purely real photons
from a charged pion. Of course, more information could
be gained using virtual photons since these allow for
access to what are known as generalized polarizabilities
[11,12]. The extraction of αE and βM, as well as higher
multipole probabilities, depends crucially on using the
Low–Gell-Mann–Goldberger low energy theorem (LET)
[13]. In principle, any model respecting the symmetries
entering the derivation of the LET should reproduce the
constraints of the LET. It is only terms of second order
which contain new information on the structure of the
nucleon specific to Compton scattering. For a spinless
target, with ω, ω0 being the incident and scattered photon
energies respectively in the laboratory frame, the theorem
gives the form of the scattering amplitude,

f ¼ −
e2

m
ε0� · εþ αEωω

0ε0� · ε

þ βMωω
0ðε0� × q̂0Þ · ðε × q̂Þ þOðω3Þ: ð1Þ

This LET needs to be put into a Lorentz-invariant form,
which calls for identifying a tensor basis with coefficients
free from kinematical singularities. There have been
several careful discussions of this in the literature
[12,14]. An acceptable set that is model independent
must be based only on the requirement of gauge invari-
ance, Lorentz invariance, crossing symmetry, and the
discrete symmetries. The simplest and most illuminating
basis is that of L’vov et al. [12] who identify a tensor basis
with appropriate Lorentz-invariant amplitudes that are free
from kinematical singularities. A gauge-invariant separa-
tion is then made into a generalized Born term containing
ground-state properties only and a residual contribution
describing the model-dependent internal structure. More
specifically, these authors show that for a spinless hadron,
the non-Born terms from which polarizabilities can be
extracted must lead to a real photon Compton scattering
amplitude of the form

T ¼ TBorn þ
1

2
b1ð0Þfμνf0μν þ b2ð0ÞPμfμνPρf0ρν; ð2Þ

Pμ ¼ pμ þ p0
μ; ð3Þ

fμν ¼ −iðqμεν − qνεμÞ; ð4Þ

f0μν ¼ iðq0με0�ν − q0νε0�μ Þ: ð5Þ

In the above, b1ð0Þ and b2ð0Þ are the q2 → 0 limits of
scalar functions of kinematical invariants and are related
to the static polarizabilities αE and βM in the small ω limit
(as measured in the lab frame),

αE ¼ −
1

2m
b1ð0Þ −

m
2
b2ð0Þ ð6Þ

βM ¼ 1

2m
b1ð0Þ: ð7Þ

We now turn towards the AdS/CFT calculation of
Compton scattering. With the notations and conventions
as used by Marquet et al. [6], the bulk action with a scalar
field Φ minimally coupled to the field Am is

S0 ¼
Z

d4xdz
ffiffiffiffiffiffi
−g

p �
−
1

4
FmnFmn

þ e−χDmΦ�DmΦþ e−χμ2SΦ�Φ
�
; ð8Þ

DmΦ ¼ ∂mΦ − ieAmΦ: ð9Þ
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The dilaton field χðzÞ breaks conformal symmetry, which is
necessary for the 4D particles to have nonzero mass. A
popular choice is χðzÞ ¼ k2z2. However we shall not
commit to any particular choice in this paper. The 5D
field Amðx; zÞ is dual to the 4D electromagnetic field AμðxÞ.
Since we are concerned here only with real photons, it is
best to choose Az ¼ 0. This forces the condition, ∂μAμ ¼ 0.
There is no dilatonic cutoff on the real photon; it may travel
freely in the bulk. As per the usual convention, the latin
indices m, n ¼ 0, 1, 2, 3, z and the greek indices μ, ν ¼ 0,
1, 2, 3. The Minkowski space metric used here is ημν ¼
ð−1; 1; 1; 1Þ and gmndxmdxn ¼ ðR2=z2Þðημνdxμdxν þ dz2Þ.
The strategy of going from the action to the scattering

amplitude is well known and will not be repeated here in
detail. The main steps are (a) find the classical equations of
motion and then perform the mode expansion, subject to
defined values of the field on the 4D asymptotic border of the
5-D space; (b) reexpress the action in terms of the solutions
thus found by expanding to the required order in the electric
charge e; and (c) functionally differentiatewith respect to the
boundary values of the field after using the Gubser-
Klebanov-Polyakov-Witten relation [15,16] ZQFT ¼ ZBulk.
In calculating the four-point correlation function one needs
the bulk-to-bulk scalar Green’s function which, after Fourier
transformation, has the mode expansion [6]

