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The quantum fluctuations of the geodesic deviation equation in a flat background spacetime are
discussed. We calculate the resulting mean-squared fluctuations in the relative velocity and separation
of test particles. The effect of these quantum fluctuations of the spacetime geometry is given in terms of
the Riemann tensor correlation function. Three different sources of the Riemann tensor fluctuations are
considered: a thermal bath of gravitons, gravitons in a squeezed state, and the graviton vacuum state.
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I. INTRODUCTION

In flat space, parallel lines maintain their separation
forever. However, in curved spacetime, parallel geodesics
do not remain parallel when they are extended. The
mathematical statement of this physical phenomena is
given by the geodesic deviation equation, which shows
that the tidal force of a gravitational field causes mod-
ifications in the trajectories of neighboring particles [1].
Many studies concerning the behavior of the geodesic
deviation equation in several background gravitational
fields as well as their consequences can be found in
Refs. [2–6]. In general relativity, an important effect of
curvature is how it changes the relative separation between
two geodesic particles. This is a manifestation of the
gravitational field and hence the acceleration of the
deviation vector between two nearby geodesics contains
information about the curvature of the spacetime [7–10].
The properties of the curved spacetime which are

reflected by physics in a gravitational field can be evaluated
by analyzing the behavior of a set of neighboring geo-
desics, representing, e.g., a bundle of photons or a
distribution of massive test particles [11]. In order to study
this phenomenon, many different approaches have been
proposed [12–15].
On the other hand, the investigation of Brownian motion,

which can be described by the Langevin equation, played a
very important role for the establishment of the atomic
structure of matter. The discrete character of matter (micro-
scopic feature) causes fluctuations in the density of matter,
which, in turn, causes observable effects on the motion

of the Brownian particle (macroscopic feature) [16].
Recently, the solutions of Langevin-type equations in
some astrophysical scenarios have been discussed in the
literature [17–23].
The knowledge of the behavior of a Brownian particle

immersed in a fluid of much smaller atoms, can give us, in
principle, some relevant information about the physics of these
objects [24]. The Brownianmotion of test particles coupled to
quantized fields was studied in Refs. [25–27]. Similarly, we
can study theBrownianmotion of test particles in a fluctuating
gravitational field to look for insights into quantum gravity
[28]. In this way, we will use the geodesic deviation equation
as a Langevin equation in which the Riemann tensor fluc-
tuates. These quantum fluctuations of the curvaturemodify the
motion of test particles and can be measured by the relative
velocity dispersion after an interaction.
The quantum fluctuations of the spacetime geometry can

be of two types: passive and active. The passive case is
generated by fluctuations of the quantum matter fields, that
is, fluctuations in the source of the gravitational field which
are described in terms of the stress and Ricci tensor
correlation functions [29–35]. The active case is due to
the quantum nature of gravity, that is, fluctuations of the
dynamical degrees of freedom of gravity itself, which
are given in terms of the Riemann tensor correlation
function [36–43].
This paper is organized as follows. In Sec. II we

introduce the geodesic deviation equation and obtain an
expression for the relative velocity dispersion. In Sec. III,
we evaluate this expression and compute the relative
distance fluctuations in the case of a thermal bath of
gravitons. In Sec. IV, we do the same for gravitons in a
squeezed state. In Sec. V, we sample the Riemann tensor
correlation function for the case of the graviton vacuum
state. Finally, in Sec. VI, the conclusions are given. We will
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use units in which ℏ ¼ c ¼ 1 throughout the paper. In
Secs. III and V, we use units in which 32πG ¼ 32πl2

Pl ¼ 1

where G is Newton’s constant and lPl, is the Planck
length. However, in Sec. IV we will work in units where
G ¼ l2

Pl ¼ 1 for consistency with previous references. In
all cases, we will restore powers lPl in the final results.

II. GEODESIC DEVIATION FLUCTUATIONS

Let us consider two test particles whose world lines are
nearby timelike geodesics, as illustrated in Fig. 1.
The 4-velocity, uμ, and the separation vector, sμ, are

given by

uμ ≡ dxμ

dτ
; ð1Þ

and

sμ ≡ dxμ

dn
¼ ϵnμ; ð2Þ

where nμnμ ¼ 1, and n is a parameter which labels nearby
geodesics. Note that sμ is a spacelike vector with magnitude
ϵðτÞ which connects two points on the two geodesics with
the same values of the proper time, τ.
The variation of the separation vector between two

neighboring geodesics is described by the geodesic
deviation equation,

D2sμ

dτ2
¼ −Rμ

ανλuαsνuλ; ð3Þ

where Rμ
ανλ is the Riemann tensor. For particles on the

neighboring geodesics, their relative acceleration along the
separation direction is given by [44]

α≡ nμ
D2sμ

dτ2
¼ −ϵRμανλnμuαnνuλ: ð4Þ

Thus, if the particles start at rest at proper time τ ¼ 0, then
we may approximately integrate the above expression to
find their relative velocity at a later time τ ¼ τ0 as

υ≡ nμ
Dsμ

dτ
≈ −ϵ0

Z
τ0

0

dτRμανλðτÞnμuαnνuλ: ð5Þ

Here we assume that the separation change during this
interval is small, so we may let ϵ ≈ ϵð0Þ ¼ ϵ0, the initial
separation. We also assume that nμ is constant to leading
order. Equation (5) defines a scalar velocity in the frame
where nμ ¼ ð0; n⃗Þ.
Now, let us suppose that the spacetime geometry is

subject to quantum fluctuations. In fact, given an ensemble
of geodesics, measurements of the relative velocity along
the same line will give different results. Therefore, we must
take the expectation value of these measurements as well as
the standard deviation. To do this, we will assume that the
Riemann tensor is subject to quantum fluctuations which
can be, in principle, active, passive or both. We have to
specify how the 4-vectors uμ and sμ behave under the
fluctuations. The simplest assumption is that both uμ and sμ

do not fluctuate to lowest order in the perturbations of
spacetime. Physically, this is equivalent to assuming that
both the source and detector are located in a flat region, or
both are rigidly attached to one another by nongravitational
forces. Finally, we assume that the perturbation is negli-
gible at both the source and detector.
The mean relative velocity of the particles, hυi, is now

obtained by averaging Eq. (5) as follows:

hυi ¼ −ϵ0
Z

τ0

0

dτhRμανλðτÞinμuαnνuλ: ð6Þ

The fluctuations around the mean trajectory in the direction
of nμ are described by

Δυ ¼ υ − hυi

¼ −ϵ0
Z

τ0

0

dτ½RμανλðτÞ − hRμανλðτÞi�nμuαnνuλ: ð7Þ

Therefore, the variance of the relative velocity, hðΔυÞ2i,
can be expressed as

hðΔυÞ2i
¼ hυ2i − hυi2

¼ ϵ20

Z
τ0

0

dτ
Z

τ0

0

dτ0Cαλμνγδρσðx; x0Þnαuλnμuνnγuδnρuσ;

ð8Þ

where the Riemann tensor correlation function,
Cαλμνγδρσðx; x0Þ, is given by

FIG. 1. Timelike geodesics for two nearby falling particles,
with 4-velocity uμ, and separation sμ ¼ ϵnμ, where nμ is a unit
spacelike vector.
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Cαλμνγδρσðx; x0Þ ¼ hRαλμνðxÞRγδρσðx0Þi
− hRαλμνðxÞihRγδρσðx0Þi: ð9Þ

This expression describes the fluctuations of the Riemann
tensor. Here, the indices αλμν refer to the spacetime point x
(which corresponds to the point τ), while the indices γδρσ
refer to the spacetime point x0 (which corresponds to the
point τ0). Equation (8) is our key result for the geodesic
deviation fluctuations and it applies to both active and passive
fluctuations of the spacetime geometry. In what follows, we
will evaluate the relative velocity dispersion given by Eq. (8)
for three different sources of active fluctuations.

