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We compute the radiative quantum corrections to the critical exponents and amplitude ratios for
O(N) A¢g* scalar high energy nonextensive g-field theories. We employ the field-theoretic renormalization
group approach through six methods for evaluating the high energy nonextensive critical exponents
up to next-to-leading order while the high energy nonextensive amplitude ratios are computed up to leading
level by applying three methods. Later we generalize these high energy nonextensive finite loop order
results for any loop level. We find that the high energy nonextensive critical exponents are the same when
obtained through all the methods employed. The same fact occurs for the high energy nonextensive
amplitude ratios. Furthermore, we show that these high energy nonextensive universal quantities are
equal to their low energy extensive counterparts, thus showing that the nonextensivity is broken down at

high energies.

DOI: 10.1103/PhysRevD.98.085019

I. INTRODUCTION

The Boltzmann-Gibbs theory for describing statistical
properties of extensive physical systems has attained a
remarkable success [1]. Despite its triumph in the extensive
domain, its generalization to the nonextensive realm was
proposed [2]. In the latter case, the nonextensive theory
(see Ref. [3] and references therein) is parametrized by
a parameter which characterizes the nonextensivity of
the theory, namely, the nonextensive parameter g € R.
The extensive theory is recovered in the limit ¢ — 1. The
nonextensive parameter can be used for defining three
regimes in which physical systems can be categorized:
extensive where g — 1, nonextensive for g # 1 but away
from ¢ = 1, and nonextensive for ¢ # 1 but around g = 1.
The nonextensive theories for ¢ # 1 but around ¢ = 1 are
obtained as the first-order Taylor expansion of their
nonextensive counterparts for g # 1 but away from g = 1
in the region g ~ 1.

Corresponding quantum g-field theories were designed
[4]. This nonextensive generalization of quantum field
theory leads to nonlinear equations [5] and then one needs
to consider the physics of nonlinear phenomena, for
example, the physical behavior of solitons and breathers
[6-10]. Such a generalization [5] consists of a modification
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of the terms present in the linear theory by introducing
powers characterized by the nonextensive parameter g,
where the linear theory is recovered in the limit ¢ — 1 and
the extension from one to d dimensions is straightforward.
This generalization procedure is opposed to the standard
ones in which a nonlinear theory is obtained by just adding
nonlinear terms to the linear theory. Furthermore, the
extension from one to d dimensions is not straightforward
in some situations. As the generalization process leads
to nonlinear equations and then to a resulting nonlinear
quantum field theory, the superposition principle is no
longer valid and the linearity property is lost in that process
[4]. Also the nonextensive quantum g-field ¢, at very high
energies is not Lorentz invariant; thus, Lorentz invariance is
lost at very high energies. For a detailed discussion about
this subject, see Ref. [4]. Then, the low energy extensive
and very high energy nonextensive quantum g-field the-
ories are defined for ¢ — 1 at low energies and for ¢ # 1
but away from ¢ = 1 at very high energies, respectively,
while the high energy nonextensive ones are defined for
q # 1 but around g =1 at high or intermediate energies.
Thus, there is a relation between the extensivity and ¢
parameter in quantum field theory; i.e., the extensive
quantum field theory is obtained from its nonextensive
counterpart through the limit ¢ — 1.

