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It was recently shown that non-Abelian vortex strings supported in a version of four-dimensionalN ¼ 2

supersymmetric QCD become critical superstrings. In addition to four translational moduli, non-Abelian
strings under consideration have six orientational and size moduli. Together they form a ten-dimensional
target space required for a superstring to be critical, namely, the product of the flat four-dimensional space
and conifold—a noncompact Calabi-Yau threefold. In this paper we report on further studies of low-lying
closed string states that emerge in four dimensions and identify them as hadrons of our four-dimensional
N ¼ 2QCD. We use the approach based on little string theory, describing the critical string on the conifold
as a noncritical c ¼ 1 string with the Liouville field and a compact scalar at the self-dual radius. In addition
to the massless hypermultiplet found earlier we observe several massive vector multiplets and a massive
spin-2 multiplet, all belonging to the long (non-BPS) representations of N ¼ 2 supersymmetry in four
dimensions. All the above states are interpreted as baryons formed by a closed string with confined
monopoles attached. Our construction presents an example of a “reverse holography.”
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I. INTRODUCTION

In this paper we continue studying the spectrum of four-
dimensional “hadrons” formed by the closed critical string
[1], which in turn can be obtained from a solitonic vortex
string under an appropriate choice of the coupling constant
[2]. One of our main tasks is to analyze the structure of the
four-dimensional (4D) supermultiplets emerging from
quantization of the closed string mentioned above. We
start though from a brief review of the setup.
The problem of understanding confining gauge theories

splits into two different equally fundamental tasks. The first
one is to understand the physical nature of confinement and
describe the formation of confining strings. There was a
great progress in this direction in supersymmetric gauge
theories due to the breakthrough papers by Seiberg and
Witten [3,4], in which the monopole condensation was
shown to occur in the monopole vacua of N ¼ 2 super-
symmetric QCD (SQCD). This leads to the formation of
Abelian Abrikosov-Nielsen-Olesen (ANO) vortices [5],

which confine color electric charges. Attempts to find a
non-Abelian generalization of this mechanism led to the
discovery of the so-called “instead-of-confinement” phase
that occurs in the quark vacua ofN ¼ 2 SQCD; see [6] for
a review. In this phase the (s)quarks condense while the
monopoles are confined.
Once the nature of the confining string is understood the

second task is to quantize this string in 4D theory outside
the critical dimension to study the hadron spectrum. Most
solitonic strings, such as the ANO strings, have a finite
thickness manifesting itself in the presence of an infinite
series of unknown higher-derivative corrections in the
effective sigma model on the string world sheet. This
makes the task of quantizing such a string virtually
impossible.
Recent advances in this direction [2] demonstrated that

the non-Abelian solitonic vortex in a particular version of
4D N ¼ 2 SQCD becomes a critical superstring. This
particular 4D SQCD has the U(2) gauge group, four quark
flavors, and the Fayet-Iliopoulos (FI) [7] parameter ξ.
Non-Abelian vortices were first discovered in N ¼ 2

SQCD with the UðNÞ gauge group and Nf ≥ N flavors of
quark hypermultiplets [8–11]. In addition to four transla-
tional moduli characteristic of the ANO strings [5], the
non-Abelian strings carry orientational moduli, as well as
the size moduli ifNf > N [8–11] (see [12–15] for reviews).
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If Nf > N their dynamics are described by the effective
two-dimensional sigma model on the string world sheet
with the target space

Oð−1Þ⊕ðNf−NÞ
CP1 ; ð1:1Þ

to which we refer to as the weighted CP model
[WCPðN;Nf − NÞ].
For Nf ¼ 2N the model becomes conformal. Moreover,

for N ¼ 2 the dimension of the orientational/size moduli
space is 6 and they can be combined with four translational
moduli to form a ten-dimensional space required for
superstring to become critical.1

In this case the target space of the world-sheet two-
dimensional (2D) theory on the non-Abelian vortex string
is R4 × Y6, where Y6 is a noncompact six-dimensional
Calabi-Yau manifold, the so-called resolved conifold
[16,17].
Since the non-Abelian vortex string on the conifold is

critical it has a perfectly good UV behavior. This opens the
possibility that it can become thin in a certain regime [2].
The string transverse size is given by 1=m, where m is a
typical mass scale of the four-dimensional fields forming
the string. The string cannot be thin in a weakly coupled 4D
theory because at weak coupling m ∼ g

ffiffiffiffi
T

p
and is always

small in the units of
ffiffiffiffi
T

p
where T is the tension. Here g is

the gauge coupling constant of the 4D N ¼ 2 QCD and T
is the string tension.
A conjecture was put forward in [2] that at strong

coupling in the vicinity of a critical value of g2c ∼ 1 the
non-Abelian string on the conifold becomes thin, and
higher-derivative corrections in the action can be ignored.
It is expected that the thin string produces linear Regge
trajectories even for small spins [2]. The above conjecture
implies2 that mðg2Þ → ∞ at g2 → g2c.
A version of the string-gauge duality for 4D SQCD was

proposed [2]: at weak coupling this theory is in the Higgs
phase and can be described in terms of (s)quarks and
Higgsed gauge bosons, while at strong coupling hadrons of
this theory can be understood as string states formed by the
non-Abelian vortex string.
The vortices in the UðNÞ theories under consideration

are topologically stable and cannot be broken. Therefore
the finite-length strings are closed. Thus, we focus on the
closed strings. The goal is to identify the closed string states
with the hadrons of 4D N ¼ 2 SQCD.
The first step of this program, namely, identifying

massless string states, was carried out in [18,19] using

supergravity formalism. In particular, a single matter
hypermultiplet associated with the deformation of the
complex structure of the conifold was found as the only
4D massless mode of the string. Other states arising from
the massless ten-dimensional graviton are not dynamical in
four dimensions. In particular, the 4D graviton and
unwanted vector multiplet associated with deformations
of the Kähler form of the conifold are absent. This is due to
noncompactness of the Calabi-Yau manifold we deal with
and non-normalizability of the corresponding modes over
six-dimensional space Y6.
The next step was done in [1] where a number of massive

states of the closed non-Abelian vortex string were found.
This step required a change of strategy. The point is that the
coupling constant 1=β of the world-sheet WCP(2,2) is not
small. Moreover β tends to 0 once the 4D coupling g2

approaches the critical value g2c we are interested in. At
β → 0 the resolved conifold develops a conical singularity.
The supergravity approximation does not work for massive
states.3

To analyze the massive states the little string theories
(LST) approach (see [20] for a review) was used in [1].
Namely, we used the equivalence between the critical string
on the conifold and noncritical c ¼ 1 string, which contains
the Liouville field and a compact scalar at the self-dual
radius [21,22]. The latter theory [in the mirror Wess-
Zumino-Novikov-Witten (WZNW) formulation] can be
analyzed by virtue of algebraic methods. This leads to
identification of towers of massive states with spin 0 and
spin 2 [1].
In this paper we focus on the 4D multiplet structure of

the states found earlier in [1,19]. In addition to the massless
BPS hypermultiplet associated with deformations of the
complex structure of the conifold we identify several
massive vector multiplets and a massive spin-2 multiplet,
all belonging to long non-BPS representations of N ¼ 2
supersymmetry in four dimensions. We interpret all states
we found as baryons formed by a closed string with
confined monopoles attached. Note, that the relation
between LSTand certain partly confined 4D gauge theories
was also studied in [23] using AdS/CFT approach. In
particular, massive stringy states were discussed.
The paper is organized as follows. In Sec. II we review

the description of the non-Abelian vortex as a critical
superstring on a conifold and identify the massless string
state. In Sec. III we review the LST approach in terms of
noncritical c ¼ 1 string and the spectrum of massive states.
In Sec. IV we introduce 4D supercharges and construct the

1The non-Abelian vortex string is 1=2 Bogomolny–Prasad–
Sommerfelfd (BPS) saturated and, therefore, has N ¼ ð2; 2Þ
supersymmetry on its world sheet. Thus, we actually deal with a
superstring in the case at hand.

2At Nf ¼ 2N the beta function of the 4D N ¼ 2 QCD is 0, so
the gauge coupling g2 does not run. Note, however, that
conformal invariance in the 4D theory is broken by the FI
parameter ξ, which does not run either.

3This is in contradistinction to the massless states. For the
latter, we can perform computations at large β where the super-
gravity approximation is valid and then extrapolate to strong
coupling. In the sigma-model language massless states corre-
spond to chiral primary operators. They are protected by N ¼
ð2; 2Þ world-sheet supersymmetry and their masses are not lifted
by quantum corrections.
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massless BPS hypermultiplet. In Sec. V we consider the
lowest massive string excitations and show that they form a
long vector supermultiplet. Section VI deals with the
construction of the N ¼ 2 spin-2 stringy supermultiplet.
In Sec. VII we discuss linear Regge trajectories, while
Sec. VIII summarizes our conclusions. In Appendix A we
describe the Becchi–Rouet–Stora–Tyutin (BRST) operator
and transitions between different pictures. In Appendix B
we review long N ¼ 2 supermultiplets in 4D.

II. NON-ABELIAN VORTEX STRING

A. Four-dimensional N = 2 SQCD

As was already mentioned non-Abelian vortex strings
were first found in 4D N ¼ 2 SQCD with the gauge group
UðNÞ and Nf ≥ N flavors (i.e., the quark hypermultiplets)
supplemented by the FID term ξ [8–11]; see e.g., [14] for a
detailed review of this theory. Here we just mention that at
weak coupling, g2 ≪ 1, this theory is in the Higgs phase in
which the scalar components of the quark multiplets
(squarks) develop vacuum expectation values (VEVs).
These VEVs break the UðNÞ gauge group Higgsing all
gauge bosons. The Higgsed gauge bosons combine with the
screened quarks to form long N ¼ 2 multiplets with
mass m ∼ g

ffiffiffi
ξ

p
.

