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We introduce a general method to construct, directly in configuration space, classes of dynamical
systems invariant under generalizations of the Carroll and of the Galilei groups. The method does not make
use of any nonrelativistic limiting procedure, although the starting point is a Lagrangian Poincaré invariant
in the full space. It consists in considering a spacetime inDþ 1 dimensions and partitioning it in two parts,
the first Minkowskian and the second Euclidean. The action consists of two terms that are separately
invariant under the Minkowskian and Euclidean partitioning. One of those contains a system of lagrangian
multipliers that confine the system to a subspace. The other term defines the dynamics of the system. The
total lagrangian is invariant under the Carroll or the Galilei groups with zero central charge.
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I. INTRODUCTION

During the last few years, there has been interest in the
“nonrelativistic” Carroll [1] and Galilei groups. One of the
reasons for this interest is the relevance of BMS symmetry
[2], which is related to the conformal Carroll group [3], to
flat space holography [4–8]. Another reason is that non-
relativistic holography is a tool to study strongly interacting
field theories in condensed matter systems [9,10]. The
associated nonrelativistic gravities like Newton-Cartan
[11], Horava [12], stringy Newton Cartan [13,14], torsional
Newton Cartan [15] or Schrödinger [16], and Carroll
[17–19] have been studied. There is matter coupled to
nonrelativistic gravity, Carroll gravity, e.g., for particles
[20–24], and for extended objects [14,21] for Galilean and
for Carroll field theories [25,26] coupled to a Newton-
Cartan and Carroll [19] background.
Since most of the models invariant under the Carroll or

Galilei group present in the literature are described by an
action in phase space, the main purpose of this paper is to
propose a general method to construct the corresponding

action in configuration space. As we shall see, this
description corresponds to a system confined in a particular
region of the spacetime. The corresponding Lagrangian
systems will be invariant under generalizations of the
Carroll and the Galilei groups, [23,27–32].
The Galilei and Carroll groups can be obtained via a

convenient contraction of the Poincaré group [33]. In order
to obtain the Bargmann group [34], that is the Galilei group
with a central charge, it is necessary to extend the Poincaré
group by a Uð1Þ factor, whereas, in the case of three
dimensions, one needs to consider the contraction of
Poincaré ⊗ Uð1Þ ⊗ Uð1Þ [35], since in this case the
Galilei group has two central extensions [36]. Otherwise
one gets the Galilei algebra with zero central charge. It
should be noted that the “nonrelativistic” limit is not unique
[27,28,37,38] when we have in mind extended objects. In
other words, there is not a unique contraction of the Poincaré
group. In some cases, these new algebras could contain
noncentral extensions [29,30]. From now on, unless differ-
ently specified, for Galilei and Carroll algebras, we will
mean the algebras with zero central or noncentral charges.
The general structure of the contracted algebras is

that both contain the direct product of a Poincaré algebra
in lower dimensions times an Euclidean algebra of
rotations and translations in the complementary spatial
dimensions. The contracted algebras contain also gener-
alized boosts that rotate the generators of the lower
Poincare with the ones of the Euclidean group. These
boosts are a generalization of the ones of Galilei and
Carroll groups. We will write the generators of the
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Poincaré group, ISOð1; DÞ, Mμν and Pμ μ; ν ¼ 0; 1;…; D,
as ðMαβ;Mab; Pα; Pa;Mαb ≡ BαbÞ, with α; β ¼ 0; 1;…;
k − 1 and a; b ¼ k;…; D.
The contractions will be defined dividing the compo-

nents of the momentum Pμ, in two sets Pα and Pa. The
contractions we will consider consist, in the Carroll case, in
rescaling the momenta Pα by a factor 1=ω and then taking
the limit ω → ∞, explicitly P̃α ¼ Pα=ω, where P̃α will be
the Carrollian generators. At the same time, we will need to
rescale the boosts by the same factor. The same procedure
is followed in the Galilei case, but this time we rescale the
Pa’s as P̃a ¼ Pa=ω. The boosts work differently in the two
cases. More precisely, in the Carroll case the commutator of
the boosts with Pa is proportional to Pα, whereas in the
Galilei case the two momenta are exchanged. This is the
distinctive feature between the two contracted algebras.
An analogous procedure in spacetime can be followed by

considering a Minkowski space-time Mð1; DÞ, and parti-
tioning it in two pieces, as the direct sum Mð1; k − 1Þ ⊕
EðDþ 1 − kÞ, corresponding to the partition of the
momentum generators considered above. In this case, we
will consider the realization of the Poincaré generators in
terms of vector fields operating on the spacetime,Mð1; DÞ,
variables. Then, we will define two types of contractions by
rescaling the relativistic coordinates xα by a factor ω, that is
x̃α ¼ ωxα, in the Carroll case and, by the same factor ω, the
coordinates xa, x̃a ¼ ωxa, in the Galilei case. The boosts
connect the coordinates xα to the xa’s for the Carroll
contraction and the contrary happens for the Galilei one.
The previous procedure can be repeated, by varying k,D

times, not Dþ 1, since rescaling all the momenta is
equivalent to no rescaling. Notice that the commutation
relations among the momenta and the generators of the
Lorentz group are linear in the momenta, and, therefore, the
commutation relations do not change for an overall rescaling
of the momenta. Therefore, we may have D contractions of
the Carroll type and D contractions of the Galilei type, in
total 2D possible contractions. We will define these as a k
contraction of the Carroll type, the contraction described
above, and by the same rule, a contraction of theGalilei type.
Notice that, in the previous literature, these contractions
were called p-brane contractions.
A k contraction of Carroll type and a Dþ 1 − k con-

traction of Galilei type are dual one to the other. In fact,
they can be obtained one from the other by exchanging the
role of the boosts. In the case of k ¼ 1, this duality is close
to the one considered in [24] although not quite the same.
Models invariant under the Carroll or the Galilei group

have been previously obtained by taking convenient “non-
relativistic” limits on a relativistic action describing the
original system in the Dþ 1–dimensional Minkowski
spacetime together with an appropriate rescaling of the
parameters appearing in the action [23,27–32,37,38]. Some
of these models without central extensions can be recov-
ered by our approach.