The aim of this work is to investigate the nonextensivity
of the O(N) A¢* scalar high energy nonextensive g-field
theory through the computation of the all-loop radiative
quantum corrections, after a finite next-to-leading-order
(NLO) evaluation, for dimensions 2 < d <4 through
e-expansion techniques in € =4 —d to the high energy
nonextensive universal critical exponents and amplitude
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ratios for the referred theory. For that, we apply the field-
theoretic renormalization group approach [11]. In this
approach, when the system is undergoing a continuous
phase transition, its critical behavior is a result of the
fluctuating properties of a fluctuating quantum field ¢
whose mean value is associated to the order parameter
(magnetization for magnetic systems, for example). This
field has its values defined at the points of spacetime. These
values are correlated and correlation functions can be
defined. These correlation functions [one-particle-irreduc-
ible (1PI) vertex parts] and thermodynamics functions
(derived from the effective potential with spontaneous
symmetry breaking), near the transition point, present a
simple scaling behavior. In this case, the critical scaling
behavior of the 1PI vertex parts and effective potential with
spontaneous symmetry breaking is characterized by critical
exponents and amplitude ratios, where the latter are
obtained as ratios of amplitudes of the thermodynamic
functions above and below the transition point. The critical
exponents and amplitude ratios can be the same for
completely different systems as a fluid and a ferromagnet.
When this happens we say that the different systems belong
to the same universality class. The critical exponents and
amplitude ratios are universal quantities (unlike the ampli-
tudes themselves) and their universal character is related to
the universality [12—17] and two-scale-factor universality
hypotheses, respectively [18], where in both cases there are
two independent scales, the field and composite field scales
(in general, the scales of magnetization and its conjugate
field when we are dealing with magnetic systems). These
universal quantities do not depend on the microscopic
details of the systems such as their critical temperatures or
the form of the lattices, but rather on their dimension d, N,
and symmetry of some order parameter if the interactions of
its constituents are of the short- or long-range type. We will
be concerned here with the O(N) universality class. It is
reduced to the situations where short-range interactions are
present, namely, for the Ising (N =1), XY (N =2),
Heisenberg (N = 3), self-avoiding random walk (N = 0),
spherical (N — o0) models, etc., [19].

The critical exponents and amplitude ratio values can be
obtained roughly in the mean field or Landau approxi-
mation [20], where the fluctuations of the fluctuating
quantum field are neglected. As near a continuous phase
transition the system displays large fluctuations, we have
to take into account the fluctuations, which are non-
trivially coupled through an effective coupling constant, at
all length scales if we need a precise determination of the
universal quantities, as opposed to the Landau approxi-
mation (d > 4). The tool capable of attaining that goal is
the renormalization group, which is the approach here. We
then compute the universal quantities in a perturbative
expansion in the effective coupling constant or in an
equivalent perturbative expansion in the number of loops.
In the Landau approximation, we compute no loops while,

as we go further in the perturbation theory in the number of
loops, we are evaluating the radiative quantum corrections
to the problem considered. Unfortunately, the 1PI vertex
parts and effective potential with spontaneous symmetry
breaking are plagued by divergences; thus, we have to
renormalize them. The former can be computed through
six distinct and independent renormalization methods,
while the latter by applying three different and independent
renormalization schemes. As the renormalized theory is
attained through the flow of the renormalized coupling
constant to the nontrivial solution of the f function, the
1PI vertex parts and effective potential with spontaneous
symmetry breaking acquire anomalous dimensions,
namely, the field and composite field anomalous dimen-
sions. The trivial solution of the f function gives the
Landau values for the universal quantities, while the
nontrivial one permits us to compute these quantities
containing their radiative quantum corrections. As the
critical exponents and amplitude ratios are universal quan-
tities, it does not matter which renormalization method is
used for obtaining them and the many renormalization
schemes used are useful for checking the final results. As in
the field-theoretic approach, the difference of some arbi-
trary temperature 7" and its critical one 7', is proportional to
the squared mass m? of the fluctuating quantum field;
massive and massless theories mean noncritical and critical
theories, respectively. Thus, the critical exponents must be
the same if computed through both massive (in three
distinct methods) and massless (through three different
schemes) theories, since the critical scaling behavior of the
1PI vertex parts at and near the transition is the same. On
the other hand, some amplitude ratios involve a few
amplitudes at the critical temperature, thus requiring the
application of just massless (in three distinct methods)
theories and not massive ones. Any deviation of the
high energy nonextensive universal quantities’ values
from their low energy extensive counterparts will
indicate the nonextensivity character of the corresponding
theory, at least at high or intermediate energies. In quanti-
tative terms, these universal quantities must depend on
the nonextensive parameter g, which shows the nonexten-
sivity of the theory. In fact, the first-order Taylor expansion,
around g = 1, for the nonextensive g-Klein-Gordon equa-
tion at very high energies was obtained [21], giving the
corresponding high energy nonextensive bare free propa-
gator Gop g1(k) = —— = 1/(k* + gm%) at high
or intermediate energies. As is well known from the
original proposition of generalized nonextensive statistical
mechanics [3], the nonextensive ¢ parameter is a constant.
It could be interesting to consider g as a running one,
but this case is beyond the purpose of the present work and
can be considered in a future work. As there are two
independent scales; 12 critical exponents,