III. THERMAL GRAVITON STATE

In this section, we will analyze the fluctuations produced
by a thermal bath of gravitons, which may be created, e.g.,
by the Hawking effect or cosmological particle production
[45,46]. In this case, let us suppose that the spacetime
geometry fluctuates in such a way that [47]

hRα
λμνi ¼ 0; ð10Þ

but

hRα
λμνRγ

δρσi ≠ 0: ð11Þ

These two statements mean that we are neglecting the
average spacetime curvature due to the bath of gravitons.
Therefore, the average geometry corresponds to a flat
Minkowski spacetime. Furthermore, since we are dealing
with a thermal quantum state at temperature T, the
Riemann tensor correlation function can be written as

Cαλμνγδρσ ¼ hRαλμνðxÞRγδρσðx0Þiβ; ð12Þ

where hRαλμνðxÞRγδρσðx0Þiβ is the thermal normal-ordered
Riemann tensor two-point function, with β ¼ 1=T.
Therefore, Eq. (8) reduces to

hðΔυÞ2i ¼ ϵ20

Z
τ0

0

dτ
Z

τ0

0

dτ0hRαλμνðxÞ

× Rγδρσðx0Þiβnαuλnμuνnγuδnρuσ: ð13Þ

Let us choose the case where both the source and
detector are initially at rest with respect to one another
and to the bath of gravitons. This choice is such that

uμ ¼ ð1; 0; 0; 0Þ; ð14Þ

nμ ¼ ð0; 1; 0; 0Þ; ð15Þ

where we have assumed that the particles are separated
in the x direction. Thus, substituting Eqs. (14)–(15) into
Eq. (13), we obtain

hðΔυÞ2i ¼ ϵ20

Z
τ0

0

dτ
Z

τ0

0

dτ0hRxtxtðxÞ

× Rxtxtðx0Þiβnxutnxutnxutnxut

¼ ϵ20

Z
τ0

0

dτ
Z

τ0

0

dτ0hRtxtxðxÞRtxtxðx0Þiβ; ð16Þ

where we have used the symmetry and cyclic properties of
the Riemann tensor, namely,

Rαλμν ¼ −Rλαμν ¼ −Rαλνμ: ð17Þ

Now, we introduce the thermal Riemann tensor two-
point function which was constructed from the vacuum
two-point function via the Matsubara method (see Ref. [44]
and references therein). It is given by

hRtxtxðxÞRtxtxðx0Þiβ ¼
1

4
ð∂4

t − 2∂2
t ∂2

x þ ∂4
xÞDβ; ð18Þ

with

Dβ ¼
1

4π2
Xþ∞

n¼−∞

0
1

ðΔx⃗Þ2 − ðΔtþ inβÞ2 ; ð19Þ

where

∂t∂t0 ¼ −∂2
t ; ð20Þ

Δx⃗ ¼ x⃗ − x⃗0; ð21Þ

Δt ¼ t − t0: ð22Þ

In the last summation, the prime denotes that we have
removed the n ¼ 0 term, which is the vacuum contribution.
Now we will examine the relative velocity dispersion

in one space dimension, that is, we may choose
Δy ¼ Δz ¼ 0. Then, we can write Eq. (19) as

Dβ ¼
1

4π2
Xþ∞

n¼−∞

0
1

ðΔxÞ2 − ðΔtþ inβÞ2 : ð23Þ

Next we assume that the two particles both start at rest in
our frame of reference, so we may use dτ ¼ dt in Eq. (16),
which becomes

hðΔυÞ2i ¼ It þ Itx þ Ix; ð24Þ

with

It ¼
Z

t0

0

dt
Z

t0

0

dt0
�
1

4
∂4
t Dβ

�
; ð25Þ

Itx ¼
Z

t0

0

dt
Z

t0

0

dt0
�
−
1

2
∂2
t ∂2

xDβ

�
; ð26Þ
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Ix ¼
Z

t0

0

dt
Z

t0

0

dt0
�
1

4
∂4
xDβ

�
; ð27Þ

where t0 is the flight time, that is, the interaction time
between the particles and the thermal bath.
We are interested in the real part of Dβ. Thus, we may

make the replacement

Xþ∞

n¼−∞

0
¼ 2

Xþ∞

n¼1

; ð28Þ

and take

ℜðDβÞ ¼
1

2π2
Xþ∞

n¼1

G; ð29Þ

with

G ¼ ℜ

�
1

ðΔxÞ2 − ðΔtþ inβÞ2
�
; ð30Þ

where ℜ denotes the real part. After that, we can evaluate
Eq. (24) by using an algebraic manipulation program.
However, the final expression is so long that no insight is
gained by writing it out.
Next, we will assume that Δx is small compared to Δt

and/or β, and hence can be ignored. We may compute the
relative velocity between the two test particles by taking the
following limits in the derivatives:

1

4
∂4
t Dβjx→x0 ¼

1

2π2
Xþ∞

n¼1

�
1

4
∂4
t Gjx→x0

�

¼ 1

2π2
Xþ∞

n¼1

ℜ

�
−

30

ðΔtþ inβÞ6
�
; ð31Þ

−
1

2
∂2
t ∂2

xDβjx→x0 ¼
1

2π2
Xþ∞

n¼1

�
−
1

2
∂2
t ∂2

xGjx→x0

�

¼ 1

2π2
Xþ∞

n¼1

ℜ

�
20

ðΔtþ inβÞ6
�
; ð32Þ

1

4
∂4
xDβjx→x0 ¼

1

2π2
Xþ∞

n¼1

�
1

4
∂4
xGjx→x0

�

¼ 1

2π2
Xþ∞

n¼1

ℜ

�
−

6

ðΔtþ inβÞ6
�
: ð33Þ

Thus, we can write the thermal normal-ordered Riemann
tensor two-point function as

hRtxtxðxÞRtxtxðx0Þiβ ¼
1

2π2
Xþ∞

n¼1

ℜ
�
−

16

ðΔtþ inβÞ6
�
: ð34Þ

Therefore, substituting Eqs. (25)–(33) into Eq. (24), we
obtain

hðΔυÞ2i ¼ ϵ20
2π2

Xþ∞

n¼1

�
8

5n4β4
−

8

5ðt20 þ n2β2Þ2

þ 64t20
5ðt20 þ n2β2Þ3 −

64t40
5ðt20 þ n2β2Þ4

�
: ð35Þ

At this point, we can analyze the limits in which the time of
observation t0 is large compared to the thermal parameter β,
and vice versa.