Our general procedure in configuration space does not
need to take any “nonrelativistic” limit to construct an
invariant model under Carroll or Galilei. Starting with the
Carroll case, we will first consider an action invariant under
ISOð1; DÞ, then we confine the system to a Mð1; k − 1Þ
subspace. The resulting action is automatically invariant
under ISOð1; k − 1Þ and depends on the coordinates
xα only.
The model is trivially invariant under the Euclidean

subalgebra and can be made invariant under the boosts
adding convenient terms in the Euclidean sector of the total
spacetime. Since the Carroll boosts map the Minkowski
coordinates into the Euclidean ones, the corresponding
variation of the action is linear in the Euclidean coordinates
and in their derivatives. Therefore, we can construct
compensating terms using Lagrange multipliers times the
coordinates of the Euclidean space and their derivatives
such to conserve the momentum also in that sector. We will
be more specific in the following. In fact, the action might
depend explicitly on the coordinates, but it needs to
conserve the momentum. This allows to construct linear
combinations of the Euclidean coordinates, We shall see
that the Lagrangian multipliers of the time derivatives of the
Euclidean coordinates can be thought as the canonical
momenta of the Euclidean space variables. The variation
induced by the boosts in the action describing the dynami-
cal system is then compensated by a corresponding
variation of the Lagrange multipliers. On the other hand,
the equations of motion resulting from the variation of the
Lagrange multipliers confine the system to live in the
Minkowski subspace, since the typical implication is that
the time derivatives of the Euclidean variables xa vanish
confining the system in the Minkowski subspace and to not
propagate in the Euclidean part. For this reason, we will call
the part of the action relative to the Euclidean subspace as
Sconfining. Notice that in this procedure we do not need to
scale the parameters appearing in our Lagrangian. We will
discuss in a detailed way the construction of discrete and
continuous dynamical systems following what outlined
before.
The same considerations can be made for dynamical

systems invariant under the Galilei algebra. In fact, this
time we will introduce an invariant action under the
Euclidean group, EðDþ 1 − kÞ, depending on the var-
iables xa only. In this case, the Galilei boosts map the
variables xa into the xα’s. and we can get a model
invariant under the full Galilei group, by the addition of
a confining action consisting of Lagrange multipliers
times convenient combinations of the xα’s. Note that the
mass-shell constraints of our models depend on
momenta and coordinates on the longitudinal or on
the transverse variables, but not depending on both.
Several of the previously constructed models do depend
on all the variables (see, e.g., [28,31,39]) and, therefore,
cannot be obtained from our procedure.
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Strictly speaking, the Galilei invariant models obtained
by this procedure are not dynamical in spacetime, since the
action of these systems does not contain the time variable.
This means that the dynamics happens only at a given time.
In this sense, these models describe a sort of generalized
instantons. The evolution in Euclidean space can be
obtained in terms of a Euclidean coordinate and the
associated Hamiltonian. In general, it is possible to obtain
interesting results. For instance, considering the dual of the
1-contraction of the Carroll type (the Carroll particle), that
is a D-contraction of the Galilei type, it is possible to
obtain, in configuration space, a model equivalent to the
one, obtained in [40] as the limit of a relativistic tachyon, in
the phase space, for c → ∞. This model has been called a
Galilean massless particle [41], referring to the invariance
under the Galilei algebra with zero central charge. This
model describes an Euclidean nonrelativistic instanton.
The organization of the paper is as follows: in Sec. II, we

discuss the k contractions at the level of the algebra,
whereas, in Sec. III, the same analysis is performed in
configuration space. In Sec. IV, we present, in general, the
construction of dynamical models invariant under Carroll
and Galilei, in the discrete and in the continuous case, as,
for instance, extended objects. In Sec. V, we will discuss
various explicit examples of our procedure, ranging from
the Carroll particle to massless particles up to a Carroll
string. In the last section, we present our conclusions and
discuss possible extensions of the present work.

II. k-CONTRACTIONSOF THE POINCARÉGROUP

Let us start considering the algebra of the Poincaré group
in Dþ 1 dimensions, ISOð1; DÞ

½Mμν;Mρσ� ¼ −iðημρMνσ þ ηνσMμρ − ημσMνρ − ηνρMμσÞ;
½Mμν; Pρ� ¼ −iðημρPν − ηνρPμÞ;
½Pμ; Pν� ¼ 0; ð1Þ

where μ ¼ 0; 1;…; D, ημν ¼ ð−;þ; � � � ;þÞ.
Then, consider the following two subgroups of

ISOð1; DÞ: the Poincaré subgroup in k dimensions,
ISOð1; k − 1Þ and the Euclidean group of roto-translations
in Dþ 1 − k dimensions, generated, respectively, by

ISOð1;k−1Þ∶Mαβ; Pα; α; β¼ 0;1;…;k−1; ð2Þ

ISOðDþ1−kÞ∶Mab; Pa; a;b¼ k;…;D: ð3Þ

In these notations, the generators of ISOð1; DÞ are

ISOð1;DÞ∶Mαβ; Mab; Pα; Pa; Mαb≡Bαb: ð4Þ

The generators of ISOð1; k − 1Þ satisfy the algebra (1),
with the indices μ:ν;… replaced by α; β; � � �. Also the
generators of ISOðDþ 1 − kÞ satisfy the algebra (1), with

the indices μ:ν;… replaced by a; b; ; � � � and with the
replacement of the Minkowski metric with the Euclidean
one, ηab ¼ δab. Furthermore, the two subalgebras com-
mute. Now let us study the behaviour of the boosts under
the two subalgebras. We have

ISOð1; k − 1Þ∶ ½Mαβ; Bγc� ¼ −iðηαγBβc − ηβγBαcÞ;
½Bαa; Pβ� ¼ −iηαβPa; ð5Þ

ISOðDþ 1 − kÞ∶ ½Mab; Bγc� ¼ −iðηacBγb − ηbcBγaÞ;
½Bαa; Pb� ¼ iηabPα: ð6Þ

We see that the boosts behave like vectors under both
groups. Finally, the commutator among boosts is given by

½Bαa; Bβb� ¼ −iðηαβMab þ ηabMαβÞ; ð7Þ

We will consider two types of contractions, rescaling in
one case the momenta Pα and, in the other case, the
momenta Pa. In both cases, the boosts will be rescaled. The
first contraction is called a Carroll contraction [1,23,24,31]
and it is obtained by the following rescaling, in the limit of
ω → ∞

M̃αβ ¼ Mαβ; P̃α ¼
1

ω
Pα; M̃ab ¼ Mab;

P̃a ¼ Pa; B̃αa ¼
1

ω
Bαa: ð8Þ

Notice that the commutators of Mαβ and Mab with the
momentadonot change, since they are linear in themomenta.
Therefore, we will be interested only in the commutators of
the new generators P̃α, P̃a and B̃αa. Using Eqs. (5)–(7), we
find

½B̃αa; B̃βb� ¼ 0; ½B̃αa;P̃β� ¼ 0; ½B̃αa;P̃b� ¼ iηabP̃α: ð9Þ

We will denote the contracted algebra by Ckð1þDÞ. Since
we rescale the first kmomentaPαwewill call this contraction
a “k-contraction” of the Carroll type. The other contraction
that will be considered will be obtained by rescaling the
Dþ 1 − kmomenta Pa and this will be called aDþ 1 − k-
contraction of the Galilei type:

M̃αβ ¼ Mαβ; P̃α ¼ Pα; M̃ab ¼ Mab;

P̃a ¼
1

ω
Pa; B̃αa ¼

1

ω
Bαa: ð10Þ

Again, the interesting commutators are

½B̃αa;Bβc�¼0; ½B̃αa;P̃β�¼−iηαβPa; ½B̃αa;P̃a�¼0: ð11Þ

This scaling is suggested by the nonrelativistic limit of
relativistic branes [27,29,32,37,38,42]. The algebra obtained
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by this contraction will be denoted by GDþ1−kð1þDÞ. The
two algebras Ckð1þDÞ andGDþ1−kð1þDÞ are dual to each
other; they go one into the other by exchanging the role of the
momenta Pα and Pa and of the metric tensors.
It should be noticed that this duality relating the Carroll

and the Galilei contractions corresponds to quite different
physical situations (see also in the following). In the case of
the 1-contraction, a similar duality has been discussed in
[24] although it is not quite the same.

