
 

Universe as an oscillator

Masooma Ali,1,* Syed Moeez Hassan,1,† and Viqar Husain1,2,‡
1Department of Mathematics and Statistics, University of New Brunswick,

Fredericton, New Brunswick, Canada E3B 5A3
2Perimeter Institute for Theoretical Physics, 1 Caroline Street N, Ontario, Canada

(Received 23 July 2018; published 2 October 2018)

We apply the idea of using a matter-time gauge in quantum gravity to quantum cosmology. For a
Friedmann-Lemaître-Robertson-Walker (FLRW) universe with dust and a cosmological constant Λ, we
show that the dynamics maps exactly to the simple harmonic oscillator in the dust-time gauge. For Λ > 0

the oscillator frequency is imaginary, for Λ < 0 it is real, and for Λ ¼ 0 the universe is a free particle. This
result provides (i) a simple and general demonstration of nonperturbative singularity avoidance in FLRW
quantum cosmology for all Λ, (ii) an exact Lorentzian Hartle-Hawking wave function, and (iii) the present
age of the universe as the characteristic decay time of the propagator.
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I. INTRODUCTION

The application of quantum theory to gravity is pursued
using a number of different approaches (see, e.g., Ref. [1]
for a recent survey). These can be broadly divided into two
categories: those that are “background dependent” and
those that are not [2]. The term refers to what structures in
the classical theory are to be held fixed in the passage to
quantum theory. The canonical quantization approach for-
mulated by DeWitt [3] is considered to be the defining case
of a background-independent approach to quantum gravity;
this was also the paper where the very first quantization of
the Friedmann-Lemaître-Robertson-Walker (FLRW) model
was described.
The canonical quantization program is naturally divided

into two distinct approaches. These are referred to as
(i) Dirac quantization, where the Hamiltonian constraint
is imposed as an operator condition on wave function(al)s,
and (ii) reduced phase space quantization, where time and
spatial coordinate gauges are fixed in the classical theory
before proceeding to quantization. It is the former that leads
to the Wheeler-DeWitt equation. Solutions in either case
are referred to as “wave functions of the Universe.”
In its more recent incarnations, the Dirac quantization

condition is approached via a path integral as in the Hartle-
Hawking method [4], or by imposing the condition directly
as in loop quantum gravity [5,6]. In reduced phase space
quantization, a phase space variable is first selected as a
clock. Its conjugate variable provides the physical non-
vanishing Hamiltonian. Quantization then proceeds as in

conventional quantum theory with a time-dependent
Schrodinger equation (or path integral). This division
has led to much debate about the role of time in quantum
gravity at both the philosophical and physical levels,
and questions about the equivalence of the two methods
[7–9].
Because of the difficulty in solving the Wheeler-DeWitt

equation in the former case and the time-dependent
Schrodinger equation in the latter case, nearly all concrete
calculations are restricted to either homogeneous cosmo-
logical models or inhomogeneous perturbations of these
models. Examples of early work on such models include
Refs. [10,11]. The more recent works are in the framework
of loop quantum cosmology (LQC) [12] and on Lorentzian
versions of the Hartle-Hawking prescription [13,14].
In this paper we revisit the flat, homogeneous, and

isotropic cosmology with dust and a cosmological constant
Λ. This remains the typical model to consider since current
observations suggest that our Universe is modeled well by
a FLRW cosmology with zero spatial curvature and a very
small positive cosmological constant, Λ ∼ 3 × 10−122l−2P
[15]. We study the model using the reduced phase method
in the dust-time gauge [16–20]; a recent study via Dirac-
Wheeler-DeWitt quantization appeared in Ref. [21]. In the
context of matter-time gauges, there have also been several
studies that used scalar field time in quantum gravity and
cosmology; a representative selection is Refs. [22–25].
In the Arnowitt-Deser-Misner (ADM) canonical for-

malism, we show that dust-time gauge leads to a surprising
result: the corresponding physical Hamiltonian, after a
canonical transformation, becomes exactly that of a simple
harmonic oscillator; the oscillator’s frequency is determined
by

ffiffiffiffi
Λ

p
. The corresponding quantum theory is therefore

immediate.
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For Λ < 0 the potential is that of the usual oscillator,
whereas for Λ > 0 it is the inverted oscillator. The former
case describes universes either as stationary states, or as
wave packets that expand and contract ad infinitum. The
latter case has only scattering solutions that give universes
with a single bounce. Depending on the choice of canonical
parametrization, the oscillator is either on the half or the full
line. All cases provide singularity avoidance, for all choices
of self-adjoint extensions of the Hamiltonian. Our work
also exhibits one of the situations where Dirac and reduced
phase space quantizations give similar results for a par-
ticular choice of operator ordering in the Wheeler-DeWitt
equation.
We begin by reviewing the general formalism for the

dust-time gauge, followed by its application to cosmology
in the following sections.