The global flavor SUðNfÞ is broken down to the so-
called color-flavor locked group. The resulting global
symmetry is

SUðNÞCþF × SUðNf − NÞ × Uð1ÞB; ð2:1Þ
see [14] for more details.
The unbroken global Uð1ÞB factor above is identified

with a baryonic symmetry. Note that what is usually
identified as the baryonic U(1) charge is a part of our
4D theory gauge group. Our Uð1ÞB is an unbroken by
squark VEVs combination of two U(1) symmetries: the
first is a subgroup of the flavor SUðNfÞ and the second is
the global U(1) subgroup of UðNÞ gauge symmetry.
As was already noted, we consider N ¼ 2 SQCD in the

Higgs phase: N squarks condense. Therefore, non-Abelian
vortex strings confine monopoles. In the N ¼ 2 4D theory
these strings are 1=2 BPS saturated; hence, their tension is
determined exactly by the FI parameter,

T ¼ 2πξ: ð2:2Þ
However, the monopoles cannot be attached to the string
end points. In fact, in the UðNÞ theories confined monopoles
are junctions of two distinct elementary non-Abelian
strings [10,11] (see [14] for a review). As a result, in
four-dimensional N ¼ 2 SQCD we have monopole-
antimonopole mesons in which the monopole and antimono-
pole are connected by two confining strings.
In addition, in the UðNÞ gauge theory we can have baryons
appearing as a closed necklace configurations of

N × ðintegerÞ monopoles [14]. For the U(2) gauge group
the lightest baryon presented by such a necklace configu-
ration consists of two monopoles; see Fig. 1.
Both stringy monopole-antimonopole mesons and

monopole baryons with spins J ∼ 1 have mass determined
by the string tension,∼

ffiffiffi
ξ

p
and are heavier at weak coupling

than perturbative states, which have mass m ∼ g
ffiffiffi
ξ

p
.

However, according to our conjecture, at strong coupling
near the critical point g2c m → ∞; see [2] and Sec. II C
below. In this regime perturbative states decouple and we
are left with hadrons formed by the closed string states.4 All
hadrons identified as closed string states in this paper turn
out to be baryons and look like monopole necklaces;
see Fig. 1.

B. World-sheet sigma model

The presence of color-flavor locked group SUðNÞCþF is
the reason for the formation of the non-Abelian vortex
strings [8–11] in our 4D SQCD. The most important feature
of these vortices is the presence of the so-called orienta-
tional zero modes.
Let us briefly review the model emerging on the

world sheet of the non-Abelian critical string [2,18,19].
If Nf ¼ N the dynamics of the orientational zero modes of
the non-Abelian vortex, which become orientational
moduli fields on the world sheet, is described by the
two-dimensional N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ
model [14].
If one adds extra quark flavors, non-Abelian vortices

become semilocal. They acquire size moduli [24]. In
particular, for the non-Abelian semilocal vortex at hand,
in addition to the orientational zero modes nP (P ¼ 1, 2),
there are the so-called size moduli ρK (K ¼ 1, 2) [8,11,
24–27]. The target space of the WCP(2,2) sigma model on
the string world sheet is defined by the D-term condition

jnPj2 − jρKj2 ¼ β; ð2:3Þ

and a U(1) phase is gauged away.

(b)(a)

FIG. 1. Examples of the monopole “necklace” baryons: Open
circles denote monopoles.

4There are also massless bifundamental quarks, charged with
respect to both non-Abelian factors in (2.1). These are associated
with the Higgs branch present in 4D QCD; see [14,19] for details.
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The total number of real bosonic degrees of freedom
(d.o.f.) in this model is 6, where we take into account the
constraint (2.3) and the fact that one U(1) phase is gauged
away. As was already mentioned, these six internal d.o.f.
are combined with four translational moduli to form a ten-
dimensional space needed for the superstring to be critical.
At weak coupling the world-sheet coupling constant

β in (2.3) is related to the 4D SU(2) gauge coupling as
follows: g2

β ≈
4π

g2
; ð2:4Þ

see [14]. Note that the first (and the only) coefficient is the
same for the 4D SQCD and the world-sheet model β
functions. Both vanish at Nf ¼ 2N. This ensures that our
world-sheet theory is conformal.
Since the non-Abelian vortex string is 1=2 BPS it

preserves N ¼ ð2; 2Þ in the world-sheet sigma model,
which is necessary to have N ¼ 2 space-time supersym-
metry [28,29]. Moreover, as was shown in [19], the string
theory of the non-Abelian critical vortex is type IIA.
The global symmetry of the world-sheet sigma model is

SUð2Þ × SUð2Þ × Uð1Þ; ð2:5Þ

i.e., exactly the same as the unbroken global group in the
4D theory; cf. (2.1), at N ¼ 2 and Nf ¼ 4. The fields n and
ρ transform in the following representations:

n∶ ð2; 0; 0Þ; ρ∶ ð0; 2; 1Þ: ð2:6Þ

C. Thin string regime

The coupling constant of 4D SQCD can be complexi-
fied,

τ≡ i
4π

g2
þ θ4D

2π
; ð2:7Þ

where θ4D is the four-dimensional θ angle. Note that the
SUðNÞ version of the four-dimensional SQCD at hand
possesses a strong-weak coupling duality, namely, τ → − 1

τ

[30,31]. This suggests that the self-dual point g2 ¼ 4π
would be a natural candidate for a critical value g2c, where
our non-Abelian vortex string becomes thin.5 However, as
shown recently in [32] S-duality maps our UðNÞ theory to a
theory in which a different U(1) subgroup of the flavor
group is gauged. In particular, in our UðNÞ theory all quark
flavors have equal charges with respect to the U(1)
subgroup of the gauge group, while in the S-dual version
only one flavor is charged with respect to the U(1) gauge
group. As a result the S-dual version supports a different

type of non-Abelian string [32]. This ensures that S-duality
is broken in our 4D theory by the choice of U(1) subgroup
that is gauged and we do not consider it here.
The two-dimensional coupling constant β can be natu-

rally complexified too if we include the two-dimensional
θ term,

β → β þ i
θ2D
2π

: ð2:8Þ

The exact relation between the complexified 4D and 2D
couplings is as follows:

exp ð−2πβÞ ¼ −hðτÞ½hðτÞ þ 2�; ð2:9Þ

where the function hðτÞ is a special modular function of τ
defined in terms of the θ-functions,

hðτÞ ¼ θ41=ðθ42 − θ41Þ:

This function enters the Seiberg-Witten curve for our 4D
theory [30,31]. The equation (2.9) generalizes the quasi-
classical relation (2.4). It can be derived using 2D-4D
correspondence: the match of BPS spectra of 4D theory at
ξ ¼ 0 and the world-sheet theory on the non-Abelian string
[10,11,33,34]. Details of this derivation are presented
elsewhere.6

According to the hypothesis formulated in [2], our
critical non-Abelian string becomes infinitely thin at strong
coupling in the critical point τc (or g2c). Moreover, we
conjectured in [19] that τc corresponds to β ¼ 0 in the
world-sheet theory via relation (2.9). Thus we assume
that m → ∞ at β ¼ 0, which corresponds to g2 ¼ g2c in
4D SQCD.
At the point β ¼ 0 the non-Abelian string becomes

infinitely thin, higher-derivative terms can be neglected
and the theory of the non-Abelian string reduces to the
WCP(2,2) model. The point β ¼ 0 is a natural choice
because at this point we have a regime change in the 2D
sigma model. This is the point where the resolved conifold
defined by the D term constraint (2.3) develops a conical
singularity [17].

D. Massless 4D baryon as deformation of the
conifold complex structure

In this section we briefly review the only 4D massless
state associated with the deformation of the conifold
complex structure. It was found in [19]. As was already
mentioned, all other modes arising from the massless ten-
dimensional (10D) graviton have non-normalizable wave
functions over the conifold. In particular, the 4D graviton is
absent [19]. This result matches our expectations since

5We suggested this earlier in [18,19].