III. k-CONTRACTIONS IN CONFIGURATION
SPACE

In this section, we will study the realization of the
previous abstract algebras in a flat Minkowski spacetime,
Mð1; DÞ, of dimensions Dþ 1, with coordinates and
metric

xμ; μ ¼ 0; 1;…; D; ημν ¼ ð−;þ; � � � ;þÞ: ð12Þ

Let us consider this space as the direct sumof twoorthogonal
subspaces, a Minkowski spacetime Mð1; k − 1Þ, of dimen-
sions k, and an Euclidean space EðDþ 1 − kÞ of dimen-
sions Dþ 1 − k:

Mð1; DÞ ¼ Mð1; k − 1Þ ⊕ EðDþ 1 − kÞ: ð13Þ

The coordinates of the two subspaces will be chosen to
agree with what was done in the previous section,

xα ∈ Mð1; k − 1Þ; α ¼ 0; 1;…; k − 1; ð14Þ

and

xa ∈ EðDþ 1 − kÞ; a ¼ k; kþ 1;…; D: ð15Þ

It is interesting to notice that this division of the spacetime
is identical to the on used for defining a k − 1 brane.
Therefore, as we did previously, we will define two

commuting subgroups of the Poincaré group in Dþ 1
dimensions, ISOð1; DÞ. These are the Poincaré group in k
dimensions, ISOð1; k − 1Þ and the roto-translations group
in Dþ 1 − k dimensions, ISOðDþ 1 − kÞ. Furthermore,
there are the generators that mix together the two sub-
groups, that is the “boosts”, Bαa.
We will consider the Poincaré group ISOð1; DÞ gen-

erated by the following vector fields

Mμν ¼ −iðxμ∂ν − xν∂μÞ; Pμ ¼ −i∂μ ð16Þ

which satisfy the algebra (1).
According to the split of the spacetime illustrated before,

the previous generators are split in

ðMαβ;PαÞ∈ ISOð1;k−1Þ; ðMab;PaÞ∈ ISOðDþ1−kÞ
ð17Þ

and the “boosts”

Bαa ¼ Mαa: ð18Þ

The contractions in configuration space are dual to the ones
defined for the momenta (see, e.g., [31] for Carroll and
[29,30] for Galilei) as

Carroll type; x̃α ¼ ωxα; x̃a ¼ xa;

Galilei type; x̃α ¼ xα; x̃a ¼ ωxa; ð19Þ

in the limit ω → ∞.
These two types of contractions are not equivalent.

The terminology used here derives from the case of 1-
contractions. In that case, the two contractions lead, respec-
tively, to the Carroll and to the Galilei group with vanishing
central charge (see, for instance, [33]). Therefore, we have a
total of 2D possible contractions For the case of p-branes,
pþ 1 possible contractions have been considered [28].
On the other hand, the duality property considered in

the previous section at the level of the exchange of the
momenta for the two contracted groups is expressed here in
terms of the exchange of the manifolds Mð1; k − 1Þ and
EðDþ 1 − kÞ (see Fig. 1).
In fact, the case in which all the variables are rescaled

(k ¼ Dþ 1), we get the original algebra. This is because
the Lorentz generators do not change under rescaling of the
coordinates, being homogeneous in the coordinates them-
selves. As for the momenta, since the commutation
relations are linear in the momenta, they are left invariant
by any common rescaling of the momenta. From this
observation, it follows that the contractions

FIG. 1. The two types of contractions considered in the text. In
the left panel, the Carroll type. In the right panel, the Galilei type.
The rescaled variables are underlined. The arrows denote the
directions in which the boosts act in the two cases.
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Carroll type; x̃α ¼ xα; x̃a ¼ 1

ω
xa;

Galilei type; x̃α ¼ 1

ω
xα; x̃a ¼ xa; ð20Þ

give the same result as the ones following from (19).
Let us now consider explicitly the two cases:
Carroll type
Reexpressing the old variables in terms of the new ones,

(19), we get

Mαβ ¼ −iðx̃α∂̃β − x̃β∂̃αÞ ¼ M̃αβ;

Mab ¼ −iðx̃a∂̃b − x̃b∂̃aÞ ¼ M̃ab ð21Þ

and, in the limit ω → ∞

Bαa ¼ −i
�
1

ω
x̃α∂̃a − ωx̃a∂̃α

�
→ ωB̃αa; ð22Þ

where

B̃αa ¼ ix̃a∂̃α: ð23Þ

Furthermore,

Pα ¼ −iω∂̃α ¼ ωP̃α; ð24Þ

with

P̃α ¼ −i∂̃α; P̃a ¼ −i∂̃a: ð25Þ

We see that this contraction coincides with the one of the
previous section. Therefore, the commutation relations of
the vector fields are the same obtained for the abstract
generators of Ckð1þDÞ.
Let us now consider the Galilei case:
Galilei type
Reexpressing the old variables in terms of the new ones,

(19), we get

Mαβ ¼ −iðx̃α∂̃β − x̃β∂̃αÞ ¼ M̃αβ;

Mab ¼ −iðx̃a∂̃b − x̃b∂̃aÞ ¼ M̃ab ð26Þ

and

Bαa ¼ −i
�
ωx̃α∂̃a −

1

ω
x̃a∂̃α

�
→ ωB̃αa; ð27Þ

in the limit ω → ∞, with

B̃αa ¼ −ix̃α∂̃a: ð28Þ

Furthermore

Pa ¼ −iω∂̃a ¼ ωP̃a; ð29Þ
with

P̃a ¼ −i∂̃a; P̃α ¼ −i∂̃α: ð30Þ
For the commutation relations, the considerations made in
the Carroll case can be repeated here. In any case, for
completeness, we repeat here the relevant commutators for
the two cases:
Carroll type

0
BBBB@

Bβb Pβ Pb

Bαa 0 0 iηabPα

Pα 0 0 0

Pa −iηabPβ 0 0

1
CCCCA; ð31Þ

Galilei type

0
BBBB@

Bβb Pβ Pb

Bαa 0 −iηαβPa

Pα iηαβPa 0 0

Pa 0 0 0

1
CCCCA: ð32Þ

IV. BUILDING DYNAMICAL MODELS

We will consider here the case of dynamical systems
described by discrete variables and then by continuous
variables. The first case corresponds to having a certain
number of interacting pointlike objects. The second case
corresponds to having extended objects as, for instance,
branes. We will show how to construct models invariant
either under Carroll or under Galilei. However, we will not
consider here the case of field theories.

