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We calculate the divergent part of the one-loop effective action in curved spacetime for a particular class
of second-order vector field operators with a degenerate principal part. The principal symbol of these
operators has the structure of a longitudinal projector. In this case, standard heat-kernel techniques are not
directly applicable. We present a method which reduces the problem to a nondegenerate scalar operator for
which standard heat-kernel techniques are available. Interestingly, this method leads to the identification of
an effective metric structure in the longitudinal sector. The one-loop divergences are compactly expressed
in terms of invariants constructed from this metric.
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I. INTRODUCTION

Perturbative calculations in quantum field theory, espe-
cially in curved spacetime, are efficiently performed by a
combination of the background field method and the heat-
kernel technique [1–13]. Major advantages are manifest
covariance in each step of the calculation as well as
universality in the sense that the formalism can be applied
to fields of arbitrary spin and internal bundle structure. For
the minimal second-order operator, a closed algorithm for
the calculation of the one-loop divergences, proposed by
DeWitt, is available [1]. For more general nonminimal and
higher-order operators a generalization of DeWitt’s algo-
rithm was developed by Barvinksy and Vilkovisky [9]. The
main idea of the generalized Schwinger-DeWitt technique
is to reduce the calculation of more complicated operators
to the known case of the minimal second-order operator by
an iterative procedure which is based on the expansion of
the Greens function around the principal part of the
operator. However, in the case where the principal part
is degenerate, direct application of the generalized
Schwinger-DeWitt method fails [9,14,15]. In gauge theo-
ries, not only the principal part of the associated fluctuation
operator is degenerate; the gauge symmetry implies that the
total operator is degenerate. The gauge degeneracy can be
removed by a proper gauge fixing which, in general, not
only removes the degeneracy of the total operator but at the

same time removes the degeneracy of the principal part. In
particular, in many cases the gauge freedom is sufficient to
choose a particular simple, minimal gauge. In these cases,
the generalized Schwinger-DeWitt technique becomes
applicable again.
There are, however, many interesting models—gauge as

well as nongauge theories—which lead to fluctuation
operators for which the degeneracy of the principal part
cannot be removed. This happens, for example, in softly
broken gauge theories where no gauge fixing is available
and in higher-derivative theories, where only some
of the degrees of freedom (d.o.f.) are propagating with
higher derivatives. Particularly relevant models where
this is the case are fðRÞ gravity and the generalized
Proca field in curved spacetime, which both provide the
basis of many important cosmological applications. The
renormalization structure of these models and their one-
loop divergences on an arbitrary background were inves-
tigated in Refs. [14,15].
For the explicit calculation of the one-loop divergences,

various methods were developed to overcome the difficul-
ties associated with the degenerate principal part. The
degeneracy of the principal part is inextricably linked with
its nonminimal derivative structure. The simplest class of
operators with nonminimal principal part are vector field
operators. A systematic classification of vector field oper-
ators according to their degeneracy structure has been
developed in Ref. [15]. The present article completes this
classification by adding a class of vector field operators
with nonminimal principal part without a Laplacian. Vector
field theories which lead to such a fluctuation operator
feature nonwavelike equations of motion; see Ref. [16] for
a discussion of these operators in the context of the heat
kernel. The heat-kernel technique for more “exotic” oper-
ators has also been studied previously in Ref. [17].
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In this article, we derive the divergent part of the one-
loop effective action for the longitudinal vector field
operator in a closed form. A particularly interesting feature
is that the result is compactly represented in terms of
geometrical invariants constructed from an additional
metric structure which emerges naturally from the potential
part of the vector field operator.
The paper is structured as follows: In Sec. II, we

introduce the class of degenerate vector field operators
considered in this article. In Sec. III the one-loop diver-
gences are calculated in a closed form. In Sec. IV, we check
our result by an alternative method of calculation for a
special case. We conclude in Sec. Vand give a brief outline
of future generalizations of the obtained results.