II. DUST-TIME GAUGE

The model we consider is general relativity coupled to a
pressureless dust field T. The action

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p
R−

Z
d4x

1

2
M

ffiffiffiffiffiffi
−g

p ðgab∂aT∂bTþ1Þ ð1Þ

where gab is the 4-metric, R is the 4-Ricci scalar, and M is
the dust energy density, leads to the canonical ADM action

S ¼
Z

d3xdtðπab _qab þ pT
_T − NH − NaCaÞ; ð2Þ

where

H≡HG þHD

¼ 1ffiffiffi
q

p
�
πabπab −

1

2
π2
�
þ ffiffiffi

q
p ðΛ − ð3ÞRÞ

þ sgnðMÞpT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qab∂aT∂bT

q
; ð3aÞ

Ca ≡ −Dbπ
b
a þ pT∂aT; ð3bÞ

qab is the 3-metric, πab is its conjugate momentum, pT is
the dust conjugate momentum, N is the lapse, Na is the
shift, and the metric is of the ADM form

ds2 ¼ −N2dt2 þ ðdxa þ NadtÞðdxb þ NbdtÞqab: ð4Þ

We define the canonical dust-time gauge by

T ¼ ϵt ð5Þ

with ϵ ¼ �1. The requirement that the gauge be preserved
in time gives

_T ¼ ϵ ¼
�
T;

Z
d3xNH

�����
T¼t

¼ sgnðMÞN: ð6Þ

The physical HamiltonianHp is obtained by substituting the
gauge into the dust symplectic term in the canonical action,
which identifies Hp ≡ −ϵpT . Solving the Hamiltonian
constraint

HG þ sgnðMÞpT ¼ 0 ð7Þ

then identifies the physical Hamiltonian

Hp ¼ −ϵpT ¼ ϵsgnðMÞHG ¼ NHG; ð8Þ

using Eq. (6) for the last equality. It is also useful to note,
using pT ¼ ffiffiffi

q
p _TM=N and Eq. (6), the relation

pT ¼ ϵ
ffiffiffi
q

p M
N

¼ ϵ
ffiffiffi
q

p sgnðMÞ
N

jMj ¼ ffiffiffi
q

p jMj; ð9Þ

which shows that pT > 0 for M ≠ 0, and

Hp ¼ −ϵ
ffiffiffi
q

p jMj ¼ NHG: ð10Þ

Thus the requirement that the dust Hamiltonian satisfy
HD ¼ sgnðMÞpT ≥ 0 implies sgnðMÞ ¼ þ1, since pT ¼ffiffiffi
q

p jMj ≥ 0. This means that the dust field satisfies theweak
energy condition. With this choice Eq. (6) gives N ¼ ϵ. In
the following we make the choice N ¼ ϵ ¼ −1which gives
the manifestly positive physical Hamiltonian density

Hp ¼ ffiffiffi
q

p jMj ¼ −HG ≥ 0: ð11Þ

A. Application to cosmology

Let us now consider the reduction of the dust-time gauge
theory to homogeneous and isotropic cosmology. This is
obtained by setting

qab ¼ a2ðtÞeab;

πab ¼ paðtÞ
6aðtÞ e

ab; ð12Þ

where eab ¼ diagð1; 1; 1Þ is a fiducial flat metric. The
reduced phase space coordinates are ða; paÞ, and we take
a ∈ ð0;∞Þ and pa ∈ R as the definition of this para-
metrization [since we must have detðqabÞ ¼ a3 > 0].
The physical Hamiltonian (11) for the flat case then

becomes

Hp ¼
p2
a

24a
− Λa3: ð13Þ
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To briefly recap, this FLRW model started with a four-
dimensional constrained phase space—that of the dust field
and scale factor. After fixing the time gauge and solving the
Hamiltonian constraint, the reduced phase space becomes
two dimensional, with canonical coordinates ða; paÞ. This
is unlike the vacuum de Sitter model (see, e.g., Ref. [26]),
which actually has no physical degrees of freedom (d.o.f.);
the physical meaning of “wave functions of the Universe”
without additional d.o.f. is therefore unclear.
Let us now note the canonical transformation

p ¼ paffiffiffiffiffiffiffiffi
12a

p ; x ¼ 4ffiffiffi
3

p a3=2; ð14Þ

and the rescalingΛ→4Λ=
ffiffiffi
3

p
transforms theHamiltonian to

Hp ¼
1

2
ðp2 − Λx2Þ: ð15Þ

Thus, there are three cases of interest: Λ ¼ 0 is a free
particle, Λ < 0 is the oscillator, and Λ > 0 is the inverted
oscillator.