a3 a/v 7/7 7/, IJ, I/lﬂ ﬂ’ 6’ ’7’ aC’ yCl/C; (1)
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ten relations among the critical exponents,
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and one relation between the critical amplitudes,
sC°D'° =1, (4)

we have to evaluate independently two critical exponents
and nine amplitude ratios. Among the high energy non-
extensive critical exponents, we have to compute inde-
pendently # and v, while the nine high energy nonextensive
amplitude ratios chosen to be evaluated are those of
Ref. [22], which were computed in references therein.

This work is organized as follows: Firstly, we have to
compute the radiative quantum corrections to the high
energy nonextensive critical exponents up to NLO through
six distinct and independent renormalization methods for
O(N) A¢* scalar high energy nonextensive g-field theories.
Secondly, we have to attain a similar goal but now for high
energy nonextensive amplitude ratios up to leading order
and by applying three different and independent renorm-
alization schemes. After that, we have to generalize those
results for any loop level. At the end, we present our
conclusions and perspectives.

II. HIGH ENERGY NONEXTENSIVE CRITICAL
EXPONENTS: MASSIVE THEORIES

In the following steps, we have to label the high energy
nonextensive quantities of interest. For example, we have to
set 7, for the n exponent and so on. Now we have to

compute the high energy nonextensive critical exponents
through the methods displayed below.

A. Callan-Symanzik method

For computing the high energy nonextensive critical
exponents in the Callan-Symanzik method [23], we need
only a minimal set of four Feynman diagrams to evaluate,
up to NLO, at fixed dimensionless external momenta at the
symmetry point SP. This symmetry point is characterized
by external momenta fixed at the value P> =0 for low
energy extensive systems and the corresponding inverse
bare free propagator is given by k*> + 1 if we use the
renormalized mass as a scale unit, where now the momen-
tum k& is dimensionless. The observables, being defined at a
finite scale, depend on the irrelevant parameters and might
well contain important g dependence. For example, the
effective nonextensive mass is given by ,/gm. By following
the same steps for high energy nonextensive systems, we
obtain that the inverse bare free propagator results in
k* 4+ g, where a ¢ dependence is explicit. If we have
chosen the effective nonextensive mass \/qm we would
obtain the same bare free propagator as that for the low
energy extensive theory, and the ¢ dependence of the
Feynman diagrams on the nonextensive g parameter would
disappear. In fact, the choice of the mass as a scale unit is
arbitrary. Even so, we have made a choice such that the g
dependence is explicit. This permits us to probe explicitly
the effect of ¢ on the high energy nonextensive critical
exponents. Then we obtain for the four needed Feynman
diagrams evaluated in d =4 —e¢,

T S
XO,-XQ| . w

the following results:
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where the integral I [24],
x(1—x)

’:[{1—x<11—x>+[1—x<1—x>]2}’ )

is a number and a residual effect of the symmetry point we
have chosen. We can now compute the high energy
nonextensive f,.; function, anomalous dimensions, and
nontrivial fixed point to obtain

N +8 1
i (u ——eu—i—; 1—=¢)qg=*u?
Py (1) g q
3N+ 14
N+2 1
=2t (1 — et I ) g
Vg1 7 < 4€—|— e>q u
N+2)(N+8 .
RCES LR

_ N+2 1 e N+2 |
7¢2,q~1(“):T<1—§€)q /ZM—TQ u?, (16)

