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If the space of minima of the effective potential of a weakly coupled 2d quantum field theory is not
connected, then a mass-gap will be nonperturbatively generated. As examples, we consider two σ models
compactified on a small circle with twisted boundary conditions. In the compactified CP1 model, the
vacuum manifold consists of two points and the mass-gap is nonperturbative. In the case of the
compactified SU(2) principal chiral model, the vacuum manifold is a single circle and the mass-gap is
perturbative.
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The similarity between the topological structure of
fractional instantons in the two-dimensional CP1 sigma
model and in Yang-Mills theory has long led to spec-
ulations that they play (distinct) roles in the generation of
the mass-gaps of both theories [1]. Intriguingly, a similar
half-charged excitation appears to cause the mass-gap in
the SU(2) principal chiral model (PCM), where the
Euclidean theory has no topologically stable solutions.
More precisely, the mass-gap has been found analytically
[2] and on the lattice [3] to be proportional to the strong-
coupling scale which is the exponential of half of the action
of the uniton saddle point found in Ref. [4]. Recently, in
two remarkable papers [5,6], the authors have proposed a
new window on this puzzle. They claim that a weakly
coupled circle compactification of the PCM with certain
boundary conditions is adiabatically connected to the
original model (see also Ref. [7]).
Needless to say, if crossed, the adiabatic bridge con-

structed by the authors may allow the mass-gap of the PCM
to be understood and perhaps to shed light on confinement
in Yang-Mills. As a first step in this direction, in the current
paper, we will attempt to understand the weakly coupled
(small circle) side of this bridge. We find several surprises
with respect to its expected properties. We apply the same
analysis to the CP1 model, whose adiabatic compactifica-
tion was introduced in Refs. [8,9]. The Hamiltonian that we
find for the resulting quantum mechanics is similar to but

distinct from that found in Ref. [8]. This Hamiltonian
provides a starting point for future investigations of a
nonperturbative nature of the adiabatically compactified
CP1 model.
The SU(2) principal chiral model is a σ model whose

target space is the group manifold SU(2). Let U be the
SU(2)-valued field. Consider the σ model compactified on
a circle of circumference L with the adiabatic twisted
boundary conditions of Refs. [5,6]:

U

�
L
2

�
¼ σ3U

�
−
L
2

�
σ3; ð1Þ

where σ3 is the third Pauli matrix and the time dependence
is implicit. This boundary condition is easily visualized
using the Hopf coordinates

U ¼
�

z1 iz2
iz2 z1

�
; z1 ¼ cosðθÞeiϕ1

z2 ¼ sinðθÞeiϕ2 ; θ ∈ ½0; π=2�; ϕi ∈ ½0; 2π�;

where it is just

ϕ2

�
L
2

�
¼ ϕ2

�
−
L
2

�
þ π: ð2Þ

The boundary condition is trivial when U commutes with
σ3, corresponding to the circle

U ¼ exp ðiϕ1σ3Þ ð3Þ
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or equivalently to the circle ðθ;ϕ1Þ ¼ ð0;ϕ1Þ, where the ϕ2

circle degenerates.
As described in Ref. [6], the twisted boundary conditions

increase the energy of a configuration away from these
fixed points, and so lead to a potential for θ. Classically, this
potential vanishes precisely at the fixed point set of the
symmetry ϕ2 → ϕ2 þ π, and so the circle (3) is the classical
vacuum manifold of this theory. It is connected.
What about the minima of the effective potential,

obtained by integrating out the oscillations transverse
to this vacuum manifold? In principle, ϕ1-dependent
masses for these transverse oscillations could lead to a
ϕ1-dependent effective potential. This new potential could
lift part of the circle, leaving a space of minima which is no
longer connected. However, in the case at hand, both the
action and the boundary condition are invariant under shifts
ϕ1 → ϕ1 þ c. As we are in two dimensions, spontaneous
symmetry breaking is forbidden [10] and so this symmetry
is also respected by the effective action. Therefore, the
minima of the effective potential will have the same
symmetry. In the weakly coupled limit, the minima of
the effective potential must be a nontrivial subset of the
classical vacuum manifold, but the only such subset
preserving the shift symmetry is the entire circle.
Therefore, the space of minima of the effective action is
a circle, which is connected, and so it does not satisfy the
criterion describing the abstract for a nonperturbative
mass-gap.
This is not to exclude nonperturbative contributions to