III. QUANTIZATION AND WAVE FUNCTIONS
OF THE UNIVERSE

This section consists of two parts where we describe
quantization in the dust-time gauge for two choices of the
configuration space. These lead to quantum theories on
either the half-line or the full line. In the former case there is
a one-parameter family of self-adjoint extensions of the
physical Hamiltonian.

A. Quantization on the half-line

The classical theory is on the half-line, x ∈ ð0;∞Þ, so
the obvious choice for the Hilbert space is L2ðRþ; dxÞ.
In this space it is known that Hamiltonians of the form
p2 þ VðxÞ have self-adjoint extensions. Specifically, it is
readily checked that the physical Hamiltonian (15) is
symmetric in the usual representation p̂ → −i∂x, i.e., that

ðψ ; cHpϕÞ ¼ ðcHpψ ;ϕÞ, provided limx→∞ϕ ¼ 0 and

lim
x→0

½ψ�ϕ0 − ϕψ�0� ¼ 0: ð16Þ

This gives the boundary condition ϕ0ð0Þ ¼ αϕð0Þ, α ∈ R.
Thus, there is a one-parameter (α) family of self-adjoint

extensions of cHp on the half-line, so the Hilbert space is the
subspace specified by

Hα ¼ fϕ ∈ L2ðRþ; dxÞ
���lim
x→0

ðlnϕÞ0 ¼ α ∈ Rg: ð17Þ

We are interested in solving the time-dependent
Schrodinger equation,

i
∂
∂tϕðx; tÞ ¼ −

1

2

∂2

∂x2 ϕðx; tÞ −
1

2
Λx2ϕðx; tÞ; ð18Þ

with the boundary condition mentioned above. (In this
equation all variables are dimensionless or, equivalently,
written in Planck units.)
Λ ¼ 0: There are two types of elementary solutions. The

first are the ingoing and outgoing waves of fixed energy (in
the dust-time gauge), and satisfying the above boundary
condition,

ϕαkðx; tÞ ¼ e−ik
2t=2

�
eikx −

�
α − ik
αþ ik

�
e−ikx

	
: ð19Þ

Normalizable wave functions are constructed in the usual
manner as

ψαðx; tÞ ¼
Z

∞

−∞
dkfðkÞϕαkðx; tÞ: ð20Þ

All such solutions describe universes with singularity
avoidance and a bounce at the origin with a phase shift
given by α.
The second type of solution is a bound state,

ϕðx; tÞ ¼ eiκ
2t=2e−κx; κ > 0: ð21Þ

This corresponds to α ¼ −κ, a choice permitted by the
boundary conditions. The universe this describes is ruled
out by experiment, since ha3=2i ∼ hxi ¼ ð2κÞ−1 which has
the interpretation of an emergent flat spacetime from the
expectation value of the metric.
Λ < 0: This is the oscillator on the half-line with the

boundary condition ψ 0ð0Þ − αψð0Þ ¼ 0. With Λ ¼ −1=l2
and ζ ¼ t=l, the propagator on R is a basic result,

Kðx; ζ; x0; 0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2πil sin ζ

s
exp

�
i½ðx2 þ x02Þ cos ζ − 2xx0�

2l sin ζ

�
: ð22Þ

For the half-line problem at hand, given initial data
ψðx; 0Þ ¼ fðxÞ for x > 0, the solution with the required
boundary condition at x ¼ 0 may be obtained by extending
the given initial data fðxÞ on Rþ to the region x < 0, such
that

f0ðxÞ − αfðxÞ ¼ −ðf0ð−xÞ − αfð−xÞÞ; x < 0; ð23Þ

i.e., imposing antisymmetry on the boundary condi-
tion function. Solving this equation gives the required
extension

UNIVERSE AS AN OSCILLATOR PHYS. REV. D 98, 086002 (2018)