- T )

where we have used 7, .1 (4) = ¥y go1 (1) = 7 g1 ().
Then we can employ the relations 7,.; =7y g1 (1))
and v;ll =2 — g1 = 742.g1 (1}, for obtaining the high
energy nonextensive critical exponents 7,.; and v,.;.
Although the high energy nonextensive f,.; function,
anomalous dimensions, and nontrivial fixed point depend
explicitly on the nonextensive parameter g, this dependence
disappears in the high energy nonextensive critical expo-
nent values’ computation procedure, where the integral / is
canceled out in the middle of the calculations. Then we

obtain that the high energy nonextensive critical exponents
values, at least up to NLO, are the same as their low energy
extensive counterparts [11]. This result shows, at least at the
loop level just approached, that the nonextensivity of the
theory at high or intermediate energies (¢ ~ 1) is broken
down, i.e., that it is not strong enough to yield critical
exponent values depending on the nonextensive g param-
eter. As argued in Ref. [21], it is difficult to ascertain if the
nonextensivity of the theory is violated or not when one
approaches ¢ values close to unity. Precisely, this is the aim
of the present work. The result above shows that the
nonextensivity violation mechanism at intermediate ener-
gies probed here is naive and not a true one.

B. Unconventional minimal subtraction scheme

The present method is characterized by its generality
and elegance [25], where now the external momenta of
Feynman diagrams are not held at a particular fixed value
but are free to assume any arbitrary values. The minimal set
of needed Feynman diagrams to be computed, up to the
next-to-leading order, are [23]

XX X o

The corresponding evaluated diagrams have the following
expressions:

- SmQB 1 2 9
—6——{262 |:1+§€+<ﬁ+1>6 —
3 2 ~
—b qul(P23m2B7Q)— (20)

p2 1
g |:1 + ZE — 2€L3,q~1(P27m2Ba q):| } 9

5m3 2 15 ,
= —_ 1 — —_— J—
@ { 33 [+e+<24+4>e
5m?%

% lqwl(P27mZBvQ)_ (21)

P? 1
6? |:1 + 56 — 3€L37qN1(P2 + K/LVP“PVa mQB):| } ’

1 1
>® -5 {1 - e eLqu(PQ,mQB,q)] , (22)
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where

Loa(Pomoq) = [ arile(1 =P+ qui). (23

L3 41 (P?,my, q) = /dx(l—x)ln[x(l—x)Pz—i—qu}

(24)

(P2, m%,q

/dx/ dyiny ( y)

xln{y(l—y)P2+[l—y—l—x(ly_x)}qm%}) (25)

Now, we are in a position to evaluate the high energy
nonextensive f,.; function, anomalous dimensions, and
nontrivial fixed point. We then obtain

lq~1

N+ 8 3N + 14
By (1) = —eu + g u* — > u?,  (26)
N+2 , (N+2)(N+8) ,
= - 27
Vagai () = 27— s (27)
N+2 N+2
742, q~1( u) = T” - TMZ, (28)

We can observe that the g- and momentum-dependent
integrals L, (P?,m%,q); Ly 41 (P?,m%, q); and i, (P2,
m> 5.4 q) have been canceled out and do not contrlbute to the
aforementioned results, as the referred method demands
[25]. This fact has implied the disappearance of a possible
dependence of the critical exponents on the nonextensive
parameter g, thus making the high energy nonextensive
results identical to their low energy extensive counterparts.
This means that the high energy nonextensive critical
exponents, when we apply once again the relations n,.; =

7¢,q~1(”2~1) and y;ll =2—1y — }7¢2,qN1(M2~1), are the
same as the corresponding low energy extensive ones. This
result obtained in the current method agrees with the one
obtained through the method displayed in the earlier
section. This fact confirms the universality of the critical
exponents since they are the same when obtained through
different and independent methods, and it shows the arbi-
trariness of the field-theoretical renormalization group
method employed, as it is required by general renormal-
ization group theory considerations [11].