6Our result (2.9) is different from the one obtained in [32]
using localization technique.
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from the very beginning we started from N ¼ 2 SQCD in
the flat four-dimensional space without gravity.
The target space of the world-sheet WCP(2,2) model is

defined by theD-term condition (2.3). We can construct the
U(1) gauge-invariant “mesonic” variables

wPK ¼ nPρK: ð2:10Þ

These variables are subject to the constraint detwPK ¼ 0, or

X4
α¼1

w2
α ¼ 0; ð2:11Þ

where

wPK ≡ σPKα wα;

and the σ matrices above are ð1;−iτaÞ, a ¼ 1, 2, 3.
Equation (2.11) defines the conifold Y6. It has the
Kähler Ricci-flat metric and represents a noncompact
Calabi-Yau manifold [16,17,35]. It is a cone that can be
parametrized by the noncompact radial coordinate

r̃2 ¼
X4
α¼1

jwαj2 ð2:12Þ

and five angles; see [16]. Its section at fixed r̃ is S2 × S3.
At β ¼ 0 the conifold develops a conical singularity, so

both S2 and S3 can shrink to 0. The conifold singularity can
be smoothed out in two distinct ways: by deforming the
Kähler form or by deforming the complex structure. The
first option is called the resolved conifold and amounts to
introducing a nonzero β in (2.3). This resolution preserves
the Kähler structure and Ricci flatness of the metric. If we
put ρK ¼ 0 in (2.3) we get the CPð1Þ model with the S2
target space (with the radius

ffiffiffi
β

p
). The resolved conifold has

no normalizable zero modes. In particular, the modulus β
that becomes a scalar field in four dimensions has non-
normalizable wave function over the Y6 manifold [19].
As explained in [19,36], non-normalizable 4D modes

can be interpreted as (frozen) coupling constants in the 4D
theory. The β field is the most straightforward example of
this, since the 2D coupling β is related to the 4D coupling;
see Eq. (2.9).
If β ¼ 0 another option exists, namely a deformation of

the complex structure [17]. It preserves the Kähler structure
and Ricci flatness of the conifold and is usually referred to
as the deformed conifold. It is defined by deformation of
Eq. (2.11), namely,

X4
α¼1

w2
α ¼ b; ð2:13Þ

where b is a complex number. Now the S3 cannot shrink to
0, its minimal size is determined by b.
The modulus b becomes a 4D complex scalar field. The

effective action for this field was calculated in [19] using
the explicit metric on the deformed conifold [16,37,38],

SðbÞ ¼ T
Z

d4xj∂μbj2 log
T2L4

jbj ; ð2:14Þ

where L is the size of R4 introduced as an infrared
regularization of logarithmically divergent b field norm.7

We see that the norm of the b modulus turns out to be
logarithmically divergent in the infrared. The modes with
the logarithmically divergent norm are at the borderline
between normalizable and non-normalizable modes.
Usually such states are considered as “localized” on the
string. We follow this rule. We can relate this logarithmic
behavior to the marginal stability of the b state; see [19].
The field b, being massless, can develop a VEV. Thus,

we have a new Higgs branch in 4D N ¼ 2 SQCD that is
developed only for the critical value of the coupling
constant g2c.
The logarithmic metric in (2.14) in principle can receive

both perturbative and nonperturbative quantum corrections
in 1=β, the sigma model coupling. However, in the N ¼ 2
theory the nonrenormalization theorem of [31] forbids the
dependence of the Higgs branch metric on the 4D coupling
constant g2. Since the 2D coupling β is related to g2 we
expect that the logarithmic metric in (2.14) will stay intact.
This expectation is confirmed in [1].
In [19] the massless state bwas interpreted as a baryon of

4D N ¼ 2 SQCD. Let us explain this. From Eq. (2.13) we
see that the complex parameter b (which is promoted to a
4D scalar field) is singlet with respect to both SU(2) factors
in (2.5), i.e., the global world-sheet group.8 What about its
baryonic charge?
Since

wα ¼
1

2
Tr½ðσ̄αÞKPnPρK� ð2:15Þ

we see that the b state transforms as

ð1; 1; 2Þ; ð2:16Þ

where we used (2.6) and (2.13). Three numbers above refer
to the representations of (2.5). In particular it has the baryon
charge QBðbÞ ¼ 2.
To conclude this section let us note that in our case of

type IIA superstring the complex scalar associated with

7The infrared regularization on the conifold r̃max translates into
the size L of the 4D space because the variables ρ in (2.12) have
an interpretation of the vortex string sizes, r̃max ∼ TL2.

8Which is isomorphic to the 4D global group (2.1) at N ¼ 2,
Nf ¼ 4.
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deformations of the complex structure of the Calabi-Yau
space enters as a component of a massless 4D N ¼ 2
hypermultiplet; see [39] for a review. Instead, for type IIB
superstring it would be a component of a vector BPS
multiplet. Nonvanishing baryonic charge of the b state
confirms our conclusion that the string under consideration
is a type IIA.

III. MASSIVE STATES FROM NONCRITICAL
c= 1 STRING

As was explained in Sec. I, the critical string theory on
the conifold is hard to use for calculating the spectrum of
massive string modes because the supergravity approxi-
mation does not work. In this section we review the results
obtained in [1] based on the LST approach. Namely, in [1]
we used the equivalent formulation of our theory as a
noncritical c ¼ 1 string theory with the Liouville field and a
compact scalar at the self-dual radius [21,22]. We intend to
use the same formulation in this paper to analyze the 4D
hypermultiplet structure of the massive states.

A. Noncritical c= 1 string theory

Noncritical c ¼ 1 string theory is formulated on the
target space

R4 × Rϕ × S1; ð3:1Þ

where Rϕ is a real line associated with the Liouville field ϕ
and the theory has a linear in ϕ dilaton, such that string
coupling is given by

gs ¼ e−
Q
2
ϕ: ð3:2Þ

We determine Q in Eq. (3.7).
Generically the above equivalence is formulated in the

so-called double scaling limit between the critical string on
noncompact Calabi-Yau spaces with an isolated singularity
on the one hand, and noncritical c ¼ 1 string with the
additional Ginzburg-Landau N ¼ 2 superconformal sys-
tem [21], on the other hand. Following [21] we assume the
double scaling limit when the string coupling constant of
the conifold theory gcon and the deformation parameter of
the conifold b simultaneously go to zero with the combi-

nation b
Q2

2 =gcon fixed. In this limit non-trivial physics is
localized near the singularity of the Calabi–Yau manifold.
In the conifold case this extra Ginzburg–Landau factor in
(3.1) is absent [40].
In [21,40,41] it was argued that noncritical string

theories with the string coupling exponentially falling off
at ϕ → ∞ are holographic. The string coupling goes to 0 in
the bulk of the space-time and nontrivial dynamics (LST)9

is localized on the “boundary.” In our case the boundary is
the four-dimensional space in which N ¼ 2 SQCD is
defined. (It is worth emphasizing that in our case the
boundary 4D dynamics is the starting point while the extra
six dimensions represent an auxiliary mathematical con-
struct. Perhaps it can be referred to as a reverse
holography.)
In other words, holography for our non-Abelian vortex

string theory is most welcome and expected. We start with
N ¼ 2 SQCD in 4D space and study solitonic vortex
strings. In our approach 10D space formed by 4D actual
space and six internal moduli of the string is an artificial
construction needed to formulate the string theory of a
special non-Abelian vortex. Clearly we expect that all
nontrivial actual physics should be localized exclusively
on the 4D “boundary.” In other words, we expect that
LST in our case is nothing but 4D N ¼ 2 SQCD at the
critical value of the gauge coupling g2c (in the hadronic
description).
The linear dilaton in (3.2) implies that the bosonic stress

tensor of c ¼ 1 matter coupled to 2D gravity is

T−− ¼ −
1

2
½ð∂−ϕÞ2 þQ∂2

−ϕþ ð∂−YÞ2�; ð3:3Þ

where ∂− ¼ ∂z The compact scalar Y represents c ¼ 1
matter and satisfies the following condition:

Y ∼ Y þ 2πQ: ð3:4Þ

Here we normalize the scalar fields in such a way that their
propagators are

hϕðzÞ;ϕð0Þi¼−logzz̄; hYðzÞ;Yð0Þi¼−logzz̄: ð3:5Þ

The central charge of the supersymmetrized c ¼ 1 theory
above is

cSUSYϕþY ¼ 3þ 3Q2: ð3:6Þ
The criticality condition for the string on (3.1) implies that
this central charge should be equal to 9. This gives

Q ¼
ffiffiffi
2

p
; ð3:7Þ

to be used in Eq. (3.2).
Deformation of the conifold (2.13) translates into adding

the Liouville interaction to the world-sheet sigma model
[21],

δL ¼ b
Z

d2θe−
ϕþiY
Q : ð3:8Þ

The conifold singularity at b ¼ 0 corresponds to the string
coupling constant becoming infinitely large at ϕ → −∞;
see (3.2). At b ≠ 0 the Liouville interaction regularizes the

9The main example of this behavior is nongravitational LST in
the flat six-dimensional space formed by the world volume of
parallel NS5 branes.
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behavior of the string coupling preventing the string from
propagating to the region of large negative ϕ.
In fact the c ¼ 1 noncritical string theory can also be

described in terms of the two-dimensional black hole [42],
which is the SLð2; RÞ=Uð1Þ coset WZNW theory
[21,22,43,44] at level

k ¼ 2

Q2
: ð3:9Þ

In [45] it was shown that N ¼ ð2; 2Þ SLð2; RÞ=Uð1Þ coset
is a mirror description of the c ¼ 1 Liouville theory. The
relation above implies in the case of the conifold (Q ¼ ffiffiffi

2
p

)
that

k ¼ 1; ð3:10Þ
where k is the total level of the Kač-Moody algebra in the
supersymmetric version (the level of the bosonic part of the
algebra is then kb ¼ kþ 2 ¼ 3). The target space of this
theory has the form of a semi-infinite cigar; the field ϕ
associated with the motion along the cigar cannot take large
negative values due to semi-infinite geometry. In this
description the string coupling constant at the tip of the
cigar is gs ∼ 1=b. In fact as was argued in [21] in the non-
critical string theory by itself the parameter b does not have
to be small. If we following [21] take b large the string
coupling at the tip of the cigar will be small and the string
perturbation theory becomes reliable, cf. [21,23]. In par-
ticular, we can use the tree-level approximation to obtain
the spring spectrum. Note also that, as we already men-
tioned in the Introduction, the SLð2; RÞ=Uð1Þ WZNW
model is exactly solvable.
In terms of 4D SQCD taking b large means moving

along the Higgs branch far away from the origin.