II. THE LONGITUDINAL VECTOR FIELD
OPERATOR

The class of degenerate vector field operators considered
in this article arise, for example, from the following
Euclidean action functional for a vector field Aμ:

S½A� ¼ 1

2

Z
M

d4xg1=2½ð∇μAμÞ2 þMμνAμAν�: ð1Þ

Here, ∇μ is the torsion-free covariant derivative compatible
with the spacetime metric gμν on the d ¼ 4 dimensional
manifold M. If not otherwise indicated, derivatives ∇μ

always act on everything to their right. The generalized
mass tensor Mμν is assumed to be symmetric and positive
definite. The Hessian Hμνð∇Þ of Eq. (1) defines a second-
order differential operator,

Hμνð∇xÞδðx; yÞ ¼ δ2S½A�
δAμðxÞδAνðyÞ

¼ g1=2ð−∇x
μ∇x

ν þMμνÞδðx; yÞ: ð2Þ

The superscripts, which we will suppress in what follows,
indicate that the covariant derivatives act at the point x. The
delta function is assumed to be a scalar density of zero
weight in its first argument and of unit weight at its second
argument. The natural metric on the space of vector fields is
given by

γμν ≔ g1=2gμν: ð3Þ

Note that γμν includes the density factor g1=2. It defines the
inner product on the space of vector fields:

hA; Ai1 ≔
Z
M

d4x γμνAμAν: ð4Þ

We define the fluctuation operator with natural index
positions as

Fμ
νð∇Þ ≔ ðγ−1ÞμρHρνð∇Þ ¼ −∇μ∇ν þMμ

ν; ð5Þ

where ðγ−1Þμν ¼ g−1=2gμν is the reciprocal of γμν and
Mμ

ν ¼ gμρMρν. The linear operator F naturally acts as
the matrix Fμ

ν on the space of vectors Aμ. We denote such
linear operators in boldface and only resort to the explicit
components Fμ

ν if necessary. In this compact notation, the
vector operator (5) reads

Fð∇Þ ¼ ∇†∇þM; ð6Þ

with ∇† being the adjoint of ∇ with respect to the inner
product (4). The operator (5) has a degenerate principal part

Dð∇Þ ≔ ∇†∇: ð7Þ

The associated principal symbol, obtained by the formal
replacement ∇ → in with a constant vector n, has the
structure of a projector Πk ¼ n†n=n2 onto the longitudinal
mode of Aμ and n2 ≔ nμnμ:

DðnÞ ¼ n2Πk; detDðnÞ ¼ 0: ð8Þ

In other words, the operator (6) has zero eigenvalue
eigenvectors, and the associated Greens function cannot
be obtained as a perturbative expansion in M,

1
DþM

¼ 1
D
−

1
D
M

1
D
þ � � � : ð9Þ

The particular type of degenerate vector operator (6) where
the principal symbol has the structure of a longitudinal
projector (8) has not been included in the classification
scheme of Ref. [15] and is discussed in what follows.

III. ONE-LOOP DIVERGENCES

The divergent part of the one-loop effective action for the
operator (6) is obtained from

Γdiv
1 ¼ 1

2
Tr1 lnFjdiv: ð10Þ

Here, the functional trace Tr1 is performed over vector
fields Aμ. By a sequence of formal manipulations, we
reduce the vector trace to a scalar trace, corresponding to
the propagating longitudinal mode. The divergent part of
the one-loop effective action then reads

MICHAEL S. RUF and CHRISTIAN F. STEINWACHS PHYS. REV. D 98, 085014 (2018)

085014-2



Γdiv
1 ¼ 1

2
Tr1 ln ð∇†∇þMÞjdiv

¼ 1

2
Tr1 lnMjdiv þ 1

2
Tr1 ln ð1þ ∇†∇M−1Þjdiv

¼ 1

2

X∞
n¼1

ð−1Þn−1
n

Tr1ð∇†∇M−1Þnjdiv

¼ 1

2
Tr0 ln ð1þ ∇M−1∇†Þjdiv

¼ 1

2
Tr0 lnFsjdiv: ð11Þ

Here we have used the cyclicity of the trace and the rule

Tr log ðL1L2Þjdiv ¼ Tr logL1jdiv þ Tr logL2jdiv ð12Þ

for two linear operators, L1 and L2. We have also used the
fact that the functional trace over the generalized mass
tensor M does not contribute to the divergent part
Tr1 lnMjdiv ¼ 0. In the last equality, we have defined
the formally self-adjoint scalar operator