A. Case 1: t0 ≪ β (short flight time or low temperature)

If t0 ≪ β, we have

hðΔυÞ2i ∼ ϵ20
2π2

Xþ∞

n¼1

16t20
n6β6

¼ 8π4ϵ20t
2
0

945β6
¼ 256π5l2

Plϵ
2
0t

2
0

945β6
: ð36Þ

Here the rms relative velocity is given by

ðΔυÞrms ¼
16π5=2lPlϵ0t0
3

ffiffiffiffiffiffiffiffi
105

p
β3

; ð37Þ

which grows linearly with the flight time. Recall that,
following the convention in Ref. [44], we set 32πl2

Pl ¼ 1 in
this section.

B. Case 2: t0 ≫ β (long flight time or high temperature)

In the limit when t0 ≫ β, that is, in the observationally
reasonable limit where the wavelength of the gravitational
waves is small compared to the flight time of the particles
after the interaction with the thermal bath of gravitons, the
expression reduces to

hðΔυÞ2i ∼ ϵ20
2π2

Xþ∞

n¼1

8

5n4β4
¼ 2π2ϵ20

225β4
¼ 64π3l2

Plϵ
2
0

225β4
; ð38Þ

where lPl is the Planck length. In this case, the rms relative
velocity approaches a constant, namely,

ðΔυÞrms ¼
8π3=2lPlϵ0

15β2
: ð39Þ

There are several noteworthy features of this result. First,
it is proportional to the Planck length, lPl. This arises from
the fact that the graviton Riemann tensor correlation
function, Eq. (9), is proportional to G ¼ l2

Pl, and reflects
the smallness of quantum gravity effects. Second, the
relative velocity of the test particles is proportional to their
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initial separation, ϵ0. This arises because the tidal accel-
eration, Eq. (3), is proportional to the particle separation.
Recall that we have assumed that this separation does not
change dramatically, so ϵðτÞ ≈ ϵ0. In addition, we assumed
in Eq. (30) that Δx≲ β, which implies that ϵ0 ≲ β. Finally,
note that ðΔυÞrms ∝ β−2 ¼ T2, which can be understood on
dimensional grounds, given the factors of lPl and ϵ0 in the
numerator. However, in thermal equilibrium one expects
ðΔυÞrms ∝ T1=2. The reason for this difference is that
Eq. (39) describes the state of the system after a time long
compared to β, but well before thermal equilibrium has
been reached. Equilibrium requires a balance between
graviton absorption and emission processes, the latter of
which is not included in our analysis. In addition, the
equilibrium value of the mean speed should be independent
of the value of the coupling constant, G, which Eq. (39) is
not. The weakness of gravity ensures that the time required
to reach thermal equilibrium is much longer than the scales
which we consider.

C. Position fluctuations

From the previous calculations, note that the relative
velocity dispersion is not zero, that is, the nearby timelike
geodesics are affected by the gravitons. In this way, we are
interested in computing the relative distance dispersion
between the two test particles after their interaction with
the thermal bath of gravitons. The mean-squared distance
fluctuation in the x direction, as represented in Fig. 2, can
be calculated as follows:

hðΔχÞ2i ¼ ϵ20

Z
T

0

dt1

Z
t1

0

dt
Z

T

0

dt01

×
Z

t0
1

0

dt0hRtxtxðxÞRtxtxðx0Þiβ: ð40Þ

Following the same procedure used to obtain Eq. (35),
namely, setting Δx;Δy;Δz ≈ 0 in the denominator of
the Riemann tensor correlation function, which means
jΔx⃗j≲ Δt, the relative distance dispersion is given by

hðΔχÞ2i ¼ ϵ20
2π2

Xþ∞

n¼1

�
4

15n2β2
þ 4t2

5n4β4

þ 4ð3t4 − 6t2n2β2 − n4β4Þ
15ðt2 þ n2β2Þ3

�
; ð41Þ

where we have set t ¼ T > t0, which means that t is the
measurement time, i.e., the total time given by the sum of
the flight time and the time elapsed after the interaction.
In the t ≪ β limit, the relative distance dispersion and its

root-mean-square value are given, respectively, by

hðΔχÞ2i ∼ ϵ20
2π2

Xþ∞

n¼1

4t4

n6β6
¼ 64π5l2

Plϵ
2
0t

4

945β6
; ð42Þ

ðΔχÞrms ¼
8π5=2lPlϵ0t2

3
ffiffiffiffiffiffiffiffi
105

p
β3

: ð43Þ

On the other hand, for the t ≫ β limit, we have

hðΔχÞ2i ∼ ϵ20
2π2

Xþ∞

n¼1

4t2

5n4β4
¼ 32π3l2

Plϵ
2
0t

2

225β4
; ð44Þ

ðΔχÞrms ¼
4

ffiffiffi
2

p
π3=2lPlϵ0t
15β2

: ð45Þ

From Eqs. (39), (37), (45), and (43), we have

ðΔχÞrms ¼
ðΔυÞrms

2t0
t2 ðfor t ≪ βÞ; ð46Þ

ðΔχÞrms ¼
ðΔυÞrmsffiffiffi

2
p t ðfor t ≫ βÞ: ð47Þ

Therefore, we find in both cases a form of gravitational
wave memory effect (see Ref. [2] and references therein),
such that

ðΔχÞrms ∼ ðΔυÞrmst: ð48Þ

Note that while the test particles are in the thermal graviton
bath, our assumption that Δx≲ β in Eq. (40) requires that
ðΔχÞrms ≲ β. However, the timelike geodesics are sub-
sequently modified due to their passage through the thermal
bath. This modification is reflected in the growing distance
between the pair of particles and can in principle become
large as t grows despite the smallness of the Planck length.

IV. GRAVITONS IN A SQUEEZED
QUANTUM STATE

In this section we will consider a spacetime region filled
with gravitons in a squeezed state which produce quantum
fluctuations on test particle geodesics. In principle, this
squeezed state could be due to the quantum creation of

FIG. 2. Distance and velocity between two nearby timelike
geodesics after interaction with the thermal bath of gravitons.
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gravitons in a background gravitational field, as e.g., in the
course of a cosmological expansion or in the Hawking
process of black hole evaporation [48–51]. The squeezed
state is represented by jα; ζi, where α and ζ are the
displacement and squeezed parameters, respectively.
Consider a gravitational plane wave mode in a squeezed
state. The normal-ordered Riemann tensor correlation
function can be expressed as [47]

∶Cαλμνγδρσðx; x0Þ ≔ 4ðl½αAλ�½μlν�Þðl½γAδ�½ρlσ�ÞFðx; x0Þ;
ð49Þ

with

Fðx; x0Þ ¼ ½coshð2rÞ − 1� cos½lϵðxϵ − x0ϵÞ�
− sinhð2rÞ cos½lϵðxϵ þ x0ϵÞ þ θ�; ð50Þ

where lϵ ¼ ðωg;lx;ly;lzÞ is the specific wave vector of
the excited mode, ωg is the angular frequency, Aμν is the

polarization tensor, and the parameters r, θ are defined such
that ζ ¼ reiθ. We have used the following convention for
the antisymmetrized tensor:

T ½μν� ¼
1

2
ðTμν − TνμÞ: ð51Þ

In this section only, we follow the convention of Ref. [47],
and use units in which lPl ¼ 1. Substituting Eqs. (49) and
(50) into Eq. (8), the relative velocity dispersion for test
particles subjected to gravitons in a squeezed state is
given by

hðΔυÞ2i ¼ 4ϵ20ðl½αAλ�½μlν�Þðl½γAδ�½ρlσ�Þ
× nαuλnμuνnγuδnρuσf1ðωg; t0Þ; ð52Þ

where the function f1ðωg; t0Þ is calculated from Eq. (16),
again with dτ ¼ dt, leading to

f1ðωg; t0Þ ¼
Z

τ0

0

dτ
Z

τ0

0

dτ0Fðx; x0Þ

¼
Z

t0

0

dt
Z

t0

0

dt0f½coshð2rÞ − 1� cos½ωgðt − t0Þ þ lxðx − x0Þ�

− sinhð2rÞ cos½ωgðtþ t0Þ þ lxðxþ x0Þ þ lyðyþ y0Þ þ lzðzþ z0Þ þ θ�g

¼ 4

ω2
g
sin2

�
ωgt0
2

�
f2sinh2ðrÞ cos½lxðx − x0Þ� − sinhð2rÞ cos½ωgt0 þ lxðxþ x0Þ þ lyðyþ y0Þ þ lzðzþ z0Þ þ θ�g;

ð53Þ

where t0 is the flight time, the interaction time between
the geodesic particles and the quantum state under con-
sideration.
In this last result, we have chosen Δy ¼ Δz ¼ 0, that is,

we are again assuming that Δy and Δz are small. It is worth
calling attention to the fact that f1ðωg; t0Þ, and hence
hðΔυÞ2i, are independent of the displacement parameter α.
Therefore, the fluctuations depend only on the squeezing
parameter ζ in such a way that ζ ¼ 0 (a coherent state)
induces no fluctuations:

r¼0⇒ ζ¼0⇒f1¼0⇒ hðΔυÞ2i¼0 ðclassical waveÞ:

We will assume that the gravitational wave mode is in
the transverse-traceless gauge, in which the gravitational
perturbations have only spatial components hij, satisfying
∂ihij ¼ 0 and hii ¼ 0. In fact, this choice is only a matter
of convenience, since our results were obtained from the
linearized Riemann tensor, which is gauge invariant. Thus,
the first vector product of Eq. (52) is given by

ðl½αAλ�½μlν�Þnαuλnμuν
¼ ðl½xAt�½xlt�Þnxutnxut

¼ 1

4
ðlxAtxlt − lxAttlx − ltAxxlt þ ltAxtlxÞ

¼ −
1

4
ðltÞ2Axx

¼ −
1

4
ω2
gAþ; ð54Þ

where the polarization tensor Aμν is given by

Aμν ¼

0
BBB@

0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

1
CCCA ¼

0
BBB@

0 0 0 0

0 Aþ A× 0

0 A× −Aþ 0

0 0 0 0

1
CCCA;

ð55Þ

which is obviously traceless and purely spatial:
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A0ν ¼ 0; ημνAμν ¼ 0; A3ν ¼ 0: ð56Þ

Therefore, there exists a nonzero effect on the relative
velocity dispersion due to gravitons in a squeezed state,
which depends on the (þ) polarization as well as the
position. It is given by

hðΔυÞ2i ¼ 4ϵ20

�
−
1

4
ω2
gAþ

��
−
1

4
ω2
gAþ

�
f1ðωg; t0Þ

¼ ϵ20
4
ω4
gA2þf1ðωg; t0Þ: ð57Þ

In the t0 → 0 limit, we can expand Eq. (57) for fixed r in
order to find

hðΔυÞ2i ∼ ϵ20
4
ω4
gA2þf2sinh2ðrÞ cos½lxðx − x0Þ�

− sinhð2rÞ cos½lxðxþ x0Þ þ lyðyþ y0Þ
þ lzðzþ z0Þ þ θ�gt20: ð58Þ

A. Classical time dependence

In this subsection, we examine the expectation value of
the relative velocity, hυi, which is given in terms of the first-
order contribution in the Riemann tensor fluctuations,
hRαλμνðxÞi. This quantity gives the classical time-dependent

variation since it depends only upon the displacement
parameter, α. If ζ ¼ 0 the squeezed state becomes a
coherent state, which can describe a classical wave.
In order to evaluate hυi, we can do a single integration of

the expectation value of the Riemann tensor over the proper
time dτ by using Eq. (6). However, we want to calculate
hυi2 directly from Eq. (8). Then, the squared mean change
in relative velocity can be written as

hυi2 ¼ ϵ20

Z
τ0

0

dτ
Z

τ0

0

dτ0hRαλμνðxÞi

× hRγδρσðx0Þinαuλnμuνnγuδnρuσ: ð59Þ

The right-hand side of the Riemann tensor correlation
function for gravitons in a squeezed state is given by [47]

hRαλμνðxÞihRγδρσðx0Þi
¼ 4

X
l

ðl½αAλ�½μlν�Þðl½γAδ�½ρlσ�ÞGðx; x0Þ; ð60Þ

where

Gðx; x0Þ ¼ α2eilϵðxϵþx0ϵÞ þ ðα�Þ2e−ilϵðxϵþx0ϵÞ

þ 2jαj2 cos½lϵðxϵ − x0ϵÞ�: ð61Þ

Thus, following the same procedure used to obtain
Eq. (53), and performing the integration of Gðx; x0Þ, we get

g1ðωg; t0Þ ¼
Z

τ0

0

dτ
Z

τ0

0

dτ0Gðx; x0Þ

¼
Z

t0

0

dt
Z

t0

0

dt0f2jαj2 cos½ωgðt − t0Þ þ lxðx − x0Þ� þ ðα�Þ2e−i½ωgðtþt0Þþlxðxþx0Þþlyðyþy0Þþlzðzþz0Þ�

þ α2ei½ωgðtþt0Þþlxðxþx0Þþlyðyþy0Þþlzðzþz0Þ�g

¼ −
e−i½2ωgt0þlxðxþx0Þþlyðyþy0Þþlzðzþz0Þ�ðeiωgt0 − 1Þ2

ω2
g

× fðα�Þ2 þ α2e2i½ωgt0þlxðxþx0Þþlyðyþy0Þþlzðzþz0Þ�

þ 2jαj2ei½ωgt0þlxðxþx0Þþlyðyþy0Þþlzðzþz0Þ� cos½lxðx − x0Þ�g: ð62Þ

Therefore, the classical time-dependent variation of the relative velocity for a single mode is characterized by

hυi2 ¼ 4ϵ20ðl½αAλ�½μlν�Þðl½γAδ�½ρlσ�Þnαuλnμuνnγuδnρuσg1ðωg; t0Þ

¼ 4ϵ20

�
−
1

4
ω2
gAþ

��
−
1

4
ω2
gAþ

�
g1ðωg; t0Þ

¼ ϵ20
4
ω4
gA2þg1ðωg; t0Þ: ð63Þ

B. Special case: Transverse gravitational waves

Here, we will analyze the special case of transversely propagating gravity waves. These waves propagate with wave
vector given by lμ ¼ ωgð1; 0; 0; 1Þ, while the test particles continue to have 4-vectors given by uμ ¼ ð1; 0; 0; 0Þ and
nμ ¼ ð0; 1; 0; 0Þ. Then, for a gravitational wave propagating in the z direction, we just need to set lx ¼ ly ¼ 0 in Eq. (53) in
order to define the function f2ðωg; t0Þ as
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f2ðωg;t0Þ¼
4