A. Discrete models

Let us start from the Carroll type of symmetry and
consider a k-contraction. We suppose an action, describing
N interacting particles, invariant under a a linear realization
Poincaré group in k dimensions:

SPL ¼
Z

dτLPLð_xαi ; xαi Þ; xαi ∈ Mð1; k − 1Þ; ð33Þ

where the index i ¼ 1;…; N describes the type of particle.
From the invariance under translations, xαi → xαi þ aα it
follows

X
i

qiα ¼ 0; qiα ¼
∂LPL

∂xαi : ð34Þ

Introducing the canonical momenta,

piα ¼
∂LPL

∂ _xαi ; ð35Þ
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the equations of motion are

_piα ¼ qiα; ð36Þ
implying the conservation of the total momentum

_Pα ¼
XN
i¼1

_piα ¼
XN
i¼1

qiα ¼ 0: ð37Þ

Now, let us consider the other part of the total spacetime
Mð1; DÞ, that is the Euclidean space EðDþ 1 − kÞ. Wewill
consider our point particles living only in the space
Mð1; k − 1Þ (see Fig. 2); therefore, we will introduce a
set of constraints, confining the particles to stay in
Mð1; k − 1Þ. Furthermore, if we want to implement the
Carroll type of symmetry we have to require that this
confinement action is invariant under ISOðDþ 1 − kÞ. In
particular, we have to require invariance under translations.
This can be realized introducing the center of mass
coordinates in the Euclidean sector

x̄a ¼ 1

N

XN
i¼1

xai : ð38Þ

Notice that any linear combination
P

N
i aixai , withP

N
i ai ¼ 1, could also make the job. In order to get the

momentum conservation, the confining action must depend
only on the relative coordinates

Sconfining ¼
Z

dτ
XN
i¼1

ðλia _xai þ μiaðxai − x̄aÞÞ: ð39Þ

Notice that we have the identity

XN
i¼1

μiaðxai − x̄aÞ ¼
XN
i¼1

ðμia − μ̄aÞxai ; ð40Þ

where

μ̄a ¼
1

N

XN
i¼1

μia: ð41Þ

The equations of motion for the variables xai are

_pia ¼
d
dτ

∂L
∂ _xai ¼

∂L
∂xai ¼ ðμia − μ̄aÞ; ð42Þ

implying the conservation of the total momentum Pa:

_Pa ¼
XN
i¼1

_pia ¼ 0: ð43Þ

In this way, we enforce the translation invariance in
EðDþ 1 − kÞ. Furthermore, assuming that all the Lagrange
multipliers transform like vectors under the rotation group
SOðDþ 1 − kÞ, the confining action satisfies all our
requirements. The equations of motion resulting from this
action are

_xai ¼ 0; xia ¼ x̄a: ð44Þ

We will now assume as total action

S ¼ SPL þ Sconfining: ð45Þ

Since the two actions SPL and the confining one have
separated variables, all the relations we have derived
so far, continue to hold for the total action. Notice that
the role of Sconfining is just to constrain the particles living in
Mð1; k − 1Þ to not escape from this space, they are
“confined.” We will show now that the total action has
more symmetries than ISOð1; k − 1Þ ⊗ ISOðDþ 1 − kÞ.
In fact, it is invariant under the Carroll algebra Ckð1þDÞ.
We have only to check the invariance under the boosts
which are given by [compare with Eq. (23)]

Ba
α ¼ −

XN
i¼1

xai piα: ð46Þ

A boost with parameters vαa will generate the transformation

δxαi ¼
�X

bβ

vβbB
b
β; x

α
i

�
¼ vαaxai ð47Þ

and

δxai ¼ 0; ð48Þ

where we have used the Poisson brackets

FIG. 2. The two types of pointlike systems considered in the
text. In the left panel, the Carroll type. In the right panel, the
Galilei type. The lines are a sketch of the world lines of particles
living in the Mð1; k − 1Þ Minkowski subspace (left panel) and of
the world lines of the instantons living in the Euclidean subspace
EðDþ 1 − kÞ (right panel).
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fxαi ; pβjg ¼ δαβδij: ð49Þ

Let us now evaluate the variation of the action S under a
Carroll boost. We have

δS¼
Z

dτ
XN
i¼1

ðpiαvαa _xai þqiαvαaxai þδλia _xai þδμiaðxai − x̄aÞÞ:

ð50Þ

This variation vanishes if

δλia ¼ −piαvαa; δμia ¼ −qiαvαa: ð51Þ

Notice that from Eq. (37), due to the translational invariance
of SPL, it follows

XN
i¼1

δμia ¼ −
XN
i¼1

qiαvαa ¼ 0; ð52Þ

implying that also thevariation of the term proportional to x̄a

is zero.
Therefore, the variations of the Lagrange multipliers λia

and μia are consistent with the translational invariance of the
confining action, as it follows from (39). This is not
accidental: the boost invariance of S and the translation
invariance of SPL and Sconfining are strictly related. In fact,
since from Noether’s theorem follows that continuous
symmetries imply constants of motion, we see that if boosts
and translational invariance in EðDþ 1 − kÞ are satisfied,
then SPL must be translational invariant, as it follows from
the commutation relations

½Bαa; Pb� ¼ iηabPα; ð53Þ

and the fact that the commutator of two constants of motion
is a constant of motion.
We can check directly that the boosts are conserved

quantities using the equations of motion (44), (36) and (34)

d
dτ

Bαa¼−
XN
i¼1

_xai piα−
XN
i¼1

xai _piα ¼−
XN
i¼1

x̄aqiα ¼ 0: ð54Þ

Our Sconfining action leads to the following primary con-
straints

ϕia ¼ pia − λia ¼ 0; πλia ¼ 0 ð55Þ

and πμia ¼ 0., since the action does not contain the time
derivatives of the Lagrange multipliers. Of course, other
constraints could arise from SPL The first constraint is
consistent with the variation of the Lagrange multipliers
under a boost. In fact,

δpia ¼ −
�XN

j¼1

vβbx
b
jpjβ; pia

�
¼ −vαapiα ¼ δλia: ð56Þ

The constraints (55) are second class, in fact

fϕia; πλjb
g ¼ −δijδba: ð57Þ

Therefore, introducing Dirac brackets, f:; :g�, the Lagrange
multipliers λia and the momenta pia can be identified, since
for any dynamical variable, A, we have

fλia; Ag� ¼ fpia; Ag�: ð58Þ

To evaluate the canonical Lagrangian in the reduced phase
space, where we have eliminated λia, we first notice that the
terms λia _xai do not contribute to the Hamiltonian, being
homogeneous of first degree in the time derivative.
Therefore,