Fsð∇Þ ≔ −∇μðg̃−1Þμν∇ν þm2; ð13Þ

where we have introduced a new metric,

g̃μν ≔
Mμν

m2
: ð14Þ

Here, m is an auxiliary constant parameter with the
dimension of mass, introduced to make g̃μν dimensionless.
Thus, the formal manipulations in Eq. (11) by which the
vector trace is converted into a scalar trace naturally
induces a second metric structure for the longitudinal
scalar which is constructed by the generalized mass tensor
Mμν. The positive definiteness of Mμν implies that the
reciprocal ðg̃−1Þμν exists. From now on, we raise and lower
indices exclusively with ðg̃−1Þμν and g̃μν. The metric g̃μν
uniquely defines a torsion-free, metric compatible covariant
derivative ∇̃μ with the connection

Γ̃ρ
μν ¼ 1

2
ðg̃−1Þρσð∂μg̃σν þ ∂νg̃μσ − ∂σ g̃μνÞ ð15Þ

The two covariant derivatives ∇̃μ and ∇μ differ by the
difference tensor

δΓρ
μν ≔ Γ̃ρ

μν − Γρ
μν

¼ Γ̃ρ
μν ¼ 1

2
ðg̃−1Þρσð∇μg̃σν þ∇νg̃μσ −∇σ g̃μνÞ. ð16Þ

The new metric g̃μν and the covariant derivative ∇̃μ suggest
defining the Laplacian as

Δ̃ ≔ −ðg̃−1Þμν∇̃μ∇̃ν: ð17Þ

For the Laplacian acting on a scalar, we have

Δ̃ ¼ −ðg̃−1Þμν∇̃μ∇̃ν

¼ −ðg̃−1Þμν∇μ∇ν þ ðg̃−1ÞμνδΓρ
μν∇̃ρ: ð18Þ

The coefficient of the last term can be written as

ðg̃−1ÞμνδΓρ
μν ¼ −½∇μðg̃−1Þμρ� − 2Wρ; ð19Þ

where we have defined

Wμ ≔ g̃−1=2∇μg̃1=2 ¼
1

2
∇μ ln g̃; ð20Þ

with g̃ ≔ det g̃μν and Wρ ¼ ðg̃−1ÞρμWμ. The scalar operator
(13) then formally acquires the structure of a minimal
second-order operator:

Fs ¼ Δ̃þ 2Wρ∇̃ρ þm2: ð21Þ

By changing covariant derivatives ∇̃μ → Dμ ¼ ∇̃μ þWμ,
we can absorb the term linear in derivatives and obtain the
Laplace-type scalar operator

FsðDÞ ≔ −D2 þ P; ð22Þ

with the scalar potential

P ¼ m2 þ 1

4
ðg̃−1ÞμνðWμWν þ 2∇μWνÞ

¼ m2 þ g̃−1=4ðg̃−1Þμν∇μ∇νg̃1=4: ð23Þ

The one-loop divergences for a general minimal second-
order operator of the form−D21þ P in d ¼ 4 are known in
closed form:

Γdiv
1 ¼ 1

2
Tr ln ð−D21þ PÞjdiv

¼ −
1

32π2ε

Z
M

d4xg1=2tr a2ðx; xÞ; ð24Þ

where the coincidence limit of the second Schwinger-
DeWitt coefficient up to total divergences is given by

a2ðx; xÞ ¼
1

180
ðRαβγδRαβγδ − RαβRαβÞ1

þ 1

2

�
P −

1

6
R1

�
2

þ 1

12
RαβRαβ: ð25Þ

The bundle curvature Rμν vanishes for a scalar field φ,

½Dμ;Dν�φ ¼ RμνðDÞφ ¼ 0: ð26Þ
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The one-loop divergences (10) for the longitudinal vector
field operator (5) reduce to the evaluation of the functional
trace of the scalar operator (22). We obtain the final result
by substituting the scalar potential (23), the bundle curva-
ture (26), and the metric (14) into the general formulas (24)
and (25), and by performing the internal scalar trace
tr 1 ¼ 1:

Γdiv
1 ¼ −

χðMÞ
180ε

−
1

32π2ε

Z
M

d4xg̃1=2
�
1

60
R̃μνR̃μν

þ 1

120
R̃2 −

1

6
R̃Pþ 1

2
P2

�
: ð27Þ

We have expressed the final result in terms of the
geometrical invariants constructed from the metric g̃μν,
which is directly related to the generalized mass tensorMμν.
In Eq. (27), we also traded the square of the Riemann tensor
for the Gauss-Bonnet term