ω2
g
sin2

�
ωgt0
2

�
f2sinh2ðrÞ

−sinhð2rÞcos½ωgt0þωgðzþz0Þþθ�g: ð64Þ

Therefore, in the special case of transverse gravitational
waves, the relative velocity dispersion is given by

hðΔυÞ2i ¼ ϵ20
4
ω4
gA2þf2ðωg; t0Þ: ð65Þ

From Eqs. (57) and (65), we conclude that the fluctuations
in the relative velocity depend on the degree of squeezing,
measured by the parameter ζ.
On the other hand, the classical time-dependent variation

of the relative velocity is given by

hυi2 ¼ ϵ20
4
ω4
gA2þg2ðωg; t0Þ; ð66Þ

where the function g2ðωg; t0Þ is defined in a similar way as
g1ðωg; t0Þ, when lx ¼ ly ¼ 0, namely,

g2ðωg;t0Þ¼−
e−iωg½2t0þðzþz0Þ�ðeiωgt0 −1Þ2

ω2
g

×fðα�Þ2þ2jαj2eiωg½t0þðzþz0Þ� þα2e2iωg½t0þðzþz0Þ�g:
ð67Þ

Note that both functions g1ðωg; t0Þ and g2ðωg; t0Þ depend
on the displacement parameter, α, but are independent
of the squeeze parameter, r. Therefore, we can say the
same for Eqs. (63) and (66). Furthermore, in the α ¼ 0
limit, we have that g1ðωg; t0Þ ¼ g2ðωg; t0Þ ¼ 0, which
means a coherent state (r ¼ 0 and α ≠ 0) exhibits regular
time variation but does not fluctuate. In fact, from Eq. (53)
we can see that hðΔυÞ2i ¼ 0 for r ¼ 0.

C. Estimating hðΔυÞ2i from the value of the stress tensor

In this subsection, we will estimate the order of magni-
tude of hðΔυÞ2i in the squeezed vacuum state when α ¼ 0
and r ≫ 1. In order to do this, we will assume the (þ)
polarization for the gravitational waves, which implies
A× ¼ 0. These assumptions lead to hυi2 ¼ 0 and, therefore,
we have hðΔυÞ2i ¼ hυ2i. Thus, from Eqs. (53) and (57),
with a suitable choice of θ, in a situation where many
modes are excited, we find the following asymptotic
behavior for large r:

hðΔυÞ2i ≈ ϵ20
4
ω4
g
8π

ωgV
V

ð2πÞ3 ðΔlxÞðΔlyÞðΔlzÞ
2e2r

ω2
g

¼ ϵ20
ωge2r

2π2
ðΔlxÞðΔlyÞðΔlzÞ; ð68Þ

where the contribution from the (þ) polarization is given by
Aþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π=ωgV
p

. In the latter result, we have summed the
modes when the density of states is large, namely,

X
l

→
V

ð2πÞ3
Z

d3l ¼ V
ð2πÞ3 ðΔlxÞðΔlyÞðΔlzÞ; ð69Þ

where V is the quantization volume. Now, from the
effective stress tensor in the linearized theory, the vacuum
energy density for large r is given by [47]

∶T00∶ ≈
ωge2r

32π3
ðΔlxÞðΔlyÞðΔlzÞ: ð70Þ

Then, substituting Eq. (70) into Eq. (68), the relative
velocity dispersion can be expressed as

hðΔυÞ2i ≈ ωge2r

2π2
32π3ϵ20
ωge2r

∶T00∶ ¼ 16πϵ20l
2
Pl∶T00∶: ð71Þ

In this case, the rms relative velocity dispersion is given by

ðΔυÞrms ≈ 4lPlϵ0
ffiffiffiffiffiffiffi
πρg

p
; ð72Þ

where ρg ¼ ∶T00∶ is the graviton energy density. Recall that
Eq. (72) is valid only when ϵ0 ≲ λg, with λg being the
characteristic wavelength of the gravitons in the bath. Unlike
the case of a thermal bath, where both energy density and
characteristic wavelength are determined by the temperature,
here ρg and λg can be independent of one another.
It is of interest to make an estimate of ðΔυÞrms in the

context of a cosmological model in which gravitons
contribute a non-negligible fraction of the total energy
density. Consider a spatially flat Robertson-Walker uni-
verse in which the present value of the Hubble parameter
is H0, and the present total energy density is ρT . The
Friedmann equation gives

H2
0 ¼

8π

3
GρT: ð73Þ

Assume that gravitons contribute a fraction r of the total
energy density, so ρg ¼ rρT . Observational data on the
expansion rate of the Universe are consistent with r ¼ 0,
and lead to an upper bound on r≲ 0.04 [51]. We may
combine Eqs. (72) and (73) to write

ðΔυÞrms

ϵ0
¼

ffiffiffiffiffi
6r

p
H0 ≲ 0.5H0: ð74Þ

This relation gives an upper bound on and potentially an
estimate of the fractional relative speed ðΔυÞrms=ϵ0 in terms
of the Hubble parameter, whose value observed by the
Planck satellite is H0 ≈ 67 km=s=Mpc [52]. If r is near its
upper bound, and ϵ0 is of the order of a few Mpc, then
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Eq. (74) gives the estimate ðΔυÞrms ≈ 102 km=s, which is of
the order of the peculiar motions of individual galaxies. This
estimate would require a present-day graviton bath with
λg ≳ 1 Mpc, for which there is no obvious physical origin.
Smaller values of ϵ0 lead to smaller relative speeds from
Eq. (74), However, in the early Universe where the graviton
density could be much larger, the effect could increase.

D. Position fluctuation

In order to compute the relative distance dispersion for
two geodesic particles subject to the gravitons in a
squeezed state, we follow the same procedure used in
the thermal case, and perform two more integrals of the
function Fðx; x0Þ:

hðΔχÞ2i ¼ 4ϵ20ðl½αAλ�½μlν�Þðl½γAδ�½ρlσ�Þnαuλnμuνnγuδnρuσf3ðωg; t0Þ; ð75Þ

where the function f3ðωg; t0Þ is given by

f3ðωg; T Þ ¼
Z

T

0

dτ1

Z
τ1

0

dτ
Z

T

0

dτ01

Z
τ0
1

0

dτ0Fðx; x0Þ

¼
Z

T

0

dt1

Z
t1

0

dt
Z

T

0

dt01

Z
t0
1

0

dt0f½coshð2rÞ − 1� cos½ωgðt − t0Þ þ lxðx − x0Þ�

− sinhð2rÞ cos½ωgðtþ t0Þ þ lxðxþ x0Þ þ lyðyþ y0Þ þ lzðzþ z0Þ þ θ�g; ð76Þ

such that

f3ðωg; tÞ ¼
1

ω4
g
f2sinh2ðrÞ cos½lxðx − x0Þ�½t2ω2

g − 2tωg sinðtωgÞ − 2 cosðtωgÞ þ 2�

þ sinhð2rÞft2ω2
g cos½θ þ lyðyþ y0Þ þ lzðzþ z0Þ þ lxðxþ x0Þ�

þ 2tωg sin½θ þ lyðyþ y0Þ þ lzðzþ z0Þ þ lxðxþ x0Þ� − 2tωg sin½θ þ lyðyþ y0Þ þ lzðzþ z0Þ þ lxðxþ x0Þ þ tωg�
þ 2 cos½θ þ lyðyþ y0Þ þ lzðzþ z0Þ þ lxðxþ x0Þ þ tωg� − cos½θ þ lyðyþ y0Þ þ lzðzþ z0Þ þ lxðxþ x0Þ þ 2tωg�
− cos½θ þ lyðyþ y0Þ þ lzðzþ z0Þ þ lxðxþ x0Þ�gg; ð77Þ