B. Vertex operators

Vertex operators for the string theory on (3.1) are
constructed in [21]; see also [40,43]. Primaries of the
c ¼ 1 part for large positive ϕ (where the target space
becomes a cylinder Rϕ × S1) take the form

VL
j;mL

× VR
j;mR

≈ exp ð
ffiffiffi
2

p
jϕþ i

ffiffiffi
2

p
ðmLYL þmRYRÞÞ;

ð3:11Þ

where we split ϕ and Y into left and right-moving parts, say
ϕ ¼ ϕL þ ϕR. For the self-dual radius (3.7) (or k ¼ 1) the
parameter 2m in Eq. (3.11) is integer. For the left-moving
sector 2mL ≡ 2m is the total momentum plus the winding
number along the compact dimension Y. For the right-
moving sector we introduce 2mR, which is the winding
number minus momentum. We see below that for our case
type IIA string mR ¼ −m, while for type IIB string
mR ¼ m.

The primary operator (3.11) is related to the wave
function over “extra dimensions” as follows:

Vj;m ¼ gsΨj;mðϕ; YÞ:

The string coupling (3.2) depends on ϕ. Thus,

Ψj;mðϕ; YÞ ∼ e
ffiffi
2

p ðjþ1
2
Þϕþi

ffiffi
2

p
mY: ð3:12Þ

We look for string states with normalizable wave functions
over the extra dimensions, which we interpret as hadrons in
4D N ¼ 2 SQCD. The condition for the string states to
have normalizable wave functions reduces to10

j ≤ −
1

2
: ð3:13Þ

The scaling dimension of the primary operator (3.11) is

Δj;m ¼ m2 − jðjþ 1Þ: ð3:14Þ

Unitarity implies that it should be positive,

Δj;m > 0: ð3:15Þ

Moreover, to ensure that conformal dimensions of left and
right-moving parts of the vertex operator (3.11) are the
same we impose that mR ¼ �mL.
The spectrum of the allowed values of j and m in (3.11)

was exactly determined by using the Kač-Moody algebra
for the coset SLð2; RÞ=Uð1Þ in [43,46–49]; see [50] for a
review. Both discrete and continuous representations were
found. Parameters j and m determine the global quadratic
Casimir operator and the projection of the spin on the third
axis,

J2jj;mi ¼ −jðjþ 1Þjj; mi; J3jj; mi ¼ mjj; mi;
ð3:16Þ

where Ja (a ¼ 1, 2, 3) are the global SLð2; RÞ currents.
We focus on discrete representations with

j ¼ −
1

2
;−1;−

3

2
;…; m ¼ �fj; j − 1; j − 2;…g:

ð3:17Þ

Discrete representations include the normalizable states
localized near the tip of the cigar [see (3.13)], while the

10We include the case j ¼ − 1
2
, which is at the borderline

between normalizable and non-normalizable states. In [1] it is
shown that j ¼ − 1

2
corresponds to the norm logarithmically

divergent in the infrared in much the same way as the norm
of the b state; see (2.14).
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continuous representations contain non-normalizable
states.
Discrete representations contain states with negative

norm. To exclude these ghost states a restriction for spin
j is imposed [46–50],

−
kþ 2

2
< j < 0: ð3:18Þ

Thus, for our value k ¼ 1we are left with only two allowed
values of j,

j ¼ −
1

2
; m ¼ �

�
1

2
;
3

2
;…

�
ð3:19Þ

and

j ¼ −1; m ¼ �f1; 2;…g: ð3:20Þ
Note that there are also continuous (principal and excep-
tional) representations of primaries of the c ¼ 1 string
theory [50], see also a brief review of discrete and continues
spectra in [1]. In particular, continuous representation
correspond to non-normalizable states in the Liouville
direction. Moreover, in [1] we suggested an interpretation
of these non-normalizable states: they corresponds to
decaying modes of normalizable 4D states. We also
confirm this interpretation showing that spectra of con-
tinuous states start from thresholds given by masses (3.24)
and (3.27) of 4D states (see below). Still we believe that the
relation between discrete and continuous states needs future
clarification.

C. Scalar and spin-2 states

Four-dimensional spin-0 and spin-2 states were found in
[1] using vertex operators [(3.11)]. The 4D scalar vertices
VS in the ð−1;−1Þ picture have the form [21]

VS;L
j;m × VS;R

j;−mðpμÞ ¼ e−φL−φReipμxμVL
j;m × VR

j;−m; ð3:21Þ

where superscript S stands for scalar, φL;R represents the
bosonized ghost in the left and right-moving sectors, while
pμ is the 4D momentum of the string state.
The condition for the state (3.21) to be physical is

1

2
þ pμpμ

8πT
þm2 − jðjþ 1Þ ¼ 1; ð3:22Þ

where 1=2 comes from the ghost and we used (3.14). We
note that the conformal dimension of the ghost operator
expðqφÞ is equal to −ðqþ q2=2Þ, where q is the picture
number.
The GSO projection restricts the integer 2m for the

operator in (3.21) to be odd [21,51],11

m ¼ 1

2
þ Z: ð3:23Þ

For half-integermwe have only one possibility j ¼ − 1
2
; see

(3.19). This determines the masses of the 4D scalars,

ðMS
mÞ2

8πT
¼ −

pμpμ

8πT
¼ m2 −

1

4
; ð3:24Þ

where the Minkowski 4D metric with the diagonal entries
ð−1; 1; 1; 1Þ is used.
In particular, the state with m ¼ �1=2 is the mass-

less baryon b, associated with deformations of the
conifold complex structure [1], while states with m ¼
�ð3=2; 5=2;…Þ are massive 4D scalars.
At the next level we consider 4D spin-2 states. The

corresponding vertex operators are given by

ðVL
j;m × VR

j;−mðpμÞÞspin-2
¼ ξμνψ

μ
Lψ

ν
Re

−φL−φReipμxμVL
j;m × VR

j;−m; ð3:25Þ

where ψμ
L;R are the world-sheet superpartners to 4D

coordinates xμ, while ξμν is the polarization tensor.
The condition for these states to be physical takes the

form

pμpμ

8πT
þm2 − jðjþ 1Þ ¼ 0: ð3:26Þ

The Gliozzi–Scherk–Olive (GSO) projection selects now
2m to be even, jmj ¼ 0; 1; 2;… [21]; thus we are left with
only one allowed value of j, j ¼ −1 in (3.20). Moreover,
the value m ¼ 0 is excluded. This leads to the following
expression for the masses of spin-2 states:

ðMspin-2
m Þ2 ¼ 8πTm2; jmj ¼ 1; 2;…: ð3:27Þ

We see that all spin-2 states are massive. This confirms the
result in [19] that no massless 4D graviton appears in our
theory. It also matches the fact that our boundary theory,
4D N ¼ 2 QCD, is defined in flat space without gravity.
To determine baryonic charge of these states we note that

Uð1ÞB transformation of b in the Liouville interaction (3.8)
is compensated by a shift of Y. The baryonic charge of b is
2; see (2.16). Below we use the following convention: upon
splitting Y into left and right-moving parts Y ¼ YL þ YR
we define that only YL is shifted under Uð1ÞB trans-
formation,

b→ e2iθb; YL → YL þ 2
ffiffiffi
2

p
θ; YR → YR: ð3:28Þ

This gives for the baryon charge of the vertex
operator (3.11)

QB ¼ 4m: ð3:29Þ11We demonstrate this in the next section.
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We see that the momentum m in the compact Y direction is
in fact the baryon charge of a string state. All states we
found above are baryons. Their masses as a function of the
baryon charge are shown in Fig. 2.
The momentum m in the compact dimension is also

related to the R-charge. On the world sheet we can
introduce the left and right R-charges separately.

Normalizing charge of θþ, namely, Rð2Þ
L ðθþÞ ¼ 1, we see

that Y should be shifted under the Rð2Þ
L symmetry to make

invariant the Liouville interaction (3.8).
This gives

Rð2Þ
L ðVL

j;mÞ ¼ −2m ð3:30Þ

for the Rð2Þ
L charge of the vertex (3.11), which is the bottom

component of the world-sheet supermultiplet. The Rð2Þ
R

charge in the right-moving sector is defined similarly. Here
superscript (2) denotes the world-sheet R-charge.
As was discussed above, the massless baryon b corre-

sponds to j ¼ −1=2, m ¼ �1=2. Thus, the associated
vertex Vj;m has Rð2Þ

L ¼ �1 and conformal dimension
Δ ¼ 1=2; see (3.14). Therefore it satisfies the relation

Δ ¼ jRð2Þ
L j
2

ð3:31Þ

as expected for the bottom component of a chiral primary
operator, which defines the short representation of super-
symmetry algebra (and similar relation in the right-moving
sector). In 4D theory b is a component of a short N ¼ 2
BPS multiplet, namely hypermultiplet.

IV. MASSLESS HYPERMULTIPLET

The remainder of this paper is devoted to the study of the
supermultiplet structure of the 4D string states described in
the previous sections. Our strategy is as follows: we expli-
citly construct 4D supercharges and use them to generate all
components of a given multiplet starting from a scalar or
spin-2 representative shown in (3.21) or (3.25). We generate
supermultiplets originating from the lowest states with
j ¼ −1=2, m ¼ �ð1=2; 3=2Þ and j ¼ −1, m ¼ �1. In this
section we start with the massless baryon b.