C. Bogoliubov-Parasyuk-Hepp-Zimmermann method

In the method approached now, we cannot compute just a
minimal set of Feynman diagrams up to NLO as in the
earlier methods. On the other hand, we must compute 14
diagrams and counterterms [26—28]. The present method is
known as the Bogoliubov-Parasyuk-Hepp-Zimmermann
(BPHZ) method. The theory is renormalized, up to NLO,
by the following renormalization constants [29]:

1

qu,q,\,l(u7 671) =1+
P2 S@ +

o)
s+ )ss |

(<)

Zuger(ue) =1+

uiu %K <>O< +2 perm-) Sex

411 XK +2perm.) Sor +
%K ( +5 perm.) S>® + a1)
(B

K + 2 perm.) S>O'( +

(
(0K 2 5,

(32)

The symbol S@ means the symmetry factor for the
corresponding diagram for some N-component field.
When we compute the diagrams and counterterms, we
obtain the following results:
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(35)

(37)

(38)

(39)

€,,3
weu
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Q gl @

where

1 1= P2 2
J‘IN](PZ’mZ’ q’/’t) = / dxIn |:x< x> 2 i = :|’
0 H

(47)

1 1
J3 g1 (P2, m? q, ) = A A dxdy(1—y)
y(1-y)P? y ] qm?
Ing———+ |1 - %, (48
Xn{ R A “8)

m* [ (1-x)
4,9 1 ( ) u* Jo x(1;§)P2+q;_1;2 (49)

Thus, we can compute the f,.; function, anomalous
dimensions, and nontrivial fixed point and obtain

N+82 3N+143
u- — u
6 12 ’

Pyt () = —eu + (50)
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N+2 , (N+2)(N+8)

o) = DINES s, (s
N+2  S(N+)2
7m2,q~1<”) = 6 u-—= 72 uz’ (52)

Now by applying the relations 7, E]/qj.qN](ule) and
I/;Nll =272 4~1(U,.1), once again we obtain that the
high energy nonextensive critical exponent values are
the same as the low energy extensive ones, although the
Feynman diagrams and counterterms depend on the non-
extensive parameter g through the ¢- and momentum-
dependent J,. (P2, m?, q,pu); Js,4.(P?,m* q,pu); and
Jyg1(P?,m?, q,p) integrals. These integrals have disap-
peared as expected in this method [26-28]. This completes
our task of computing the high energy nonextensive critical
exponents up to NLO for massive theories. In particular, in
four dimensions, from the ¢ independence in a physically
relevant setup of the renormalization group scheme where
the physics is taking place, nothing is left and the cor-
responding theory is independent of ¢, as can be seen in the
expressions for the high energy nonextensive f,.; func-
tions and anomalous dimensions computed in all three
distinct renormalization group schemes, i.e., that these
functions turn out to be the same as their extensive
counterparts in four dimensions. Now we have to evaluate
the high energy nonextensive critical exponents through
massless theories.

III. HIGH ENERGY NONEXTENSIVE CRITICAL
EXPONENTS: MASSLESS THEORIES

As in massless theories the mass is null and the
nonextensivity of the high energy nonextensive theory is
explicitly given just by its effective nonextensive mass, the
high energy nonextensive bare free inverse propagator is
given by k% This propagator is the same as the one for the
low energy extensive massless theory. Thus, the Feynman
diagrams needed for the computation of the high energy
nonextensive critical exponents in the referred high energy
nonextensive massless theories are the same as the ones
for the low energy extensive theories. Then the high
energy nonextensive critical exponents that we obtain
through such theories in any of the three methods for
massless theories, namely, the normalization conditions
[23], minimal subtraction scheme [23], and the massless
BPHZ [23] methods, are the same as their low energy
extensive counterparts. We then obtain the same results as
the ones obtained through the three earlier methods in
massive theories.

IV. HIGH ENERGY NONEXTENSIVE
AMPLITUDE RATIOS

As the complete set of amplitude ratios can be computed
only in massless theories with spontaneous symmetry break-
ing, and not in massive ones, though three distinct and
independent methods, namely, the normalization conditions
[23], minimal subtraction scheme [23], and the massless
BPHZ [23] methods (see Ref. [30] for the computation of
amplitude ratios, although for Lorentz-violating theories,
from which we can recover the low energy extensive theory
by taking the limit in which the Lorentz-violating mechanism
is vanishing, through these three methods), the same argu-
ments presented in the earlier section can be applied as well.
Thus, we obtain that the high energy nonextensive amplitude
ratios are the same as their low energy extensive counterparts.