the mass-gap. Indeed, such contributions are expected.
However, as the space of minima is compact, we expect
perturbative contributions to the mass-gap. As this theory is
weakly coupled, the perturbative contributions will be far
larger than the nonperturbative contributions, and so we say
that the mass-gap is perturbatively generated. Below we
will calculate these perturbative contributions explicitly and
see that they are nonvanishing.
In Ref. [6], the authors use the Hopf coordinates with the

fundamental domain θ ∈ ½0; π�, ϕ1 ∈ ½0; π�, ϕ2 ∈ ½0; 2π�. In
these coordinates, the boundary condition is still given by
Eq. (2). However, now the fixed point set is sinðθÞ ¼ 0,
where ϕ2 degenerates. In terms of θ and ϕ1, this consists of
two intervals ðθ ¼ 0;ϕ1 ∈ ½0; π�Þ and ðθ ¼ π;ϕ1 ∈ ½0; π�Þ.
It was claimed that there are two near degenerate vacua
which are supported on these two intervals with even and
odd parity under the symmetry θ ↦ π − θ. However, the
points ðθ;ϕ1Þ ¼ ð0; πÞ and ðθ;ϕ1Þ ¼ ðπ; 0Þ both corre-
spond to the same point ðz1; z2Þ ¼ ð−1; 0Þ, while both
ðθ;ϕÞ ¼ ð0; 0Þ and ðθ;ϕ1Þ ¼ ðπ; πÞ correspond to the same
point ðz1; z2Þ ¼ ð1; 0Þ; therefore, these two intervals are
connected at their end points. The union of these two
intervals is a circle; indeed it is just the vacuum manifold
found using the fundamental domain in Eq. (2). The
excitations of fields on this circle correspond to the states
of a particle in a periodic box. In particular, a state which is

odd under θ ↦ π − θ, or equivalently ϕ1 ↦ ϕ1 þ π, will
correspond to an odd excitation of the particle in a box,
while the ground state is an even function. This splitting is
perturbative, and in fact requires no deep excursions into
the classically forbidden zone in which sinðθÞ > 0.
As was shown in Ref. [6], at small L this theory is

weakly coupled and the probability for the particle to
venture far from the fixed point is exponentially sup-
pressed. The interactions correspond to the curvature of
the geometry and so the weak-coupling limit corresponds to
a flattened neighborhood of the fixed circle. More pre-
cisely, in the small L limit the target space becomes C × S1,
where z2 is a coordinate of the C and ϕ1 is a coordinate of
the S1. The C and S1 sectors are decoupled from each other
at weak coupling. The twisted boundary conditions only
affect the C, where they yield z2ðL=2Þ ¼ −z2ð−L=2Þ.
Expanding z2 ¼ y1 þ iy2, the boundary condition

becomes yiðL=2Þ ¼ −yið−L=2Þ. From the action

S ¼ 1

2g2

Z
dxdtTrð∂μU†∂μUÞ

¼ 1

g2

Z
dxdt

�
∂μϕ1∂μϕ1 þ

X
i

∂μyi∂μyi

�
; ð4Þ

one can find the canonical momenta

π ¼ 2

g2
∂tϕ1; Πi ¼

2

g2
∂tyi: ð5Þ

The quantization of ϕ1 is just that of a particle in a periodic
box. Suppressing time dependence, ϕ1 can be Fourier
expanded on the compactified circle x:

ϕ1 ¼ ϕð0Þ
1 þ

X
n≠0

1ffiffiffiffiffiffiffiffiffiffiffi
2 2π

L n
q ðan þ a†−nÞei2πxL n

π ¼ πð0Þ −
2i
g2

X
n≠0

ffiffiffiffiffiffiffiffi
2πn
2L

r
ðan − a†−nÞei2πxL n: ð6Þ

Imposing ½ϕ1ðx1Þ; πðx2Þ� ¼ iδðx1 − x2Þ yields the commu-
tation relations

½ϕð0Þ
1 ; πð0Þ� ¼ i

L
; ½am; a†n� ¼

g2

2L
δmn: ð7Þ

Normal ordering the Legendre transform, one obtains the
Hamiltonian

H ¼ g2L
4

πð0Þπð0Þ þ 4π

g2
X
n≠0

jnja†nan: ð8Þ

Let the vacuum state be annihilated by both an and πð0Þ.
Then there will be two families of rising operators which

create excited states. First, einϕ
ð0Þ
1 is well defined for n an
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integer as ϕ1 is 2π-periodic. These are the excited oscillator
states of Ref. [6] and, in agreement with Eq. (5.18), their
energy is

½H; einϕ
ð0Þ
1 � ¼ Eneinϕ

ð0Þ
1 ; En ¼

g2n2

4L
; ð9Þ

which is the perturbative result that one expects for a
particle in a box. Note that the lowest level state which is
odd under ϕ1 ↦ ϕ1 þ π is the state n ¼ 1, yielding a mass-
gap of g2=4L. This is our main result: the mass-gap is
perturbative.
The Kaluza-Klein (KK) modes also yield excited states,

created by a†n. Their energy is given by

½H; a†n� ¼ E0
na

†
n; E0

n ¼ 2π
n
L
: ð10Þ

Note that E0 is g independent, unlike E, and so in the small
g or equivalently the small L limit, these KK modes are
much heavier than the particle in a box excitations.
The antiperiodic boundary conditions on the fields yi

yield the Fourier decomposition

yi ¼
X
n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2π

L ðnþ 1
2
Þ

q �
bi;nþ1

2
þ b†

i;−n−1
2

�
ei

2πx
L ðnþ1

2
Þ

Πi ¼ −
2i
g2

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

2L

�
nþ 1

2

�s �
bi;nþ1

2
− b†

i;−n−1
2

�
ei

2πx
L ðnþ1

2
Þ:

ð11Þ

Again the commutation relations of the quantum mechani-
cal modes follow from those of the quantum fields:

½yiðx1Þ;Πjðx2Þ� ¼ iδijδðx1 − x2Þ

½bi;mþ1
2
; b†

j;nþ1
2

� ¼ δijδmn
g2

2L
: ð12Þ

One then finds the Hamiltonian as above:

H ¼
Z

dx
X
i

�
g2

4
∶ΠiΠi∶þ

1

g2
∶∂xyi∂xyi∶

�

¼ 4π

g2
X
i;n

����nþ 1

2

����b†i;nþ1
2

bi;nþ1
2
: ð13Þ

Excited states are created with b†
i;nþ1

2

, each of which

increases the energy by Ēn:

½H; b†
i;nþ1

2

� ¼ Enb
†
i;nþ1

2

; En ¼
4π

L

�
nþ 1

2

�
: ð14Þ

Now we turn to the CP1 model. Note that the yi alone
also describe the weak-coupling limit of the CP1 sigma

model with antiperiodic boundary conditions introduced in
Refs. [8,9]. As CP1 is S2 and SU(2) is an S3, one can pass
from one model to the other via the Hopf projection
S3 → S2, which identifies ðϕ1;ϕ2Þ ∼ ðϕ1 þ α;ϕ2 þ αÞ.
The invariant angle ϕ ¼ ϕ1 − ϕ2 is the azimuthal coor-
dinate of the S2 and as such it degenerates at the poles
θ ¼ 0 and θ ¼ π=2. The twisted boundary conditions are
ϕðL=2Þ ¼ ϕð−L=2Þ þ π and so are trivial at the two poles,
which are the classical vacua of the theory. At weak
coupling or more precisely small L, each of these classical
vacua is described by the yi theory described above.
We can describe these two weak-coupling vacua explic-