L ¼
XN
i¼1

ðpiα _xαi þ pia _xai þ μiaðxai − x̄aÞÞ −HPL; ð59Þ

where HPL is the Hamiltonian evaluated from LPL. If the
Lagrangian implies some constraints as in the case of gauge
invariance, e.g., invariance under diffeomorphisms, one
needs to use the Dirac Hamiltonian. This action is boost
invariant under the transformations

δxαi ¼ vαaxai ; δxai ¼ 0; δpia¼−vαapiα; δpiα ¼ 0;

ð60Þ

with

δμia ¼ vαa
∂HPL

∂xαi : ð61Þ

The Galilei case, dual to the previous one, can be discussed
exactly along the same lines. This time the action for the
pointlike particles is defined in the Euclidean space dual to
the Minkowski space of the Carroll case:

SPL ¼
Z

dτLð_xai ; xai Þ; xai ∈ EðDþ 1 − kÞ ð62Þ

and the confining term defined in Mð1; k − 1Þ

Sconfining ¼
Z

dτ
XN
i¼1

ðλiα _xαi þ μiαðxαi − x̄αÞÞ; ð63Þ

with
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x̄α ¼ 1

N

XN
i¼1

xαi : ð64Þ

Under boost we have the transformations

δxai ¼ vaαxαi ; δxαi ¼ 0; δpiα ¼−vaαpiα;

δpia¼ 0; δμiα ¼ vaα
∂HPL

∂xai ¼ 0: ð65Þ

We will call the Carroll and the Galilei cases dual one to
the other. A simple way to get this result, is to start with an
action Poincaré invariant in the total spaceMð1; DÞ, say ST
and define the actions in the two subspaces as

ðSPLÞCarroll ¼ ðSTÞjxa≡0; ðSPLÞGalilei ¼ ðSTÞjxα≡0:

ð66Þ

In other words, the pointlike actions for the two cases are
obtained by restricting the action ST to the two respective
subspaces.
Of course, this is a quite general way of proceeding in

order to get dual models. That is starting from an invariant
action in the total space and restricting it to the two
subspaces.

B. Continuous models

We would like to consider the dynamics of extended
objects embedded in a confined region of the spacetime.
We will show that the spacetime symmetries of these
models are precisely the ones deriving from the k-con-
tractions. Let us begin considering the Carroll type of
contractions [1,23,24,31].
An extended object (for instance a brane) is mathemati-

cally described bymappings of a manifold (world sheet) to a
target space. Let us start considering the target space as a flat
spacetime in Dþ 1 dimensions. Then, suppose to confine
the extended object in theMð1; k − 1ÞMinkowski subspace
of the spacetime. Assume that the world sheet is described
by the coordinates ðτ; σiÞ, with i ¼ 1; 2;…; m ≤ k − 1. We
will assume for this extended object an action invariant
under a a linear representation of ISOð1; k − 1Þ

SEO ¼
Z
V
dτ

Ym
i¼1

dσiLð_xα; xα;iÞ≡
Z
V
dτLEO; ð67Þ

with xα the coordinates of the target spaceMð1; k − 1Þ,V the
volume which defines the system and xα;i ¼ ∂xα=∂σi. Since
wewant to confine the extended object inside this space, we
will add to this action a term keeping into account this
condition

Sconfining ¼
Z
V
dτ

Ym
i¼1

dσi

�
λa _xa þ

Xm
j¼1

μjaxa;j

�

≡
Z

dτLconfining; ð68Þ

where xa are the coordinates of the Euclidean target space,
and the λ’s and the μ’s are Lagrange multipliers. The aim of
the confining term is to make vanish all the possible motions
or vibrations of the extended object that could end in the
space EðDþ 1 − kÞ.
The total action is given by

S ¼ SEO þ Sconfining ≡
Z
V
dτL: ð69Þ

The confining term is invariant under the Euclidean group
ISOðDþ 1 − kÞ, assuming that the all Lagrange multi-
pliers transform as vectors under the rotation group
SOðDþ 1 − kÞ. Let us define the following quantities

Pα ¼
δLEO

δ_xα
; Qi

α ¼
δLEO

δxα;i
; ð70Þ

where Pα is the momentum density. The equations of
motion are

∂Pα

∂τ þ ∂iQi
α ¼ 0; ð71Þ

from which we have that the total momentum,

P ¼
Z
V

Ym
i¼1

dσiPα; ð72Þ

is conserved if,

Qi
αjΣ¼∂V ¼ 0; ð73Þ

on the boundary of the volume V.
Let us now show that this action is invariant under the

boosts [see Eq. (23)] corresponding to a k-contraction of
the Carroll type:

δxα ¼ vαaxa; δxa ¼ 0: ð74Þ

Let us evaluate the variation of the total Lagrangian under
the previous transformations (the sum over the repeated
indices is understood)

δL¼
Z Ym

i¼1

dσiðPαδ_xαþQi
αδxα;iþδλa _xaþδμiaxa;iÞ;

¼
Z Ym

i¼1

dσiðPαvαa _xaþQi
αvαaxa;iþδλa _xaþδμiaxa;iÞ: ð75Þ
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Therefore, the action is invariant by assuming the following
transformation law for the Lagrange multiplier

δλa ¼ −Pαvαa; δμia ¼ −Qi
αvαa; ð76Þ

and in this way we have shown that this construction leads
automatically to models invariant under the Carroll type of
contracted groups considered in Sec. II. An analogous
procedure can be made for the Galilei type.
Other features of these models that can be discussed

before specifying SEO We have

Pa ¼
δLconfining

δ_xa
¼ λa: ð77Þ

Since in the action the time derivatives of the Lagrange
multipliers do not appear, it follows that the corresponding
momenta vanish:

πλa ¼
δS

δ_λa
¼ 0: ð78Þ

These and the previous ones are second-class constraints.
Introducing Dirac brackets, by definition we have

fPa; Ag� ¼ fλa; Ag�; ð79Þ

for any dynamical variable A. Therefore, in the reduced
phase space, the momenta Pa and the Lagrange multipliers
λa can be identified. Notice that the same boosts generating
the transformation (76) would generate the following
variations for the momenta:

δPa ¼ −vαaPα; δPα ¼ 0; ð80Þ

which is consistent with the variation of λa. The con-
struction of the action in the reduced phase space goes as in
the pointlike case.
Analogous models can be considered for the Galilei case.

