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We calculate the entropy and the temperature dependent part of the free energy for a free standing plane
plasma sheet and for the a free standing plane slab of finite thickness with dispersion described by the
plasma model. In case the plasma sheet describes a charged fluid, the entropy is positive. In case it describes
a polarizable dipole sheet, the entropy takes negative values in a certain parameter region. Negative entropy
is also observed for the slab, however with the reservation that the contribution from the surface plasmons
was not accounted for.
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I. INTRODUCTION

There is a recent interest in calculation of free energy and
entropy in Casimir-effect like configurations. As for the
free energy, it is its contribution to the stability of thin films,
which was recently investigated in [1] and [2]. However,
there only the thickness dependent part was calculated, for
which one can use the well-known Lifshitz formula. As for
the entropy, recently the question on the sign of the entropy
for a free standing flat plasma sheet [3] and sphere [4] were
raised. The point is that negative entropies were repeatedly
reported for Casimir-like situation, first in [5], later in [6]
and [7], where however only the thickness dependent parts
were considered. The present paper is also motivated by
[3], where free energy and entropy of a flat plasma sheet
were calculated. The complete entropy for a plasma sphere
was recently calculated in [8] and regions where it takes
negative values were found.
In view of these developments we see an interest to

calculate the free energy and the entropy for single sheets.
The first candidate is a plasma sheet which was investigated
quite in detail in [9] and, as concerns its spectral properties,
in [10]. This model has a relation to 2d electron gas [11]. It
is very simple and allows for quite explicit formulas. The
next candidate is a plane dielectric slab of finite thickness. It
is one of the basic models for the Casimir effect (for details
see [12]). For this configuration the thickness dependent
part of the free energy was recently investigated in [1] and
[2] using the Lifshitz formula.
In general, there are two ways to calculate the free

energy. One is the use of the Matsubara representation and
the other uses the representation in terms of real frequencies
involving the Boltzmann factor. The relation between
them is described, e.g., in Sec. 12.1.2 in [12]. The zero

temperature part of the free energy, i.e., the vacuum energy,
is typically accompanied by ultraviolet divergencies. Their
treatment is by now well known, but still somehow
annoying. A fundamental advantage of the Lifshitz formula
as describing only the thickness dependent part of the
vacuum and free energies is that it is free of ultraviolet
divergences. The same holds true for the temperature
dependent part of the free energy and for the entropy, as
defined by the temperature derivative from the free energy.
Therefore, especially the calculation of the entropy does
not need for any regularization and no related ambiguities
should occur. We mention that the Matsubara representa-
tion of the free energy includes the vacuum energy and
therefore also the ultraviolet divergencies. In this case one
has to start with a regularization which one has to get rid of
at the end. A convenient way to do that is to use the Abel-
Plana formula for transforming the sum over the Matsubara
frequencies into an integration over real frequencies. In
doing so, the vacuum energy separates and one is left with
convergent expressions. In the present paper we use this
method. We calculate the temperature dependent part of the
free energy and the entropy for the two mentioned models.
Throughout the paper we use units with kB ¼ ℏ ¼ c ¼ 1.

We use the notation “TX” in case a formula is valid for both,
“TE” and “TM” polarizations.

II. BASIC FORMULAS

In this section we introduce our basic formulas and the
models considered. Almost all formulas can be found in
literature, but we collect them to make the present paper
largely self-contained.

A. Free energy and entropy

We start with Eq. (5.15) in [12] for the free energy of a
system with eigenfrequencies ωJ,
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F ¼ T
2

X∞
l¼−∞

X
J

ln ðξ2l þ ω2
JÞ; ð1Þ

which represents the free energy at temperature T as it can
be derived, e.g., from the corresponding functional integral
and where ξl ¼ 2πTl are the Matsubara frequencies. This
expression has ultraviolet divergences and can be regular-
ized in the following way,

F ¼ −
∂
∂s

Tμ2s

2

X∞
l¼−∞

X
J

ðξ2l þ ω2
JÞ−sjs¼0

; ð2Þ

where μ is an arbitrary parameter having dimension of mass
which can be introduced along with the regularization. Next
we transform the sum over the Matsubara frequencies into
an integration using the Abel-Plana formula and get with