where we have set t ¼ T > t0, which means that t is the
total time.
Therefore, the relative distance dispersion is given by

hðΔχÞ2i ¼ ϵ20
4
ω4
gA2þf3ðωg; tÞ: ð78Þ

In the t → 0 limit, we can expand Eq. (78) for fixed r in
order to get

hðΔχÞ2i ∼ ϵ20
4
ω4
gA2þ

�
1

2
sinh2ðrÞ cos½lxðx − x0Þ�

−
1

4
sinhð2rÞ cos½lxðxþ x0Þ þ lyðyþ y0Þ

þ lzðzþ z0Þ þ θ�
�
t4: ð79Þ

From Eqs. (58) and (79), we have

hðΔχÞ2i ¼ hðΔυÞ2i
4

t2: ð80Þ

The root-mean-square value is given by

ðΔχÞrms ¼
ðΔυÞrms

2
t: ð81Þ

Therefore, we conclude that

ðΔχÞrms ∼ ðΔυÞrmst: ð82Þ

This is the same behavior as for the thermal case, given by
Eq. (48). As before, we need to require that ðΔχÞrms ≲ λg
while the test particles are in the graviton bath. However,
after leaving the bath, ðΔχÞrms can become arbitrarily large
due to the gravitational memory effect.

V. GRAVITON VACUUM STATE

In this section, we will deal with fluctuations of the
Riemann tensor in the graviton vacuum state in linearized
quantum gravity. This state must approximate a corre-
sponding state in full quantum gravity in a suitable limit,
and exhibit nontrivial fluctuation effects. From Eq. (8), the
relative velocity dispersion can be expressed as
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hðΔυÞ2i ¼ ϵ20

Z
τ0

0

dτ
Z

τ0

0

dτ0Ctxtxtxtxðx; x0Þ; ð83Þ

where the Riemann tensor correlation function,
Ctxtxtxtxðx; x0Þ, is given in terms of the vacuum two-point
function, namely,

Ctxtxtxtxðx; x0Þ ¼ hRtxtxðxÞRtxtxðx0Þi

¼ 1

4
ð∂4

t − 2∂2
t ∂2

x þ ∂4
xÞD; ð84Þ

with

D ¼ 1

4π2½ðΔx⃗Þ2 − ðΔtÞ2� : ð85Þ

Substituting Eqs. (20)–(22) into Eq. (84), we can write the
full expression of the Riemann tensor correlation function
in the graviton vacuum state as

CtxtxtxtxðΔt;Δx;Δy;ΔzÞ

¼ 4

π2

�ðΔx2 − Δt2Þ2 þ ðΔy2 þ Δz2Þ2
ðΔx2 þ Δy2 þ Δz2 − Δt2Þ5

−
4ðΔx2 − Δt2ÞðΔy2 þ Δz2Þ
ðΔx2 þ Δy2 þ Δz2 − Δt2Þ5

�
; ð86Þ

where Δt ¼ t − t0, Δx ¼ x − x0, Δy ¼ y − y0, and
Δz ¼ z − z0. Note that this correlation function is singular
in the limit of coincident spacetime points, so that the
integral in Eq. (83) diverges. We adopt the viewpoint that
the correct resolution of this problem involves averaging
over space and time.

A. Space and time averaging of quantum field operators

It is well known that while expectation values of
products of local field operators diverge, averaging the
operators over a finite spacetime region produces finite
expectation values. This technique of smearing a field
operator with a smooth test function is used as a formal
device in rigorous approaches to quantum field theory [53].
However, there is evidence that this averaging can have a
physical meaning in specific contexts. For example, the
one-loop QED correction to potential scattering can be
estimated by averaging the quantum electric field operator
over a time of the order of that spent by an electron in the
vicinity of the potential barrier [54]. The averaging of
quadratic operators, such as the stress tensor, in time or
space and time is essential to define a probability

distribution for the fluctuations of such operators [55–57].
Furthermore, the results are very sensitive to the choice of
the averaging function. The more rapidly the averaging
function switches on and off, the greater is the probability
of a large fluctuation. The physical origin of this sensitivity
is as follows: averaging suppresses the contributions of
the high-frequency modes of the theory and renders the
fluctuations finite. However, more rapid switching leaves a
larger contribution from high-frequency modes and hence
both a larger variance for the fluctuations and a greater
probability for a large fluctuation.
We adopt the viewpoint that the details of the averaging

function are to be determined by the specific physical
situation in question. In the present context of the fluctuations
in the Riemann tensor in a bundle of geodesics, this involves
averaging over the world tube defined by the bundle. This
approach was used in Refs. [58,59]. This averaging will
produce finite results which depend upon the details of the
averaging, as these details provide a physical cutoff on the
high-frequency mode contributions. In this view, there is no
need for a formal regularization and renormalization pro-
cedure. We replace the integrations on the proper time in
Eq. (83) by four-dimensional spacetime integrations:

hðΔυÞ2i ¼ ϵ20

Z þ∞

−∞
d4xfðxÞ

Z þ∞

−∞
d4x0fðx0ÞCtxtxtxtxðx; x0Þ;

ð87Þ

where fðxÞ is the sampling function, which is normalized so
that

R
d3xfðxÞ ¼ 1 and has dimensions of 1=length3.

It describes the history of a wave packet, and involves
integrating in time and averaging in space.
Here we will first average in space, and then integrate in

time. For the spatial averaging, we consider a Lorentzian
sampling function of width ϕ in each of the rectangular
coordinates x, y, z and x0, y0, z0,

gLðu;ϕÞ ¼
ϕ

πðu2 þ ϕ2Þ ; ð88Þ

so that

Z þ∞

−∞
dugLðu;ϕÞ ¼ 1: ð89Þ

This has the effect of averaging over a spatial scale of
order ϕ. Therefore, the Riemann tensor correlation function,
averaged over the spatial directions, may be defined by
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Ĉðt − t0; bÞ ¼
Z þ∞

−∞
d3xfðxÞ

Z þ∞

−∞
d3x0fðx0ÞCtxtxtxtxðx; x0Þ

¼
Z þ∞

−∞
dxgLðx;ϕÞ

Z þ∞

−∞
dygLðy;ϕÞ

Z þ∞

−∞
dzgLðz;ϕÞ

Z þ∞

−∞
dx0gLðx0;ϕÞ

Z þ∞

−∞
dy0gLðy0;ϕÞ

Z þ∞

−∞
dz0gLðz0;ϕÞ

× CtxtxtxtxðΔt;Δx;Δy;ΔzÞ

¼ 4½3b4 þ 6b2ðt − t0Þ2 − ðt − t0Þ4�
π2½3b2 þ ðt − t0Þ2�5 : ð90Þ

Here we have used the following identity:

Z þ∞

−∞
dxgLðx;ϕÞ

Z þ∞

−∞
dx0gLðx0;ϕÞFðx − x0Þ

¼
Z þ∞

−∞
dΔxgLðΔx; bÞFðΔxÞ; ð91Þ

with b ¼ 2ϕ. Note that the light cone singularity present
in Eq. (86), is no longer present in Ĉðt − t0; bÞ. We may
interpret the latter quantity as an acceleration correlation
function which has been averaged in space, but not in time.