A. 4D supercharges

First we bosonize world-sheet fermions ψμ, ψϕ, and ψY ,
the superpartners of xμ, the Liouville field ϕ, and the
compact scalar Y, respectively. Following the standard rule
we divide them into pairs

ψk ¼
1ffiffiffi
2

p ðψ2k−1 − iψ2kÞ;

ψ̄k ¼
1ffiffiffi
2

p ðψ̄2k−1 þ iψ̄2kÞ; k ¼ 1; 2; ð4:1Þ

ψ ¼ 1ffiffiffi
2

p ðψϕ − iψYÞ; ψ̄ ¼ 1ffiffiffi
2

p ðψ̄ϕ þ iψ̄YÞ; ð4:2Þ

and define

ψkψ̄k ¼ i∂−Hk ðno summationÞ; ψψ̄ ¼ i∂−H;

ð4:3Þ

where the bosons Hk and H have the standard propagators

hHkðzÞ; Hlð0Þi ¼ −δkl log z; hHðzÞ; Hð0Þi ¼ − log z

ð4:4Þ

and

ψk ∼ eiHk ; ψ ∼ eiH: ð4:5Þ

The above formulas are written for the left-moving sector.
In the right-moving sector bosonization is similar with the
replacement z → z̄ and ∂z → ∂ z̄.
As usual, we define spinors in terms of scalars H.

Namely,

Sα ¼ e
P

k
iskHk ; S̄ _α ¼ e

P
k
is̄kHk ð4:6Þ

are 4D spinors, α ¼ 1, 2, _α ¼ 1, 2. Moreover,

S ¼ ei
H
2 ; S̄ ¼ e−i

H
2 ð4:7Þ

are spinors associated with “extra” dimensions ϕ and Y.
Here sk ¼ � 1

2
, k ¼ 1, 2 and the choices of the allowed

values of sk are restricted by the GSO projection; see below.

B
2

0
4 6 8−2−4−6−8

1

2

3

4

5

Q

M 2 /8    Tπ

FIG. 2. Spectrum of spin-0 and spin-2 states as a function of the
baryonic charge. Closed and open circles denote spin-0 and spin-
2 states, respectively.
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Supercharges for noncritical string are defined in [51]. In
our case four 4D N ¼ 1 supercharges

Qα ¼
1

2πi
b̄
jbj

Z
dze−

φ
2SαS exp

�
iffiffiffi
2

p Y

�
;

Q̄ _α ¼
1

2πi
b
jbj

Z
dze−

φ
2S̄ _αS̄ exp

�
−

iffiffiffi
2

p Y

�
ð4:8Þ

act in the left-moving sector, where we used the ð− 1
2
Þ

picture. We have to multiply these supercharges in the left-
moving sector by the phase factors b̄=jbj and b=jbj to make
them neutral with respect to baryonic Uð1ÞB. Other four
supercharges of N ¼ 2 4D supersymmetry are given by
similar formulas and act in the right-moving sector. The
action of the supercharge on a vertex is understood as an
integral around the location of the vertex on the
world sheet.
Supercharges (4.8) satisfy 4D space-time supersym-

metry algebra

fQα; Q̄ _αg ¼ 2Pμσ
μ; ð4:9Þ

while all other anticommutators vanish. Note that Pμ is the
4D momentum operator; the anticommutator (4.9) does not
produce translation in the Liouville direction.
The GSO projection is the requirement of locality of a

given vertex operator with respect to the supercharges (4.8).
Let us start withQα with s

ð0Þ
k ¼ ð1=2; 1=2Þ. Then mutual

locality of the supercharges (4.8) selects polarizations

sk ¼ �
�
1

2
;
1

2

�
; s̄k ¼ �

�
1

2
;−

1

2

�
ð4:10Þ

associated with four supercharges Qα and Q̄ _α.
As an example, let us check the GSO selection rule

(3.23) for 10D “tachyon” vertices (3.21). We have

hQα; V
S;L
jm ðwÞi ∼

Z
dzfðz − wÞ−ð12−mÞ þ � � �g; ð4:11Þ

where dots stand for less singular operator product expan-
sion (OPE) terms and 1=2 comes from the ghost φ. We see
that locality requirement selects half-integer m as shown in
(3.23). Note that an important feature of the supercharges
(4.8) is the dependence on momentum m in the compact
direction Y. Without this dependence all 10D tachyon
vertices (3.21) would be projected out as it happens for
critical strings. Note also that none of the states (3.21) are
tachyonic in 4D.
Now we can introduce 4D space-time R-charges. We

normalize them as follows:

Rð4Þ ¼ Rð4Þ
L þRð4Þ

R ; Rð4Þ
L ðQαÞ ¼ −1; Rð4Þ

L ðQ̄ _αÞ ¼ 1;

ð4:12Þ

and use the same normalizations for Rð4Þ
R . This definition

ensures that for a given vertex operator we have

Rð4Þ
L ¼ −2mL; Rð4Þ

R ¼ −2mR: ð4:13Þ

Note that the scalars H are not shifted upon Rð4Þ rotations,
so the world-sheet fermions ψk, ψ do not have Rð4Þ charges.
This is in contrast with the action of the world-sheet Rð2Þ
symmetry.

B. Fermion vertex

To generate a fermion vertex for the b state we apply
supercharges (4.8) to the left-moving part of the vertex
(3.21) with j ¼ −1=2 and m ¼ �1=2. To get the fermion
vertex in the standard ð−1=2Þ picture we have to convert the
vertex (3.21) from the ð−1Þ to (0) picture. This is done in
Appendix A using the BRSToperator. The left-moving part
of the scalar vertex (3.21) in the (0) picture has the form

Vð0Þ
j;mðpμÞ ¼

� ffiffiffi
2

p
ðjψϕ þ imψYÞ þ

iffiffiffiffiffiffiffiffiffi
4πT

p pμψ
μ

�

× eipμxμþ
ffiffi
2

p
jϕþi

ffiffi
2

p
mY; ð4:14Þ

where we skip the subscripts L.
Let us start with j ¼ −1=2 and m ¼ 1=2. The vertex

(4.14) reduces to

Vð0Þ
−1
2
;m¼1

2

ðpμÞ ¼
�
−ψ þ iffiffiffiffiffiffiffiffiffi

4πT
p pμψ

μ

�
eipμxμ−

ϕffiffi
2

p þi Yffiffi
2

p
: ð4:15Þ

Applying the supercharge Qα we find that the correlation
function does not contain pole contribution and hence gives
0. On the other hand Q̄ _α produces the following fermion
vertex,

V̄
ð−1

2
Þ

_α ¼ hQ̄ _α;V
ð0Þ
−1
2
;m¼1

2

ðpμÞi

∼ e−
φ
2

�
−S̄ _αSþ

ipμffiffiffiffiffiffiffiffiffi
4πT

p ðσ̄μÞ _ααSαS̄
�
eipμxμ−

ϕffiffi
2

p
; ð4:16Þ

where we used

hψðzÞ; S̄ðwÞi ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − wÞp S;

he
iYðzÞffiffi

2
p
; e

−iYðwÞffiffi
2

p i ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − wÞp ;

hψμðzÞ; S̄ðwÞ _αi ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − wÞp ðσ̄μÞ _ααSα: ð4:17Þ

Note that the momentumm along the compact direction is 0
for the fermion vertex (4.16).
As a check we can calculate the conformal dimension of

the vertex (4.16). The condition for this vertex to be
physical is
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3

8
þ 3

8
þ pμpμ

8πT
− jðjþ 1Þ ¼ 1; ð4:18Þ

where the first and the second contributions come from the
ghost φ and the scalars Hk and H, respectively. We see that
for j ¼ −1=2 this state is massless, as expected.
By the same token, form ¼ −1=2 we consider the action

of the supercharges on the vertex in (4.15) with ψ → ψ̄ and
m ¼ −1=2. Only the action of Qα gives nontrivial fermion
vertex. We get

Vα;ð−1
2
Þ ¼ hQα; Vð0Þ

−1
2
;m¼−1

2

ðpμÞi

∼ e−
φ
2

�
−SαS̄þ ipμffiffiffiffiffiffiffiffiffi

4πT
p ðσμÞα _αS̄ _αS

�
eipμxμ−

ϕffiffi
2

p
: ð4:19Þ

To conclude this subsection we note that if we apply
supercharges to the fermion vertices (4.16) and (4.19) we
do not generate new states. For example, acting on (4.16)
with Qα gives (the left-moving part of) the scalar vertex
(3.21),

hQα; V̄
ð−1

2
Þ

_α i ∼ pμffiffiffiffiffiffiffiffiffi
4πT

p ðσ̄μÞ _ααVS;L
−1
2
;m¼1

2

ð4:20Þ

in the picture ð−1Þ. This result is in full accord with
supersymmetry algebra (4.9). Acting with Q _α produces the
scalar vertex (3.21) with m ¼ −1=2,

hQ _α; V̄
ð−1

2
Þ

_β
i ∼ ε _α _βV

S;L
−1
2
;m¼−1

2

: ð4:21Þ

C. Building the hypermultiplet

In this section we use the bosonic and fermionic vertices
obtained above to construct a hypermultiplet of the mass-
less b states. For simplicity in this section and below we
consider only bosonic components of supermultiplets. As
was already mentioned, in the case of type IIA superstring
we should consider the states with mR ¼ −mL ≡ −m. We
prove this statement below, in this and the subsequent
subsections.
In the Neveu–Schwarz/Neveu–Schwarz (NS-NS) sector

we have one complex (or two real) scalars (3.21),

b ¼ VS;L
j¼−1

2
;m
× VS;R

j¼−1
2
;−m ð4:22Þ

associated with m ¼ �1=2.
Since for the scalar states the momentumm is opposite in

the left- and right-moving sectors, for the R-R states we get
the product of fermion vertices (4.16) and (4.19), namely,