itly by decomposing the field yi into KKmodes, the degrees
of freedom in the corresponding quantum mechanics,

yi ¼
X
n

yi;nþ1
2
ei

2πx
L ðnþ1

2
Þ

Πi ¼
X
n

Πi;nþ1
2
ei

2πx
L ðnþ1

2
Þ; ð15Þ

whose commutation relations yield a simple Schrödinger
representation:

½yi;mþ1
2
;Πj;nþ1

2
� ¼ δijδm;−n

i
L

Πi;nþ1
2
¼ −

i
L

∂
∂y−n−1

2

: ð16Þ

The vacuum must be annihilated by all of the b’s,

0 ¼ bi;nþ1
2
j0i

∝
�
2πg2

�
nþ 1

2

�
yi;nþ1

2
þ ∂
∂yi;−n−1

2

�
j0i; ð17Þ

and so it is proportional to

ψ ¼ exp

�
−
2π

g2
X
i;n

����nþ 1

2

����jyi;nþ1
2
j2
�
; ð18Þ

wherewe have used yi;nþ1
2
¼ y�

i;−n−1
2

, which is a consequence

of the reality of yi. Equation (18) may be interpreted as a
wave function of an infinite-dimensional quantum mechan-
ics or equivalently [11,12] as the Schrödinger wave func-
tional of the compactified quantum field theory. One may
observe that, as expected from a product of harmonic
oscillators, states are exponentially confined to the classical
vacuumwith higher KKmodes nmore strongly confined. In
general the distance that statesmaywander from the vacuum
is of order g.
The lightest modes are n ¼ −1 and n ¼ 0, which are

related by complex conjugation. Although this free trun-
cation experiences corrections (to the exponential) of order
unity far from the vacuum, one may crudely estimate the
overlap of the two vacua by inserting y ∼ π=2 to conclude
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that indeed the overlap is of order expð−c=g2Þ for some c,
as expected from a (fractional) instanton effect.
The generalization to a nonlinear sigma model with

target space metric gij is straightforward. In this case,

Πi ¼
2

g2
gij∂tyj

H ¼
X
i;j

�
g2

4
∶gijΠiΠj∶þ

1

g2
∶gij∂xyi∂xyj∶

�
; ð19Þ

where gij is the inverse metric. In the case of a CP1 model,
we identify y1 þ iy2 with the affine coordinates for CP1.
Now one classical vacuum is at the origin while the other
lies at infinity. As the CP1 is a unit sphere, in affine
coordinates the metric is given by four times the Fubini
study metric:

gij ¼
4δij

ð1þ y21 þ y22Þ2
: ð20Þ

Let us now truncate our theory down to the four lowest
KK modes, corresponding to jnþ 1=2j ¼ 1=2. Note that
this truncation explicitly violates the y1 þ iy2 → 1=ðy1 þ
iy2Þ symmetry which exchanges the vacua. Now our two
quantum fields reduce to four-dimensional quantum
mechanics via the decomposition

yi ¼
ffiffiffiffiffiffi
L
2π

r ��
bi;−1

2
þb†

i;1
2

�
e−i

π
Lxþ

�
bi;1

2
þb†

i;−1
2

�
ei

π
Lx

�
: ð21Þ

This four-dimensional theory is invariant under rotations of
ϕ or equivalently y1 þ iy2. The low lying states will be

rotation invariant and these are already sufficient to study
the instantons. Therefore, we will fix the rotational freedom
by setting b1;1=2 ¼ −b1;−1=2 so that y1 is imaginary and
equal to