In this circumstance, we would take an action describing an
extended object inside the Euclidean space EðDþ 1 − kÞ

SEO ¼
Z
V
dτ

Ym
i¼1

dσiLð_xa; xa;iÞ≡
Z

dτLEO; ð81Þ

with a confining term

Sconfining¼
Z
V
dτ

Ym
i¼1

dσi

�
λ0a _xαþ

Xm
j¼1

λjaxα;j

�
≡
Z

dτLconfining:

ð82Þ

Then, one can repeat the same considerations made in the
Carroll case. However, there is a very deep physical
difference between the two cases, since the Carroll models

are formulated in a Minkowski spacetime, whereas the
Galilei case is formulated in an Euclidean space. As a
consequence the Galilei case resembles the description of
an instanton. Notice that the Carroll case corresponding to a
k-contraction is dual to theDþ 1 − k-contraction of Galilei
type. However, when we use this duality to describe
extended objects there are some conditions to be respected.
In fact, we will assume that the dimensions of the world
sheet of the extended object, mþ 1, are smaller or equal to
the ones of the target space. Therefore, to have dual objects
we have to require mþ 1 ≤ k, in the Carroll case, and
mþ 1 ≤ Dþ 1 − k. Therefore, to have duality we need the
condition (see Fig. 3)

m ≤ minðk − 1; D − kÞ: ð83Þ

Also in the continuous case we can proceed as in the
pointlike one, that is starting from an invariant action
describing an extended object in Mð1; DÞ Minkowski
space. Then, the action for Carroll is obtained by restricting
this action to the space Mð1; k − 1Þ, that is by putting to
zero the variables xa. Analogously, in the Galilei case, one
takes the restriction to EðDþ k − 1Þ, that is by putting to
zero the variables xα. Of course, in order to get dual models,
the condition (83) must be satisfied.

V. EXAMPLES

In this section, we will start from the description of a
massive relativistic particle in the full spacetime Mð1; DÞ
described by the invariant Diff action

S ¼ −M
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ημν _xμ _xν

q
: ð84Þ

We will consider various examples. In particular, we will
study, in the case of 1-contraction of the Carroll type, a

FIG. 3. The shaded figures are a sketch of the extended objects
living in the Mð1; k − 1Þ Minkowski subspace (left panel) and of
the ones living in the Euclidean subspace EðDþ 1 − kÞ (right
panel). The variables ðτ; σ1;…; σmÞ describe the world sheet of
the extended objects. We assume m ≤ k − 1 in the Carroll case
and m ≤ D − k in the Galilei case.
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massive particle and its Galilei dual, obtaining the Carroll
particle studied in [23]. Its dual corresponds to the so called
Galileian massless particle [40,41]. Notice that, here,
massless refers to the fact that the corresponding represen-
tation of the Galilei algebra is with zero central charge. We
will consider also a relativistic massless particle described
by the action

S ¼
Z

dτ
1

2e
_xμ _xνημν: ð85Þ

A. The Carroll massive particle

We will consider the Carroll-type 1-contraction [1],
using the action (84). The Minkowski spacetime reduces
to a one-dimensional space described by the variable x0.
The total action is given by the restriction of (84) at this
space, plus the confining term

S ¼
Z

dτ
�
−M

ffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2

q
þ λ⃗ · _x⃗

�
≡

Z
dτL: ð86Þ

This action is invariant under diffeomorphisms in τ. The
momenta are given by

p⃗ ¼ ∂L
∂ _x⃗ ¼ λ⃗; p0 ¼ −M

_x0ffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2

p ¼ −Mϵð_x0Þ: ð87Þ

There is one first-class constraint

ϕ ¼ p2
0 −M2 ¼ 0; ð88Þ

and 2D second-class constraints

ϕi ¼ pi − λi ¼ 0; ψ i ¼ πλi ¼ 0; ð89Þ

with Poisson brackets

fϕi;ψ jg ¼ −δij: ð90Þ

Introducing Dirac brackets, one can eliminate the
Lagrange multipliers λ⃗ in favour of the momenta p⃗. The
action (86) is invariant under the Carroll boost transforma-
tions [see Eq. (23)] with parameters v⃗

δx0 ¼ v⃗ · x⃗; δλ⃗ ¼ −v⃗p0; δx⃗ ¼ 0: ð91Þ

In the reduced phase space, these transformations
become

δx0¼ v⃗ · x⃗; δx⃗¼ 0; δp0 ¼ 0; δp⃗¼−v⃗p0: ð92Þ

These transformations are generated by

B0a ¼ −xap0; ð93Þ

corresponding to the vector fields of Eq. (23). The action in
the reduced phase space is

S ¼
Z

dτ

�
p⃗ · _x⃗þ p0 _x0 −

e
2
ðp2

0 −M2Þ
�
: ð94Þ

This action is invariant under the boost transformations
given in (92) and coincides with the phase space action
studied in [23], where it has been obtained from the
relativistic action (84) in the limit of zero light-velocity.
From our point of view, the limit c → 0 is equivalent to
the Carroll 1-contraction of Eq. (19). Notice that the
physical description of this particle corresponds to a
massive particle in its rest-frame. In fact, from the variation
of λ⃗, we get _x⃗ ¼ 0.

B. The Galilei particle

The D-contracted Galilei case corresponds to the model
described in the literature as the Galileian massless particle
[40,41,43]. The action is obtained by the restriction of
the action (84) to the Euclidean space EðDÞ and adding the
confining part. Notice that in order to get a real action we
have changed the sign inside the square root and, for
convenience, also the sign in front of it. Therefore, the
action that we choose is

S¼
Z

dτ
�
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xa _xbηab

q
þλ_x0

�

¼
Z

dτ
�
M

ffiffiffiffiffi
_⃗x
2

q
þλ_x0

�
≡
Z

dτL; ηab ¼ δab: ð95Þ

This action is invariant under diffeomorphisms in τ;
therefore, the canonical Hamiltonian vanishes identically.
The momenta are given by

p⃗ ¼ ∂L
∂ _x⃗ ¼ M

_x⃗

j_x⃗j
; p0 ¼

∂L
∂ _x0 ¼ λ: ð96Þ

Therefore, there are three constraints,

ϕ¼ p⃗2−M2¼0; ϕ1¼p0−λ¼0; ϕ2¼πλ¼0; ð97Þ

since the time derivative of λ does not appear in the action.
We see that the first constraint is first-class, whereas the
other two are second-class. In fact, their Poisson bracket is
not zero

fϕ1;ϕ2g ¼ −1: ð98Þ

Therefore, introducing the Dirac brackets in the reduced
phase space, p0 and λ can be identified. This action is
invariant under the boost transformations of the Galilei type
generated by the Galilei boosts [see Eq. (28)], with
parameters va.
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Ba0 ¼ x0pa; ð99Þ

δx⃗ ¼ v⃗x0; δλ ¼ −v⃗ · p⃗: ð100Þ

In the reduced phase space, these transformations become

δx⃗ ¼ v⃗x0; δλ ¼ δp0 ¼ −v⃗ · p⃗; ð101Þ

and the action is given by

S ¼
Z

dτ

�
p⃗ · _x⃗þ p0 _x0 −

e
2
ðp⃗2 −M2Þ

�
: ð102Þ

This action coincides with the one studied in [40,41,43].
The particle described by this model can be seen as a
tachyon in the standard frame of its velocity, that is the
frame where _x0 ¼ 0, as it follows varying λ in the action.
The model can also be obtained by the contraction in
Eq. (20), in the limit ω → ∞ for a relativistic tachyon.
This is equivalent to consider the limit c → ∞.