V _αα ¼ V̄L
_α × VR

α ; V̄α _α ¼ VL
α × V̄R

_α : ð4:23Þ

The vertices above define a complex vector Cμ via

V _αα ¼ ðσ̄μÞ _ααCμ: ð4:24Þ

However, as is usual for the massless R-R string states, the
number of physical d.o.f. reduces because the fermion
vertices (4.16) and (4.19) satisfy the massless Dirac
equations, which translate into the Bianchi identity for
the associated form. For 1-form (vector) we have

∂μCν − ∂νCμ ¼ 0; ð4:25Þ

which ensures that the complex vector reduces to a
complex scalar,

Cμ ¼ ∂μb̃: ð4:26Þ

Altogether we have two complex scalars, b and b̃, which
form the bosonic part of the hypermultiplet. As was already
mentioned, deformations of the complex structure of a
Calabi-Yau manifold give a massless hypermultiplet for
type IIA theory and a massless vector multiplet for type IIB
theory. The derivation above shows that our choice
mR ¼ −mL corresponds to type IIA string.
We stress again that this massless hypermultiplet is a

short BPS representation ofN ¼ 2 supersymmetry algebra
in 4D and is characterized by the nonzero baryonic
charge QBðbÞ ¼ �2.
Let us also note that the four-dimensional space-time

Rð4Þ charge of the vertex operator (4.22) vanishes due to
cancellation between left- and right-moving sectors; see
(4.13). For the vertex (4.23) it is also 0 since both mL and
mR are 0. Thus we conclude that b and b̃ have the vanishing
Rð4Þ charge, as expected for the scalar components of a
hypermultiplet.

D. What would we get for type IIB superstring?

Our superstring is of type IIA. This is fixed by derivation
of our string theory as a description of non-Abelian vortex
in 4D N ¼ 2 SQCD; see [19]. In this subsection we
“forget” for a short while about this and consider super-
string theory on the manifold (3.1) on its own right. Then,
as usual in string theory, we have two options for a closed
string: type IIA and type IIB. We show below that the type
IIB option corresponds to the choice mR ¼ mL.
For this choice the massless state with j ¼ −1=2 is

described as follows. In the NS-NS sector we have one
complex scalar,

a ¼ VS;L
j¼−1

2
;m
× VS;R

j¼−1
2
;m
; ð4:27Þ

associated with m ¼ �1=2. In the R-R sector we now
obtain
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Vαβ ¼ VL
α × VR

β ; V̄ _α _β ¼ V̄L
_α × V̄R

_β
: ð4:28Þ

Expanding the complex vertex Vαβ in the basis of σ
matrices

Vα
β ¼ Fδβα þ ðσμσ̄νÞαβCμν ð4:29Þ

weget a complex scalarF and a complex 2-formCμν that can
be expressed in terms of a real 2-form, Cμν ¼ Fμν − iF�

μν,
where Fμν is real and F�

μν ¼ 1
2
εμνρλFρλ. The Dirac equations

for the fermion vertices (4.16) and (4.19) imply that F is a
constant, while Fμν satisfies the Bianchi identity. This
ensures that Fμν can be constructed in terms of a real vector
potential

Fμν ¼ ∂μAν − ∂νAμ: ð4:30Þ

We see that we get a massless N ¼ 2 BPS vector
multiplet with the bosonic components given by the
complex scalar a and the gauge potential Aμ. This is what
we expect from deformation of the complex structure of a
Calabi-Yau manifold for type IIB string.
Let us note that R charges also match since the Rð4Þ

charge of a in (4.27) is Rð4Þ ¼ �2 [see (4.13)] while the
Rð4Þ charge of (4.28) and Aμ are 0 as expected.
However, if we try to interpret this N ¼ 2 vector

multiplet as a state of the non-Abelian vortex in N ¼ 2
SQCD we get an inconsistency. To see this one can observe
that our state has nonzero baryonic charge that cannot be
associated with a gauge multiplet. This confirms our
conclusion that the string theory for our non-Abelian
vortex-string is of IIA type.

V. EXCITED STATE WITH j= − 1=2
Below we consider the supermultiplet structure of the

lowest massive states given by the vertex operators (3.21)
and (3.25). In this section we start with the first excited state
of the scalar vertex (3.21) with j ¼ −1=2 and m ¼ �3=2.
The mass of this state is

ðMj¼−1
2
;m¼�3=2Þ2
8πT

¼ 2; ð5:1Þ

see (3.24).

A. Action of supercharges

The left-moving part of the vertex operator in the (0)
picture is given by (4.14). For m ¼ 3=2 we obtain

Vð0Þ
−1
2
;3
2

ðpμÞ ¼
�
−ð2ψ − ψ̄Þ þ iffiffiffiffiffiffiffiffiffi

4πT
p pμψ

μ

�
eipμxμ−

ϕffiffi
2

p þi 3ffiffi
2

p Y:

ð5:2Þ

In much the same way as for the b state, the supercharge Q
acting on the vertex above gives 0 while the supercharge Q̄
produces the following fermion vertex in the picture ð− 1

2
Þ:

V̄
ð−1

2
Þ

_α ¼ hQ̄ _α; V
ð0Þ
−1
2
;m¼3

2

ðpμÞi ∼ e−
φ
2

�
−2S̄ _αS

þ ipμffiffiffiffiffiffiffiffiffi
4πT

p ðσ̄μÞ _ααSαS̄
�
ð∂−Y þ ψϕψYÞeipμxμ−

ϕffiffi
2

p þi
ffiffi
2

p
Y:

ð5:3Þ

Note that the momentumm along the compact dimension is

m ¼ 1

for this vertex. It is easy to check that the mass of this
fermion is given by (5.1).
In a similar manner, for m ¼ −3=2 we use the bosonic

vertex (5.2) with ψ → ψ̄ and m ¼ −3=2. Action of super-
charge Q gives the following fermion vertex:

Vα;ð−1
2
Þ ¼ hQα; Vð0Þ

−1
2
;m¼−1

2

ðpμÞi ∼ e−
φ
2

�
−2SαS̄

þ ipμffiffiffiffiffiffiffiffiffi
4πT

p ðσμÞα _αS̄ _αS

�
ð∂−Y þ ψϕψYÞeipμxμ−

ϕffiffi
2

p −i
ffiffi
2

p
Y;

ð5:4Þ

with m ¼ −1.
Now let us apply the supercharges to the fermion vertices

(5.3) and (5.4). Action of Q on (5.3) does not produce new
states, while Q̄ gives

hQ̄ _α; V̄
ð−1

2
Þ

_β
i ∼ ε _α _βV

S;excited
m¼1

2

; ð5:5Þ

where the new excited scalar vertex in the picture ð−1Þwith
m ¼ 1=2 has the form

VS;excited
m¼1

2

¼
�
−2∂2

−Y þ ipμffiffiffiffiffiffi
πT

p ψμψ̄∂−Y

�
e−φeipμxμ−

ϕffiffi
2

p þi Yffiffi
2

p
:

ð5:6Þ

The mass of this state is still given by (5.1). Action of
supercharge Q on the fermion vertex (5.4) produces the
conjugated scalar with m ¼ −1=2.

B. Building the massive vector supermultiplet

Now we can use the vertices obtained in the previous
subsection to construct supermultiplets at the level (5.1).
We have two scalar vertices with m ¼ �3=2 and
m ¼ �1=2, see the left-hand side of (3.21) and (5.6).
Using these vertices we can construct the scalar states in the
NS-NS sector. Namely, we have one complex scalar,
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VS;L
j¼−1

2
;m¼�3

2

× VS;R
j¼−1

2
;m¼∓3

2

; ð5:7Þ

formed by the m ¼ �3=2 vertices and one complex scalar,

VS;excited;L
j¼−1

2
;m¼�1

2

× VS;excited;R
j¼−1

2
;m¼∓1

2

; ð5:8Þ

formed by the m ¼ �1=2 vertices (5.6).
Moreover, we have also another two complex scalars,

VS;L
j¼−1

2
;m¼�3

2

× VS;excited;R
j¼−1

2
;m¼∓1

2

ð5:9Þ

and

VS;excited;L
j¼−1

2
;m¼�1

2

× VS;R
j¼−1

2
;m¼∓3

2

ð5:10Þ

formed by products of two different vertices. Altogether in
the NS-NS sector we observe four complex scalars.
In the R-R sector we have

Vexcited
_αα ¼ V̄L

_α × VR
α ; V̄excited

α _α ¼ VL
α × V̄R

_α ; ð5:11Þ

where now the fermion vertices are given by (5.3) and (5.4).
Expanding these vertices in the basis of σ matrices,

Vexcited
_αα ¼ ðσ̄μÞ _ααBμ þ ðσ̄μσνσ̄ρÞ _ααBμνρ; ð5:12Þ

we arrive at the complex vector field Bμ and the complex
3-form Bμνρ.
In four dimensions the massive 3-form is dual to a

massive scalar [52].12 Generically the rules of dualizing can
be summarized as follows [52]. In D dimensions massless
p-forms have

cpD−2 ¼
ðD − 2Þ!