y1 ¼ −2i
ffiffiffiffiffiffi
L
2π

r �
b1;1

2
− b†

1;1
2

�
sin

�
π

L
x

�
: ð22Þ

Physically, this means that the state reaches its maximal
extent in y1 at jxj ¼ L=2. By combining a rotation with a
shift in x we can also impose the condition b2;1=2 ¼ b2;−1=2
so that y2;1=2 is real. This corresponds to an orbit in which
y1 and y2 are the principle axes, with y2 extremized at x ¼ 0
and vanishing at the boundaries. We are left with a two-
dimensional quantum mechanics in which the field y2 has
been decomposed as

y2 ¼ 2

ffiffiffiffiffiffi
L
2π

r �
b2;1

2
þ b†

2;1
2

�
cos

�
π

L
x

�
: ð23Þ

Now that the mode numbers are all equal to 1=2, they will
be omitted. The conjugate momenta may be decomposed:

Πi ¼
2

g2

ffiffiffiffiffiffi
2π

L

r

×

�
gi1ðb1þb†1Þ sin

�
π

L
x

�
− igi2ðb2−b†2Þcos

�
π

L
x

��
:

ð24Þ

Putting everything together, we obtain the Hamiltonian

H ¼ 8π

g2L

½ðb1 þ b†1Þ2 þ ðb2 þ b†2Þ2�sin2ðπL xÞ − ½ðb1 − b†1Þ2 þ ðb2 − b†2Þ2�cos2ðπL xÞ
ð1þ 4 L

2π ½−ðb1 − b†1Þ2sin2ðπL xÞ þ ðb2 þ b†2Þ2cos2ðπL xÞ�Þ2
;

H ¼
Z

L=2

x¼−L=2
dxH ¼ 4π

L
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ b22þÞð1þ b21−Þ
q �

b21þ þ b22þ
1þ b21−

þ b21− þ b22−
1þ b22þ

�
; ð25Þ

where we have defined

biþ ¼
ffiffiffiffi
L

p

g
ðbi þ b†i Þ; bi− ¼ −i

ffiffiffiffi
L

p

g
ðbi − b†i Þ: ð26Þ

Note that (25) has a simple interpretation as a Hamiltonian
for two-dimensional quantum mechanics with coordinates
b1− and b2þ and momenta −b1þ and b2−. The isolated
vacua are at b1− ¼ b2þ ¼ 0 and b1− ¼ b2þ ¼ ∞. Using
this truncated Hamiltonian, one may calculate the instanton
contributions to the wave function and energies.

Unfortunately ½biþ; bj−� ¼ iδij only near the vacuum at
the origin y ¼ 0 and so in general these positions and
momenta are not quite canonically conjugate. This is a
result of the metric in the expression for Πi in Eq. (20),
which differs from the identity matrix away from the origin.
In general the dynamics of this theory is quite compli-

cated. The mode expansion truncation does not commute
with the QFT Hamiltonian, although the difference is
subleading in g, and so the dynamics of the truncated
QM and the original QFT are generally inequivalent. One
exception is the trajectories b1− ¼ b2þ, representing maps
where the latitude is independent of x. Such trajectories
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interpolate between the vacua at infinity and zero. The
half-charged instanton is of this form in the Euclidean
theory.
Beyond the leading order interactions, the Hamiltonian

(25) differs from that found in Refs. [5,6,8,9]. Note that
Eq. (3.17) of Ref. [8] is not consistent with the condition
that the field be restricted to the CP1, since the field ñ in
that equation is not in general a unit vector. This can be
corrected by adding a constraint by hand to the Lagrangian
[13], or by introducing a Lagrange multiplier [14] or Dirac
constraints [15]. More importantly, as is explained under
Eq. (4.20) of [8], in the reduction to quantum mechanics
it is assumed that the latitude θ is constant. This implies
that fixed time slices are circles of parallel in CP1, not

geodesics, and so in general not the lowest energy curves
with given boundaries. In other words, they only consider
configurations with b1− ¼ b2þ, yielding a one-dimensional
slice of the quantum mechanical system which includes the
half-instantons of interest but not the lowest energy
perturbative excitations.
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