Therefore, this particle exists at a single instant of time
at any point of space. Since this model can be also obtained
via Wick rotation on the action of a massive relativistic
particle, technically it describes an instanton. Notice also
that the condition _x0 ¼ 0 implies that the physical veloc-
ity dx⃗=dx0 → ∞.

C. A lightlike particle of the Galilei type

Let us consider the Poincaré group inDþ 1 dimensions.
If we introduce light cone variables, we can write the
generators as

P−; Pþ; Pa; M−þ ¼M01; Mab;

Bþa; B−a; a;b¼ 2;3;…;D; ð103Þ

where

P� ¼ 1

2
ðP0 � P1Þ; B�

a ¼ ðB0a � B1aÞ: ð104Þ

We can see that we have two subalgebras

G�∶ ðM01; P�;Mab; Pa; B�
a Þ: ð105Þ

These subalgebras have the property that leave invariant a
null direction nμ, explicitly Λμ

νnν ¼ λnμ. Gþ leaves invari-
ant the direction nμþ ¼ δμþ, whereas G− leaves invariant the
direction nμ− ¼ δμ−. In the case ofDþ 1 ¼ 4, these algebras
are known as ISimð2Þ�. They are symmetries of the very
special relativity [44] in place of the Poincaré group.

The relevant nonvanishing commutation relations are

½B�
a ; P�� ¼ −iPa; ½B�

a ;M01� ¼ �iB�
a ;

½M01; P�� ¼ �iP�: ð106Þ

In order to construct a a massless particle model, we
consider a Galilean invariant model, it is useful to consider
a k ¼ 2 contraction of the Poincaré group. Introducing the
light-cone coordinates

x� ¼ x0 � x1; ð107Þ

the generators of the contracted algebra in configuration
space (see Sec. III) are

M01 ¼ −iðxþ∂þ − x−∂−Þ; P� ¼ −i∂�;

B�
a ¼ −ix�∂a ¼ x�Pa; ∂� ¼ ∂

∂x� : ð108Þ

The transformation under the boosts B�
a are

δxa ¼ −va�x�; δx� ¼ 0: ð109Þ

In other words, the main feature of these contracted
algebras is that they leave invariant one of the two branches
of the light-cone, x� ¼ 0, respectively. Notice that the
generator M01 acts as a dilation operator on the light-cone
variables x�. It follows that it leaves invariant one of the
planes x� ¼ constant. This suggests considering a mass-
less particle in Minkowski space Mð1; DÞ given in (85)
in the light-cone coordinates. Following the lines for a
1-contraction of the Galilei type, we will consider two
possible actions for describing the particle in the EðD − 1Þ
Euclidean space

S� ¼
Z

dτ

�
1

2e

XD
a¼2

_x2a þ λ� _x�

�
: ð110Þ

These actions are invariant under the two subalgebras
separately. We can check the invariance under the boosts
B�
a . In fact, we have

δS� ¼
Z

dτð−pava� _x� þ δλ�x�Þ: ð111Þ

Therefore, S� is invariant assuming

δλ� ¼ pava�: ð112Þ

Let us notice that the two actions S� are invariant under
the transformations generated by M01. In fact, the corre-
sponding transformations of x� are

δx� ¼ ∓sx�; ð113Þ
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where s is the infinitesimal parameter. The invariance
follows assuming

δλ� ¼ �sλ�: ð114Þ

Also, this transformation is compatible with the identifi-
cation of λ� with p� as it follows from the commutation
relations given in Eqs. (106).
For simplicity let us now consider Sþ. The same

considerations will hold for S−. The canonical momenta
are, using light cone variables, we have the constraints

pþ ¼ λþ; p−¼ 0; p⃗2¼ 0→ p⃗¼ 0; πλþ ¼ 0: ð115Þ

We have Dþ 1 first class constraints and two second class
constraints, with 2ðDþ 2Þ degrees of freedom. Then, the
model is described by 2 d.o.f, pþ and its conjugated
coordinate.
The Dirac Hamiltonian is given by

HD ¼ e
2
p2
a þ μp−: ð116Þ

D. A lightlike particle of the Carroll type

We will consider now a lightlike particle within a 2-
contraction of theCarroll type. The action, in theMinkowski
part of the spacetime, will depend on the two variables x0

and x1.
We start with the massless action in Eq. (85) restricted to

the plane ðx0; x1Þ and we add the confining term:

S ¼
Z

dτ

	
1

2e
ðð_x0Þ2 − ð_x1Þ2Þ þ λa _xa



: ð117Þ

The canonical momenta are

p0 ¼
_x0

e
; p1 ¼ −

_x1

e
; pa ¼ λa; ð118Þ

from which we have the first class constraint

ϕ ¼ p2
0 − p2

1 ¼ 0 ð119Þ
and 2ðD − 1Þ second class constraints

ϕa ¼pa−λa; χa ¼ πλa ¼ 0; fϕa;χbg¼−δab: ð120Þ

As in the previous examples, in the reduced phase space
(after using the second class constraints), we can identify
pa with λa. We will assume the λa’s transforming like
vectors under the generators of SOðD − 1Þ. The model is
invariant under translations, and under the transformations
generated by M01, since this generates a Lorentz boost in
the direction D and it leaves invariant the quadratic form in
the action. Furthermore, we have invariance under the two
types of boosts B0a and B1a:

δB0a
x0 ¼ −v0axa; δB0a

λa ¼ p0v0a ð121Þ

and

δB1a
x1 ¼ −v1axa; δB1a

λa ¼ p1v1a: ð122Þ

The rest of the discussion goes as in the other examples. In
this case, the Carroll particle moves in the plane ðx0; x1Þ at
the speed of light.
In the case of the 2-contraction, we have reported only

the case of a massless particle. We could as well to start
with the action for a massive particle in Mð1; DÞ. In this
case, we would obtain for the Galilei particle the mass-shell
conditions

p2
0 − p2

1 ¼ 0;
X
a

p2
a ¼ M2; ð123Þ

that is a tachyon in Dþ 1 dimensions, whereas for the
Carroll case,

p2
0 − p2

1 ¼ M2; ð124Þ

with considerations completely analogous to the ones
discussed for the massless case.