p!ðD − 2 − pÞ! ð5:13Þ

physical d.o.f. Therefore, the rule of dualizing of the
massless p-form is

p → ðD − 2 − pÞ: ð5:14Þ
In particular, the 3-form in 4D has no d.o.f.
For the massive p forms we have

cpD−1 ¼
ðD − 1Þ!

p!ðD − 1 − pÞ! ð5:15Þ

physical d.o.f. The rule of dualizing now becomes

p → ðD − 1 − pÞ: ð5:16Þ

Thus the massive 3-form in 4D is dual to a massive
scalar. Explicitly the duality relation can be written as
[52,53]

Bμνρ ∼ εμνρλ∂λc: ð5:17Þ

We conclude in the R-R sector we obtained one complex
scalar c and the complex vector Bμ. Altogether the bosonic
part of the supermultiplet with mass (5.1) contains five
scalars and a vector, all complex. This is exactly the
bosonic content of two real N ¼ 2 long massive vector
multiplets, each containing five scalars and a vector; see
Appendix B,

ðN ¼ 2Þvector ¼ 1vector þ 5scalar: ð5:18Þ

Let us note that the N ¼ 2 massive vector multiplet can
be realized as a result of Higgsing of aUð1Þmassless gauge
multiplet containing gauge field and a complex scalar (two
real scalars) by VEVs of a hypermultiplet that contains four
real scalars. After Higgsing, one scalar is “eaten” by the
Higgs mechanism, so we are left with massive vector field
and five scalars. The number of d.o.f. in this massive
N ¼ 2 long vector multiplet is 8 ¼ 3þ 5, where 3 comes
from the massive vector.
Summarizing this section we present 4D R charges of the

vector multiplet components. Because of cancellation of
the R charges of the left and right-moving sectors, the Rð4Þ
charges of the R-R states (5.11) and two scalars (5.7), (5.8)
of the NS-NS sector vanish; see (4.13). The R-charges of
two scalars (5.9) and (5.10) are nonzero, Rð4Þ ¼ �2. These
are exactly the R-charges of a massive N ¼ 2 vector
multiplet. This can be easily understood in terms of
Higgsing of the massless gauge multiplet by hypermultiplet
VEVs. The gauge field and scalars from the hypermultiplet
have the zero R charge while the R charges of two
scalar superpartners of the gauge field in the massless
vector multiplet are indeed characterized by Rð4Þ ¼ �2;
cf. Sec. IV D.

VI. THE LOWEST j= − 1 MULTIPLET

In this section we consider the lowest spin-2 super-
multiplet produced by the vertex operator (3.25). The mass
of the state with j ¼ −1 and m ¼ �1 is

ðMj¼−1;m¼�1Þ2
8πT

¼ 1; ð6:1Þ

see (3.27).
We see below that the spin-2 state (3.25) is the highest

component of this supermultiplet. To simplify our discus-
sion it is easier to start from a scalar component of this
supermultiplet replacing the world-sheet fermions ψL;R

μ by

12We did not include the 3-form in the expansion (4.24)
because in the massless case it contains no physical d.o.f.; see
below.
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ψL;R
ϕ and ψL;R

Y . Thus, in the left-moving sector we start from
the scalar vertex, which, in the picture ð−1Þ, has the form

Vð−1Þ
j¼−1;m¼1 ¼ ψe−φeipμxμ−

ffiffi
2

p
ϕþi

ffiffi
2

p
mY; ð6:2Þ

where we skip the superscripts L, while ψ is given by (4.2)
and m ¼ 1. For m ¼ −1 we use a similar vertex with
replacement ψ → ψ̄ . The conformal dimension of this
vertex is the same as that of the vertex in (3.25), so we
have a scalar state with mass (6.1).

A. Action of supercharges

To convert this vertex operator into the picture (0) we use
the BRSToperator; see Appendix A. Then in the picture (0)
we have

Vð0Þ
j¼−1;m¼1 ¼

�
1ffiffiffi
2

p ð∂−ϕ − i∂−YÞ þ
ipμffiffiffiffiffiffiffiffiffi
4πT

p ψμψ

�

× e−φeipμxμ−
ffiffi
2

p
ϕþi

ffiffi
2

p
mY ð6:3Þ

for m ¼ 1 and a similar vertex with ψ → ψ̄ for m ¼ −1.
Now, let us apply the supercharges to generate the

fermion vertices.Q acts trivially on (6.3), while Q̄ produces
the following fermion vertex in the picture ð−1=2Þ:

V̄
ð−1

2
Þ

_α ¼ hQ̄ _α; V
ð0Þ
−1;m¼1ðpμÞi ∼ e−

φ
2

�
S̄ _αS̄

þ pμffiffiffiffiffiffiffiffiffi
4πT

p ðσ̄μÞ _ααSαS
�
ð∂−Y þ ψϕψYÞeipμxμ−

ffiffi
2

p
ϕþi Yffiffi

2
p
:

ð6:4Þ

This fermion vertex has m ¼ 1=2.
In a similar manner applying superchargeQ to the scalar

vertex Vð0Þ
j¼−1;m¼−1 we get a fermion vertex withm ¼ −1=2,

ðVαÞð−1
2
Þ ¼ hQα;Vð0Þ

−1;m¼−1ðpμÞi∼e−
φ
2

�
SαS

þ pμffiffiffiffiffiffiffiffiffi
4πT

p ðσμÞα _αS̄ _αS̄

�
ð∂−YþψϕψYÞeipμxμ−

ffiffi
2

p
ϕ−i Yffiffi

2
p
:

ð6:5Þ

In order to generate new bosonic vertex operators with the
same mass (6.1) we apply supercharges to the fermion
vertices above. Supercharge Q acting on (6.4) gives the
following bosonic vertices in the picture ð−1Þ:

hQα; V̄ _αi ∼ σα _αμ

�
ψμ þ pμffiffiffiffiffiffiffiffiffi

4πT
p ψ

�
e−φeipμxμ−

ffiffi
2

p
ϕþi

ffiffi
2

p
Y

¼ σα _αμ

�
Vμ
j¼−1;m¼1 þ

pμffiffiffiffiffiffiffiffiffi
4πT

p Vð−1Þ
j¼−1;m¼1

�
; ð6:6Þ

where Vð−1Þ
j¼−1;m¼1 is the scalar vertex (6.2), while

Vμ
j¼−1;m¼1 ¼ ψμe−φeipμxμ−

ffiffi
2

p
ϕþi

ffiffi
2

p
mY ð6:7Þ

is a new vector vertex operator withm ¼ 1. We recognize it
as a left-moving part of the spin-2 vertex (3.25). As was
mentioned above, we obtained it by applying the super-
charges to the scalar vertex (6.2). In a similar way we can
generate the complex-conjugated vector Vμ

j¼−1;m¼−1 with
m ¼ −1 if we apply the supercharge Q̄ to the fermion
vertex (6.5).
We can also apply the supercharge Q̄ to the fermion

vertex (6.4). This gives

hQ _α; V̄ _βi ∼ δ _α_βVj¼−1;m¼0; ð6:8Þ

where

Vð−1Þ
j¼−1;m¼0 ¼

�
ψ̄ þ pμffiffiffiffiffiffiffiffiffi

4πT
p ψμ

�
∂−Ye−φeipμxμ−

ffiffi
2

p
ϕ ð6:9Þ

is a new scalar vertex withm ¼ 0 and mass (6.1). Similarly,
the action ofQ on the fermion vertex (6.5) gives a complex-
conjugated scalar vertex with the replacement ψ̄ → ψ .
Finally, instead of the scalar vertex (6.2) we can start

from another scalar vertex,

Ṽð−1Þ
j¼−1;m¼1 ¼ ψ̄e−φeipμxμ−

ffiffi
2

p
ϕþi

ffiffi
2

p
mY: ð6:10Þ

Note that this vertex is different from the one complex
conjugated to (6.2) because here we take m ¼ 1. The
conjugated to (6.10) expression is obtained by replacing
ψ̄ → ψ and taking m ¼ −1.
Following the same steps as above in the case of the

vertex (6.2) one can show that the action of supercharges on
the scalar vertex (6.10) produces the same states that we
already obtained from (6.2).
Summarizing, in the bosonic left-moving sector for the

j ¼ −1multiplet we find a complex vector vertex (6.7) and
three complex scalar vertices,

Vð−1Þ
j¼−1;m¼�1; Ṽð−1Þ

j¼−1;m¼�1; Vð−1Þ
j¼−1;m¼0; ð6:11Þ

given by (6.2), (6.10), and (6.9), respectively.