B. Direct time integration

Because Ĉðt − t0; bÞ is finite for all values of its argu-
ments, so long as b ≠ 0, one option seems to be to integrate

it directly in time to find the associated velocity and
position fluctuations. Define a velocity correlation function
obtained by direct time integration by

hυðt1Þυðt2ÞiDTI ¼ ϵ20

Z
t1

0

dt
Z

t2

0

dt0Ĉðt − t0Þ; ð92Þ

and the associated velocity variance at time t0 by

hðΔυðtÞÞ2iDTI ¼ hυðt0Þυðt0ÞiDTI: ð93Þ

The latter quantity is found to be

hðΔυÞ2iDTI ¼
16ϵ20t0l

2
Pl½27b5t0 þ 60b3t30 þ 9bt50 þ 7

ffiffiffi
3

p ð3b2 þ t20Þ3 arctanðt0=
ffiffiffi
3

p
bÞ�

81πb5ð3b2 þ t20Þ3
: ð94Þ

In the limit that t0 becomes large for fixed b, we find

hðΔυÞ2iDTI ∼
56

ffiffiffi
3

p
ϵ20l

2
Pl

81b5
t0 −

64l2
Plϵ

2
0

27πb4
þO

�
1

t0

�
2

: ð95Þ

One may also find the associated position fluctuations by
further time integrations,

hðΔχÞ2iDTI ¼
Z

t0

0

dt1

Z
t0

0

dt2hυðt1Þυðt2ÞiDTI; ð96Þ

and find

hðΔχÞ2iDTI ∼
56ϵ20l

2
Plt

3
0

81
ffiffiffi
3

p
b5

ð97Þ

in the limit of large t0.
These results are puzzling, because they imply that the

mean-squared velocity of the particle grows linearly in
time. This is only possible if there is an external energy
source. It is useful to examine a somewhat different limit.

Let b ¼ ct0, where c > 0 is a constant. Now Eq. (94) takes
the form

hðΔυÞ2iDTI ¼
K
t40
; ð98Þ

where K is a constant. Now hðΔυÞ2iDTI → 0 as t0 → ∞.
Thus if both b and t0 become large together, then the
velocity variance vanishes. At this point, it is unclear
whether the linear growth found in Eq. (94) is due to
holding b fixed, or to the sudden time switching used in the
direct time integration approach.

C. Lorentzian time integration

We next adopt an indirect way of integrating in time,
which we call Lorentzian time integration. It involves a
dimensionless Lorentzian function given by

ḡLðu;φÞ ¼
φ2

πðu2 þ φ2Þ : ð99Þ

This function has the property

SPACETIME GEOMETRY FLUCTUATIONS AND GEODESIC … PHYS. REV. D 98, 086001 (2018)

086001-11



Z þ∞

−∞
duḡLðu;φÞ ¼ φ; ð100Þ

so φ is the effective interval of integration. That is,Rþ∞
−∞ duḡLðu;φÞFðuÞ is an integral of FðuÞ over an interval
of order φ centered about u ¼ 0. The advantages of this
approach are that the integral can be finite even if FðuÞ has
a singularity somewhere in the range of integration, and it
avoids sudden switching.
In this subsection, we will use Lorentzian time integra-

tion to study velocity fluctuations. Thus, we integrate
Ĉðt − t0; bÞ using two functions of the form of Eq. (99),
and define the velocity variance as

hðΔυðtÞÞ2iLTI ¼ ϵ20

Z þ∞

−∞
dtḡLðt;φÞ

×
Z þ∞

−∞
dt0ḡLðt0;φÞĈðt − t0; bÞ

¼ aϵ20
4

Z þ∞

−∞
dτḡLðτ; aÞĈðτ; bÞ; ð101Þ

where a ¼ 2φ. In the last step, we used the fact that

Z þ∞

−∞
dtḡLðt;φÞ

Z þ∞

−∞
dt0ḡLðt0;φÞFðt − t0Þ

¼ a
4

Z þ∞

−∞
dτḡLðτ; aÞFðτÞ: ð102Þ

The integrand in the second line of Eq. (101) has first-
order poles at τ ¼ �ia and fifth-order poles at τ ¼ �i

ffiffiffi
3

p
b.

The integral may be performed by contour integration, with
the result

hðΔυðtÞÞ2iLTI ¼
2l2

Pla
2ϵ20

81πb5ða2 − 3b2Þ5 ð7
ffiffiffi
3

p
a9 − 108

ffiffiffi
3

p
a7b2

þ 594
ffiffiffi
3

p
a5b4 ð103Þ

þ 1296a4b5 − 4860
ffiffiffi
3

p
a3b6 þ 7776a2b7

þ 1215
ffiffiffi
3

p
ab8 − 3888b9Þ: ð104Þ

In the limit that a becomes large for fixed b, we have

hðΔυðtÞÞ2iLTI ∼
14

ffiffiffi
3

p
aϵ20l

2
Pl

81b5
: ð105Þ

Given that the duration of the time integration is propor-
tional to a, this is essentially the same result as in Eq. (95),
with the velocity variance growing linearly in the flight
time. In fact, if we set a ¼ 4πt0, the two asymptotic forms
are identical. We can also consider the limit where a and b
are proportional to one another: set b ¼ ca, so Eq. (104)
takes the form

hðΔυÞ2iLTI ¼
K0

a4
; ð106Þ

for some constant K0. Now hðΔυÞ2iLTI → 0 as a → ∞.
Both Eqs. (105) and (106) are in qualitative agreement

with the corresponding results, Eqs. (95) and (98), found
using direct time integration. This indicates that the linear
growth of hðΔυðtÞÞ2i in time is not an artifact of sudden
temporal switching. However, the velocity variance does
not grow when both the flight time and spatial scale
increase together. This result suggests that we should
examine more general space and time averagings.