086002-3



fLðxÞ≡ eαx
Z

0

x
due−αu½f0ð−uÞ − αfð−uÞ�

þ eαxfð0Þ; x < 0; ð24Þ

where the integration constant is chosen such that
fLð0Þ ¼ fð0Þ.
Convoluting this extended data with the full-line

propagator (22) then gives the solution

ψðx; ζÞ ¼
Z

0

−∞
dx0Kðx; ζ; x0; 0ÞfLðx0Þ

þ
Z

∞

0

dx0Kðx; ζ; x0; 0Þfðx0Þ; x > 0: ð25Þ

It is straightforward to construct explicit examples of such
solutions; all describe universes that expand out to a
maximum size, recollapse, and bounce again. This is of
course expected since wave packets are confined in the
half-oscillator potential. Figure 1 shows the dynamics of a
representative Gaussian wave function with Λ ¼ −1 and
α ¼ 1. The asymmetric bounce is evident, and the second
and fourth frames demonstrate the multiple bounce feature.
Λ > 0: The Hamiltonian is not bounded from below.

However, the unitary evolution operator is still well defined
since the Hamiltonian has self-adjoint extensions. The
propagator on R is obtained by the replacement l → il
to give

K̄ðx;ζ;x0;0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2πilsinhζ

s
exp

�
i½ðx2þx02Þcoshζ−2xx0�

2lsinhζ

�
: ð26Þ

Solutions of the time-dependent Schrodinger equation with
the boundary condition ϕ0ð0Þ − αϕð0Þ ¼ 0 are found in the
same way as above by extending the initial data function to

x < 0. It is evident that the propagator is damped for large
times ζ due to the prefactor. However, for the very small Λ
that is experimentally observed, the decay time would be
very large. (It is useful to note that the issue of convergence
of the Euclidean functional integral for the inverted oscil-
lator was studied in Ref. [27], where it was shown that the
integral for the propagator converges if the propagation time
is bounded by a factor of the oscillator frequency.) Figure 2
shows the propagation of the same initial Gaussian wave
packet as that in Fig. 1, but now for positive Λ. The wave
packet moves outward and spreads rapidly.

B. Quantization on R

In the above we started with the standard canonical
parametrization for the FLRW cosmology which led to the
oscillator on the half-line. There is an alternative para-
metrization that directly gives the oscillator on the real line
after a rescaling of variables. This is

qab ¼ A4=3ðtÞeab;

πab ¼ 1

4A1=3ðtÞPAðtÞeab; ð27Þ

where the phase space ðA;PAÞ is now R2.
In this parametrization there is an exact Lorentzian

“Hartle-Hawking” (HH) wave function, which is the
“amplitude for a three-geometry given by a path integral
over all compact positive-definite four-geometries which
have the three-geometry as a boundary” [4]:

ψ ½q� ¼
Z

D½g�D½ϕ� exp ð−S½g;ϕ�Þ; ð28Þ

where S is the Euclidean action for matter and gravity,
and the gravity measure is designed to reflect the defi-
nition above.

FIG. 1. Snapshots of jψðx; tÞj2 with the initial data fðxÞ ¼ e−ðx−3Þ2ffiffiffiffiffiffi
π=24

p , and parameters Λ ¼ −1 and α ¼ 1.0. The universe moves toward

the origin (t ¼ 0.1–1.5), expands asymmetrically (t ¼ 2.9), and contracts again (t ¼ 4.8). The profiles at t ¼ 1.5 and t ¼ 4.8 are

nearly identical.
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In our case, we deploy the boundary condition obtained
by setting x0 ¼ 0 in Eq. (26); this is the closest to the HH
condition in Lorenzian theory:

ΨHH ≡ K̄ðA; ζ; 0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2πil sinh ζ

s
exp

�
−

iA2

2l tanh ζ

�
;

ð29Þ
where A4 ¼ detðqabÞ≡ q, and since we are now on the full
line, A ∈ R. This expression is just the oscillator propa-
gator on the real line for Λ ¼ 1=l2 with A0 ¼ ζ0 ¼ 0. For
large times ζ ¼ t=l this is

K̄ðq; ζ; 0; 0Þ → 1ffiffiffiffiffiffi
πil

p exp
�
−
i

ffiffiffi
q

p þ t

2l

�
: ð30Þ

This is oscillatory in 3-volume, and decays exponentially in
time t.