B. Building the spin-2 multiplet

Now we use bosonic and fermionic vertex operators
from the previous subsection to construct the supermultip-
let with j ¼ −1 and mass (6.1). Let us start with the R-R
sector. In much the same way as for the excited state in
Sec. V B we arrive at
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Vj¼−1
_αα ¼ V̄L

_α

�
m ¼ 1

2

�
× VR

α

�
m ¼ −

1

2

�
;

V̄j¼−1
α _α ¼ VL

α

�
m ¼ −

1

2

�
× V̄R

_α

�
m ¼ 1

2

�
; ð6:12Þ

where the fermion vertices are given by (6.4) and (6.5).
Expanding Vj¼−1

_αα and V̄j¼−1
α _α as in (5.12) we get a complex

vector and a complex 3-form. As was discussed in
Sec. V B, the massive 3-form dualizes into a massive
scalar. Thus in the R-R sector we get one complex vector
and one complex scalar.
Now we pass to the NS-NS sector. The scalar vertices

(6.11) give 3 × 3 ¼ 9 scalars of the form

VL
i ðm ≥ 0Þ × VR

j ðm ≤ 0Þ; ð6:13Þ

where ViðmÞ, i ¼ 1, 2, 3, are given by (6.2), (6.10), and
(6.9), respectively. Changing the sign of m together with
the replacement ψ → ψ̄ gives nine complex-conjugated
scalars in addition to those in (6.13).
Combining the vector vertex (6.7) with three scalar

vertices (6.11) provides us with six vectors of the form

ðVμ
j¼−1;m¼1ÞL × VR

j ðm ≤ 0Þ;
VL
i ðm ≥ 0Þ × ðVμ

j¼−1;m¼−1ÞR; i ¼ 1; 2; 3: ð6:14Þ

Again changing the sign ofm together with the replacement
ψ → ψ̄ gives six complex-conjugated vectors to those.
Finally we can combine two vector vertices (6.7) to

produce a tensor,

ðVμ
j¼−1;m¼1ÞL × ðVν

j¼−1;m¼−1ÞR: ð6:15Þ
Changing the sign ofm gives a complex-conjugated tensor.
In 4D a massive vector has ðD − 1Þ ¼ 3 physical d.o.f.
Therefore for the tensor state (6.15) we get

3× 3¼ 9¼ 5þ 3þ 1⇒ 1spin-2þ 1vectorþ 1scalar ð6:16Þ

massive d.o.f., where we show the expansion of the massive
tensor into irreducible representations of SOðD − 1 ¼ 3Þ.
Thus, from the complex tensor (6.15) we obtain one spin-2
state, one vector, and one scalar, all of them complex.
Combining all bosonic states together we get

1spin-2 þ 8vector þ 11scalar; ð6:17Þ

where we show the numbers of states with the given spin.
How do they split into 4D N ¼ 2 supermultiplets? The

long N ¼ 2 spin-2 multiplet contains [54]

ðN ¼ 2Þspin-2 ¼ 1spin-2 þ 6vector þ 1scalar ð6:18Þ

bosonic spin states while the long N ¼ 2 vector multiplet
has

ðN ¼ 2Þvector ¼ 1vector þ 5scalar ð6:19Þ

bosonic spin states; see Appendix B and Eq. (5.18).
We conclude that j ¼ −1 states with mass (6.1) form

ðj ¼ −1Þstates ¼ 1 × ðN ¼ 2Þspin-2 þ 2 × ðN ¼ 2Þvector
ð6:20Þ

(one spin-2 and two vector) N ¼ 2 long (non-BPS) super-
multiplets, all complex.

VII. REGGE TRAJECTORIES

In this section we show that all states we discussed in this
paper (shown in Fig. 2) are the lowest states of the
corresponding linear Regge trajectories. To construct these
Regge trajectories we multiply the vertex operators (3.21)
or (3.25) by derivatives of flat 4D coordinates. For example,
for the scalar vertices (3.21) we construct a family of
vertices

Yn
i¼1

∂−xμi∂þxνie−φL−φReipμxμVS;L
j¼−1

2
;m
× VS;R

j¼−1
2
;−m; ð7:1Þ

where n is n ¼ 0; 1; 2;…. The hadronic states associated
with these vertices have at most spin 2n. Their mass is

ðMj¼−1
2
;mÞ2

8πT
¼ m2 −

1

4
þ n; n ¼ 0; 1; 2;… ð7:2Þ

We see that mass squared for these states depends linearly
on the spin. This linear Regge dependence appears because
we use the flat 4D part of the string σ model to construct the
Regge trajectories.
A similar construction can be developed for vertices

(3.25). Masses of these states are

ðMj¼−1;mÞ2
8πT

¼ m2 þ n; n ¼ 0; 1; 2;… ð7:3Þ

We have the same linear dependence with the same slope.

VIII. CONCLUSIONS

In [2] we observed that a vortex string supported in
N ¼ 2 SQCD is critical provided the following conditions
are met:

(i) The gauge group of the model considered is U(2).
(ii) The number of flavor hypermultiplets is Nf ¼

2N ¼ 4.
The 4D theory under consideration is not conformal

because of the Fayet-Iliopoulos parameter ξ ≠ 0. However,
the gauge coupling β function vanishes; the Fayet-
Iliopoulos parameter does not run either.
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In addition to four translational zero modes this string
exhibits three orientational and three size zero modes. Their
geometry is described by a noncompact six-dimensional
Calabi-Yau manifold, the so-called resolved conifold Y6.
The target space takes the form R4 × Y6. The emergence of
six extra zero modes on the string under consideration
makes the target-space model conformal; the overall
Virasoro central charge (including the ghost contribution)
vanishes. Thus, this string is critical. The phenomenon we
observed could be called a reverse holography.
The next question that was natural to address was the

quantization of this closed critical string and the derivation
of the hadronic spectrum. The present paper completes the
work started in [1,18,19]. We calculated the masses of the
massive spin-0 and spin-2 states and constructed the 4D
supermultiplets to which they belong. Our formulas match
the previous result for the massless states.
The massive supermultiplets are shown to be long (non-

BPS saturated). We also prove that the above states are the
lowest states on the corresponding Regge trajectories,
which are linear and parallel.
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APPENDIX A: BRST OPERATOR AND
VERTICES IN THE PICTURE (0)

To convert the vertex operator in the picture ð−1Þ into
picture (0) we use the BRST operator as follows [55]:

Vð0Þ ¼ hQBRST; ζVð−1Þi; ðA1Þ
where

QBRST ¼
1

2πi

Z
dz

�
cTmþ γGmþ1

2
ðcTghþ γGghÞ

�
: ðA2Þ

Here c and γ are the ghosts of fermionic ðb; cÞ and bosonic
ðβ; γÞ systems, respectively, while Tm, Gm and Tgh, Ggh are
the energy momentum tensor and the supercurrent for
matter and ghosts. Below we need the explicit expression
for the matter supercurrent,

Gm ¼ iðψμ∂−xμ þ ψϕ∂−ϕþ ψY∂−YÞ: ðA3Þ

The ghost system ðβ; γÞ can be expressed in terms of
fermions η, ζ,

γ ¼ eφη; β ¼ e−φ∂−ζ; ðA4Þ

where the propagator of η, ζ is normalized as

hηðzÞ; ζð0Þi ¼ 1

z
: ðA5Þ

To convert the left-moving part of the scalar vertex (3.21)
in the picture ð−1Þ into the picture (0) we use the rule (A1).
We arrive at the expression (4.14) with the help of (A3).
Similarly, for the j ¼ −1 vertex (6.2) we again use (A3)

to obtain the vertex operator (6.3) in the picture (0).

APPENDIX B: LONG N = 2 VECTOR AND SPIN-2
MULTIPLETS IN 4D

In this appendix we briefly review construction of
N ¼ 2 long massive supermultiplets in four dimensions.
For massive states in the rest frame supersymmetry gen-
erators Qαf and Q̄f _α can be viewed as annihilation and
creation operators, where f ¼ 1, 2 is the index of two
N ¼ 1 supersymmetries that constitute N ¼ 2. Assuming
that the annihilation operators Qαf produce 0 upon acting
on a “ground state” jai we can generate all states of a given
supermultiplet applying to jai the creation operators Q̄f _α.
For simplicity we consider only the bosonic states in a

multiplet. Assuming that jai is a bosonic state we have six
possibilities,

fQ̄1_1Q̄2_1; Q̄1_1Q̄1_2; Q̄1_1Q̄2_2; Q̄2_1Q̄1_2; Q̄2_1Q̄2_2; Q̄1_2Q̄2_2g× jai
ðB1Þ

at level 2 and only one possibility,

Q̄1_1Q̄2_1Q̄1_2Q̄2_2 × jai; ðB2Þ

at level 4.
First let us construct the long N ¼ 2 massive vector

supermultiplet. In this case we choose jai to be a scalar

TABLE I. Structure of the vector multiplet. We show the
numbers of states with the given Jz produced by the action of
supercharges at each level and their sum.

Jz Level 0 Level 2 Level 4 Sum

1 0 1 0 1
0 1 4 1 6
−1 0 1 0 1

TABLE II. Spin-2 multiplet.

Jz Level 0 Level 2 Level 4 Sum

2 0 1 0 1
1 1 4þ 1 ¼ 5 1 7
0 1 4þ 1þ 1 ¼ 6 1 8
−1 1 4þ 1 ¼ 5 1 7
−2 0 1 0 1
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with spin J ¼ 0. The construction is shown in Table I
where Jz is the z-projection of spin and level 0 denotes the
state jai itself. Here we used the fact that, say, in Eq. (B1)
the product Q̄1_1Q̄2_1 acting on jai increases Jz by 1, four
product operators of the type Q̄f _1Q̄g_2 ðf; g ¼ 1; 2Þ do not
change Jz, while the product Q̄1_2Q̄2_2 reduces Jz by 1.
Overall we observe one state with Jz ¼ 1, one state with

Jz ¼ −1, and 6 states with Jz ¼ 0. This gives the decom-
position (5.18).

Now let us pass to the spin-2 supermultiplet. To this end
we take jai to be a vector state with spin J ¼ 1. The
resulting structure is shown in Table II. Here, say, 4þ 1þ
1 ¼ 6 means that at level 2 four states are generated from
the state at level 0 in the same row, while two other states
come from states at level 0 in the upper or the lower
neighboring rows. The last column gives decomposi-
tion (6.18).
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