D. Averaging over world tubes of increasing width

In both of the previous subsections, the spatial scale b
was a constant, which means that we were averaging over
the history of a bundle of rays with a fixed spatial cross
section. However, more realistic beams tend to spread in
width as they propagate. Now we explore an averaging
method which describes this spreading. We return to the
Riemann tensor correlation function, Eq. (86). Now we
average it with Lorentzians of width b in ðx; y; zÞ, but width
b0 in ðx0; y0; z0Þ. However, this is equivalent to averaging
with Lorentzians of width bþ b0 in each of Δx, Δy, and
Δz, because of the identity

Z þ∞

−∞
dxgLðx; bÞ

Z þ∞

−∞
dx0gLðx0; b0ÞFðx − x0Þ

¼
Z þ∞

−∞
dΔxgLðΔx; bþ b0ÞFðΔxÞ: ð107Þ

Thus, we may define

Ĉðt − t0; b; b0Þ ¼
Z þ∞

−∞
dxdydzgLðx; bÞgLðy; bÞgLðz; bÞ

Z þ∞

−∞
dx0dy0dz0gLðx0; b0ÞgLðy0; b0ÞgLðz0; b0ÞCtxtxtxtxðΔt;Δx;Δy;ΔzÞ

¼
Z þ∞

−∞
dΔxdΔydΔzgLðΔx; bþ b0ÞgLðΔy; bþ b0ÞgLðΔz; bþ b0ÞCtxtxtxtxðΔt;Δx;Δy;ΔzÞ: ð108Þ

This may be evaluated with the result

Ĉðt − t0; b; b0Þ ¼ 4½3ðbþ b0Þ4 þ 6ðbþ b0Þ2ðt − t0Þ2 − ðt − t0Þ4�
π2½3ðbþ b0Þ2 þ ðt − t0Þ2�5 : ð109Þ
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So far, b and b0 have been constants, but they may be
functions of time without changing any of the above
analysis. Let them be linear functions given by

b ¼ bðtÞ ¼ ctþ b0 and b0 ¼ b0ðt0Þ ¼ ct0 þ b0; ð110Þ

where c > 0 and b0 > 0 are constants. These functions
describe a bundle of rays that starts with a nonzero width,
which then grows linearly in time as the rays propagate.
Now the variable-width averaged acceleration correlation
function becomes

Ĉvwðt; t0Þ ¼ Ĉðt − t0; bðtÞ; b0ðt0ÞÞ ¼ 4f3½cðtþ t0Þ þ 2b0�4 þ 6½cðtþ t0Þ þ 2b0�2ðt − t0Þ2 − ðt − t0Þ4g
π2f3½cðtþ t0Þ þ 2b0�2 þ ðt − t0Þ2g5 : ð111Þ

The velocity variance is obtained from an integral over t
and t0 of Ĉvwðt; t0Þ. In the limit of a long flight time, this
variance becomes

hðΔυÞ2i ¼ ϵ20

Z
∞

0

dt
Z

∞

0

dt0Ĉvwðt; t0Þ: ð112Þ

This integral is finite so long as both c and b0 are nonzero.
This is most easily seen by transforming to polar coor-
dinates, defined by t ¼ τ sin θ and t0 ¼ τ cos θ,

hðΔυÞ2i ¼ ϵ20

Z
∞

0

dτ
Z

π=2

0

dθτĈvwðτ; θÞ: ð113Þ

The integrand is finite as τ → 0 so long as b0 > 0. As
τ → ∞, the integrand falls as 1=τ5 for all θ if c > 0, and
hence the integral converges at the upper limit. We can also
now understand why we found hðΔυÞ2i growing with
increasing flight time in the two previous subsections.
Both of those cases correspond to c ¼ 0 in the present
notation. If c ¼ 0, the integrand in Eq. (113) grows for
large τ if θ ¼ π=4, which is the t ¼ t0 line. Note that on
dimensional grounds, hðΔυÞ2i ∝ b0−4. The integral in
Eq. (112) may be evaluated numerically as a function of
the parameter c, and the result is plotted in Fig. 3.

In summary, we have found that averaging over a geodesic
bundle with a fixed spatial cross section leads to a mean-
squared velocity which grows linearly in time. This requires
an external energy source to supply the added kinetic energy
to the particles. However, if the cross section grows linearly
in time, as would be the case for a diverging beam of
particles, then the mean-squared velocity approaches a
constant value. Furthermore, this asymptotic value is very
small unless the initial cross section is close to the Planck
scale. In other contexts, the lack of secular growth of vacuum
fluctuation effects can be linked to anticorrelations [59]. It is
of interest to explore whether similar anticorrelations exist
here as well. This is a topic for future research.

VI. CONCLUSIONS

In this work, we have analyzed the effects of fluctuations
of the spacetime geometry on the motion of test particles
using the geodesic deviation equation. Just as a classical
gravitational field leads to tidal acceleration and changes in
the relative velocities of test particles, a fluctuating gravi-
tational field leads to fluctuations in these relative velocities
and consequently fluctuations in the relative separations of
the particles. We treat the geodesic deviation equation as a
Langevin equation, which may be integrated to express the
relative velocity and position variances as integrals of a
Riemann tensor correlation function. Here we have con-
sidered fluctuations around an average flat spacetime
background produced by linear quantum gravity effects.
Thus we are dealing with active fluctuations of the
dynamical degrees of freedom of gravity, as opposed to
passive fluctuations driven by a matter stress tensor. The
source of the spacetime geometry fluctuations could be
either a bath of gravitons, or the graviton vacuum fluctua-
tions. We have considered both a thermal bath of gravitons,
and a bath of gravitons in a squeezed vacuum state. As
expected, the velocity and position variances tend to be
very small, and are suppressed by the square of the ratio of
the Planck length to a characteristic length scale of the
system. In the case of a thermal graviton bath, the variance
of the relative velocity approaches a constant at late time,
but the root-mean-square position fluctuation grows lin-
early in time. This can be interpreted as a version of the
gravitational memory effect [2].

FIG. 3. The velocity variance for the case of variable-width
spatial sampling is plotted as a function of the parameter c.
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The discussion of graviton vacuum fluctuation effects,
given in Sec. V, requires averaging over both space and
time to produce finite results. We view this as averaging
over a world tube which describes the history of a set of test
particles. We found results which can be very sensitive
to the details of the averaging. This is to be expected,
because the details of the switch-on or switch-off rate
determine the frequencies of the vacuum graviton modes
which contribute to the final results. From this viewpoint,
the details of the world tube of the test particles provide a
physical cutoff which renders the theory finite, so there is
no need for formal regularization or renormalization. A test
of this viewpoint could in principle come from experiments
which measure the dependence of the observable fluctuation
effects upon the shape of this world tube. Although quantum
gravity effects cannot be observed at present, the same issues
could arise in analog systems with electromagnetic field
fluctuations which might be more accessible to experiment.
Determining whether large effects from rapid switching are
real or artificial effects which need to be subtracted by
renormalization is a topic for future study. In this paper, we
have worked only to lowest order in the Riemann tensor.
Whether the viewpoint which we adopted can be generalized
to higher orders remains to be determined.

In the case where the spatial width of the bundle of
geodesics is held constant, we found that the mean-squared
relative velocity grows linearly with the flight time. This
seems to require an external energy source to maintain the
constant width. However, it also raises the interesting
possibility of enhanced quantum gravity effects for long
flight times. However, we also found that if the spatial
width is allowed to grow, even if very slowly, as the
particles propagate, then the mean-squared relative velocity
approaches a constant.
There seem to be some subtle effects of spacetime

geometry fluctuations in linearized quantum gravity which
may elucidate the effects to be expected in a complete
quantum gravity theory.
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