IV. DISCUSSION

The basic result in this paper is that in general relativity
coupled to pressureless dust in the dust-time gauge, the
FLRW model with a cosmological constant has a physical
Hamiltonian that is exactly that of a harmonic oscillator
with frequency determined by

ffiffiffiffi
Λ

p
. The Hamiltonian has a

one-parameter (α) set of self-adjoint extensions, and
explicit solutions of the time-dependent Schrodinger equa-
tion are readily constructed. All cases give singularity
avoidance, which here means that wave functions describ-
ing the universe bounce at small spatial volume for any
value of α, regardless of whether the configuration space is
the half-line or the full line.
It is interesting to compare these results with those

obtained in LQC [12] using the connection-triad variables.
There the Λ ¼ 0 case was studied with scalar field
time, where the form of the Hamiltonian is such that
wave function dynamics requires numerical study. It was

subsequently studied in the dust time [18]. In both of these
cases the Hamiltonian is essentially self-adjoint. In our case
the bounce occurs for all self-adjoint extensions, and can be
asymmetric in the sense that there is a phase shift at the
bounce determined by α. Only the α ¼ 0 case gives a
symmetric bounce.
For comparison with Dirac quantization, the correspond-

ing quantum theory also resembles the oscillator, but only
for the Laplace-Beltrami operator ordering in the kinetic
term in the Wheeler-DeWitt operator [21]; that paper only
considered Λ ¼ 1, and did not address the most general
self-adjoint extension with Robin boundary conditions.
(This work was pointed out to us after the present work
was posted to the arXiv.) Nevertheless, it is one of the
few cases where it seems possible to rigorously establish
equivalence between Dirac and reduced phase space
quantizations. It would be interesting to study this issue
for full quantum gravity with dust time [17].
Our consideration and results are entirely in the

Lorentzian theory, and as such may be compared with
similar models that invoke the Hartle-Hawking prescription
in Lorentzian time, in particular the recent debate concern-
ing integration contours for the propagator [13,14]. The
latter work reported a suppression factor expð−Λl2pÞ in
the propagator for the no-boundary wave function of the
Universe in the semiclassical approximation. We found a
similar result, but our state is exact (i.e., not just a semi-
classical approximation), and also has explicit (dust) time
dependence: Eq. (30) has the factor expð−t=2lÞ, which for
fixed t ¼ t0 exhibits an exponential decay. Therefore, from
the currently observed value ofΛ, l ∼ 1060lp, the character-
istic decay time is ∼1060 Planck times, which is close to the
age of the Universe.
The model with spatial curvature k ≠ 0 and additional

matter fields such as the minimally coupled scalar field is
not exactly solvable. The physical Hamiltonian for this case
in the dust-time gauge [after the canonical transformation
(14)] is

FIG. 2. Snapshots of jψðx; tÞj2 with the initial data fðxÞ ¼ e−ðx−3Þ2ffiffiffiffiffiffi
π=24

p , and parameters Λ ¼ 1 and α ¼ 1.0. The initial wave packet travels
outwards and spreads.
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Hk
p ¼

1

2
ðp2 − Λx2Þ þ kx2=3 þ p2

ϕ

2x2
þ x2VðϕÞ: ð31Þ

Models such as this demonstrate that it is useful to
consider matter-time gauges in the cosmological setting.
Gravitational perturbations can be added to the physical
Hamiltonian in a similar way, while retaining the oscillator
form of the homogeneous part of the kinetic term. This may
provide a useful starting point for studying singularity
avoidance in dust-time gauge in the inhomogeneous setting.
We note that it is an important consideration to extend

the model we have studied in two ways: to include
anisotropy and, beyond that, inhomogeneity. The former
is a larger minisuperspace model with a few more phase
space d.o.f. A classical analysis in dust-time gauge
appeared in Ref. [28]. The inclusion of general inhomo-
geneities is of course more difficult in that it involves
studying field-theoretic models such as the Gowdy cos-
mologies [29]. The importance of such extensions is of
current interest due to the issue of whether the no-boundary
wave function is stable to perturbations: there are argu-
ments for [30] and against such stability [31]. These works

do not use the dust-time gauge and physical Hamiltonian
that we study here, so an extension of our approach beyond
FLRW to include a gravitational perturbation of fixed wave
number along the lines studied in these papers would be
potentially useful.
Last, the Λ < 0 case may be of interest in the context of

the AdS/CFT conjecture and holography. Specifically, the
idea of using matter (or other) time gauge in the bulk might
provide a useful mechanism to probe bulk dynamics and
the holographic signatures of resolved singularities in such
settings [32], something which appears so far to be largely
unexplored.
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