E. A model of two particles

We start we considering the relativistic two- particle
model [45]

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðm2

10 − Vðr2ÞÞ_x12
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðm2

20 − Vðr2ÞÞ_x22
q

¼ −
X
j¼1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

jðr2Þ_xj2
q

; ð125Þ

where xjðτÞ, (j ¼ 1, 2) are the spacetime coordinates of the
two particles. Vðr2Þ is any Poincaré invariant function of
the squared relative distance r2 ¼ ðx2 − x1Þ2, mj0’s are the
rest masses of the particles and m2

jðr2Þ ¼ m2
j0 − Vðr2Þ are

the effective masses of the particles. The interaction breaks
the individual invariance under diffeomorphism (Diff)
of the action of two free particles, leaving a universal
Diff invariance. The momenta are given by

pi ¼ m2
i ðr2Þ

_xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

i ðr2Þ_xi2
p : ð126Þ

Following our procedure, the Carroll Lagrangian will be
given by

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðm2

10 − Vðr20ÞÞð_x01Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðm2

20 − Vðr20ÞÞð_x02Þ2
q

þ λ⃗1 · _x⃗1 þ λ⃗2 · _x⃗2 þ μ⃗ · r⃗; ð127Þ
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where r0 ¼ x01 − x02. Like in the k ¼ 1 Carroll particle, the
presence of the second class constraints allows to eliminate
the λj in terms of the momenta pj. In the reduced space, the
canonical action becomes

S ¼
Z

dτ

�X
j¼1;2

�
piμ _xiμ −

ei
2
ð−p2

0j þm2
jðr20ÞÞ − μ⃗ · r⃗

��
:

ð128Þ

The particles do not move, although the momenta of the
particles is not individually conserved. Notice that for these
Carroll particles the momenta are not related to the
velocities of the particles. This model is different from
the two particle model of [23] where the two mass shell
constraints depend on the total momenta of the particles.
The Galileian counterpart is given

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

10 − Vðr⃗2ÞÞ_x⃗12
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

20 − Vðr⃗2ÞÞ_x⃗22
q

þ λ1 _x01 þ μðx01 − x02Þ þ λ2 _x02: ð129Þ

Like in the k ¼ 1 Galilei particle, the presence of the
second class constraints allows to eliminate the λi in terms
of the momenta p0i. The action canonical in the reduced
space is

S ¼
Z

dτ

	X
i¼1;2

�
p0i _x0i þ p⃗i · x⃗i −

ei
2
ðp⃗i

2 −m2
jðr⃗2ÞÞ

− μðx01 − x02Þ:



ð130Þ

The two particles described by this model can be seen as
two tachyons in the standard frame of their velocity.

F. 2-contraction for a Carroll string

We recall the string action

Sstring ¼ −T
Z

dτ
Z

π

0

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X · X0Þ2 − ð _XÞ2ðX0Þ2

q
: ð131Þ

Following what we have done in Sec. IV B, we assume the
following action,

S ¼ Sstring þ
Z

dτ
Z

π

0

dσðλa _Xa þ μaX0aÞ; ð132Þ

where, in the string action, Xα ¼ ðX0; X1Þ, whereas
a ¼ 2; 3;…; D. We get for the string Lagrangian density
Lstring

Lstring ¼ −T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X0X10 − X00 _X1Þ2

q
: ð133Þ

The component of the canonical momentum are given by

P0 ¼ −T
ð _X0X10 − X00 _X1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X0X10 − X00 _X1Þ2

q X10 ; ð134Þ

P1 ¼ T
ð _X0X10 − X00 _X1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X0X10 − X00 _X1Þ2

q X00 : ð135Þ

We get the primary constraints

PαXα0 ¼ 0; P2 þ T2X02 ¼ 0: ð136Þ

Let us evaluate the quantities Qσ
α ¼ ∂L=∂X0α

Qσ
0 ¼ T

ð _X0X10 − X00 _X1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X0X10 − X00 _X1Þ2

q _X1; ð137Þ

Qσ
1 ¼ −T

ð _X0X10 − X00 _X1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X0X10 − X00 _X1Þ2

q _X0: ð138Þ

The canonical action in the reduced space is given by

S ¼
Z

dτdσ

�
P1μ

_Xμ
1 þ P2μ

_Xμ
2 −

e
2
ðPαPα þ T2X02Þ

− μðPαX0αÞ − μaX0a
�
: ð139Þ

This model is different from the Carroll string of [31].
Choosing the gauge conditions

X0 ¼ τ; X1 ¼ σ; ð140Þ

we have

P0¼−T; P1¼ 0; Qσ
0 ¼ 0; Qσ

1 ¼−T; ð141Þ

and for the velocities

_X0 ¼ 1; _X1 ¼ 0: ð142Þ

These equations show that the string is at rest and, having
fixed end points, it satisfies the Dirichlet boundary con-
ditions. The total momentum is conserved

Pα ¼
Z

π

0

dσPα; E ¼ P0 ¼ πT; P1 ¼ 0: ð143Þ

Therefore, in the case of a 2-contraction of the Carroll type,
the string is the equivalent of the Carroll particle, that is the
case of 1-contraction. For the considerations about the
invariance under the boosts, one can repeat the general
considerations made in Sec. IV B.
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced a general method to
construct models with invariant Lagrangians under gener-
alized Carroll or Galilei algebras (in the text called
k-contractions). The method consists in starting from a
spacetime in Dþ 1 dimensions and partitioning it in two
parts, the first Minkowskian and the second Euclidean.
Then, a Carroll invariant model can be obtained by
introducing a Minkowski invariant action in the first part
of the spacetime, whereas in the second part a system of
Lagrange multipliers, transforming in an appropriate way
under the Euclidean group is introduced. This system is
such that it compensates for the variations, induced by the
Carroll boosts, of the action previously defined. The same
procedure is done for the Galilei case, this time using a
Lagrangian defined in the Euclidean sector and enlarging it
with a system of Lagrange multipliers living in the first part
of the spacetime. The main difference between Carroll and
Galileian models constructed in this way, is that in the first
case we have a real dynamical system, since the time
coordinates are in the action, whereas in the second case the
time variables appear only in the confined part, meaning
that one is describing an instantonlike object.
This procedure could be generalized as follows: start

with a target space (in the text the original spacetime),
partitioned in two parts. Then, suppose that the target space
supports a natural representation of some group G (in
the text the realization in terms of vector fields on the
spacetime). Assume that the two sectors support natural
representations of two groups GI and GII, which are both

subgroups of G. Eventually assume that the Lie algebra of
G can be decomposed as follows:

Lie G ¼ LieGI ⊕ LieGII ⊕ I; ð144Þ
where I are a set of intertwining generators mapping LieGI
into LieGII or viceversa. Then, dynamical models describ-
ing systems, living in the target space, can be constructed
following what we have done in the text. All these models
would exhibit the confinement in one of the two sectors of
the target space.
One could think to various possible extensions. For

instance, one could describe a dynamical model with a
generalized Galilei invariance, starting with a spacetimewith
two times, Mð2; D − 1Þ. Or else, starting from a Euclidean
space EðDþ 1Þ, one could consider statistical systems
confined to dimensions lower that Dþ 1, but exhibiting a
bigger symmetry. This approach could also be useful in
theorieswith extra dimensions.Wehope to be able to consider
in the future some of these extensions in greater detail.
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