V. GENERALIZATION FOR ANY LOOP LEVEL

Now we have to generalize the earlier finite NLO results
to the high energy nonextensive critical exponents and
amplitude ratios for any loop orders. We begin our journey
by considering firstly the former universal quantities. Since
they are universal, we can choose any of the six renorm-
alization group methods employed here. We have to choose
the most general one, i.e., the BPHZ method. As a given
Feynman diagram in the low energy extensive theory, for
some arbitrary loop order, is given by F(u, P, m, €, ), its
high energy nonextensive counterpart can be expressed as
Foa(u,P,m,q.e,u)=F(u,P,\/qm,e u) through the
substitution m—,/qm. As in the BPHZ method we have
the canceling of any mass-dependent terms for all-loop order
in perturbation theory [26-28] and the f function and
anomalous dimensions do not depend on the mass of the
theory, we have that the nonextensive parameter g disappears
in the middle of calculations through the term gm? for all-loop
order. Thus, the resulting f,.; function and anomalous
dimensions for all-loop order are the same as their low energy
extensive counterparts,

o) = —eu+ > pPu = plu).  (54)
n=2

Togr () = 370w = 7 ), (55)

=2

8:

Vot gr () =S 7w =y,e(w).  (56)

n=

—_

where ﬂfqo), y((]gzl, and yfsz),n are the nth loop radiative
quantum corrections to the corresponding low energy
extensive functions. Now, if we compute the high energy
nonextensive nontrivial fixed point u,. valid for all loop
levels, which is obtained as the nontrivial solution for the
high energy nonextensive condition .. (u;.;) = 0 for the

high energy nonextensive f,.; function valid for all loop
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levels, we will find that it is the same as their all-loop-order
low energy extensive counterpart. Then, the corresponding
all-loop-order high energy nonextensive critical exponents
are the same as their all-loop low energy extensive counter-
parts. This completes our generalization for any loop level.
Then, the assertion that the nonextensivity of the theory at
high or intermediate energies (¢ ~ 1) is broken down or is
not strong enough to yield g-dependent critical exponents is
now valid for all loop orders. The next step is to approach the
earlier task but now for amplitude ratios. This task is attained
by applying the same arguments used in the earlier section
for NLO but now for any loop level. As the theory used for
computing high energy nonextensive amplitude ratios valid
for all-loop order is some all-loop-level massless one, the
resulting theory does not depend on the nonextensive
parameter ¢, since a possible g dependence of the theory
could come only through a massive term of the form gm?
which is vanishing for a massless theory. This completes our
task. We can now proceed to present our conclusions.

VI. CONCLUSIONS

We evaluated the all-loop radiative quantum corrections
to the universal critical exponents and amplitude ratios for

O(N) A¢* scalar high energy nonextensive g-field theories.
For attaining that goal, we generalized the results for those
universal quantities obtained here for finite NLO through
six distinct and independent methods for the high energy
nonextensive critical exponents and three different and
independent methods for the amplitude ratios. The results
for these universal quantities obtained through those dis-
tinct methods were all identical among them, thus showing
the arbitrariness of the field-theoretic renormalization
group method employed and the possibility of checking
the results by comparing the results obtained through so
many distinct and independent methods. Furthermore, the
high energy nonextensive critical exponents and amplitude
ratios were the same as their extensive counterparts. This
fact shows that the nonextensivity of the theory is broken
down at high or intermediate energies, i.e., that the
nonextensivity property, which is present at very high
energies, is not strong enough to survive at high or
intermediate energies. The present work opens a new
research branch since we can approach similar investiga-
tions by computing corrections to scaling and finite-size
scaling effects for critical exponents as well as for ampli-
tude ratios at the high or intermediate energy domain.
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