G̃ ≔ R̃μνρσR̃μνρσ − 4R̃μνR̃μν þ R̃2: ð28Þ

The integral over the Gauss-Bonnet density g̃1=2G̃ is equal
to the Euler characteristic χðMÞ in d ¼ 4:

χðMÞ ≔ 1

32π2

Z
M

d4xg̃1=2G̃: ð29Þ

Since χðMÞ is a topological invariant of the manifoldM, it
is independent of the metric g̃μν and therefore of the
generalized mass tensor Mμν.
The result in Eq. (27) shows that one-loop divergences

for the longitudinal vector field operator (5) can be
expressed in a closed and compact form in terms of
geometrical invariants constructed from the generalized
mass tensor Mμν. This might be a surprising result at first
glance, as Mμν enters the final result in a nonpolynomial
way. However, the presence of the generalized mass tensor
is the characteristic feature of the theory in Eq. (1) and the
reason for the contributions of the transversal vector d.o.f.
to the one-loop divergences. Despite the longitudinal
projector structure of the principal part, the generalized
mass tensor induces a mixing between transversal and
longitudinal d.o.f. and distinguishes the vector theory (1)
from a pure scalar field theory. This point is discussed in
more detail in the next section.

IV. CROSS CHECK

We perform a simple cross check of the result (27) for the
special case where the generalized mass tensor reduces to
the ordinary mass term Mμν ¼ m2gμν. In this case, the
scalar potential (23) reduces to P ¼ m2, and the geometric
invariants are defined with respect to gμν. Consequently, the
one-loop divergences (27) reduce to

Γdiv
1 ¼ −

χðMÞ
180ε

−
1

32π2ε

Z
M

d4xg1=2
�
1

60
RμνRμν

þ 1

120
R2 −

1

6
Rm2 þ 1

2
m4

�
: ð30Þ

This result can be obtained also in a different way.
Performing the decomposition of the vector field

Aμ ¼ Aμ
⊥ þ Aμ

k ð31Þ

into a transverse part ∇μA
μ
⊥ ¼ 0 and a longitudinal part

Aμ
k ¼ gμν∂μφ with the longitudinal scalar field φ, the action

(1) reads

S½A⊥;φ� ¼
Z
M

d4xg1=2½φðΔ2 þm2ΔÞφ

þm2gμνA
μ
⊥A

μ
⊥�: ð32Þ

In terms of the generalized field

ϕA ¼
�
Aμ
⊥
φ

�
; ð33Þ

the fluctuation operator acquires a block matrix form:

F ¼
�
m2δνμ 0

0 Δ2 þm2Δ

�
: ð34Þ

Only some of the relativistic d.o.f. of the vector field Aμ are
propagating with higher derivatives. Here, the longitudinal
scalar φ propagates with fourth-order derivatives, while the
transversal part Aμ

⊥ does not propagate. This is a result of
the special projector structure of the principal symbol (8)
and the fact that the generalized mass tensor Mμν ¼ m2gμν
is ultralocal, covariantly constant, and has trivial index
structure. The Jacobian for the transition to the differ-
entially constraint fields Aμ → ðAμ

⊥;φÞ is obtained from

hA; Ai1 ¼ hA⊥; A⊥i1 þ hφ;Δφi0: ð35Þ

It has the block matrix structure

J ¼
�
δμν 0

0 Δ

�
: ð36Þ

The fact that the block matrices in Eqs. (34) and (36) are
diagonal is also a consequence of the special case
Mμν ¼ m2gμν. Hence, no mixing between Aμ

⊥ and φ occurs.
The divergent part of the one-loop divergences is given by

Γdiv
1 ¼ 1

2
Tr lnFjdiv − 1

2
Tr ln Jjdiv: ð37Þ
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The functional traces of the block operators splits into a
sum of transverse and scalar traces for the block operators
corresponding to the diagonal components. Since the
transversal part is not propagating, the transversal traces
do not contribute to the one-loop divergences. Moreover,
the scalar part of the operator F factorizes to ΔðΔþm2Þ
and partially cancels the contribution of the scalar operator
Δ from the Jacobian. The final result for the one-loop
divergences of the action (1) is therefore given by that of a
massive scalar field:

Γdiv
1 ¼ 1

2
Tr0 ln ðΔþm2Þjdiv: ð38Þ

Inserting the scalar operator Δþm2 into the general
formulas (24) and (25), and using the fact that
Rμνð∇Þ ¼ 0 for a scalar field φ, the result obtained from
Eq. (38) coincides with the reduction (30) of the general
result (27) for the simple case Mμν ¼ m2gμν. This shows
again that in the general case, where the block operators
(34) and (36) are not diagonal, the transversal vector field
d.o.f. contribute to the one-loop divergences due to the
mixing with the longitudinal d.o.f. induced by the gener-
alized mass tensor Mμν.

V. CONCLUSION

We calculated the one-loop divergences for a class of
second-order vector field operators with degenerate prin-
cipal part for which standard heat-kernel techniques are not
directly applicable. By a formal manipulation of the vector
trace (11), the calculation could be reduced to the evalu-
ation of the functional trace for a minimal second-order
scalar operator (22). During this procedure, an additional
effective metric structure (14), essentially given by the
generalized mass tensor Mμν, arises in a natural way. The
resulting one-loop divergences are expressed compactly in
terms of curvature invariants constructed from this addi-
tional metric (27). Therefore, the generalized mass tensor
enters the one-loop divergences in a nonpolynomial form.
The origin of this rather surprising result is traced back to
the particular degeneracy structure of the fluctuation
operator. For a relativistic field, this happens if the principal
part is degenerate but the total operator is not. The
degeneracy of the principal part, in turn, necessarily
requires a particular nonminimal derivative structure.
The situation becomes more transparent if formulated in
terms of the irreducible decomposition of the field. In this
case, the fluctuation operator generally becomes minimal
but matrix valued, and the degeneracy manifests itself in a
singular principal matrix. This means that only some
components of the relativistic field propagate with higher
derivatives. The standard methods are still applicable in
case the different components decouple, but they fail if
these components are coupled in the lower-derivative parts
of the fluctuation operator.

In the case of the vector field operator considered in
this article, this becomes evident in the context of the
special case discussed in Sec. IV. For a general tensor
Mμν, the matrix-valued fluctuation operator for the trans-
versal and longitudinal components of the vector field
(34) would contain off-diagonal terms in the lower-
derivative part. These off-diagonal elements lead to the
aforementioned mixing between the transversal and
longitudinal components. Only in case the generalized
mass tensor reduces to the ordinary mass term
Mμν ¼ m2gμν, the total fluctuation operator is block
diagonal and the two components decouple. A particu-
larity of this case is that the transversal component is not
propagating. A similar but complementary situation arises
in the context of the generalized Proca field, where the
roles are reversed and the longitudinal mode is not
propagating [15]. In this sense, the present analysis
completes the classification of vector field operators
introduced in Ref. [15].
The method of Eq. (11) is not only restricted to

second-order vector field operators but can be generalized
to higher-order operators and higher-spin fields. In fact, a
similar technique has been applied to the fourth-order
tensor field operator arising in fðRÞ gravity [14]. The
fluctuation operator has a degenerate principal part with a
product structure similar to that of the vector field
operator (7). Beside these similarities, a crucial difference
to the vector field operator (6) is the structure of the
lower-derivative part. In contrast to the generalized mass
tensor, the lower-derivative part of the fðRÞ operator is a
minimal second-order operator [14]. In this case, the
analogue of the procedure (11) requires additional
care [14].
The particular degeneracy structure of the fluctuation

operator discussed in this article is generically present in
softly broken gauge theories. The quantization of such
theories has been discussed recently in the context of
vector field and tensor field models [15,18,19]. The same
type of degeneracy also arises in models of massive
gravity [20–22], cosmological Galileon models [23–26],
and generalized Proca models [15,27,28]. The identifi-
cation of effective metric structures is also an essential
technical feature of the heat-kernel method for aniso-
tropic operators developed in Refs. [29–31]. Such oper-
ators emerge in theories without fundamental Lorentz
invariance and are of particular importance for the
renormalization of Hořava gravity [31–38].
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