Ĝðz; z0; kÞ ¼ −
X∞
n¼0

Φ�
nðzÞΦnðz0Þ

k2 þm2
n − iε

: ð10Þ

The eigenfunctions ΦnðzÞ are normalized according to

Z
∞

0

dz
e−χðzÞ

z3
Φ�

nðzÞΦmðzÞ ¼ δmn: ð11Þ

Marquet et al. [6] give the explicit (and rather complicated)
form of the scattering amplitude for the general case where
both photons are virtual. We can easily check their result for
the simpler situationwhere both photons are real. In that case
close to the threshold only the n ¼ 0 term in Eq. (10)
contributes. After using the normalization Eq. (11), up to
Oðω2Þ one sees that only the Born contribution remains:

T ¼ ð2πÞ4δ4ðpþ q − p0 − q0ÞMBorn; ð12Þ

MBorn ¼ e2ε0�μ
�
2ημν −

ð2pþ qÞμð2p0 þ q0Þν
sþm2

−
ð2p0 − qÞμð2p − q0Þν

uþm2

�
εν: ð13Þ

Thus the coefficients b1ð0Þ, b2ð0Þ are identically zero here;
the action in Eq. (8) gives zero polarizabilities in contra-
diction with both expectations and measurements. A hint
towards the remedy comes from current algebra [4]. The
Compton scattering amplitude can be related via current

algebra/PCAC to that for radiative charged pion decay and
involves both axial and vector currents. We shall take this
phenomenological route, anticipating that correct additions
to the AdS action will lead to desired symmetries for the
scattering amplitudes. To this end we supplement “by hand”
Eq. (8) with an action for charged axial vector fields,

Sa ¼ −
Z

d4xdz
ffiffiffiffiffiffi
−g

p
e−χ

�
1

2
a�mnamn þ μ2Aa

�
mam

þ 1

2
egAFmnða�mnΦþ amnΦ�Þ

�
; ð14Þ

amn ¼ ∂man − ∂nam: ð15Þ
One notes that there is another possible effective vertex
Fmna�m∂nΦwhich is closely similar toFmna�mnΦ in Eq. (14).
They are not identical in general, but close to the threshold the
two vertices yield exactly the same scattering amplitudes and
hence will not be considered separately. The gauge
a5ðx; zÞ ¼ 0 is the obvious choice. In the AdS/CFT corre-
spondence, the field aμðx; zÞ is sourced by the axial current
AμðxÞ ¼ q̄γ5γμq on the boundary at z ¼ 0. The classical
equation of motion is obtained from Eq. (14) and it is easy to
see that the Green’s function Ĝμνðx; z; x0; z0Þ obeys�

z
e−χ

∂z

�
e−χ

z
∂z

�
þ ημν∂μ∂ν −

�
μ2AR

2

z2

��
Ĝμν

¼ gμνffiffiffiffiffiffi−gp
e−χ

δ4ðx − x0Þδðz − z0Þ: ð16Þ

Translational invariance on the z ¼ 0 boundary allows for a
Fourier transformation,

Ĝμνðx;z;x0;z0Þ ¼ gμνðz0Þ
Z

d4k
ð2πÞ4 e

ik·ðx−x0ÞhAðz;z0;kÞ;

ð17Þ
�
z
e−χ

∂z

�
e−χ

z
∂z

�
− k2 −

�
μ2AR

2

z2

��
hAðz; z0; kÞ

¼ 1ffiffiffiffiffiffi−gp
e−χ

δðz − z0Þ: ð18Þ

The spectral decomposition of the axial propagator
hAðz; z0; kÞ is easily found:

hAðz; z0; kÞ ¼ −
X∞
n¼0

Ψ�
AnðzÞΨAnðz0Þ

k2 þM2
An − iε

; ð19Þ

where Ψn obeys

HAΨn ¼ −M2
AnΨn; ð20Þ

HA ¼ z
e−χ

∂z

�
e−χ

z
∂z

�
−
�
μ2AR

2

z2

�
: ð21Þ
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The normalization is

Z∞

0

dz
e−χðzÞ

z
Ψ�

AnðzÞΨAmðzÞ ¼ δmn: ð22Þ

For a given source term Kνðx; zÞ the axial vector field, up
to a free solution, is obtained from

aμðx;zÞ¼
Z

d4x0dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðz0Þ

p
e−χðz0ÞĜμνðx;z;x0;z0ÞKνðx0;z0Þ:

ð23Þ

For the effective coupling in Eq. (14) the relevant source
term for aμðx; zÞ is

Kνðx; zÞ ¼ egAFναη
αβ∂βΦ: ð24Þ

We can now insert Eq. (23) into the action in Eq. (14) to get
the Oðe2Þ term, pick out the Fourier components, and then
differentiate with respect to the sources on the 4D boun-
dary. Only terms up to second order in the photon energy
are kept. After a straightforward calculation one obtains the
following contribution to the scattering amplitude:

MA ¼ 1

4
e2g2APμfμνðqÞPρfρνðq0Þ

Z
dz
z5

dz0

z05
e−χðzÞe−χðz0Þðz4 þ z04ÞΦ0ðzÞhAðz; z0; kÞΦ�

0ðz0Þ: ð25Þ

The function Φ0ðzÞ is the pion wave function
which was encountered earlier in the n ¼ 0 term in
Eq. (10). In Eq. (25) the propagator is evaluated at
k ¼ pþ q ¼ p0 þ q0, corresponding to the s channel Feyn-
man diagram. There is also a crossed channel contribution
with k ¼ p − q0 ¼ p0 − q and with photon polarization
vectors exchanged. At the quadratic level, the crossed
contribution is equal to that in Eq. (25). Again, at the
quadratic level, they are both of the form given in the
second term of Eq. (2). Since hAðz; z0; kÞ ¼ hAðz0; z; kÞ,
the z4 and z04 contribute equally in Eq. (25). Finally, using
the expression for the Green’s function in Eq. (19) with
k2 ¼ −m2 gives b2ð0Þ:

b2ð0Þ ¼ e2g2A
X∞
n¼0

CnDn

−m2
0 þM2

An
; ð26Þ

Cn ¼
Z

∞

0

dz
z
e−χðzÞΦ0ðzÞΨ�

AnðzÞ; ð27Þ

Dn ¼
Z

∞

0

dz
z5

e−χðzÞΨAnðzÞΦ�
0ðzÞ: ð28Þ

The sum in Eq. (26) is expected to converge rapidly with n,
i.e., as the number of wave function nodes increases. From
the equations of motion close to the UV boundary where
χðzÞ → 0, one finds that the scalar wave functions asymp-
totically behave as ΦnðzÞ ∼ za with a ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2SR

2
p

.
Correspondingly, the axial vector wave functions have
ΨnðzÞ ∼ zb with b ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2AR

2
p

. Hence the integrals
in Eq. (28) converge at the lower limit for μ2S > 0 or μ2A > 0.
If μ2S ¼ μ2A ¼ 0 then Bn is logarithmically divergent and can
be regulated by putting a cutoff at z ¼ ε.
As yet we do not have a contribution to b1ð0Þ as in

Eq. (7). An effective interaction reflecting QCD sym-
metries that rectifies the problem calls for the exchange
of a charged vector meson. Consider therefore a further
supplement to the action that preserves the usual continu-
ous and discrete symmetries,

Sv ¼ −
Z

d4xdz
ffiffiffiffiffiffi
−g

p
e−χ

�
1

2
v�mnvmn þ μ2vv�mvm þ 1

4
egvF̃mnðv�mnΦþ vmnΦ�Þ

�
; ð29Þ

vmn ¼ ∂mvn − ∂nvm; F̃mn ¼ εmnpqzFpq: ð30Þ

Both Sa; Sv have only U(1) symmetry. The A1 and ρ have
very different masses; in fact m2

A1
≈ 2m2

ρ. Thus, we expect
μ2v [Eq. (29)] and μ2A [Eq. (14)] to have quite different
values. Let us note that if chiral SUð2Þ × SUð2Þ had been
an exact symmetry of the ordinary sort, the ρ meson would
have been exactly degenerate with the A1. But, in the model

of Erlich et al. [17] an additional condensate field can be
introduced and this forces the masses to be different. On the
other hand, in light front holographic QCD with zero mass
quarks, the pion is massless but mA1

−mρ owes to the
different values of light-front orbital angular momentum L
for the A1 and ρ [see Eq. (5.9) of Brodsky et al. [2] ].
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The leading order scattering amplitude coming from the vector meson part is

MV ¼ e2g2Am
2f̃μνðqÞf̃μνðq0Þ

Z
dz
z5

dz0

z05
e−χðzÞe−χðz0Þðz4 þ z04ÞΦ0ðzÞhVðz; z0; kÞΦ�

0ðz0Þ: ð31Þ

Using f̃μνðqÞf̃μνðq0Þ ¼ −4fμνðqÞfμνðq0Þ, and adding in the
contribution from the crossed channel, we then compare
with Eq. (7) to obtain

b1ð0Þ ¼ −e2m2g2V
X∞
n¼0

EnFn

−m2
0 þM2

Vn
; ð32Þ

En ¼
Z

∞

0

dz
z
e−χðzÞΦ0ðzÞΨ�

VnðzÞ; ð33Þ

Fn ¼
Z

∞

0

dz
z5

e−χðzÞΨVnðzÞΦ�
0ðzÞ: ð34Þ

The couplings gA, gV are determined by the charged
meson decay amplitudes for the axial vector and vector
mesons respectively. The lowest lying axial-vector meson
is the A1 and the corresponding vector meson is the ρ. From
Eq. (29), after using translational invariance on the 4D
boundary, one immediately sees that

MA1→γπ ¼ ð2πÞ4δ4ðk − q − pÞegAðε0� · εq · k − ε · qε0� · kÞC0

Mρ→γπ ¼ ð2πÞ4δ4ðk − q − pÞegVεμνρσkμενqρε0�σ E0:

C0, E0 are the overlaps in Eqs. (27) and (33). Knowing the
electromagnetic decay widths of the A1 and ρ one can find
gA, gV for any dilaton profile and choice of parameters μS,
μA, μV and hence the electric and magnetic polarizabilities
from Eqs. (26) and (32) together with Eqs. (6) and (7). The
widths ΓA1→γπ and Γρ→γπ have been measured (albeit quite
imprecisely) and the constants gA, gV can be related to
them. We shall not pursue numerical possibilities here,
having obtained a minimal extension of the minimal AdS/
CFT model that can in principle accommodate hadronic
polarizabilities.
It would certainly be interesting to see how more

elaborate AdS/CFT QCD inspired models, whether top-
down or bottom-up, might fare on hadronic polarizabilities
and whether they too would need to be supplemented in
some way. Of course, gauge-gravity duality has been

rigorously established only for a certain supersymmetric
theory (which QCD is definitely not) and one is still
guessing at the QCD dual. The large Nc limit, wherein
quark and gluon loops are suppressed, makes the approach
attractive and has brought it much attention. This is well
deserved but, at the same time, it is important to compare it
against QCD phenomenology, such as in low energy
inclusive scattering for which effective field theories have
been developed. This will help towards determining the
domain of applicability of the AdS/CFT approach.
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