F ¼ E0ðsÞ þ ΔTF ð3Þ

the free energy split into its zero temperature part (vacuum
energy),

E0ðsÞ ¼ −
∂
∂s

μ2s

2

Z
∞

0

dξ
π

X
J

ðξ2 þ ω2
JÞ−sjs¼0

ð4Þ

and the temperature dependent part

ΔTF ¼ −
∂
∂s
X
J

1

π

Z
γ

dω

eω=T − 1
iððω2

J − ðω − i0Þ2Þ−s

− ðω2
J − ðωþ i0Þ2Þ−sÞ; ð5Þ

where the patch γ encircles the positive real half axis. This
path can be tightened to the axis,

ΔTF ¼ −
∂
∂s
X
J

1

π

Z
∞

ωJ

dω

eω=T − 1
2 sinðπsÞð−ω2

J þ ω2Þ−s:

ð6Þ

Since this integral is obviously converging we may carry
out the derivative and put s ¼ 0,

ΔTF ¼
X
J

Z
∞

ωJ

dω

eω=T − 1
; ð7Þ

and finally carry out the integration,

ΔTF ¼
X
J

T ln ð1 − e−ωJ=TÞ: ð8Þ

We arrived, for a fixed J, at the well known formula for the
free energy of a single bosonic harmonic oscillator.
We proceed by assuming that we have two transla-

tional invariant directions parallel to the sheet with two

dimensional momentum k ¼ ðk1; k2Þ (k ¼ jkj) and a one
dimensional scattering setup in the direction perpendicular
to the plane. In that case the eigenfrequencies are

ωJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

J

q
; ð9Þ

where the pJ result from a one dimensional scattering
setup, e.g., like the one considered in [13]. Dropping the
empty space contribution, the sum in (8) can be trans-
formed into

ΔTF ¼
Z

dk
ð2πÞ

�
T lnð1 − e−ωsfðkÞ=TÞ

þ
Z

∞

0

dp
π

T lnð1 − e−ω=TÞ ∂
∂p δðpÞ

�
; ð10Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

p
and where ωsfðkÞ is the frequency of

the surface mode which is present in the TM-polarization.
Further in (10), δðpÞ is the scattering phase shift. It can be
expressed by

δðpÞ ¼ 1

2i
ln

tðpÞ
tðpÞ� ð11Þ

in terms of the transmission coefficient tðpÞ and its
complex conjugate. We mention that ∂

∂p δðpÞ has also the
meaning of the density of states.
The entropy S can be obtained from the free energy by

the thermodynamic formula

S ¼ −
∂
∂T F ¼

Z
dk
ð2πÞ

�
g

�
ωsfðkÞ

T

�

þ
Z

∞

0

dp
π

g

�
ω

T

� ∂
∂p δðpÞ

�
; ð12Þ

where we introduced the notation

gðxÞ ¼ x
ex − 1

− ln ð1 − e−xÞ ð13Þ

which in (12) carries the temperature dependence. We
mention that this function and the logarithm in (10) are
exponentially decreasing for large argument which makes
the temperature dependent part of the free energy and the
entropy free of ultraviolet divergences.
Expressions (10) for the free energy and (12) for the

entropy are yet not the final ones. The reason is in their
behavior at high temperature. As well known [14], see also
[12], Eq. (5.51), for T → ∞ the expansion

F ¼ −
ζð3Þa1

2

4π3=2
ðkBTÞ3
ðℏcÞ2 −

a1
24

ðkBTÞ2
ℏc

−
a3

2

ð4πÞ3=2 kBT lnðkBTÞ

þOðT lnTÞ: ð14Þ
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holds, where the ak are the heat kernel coefficients. These
are well known, especially in the calculation of vacuum
energy (for reviews see [15] and [16]) and describe the
ultraviolet divergencies of the vacuum energy. For the
model considered in this paper the coefficients entering
(14) are nonzero. For example, for the plasma sheet these
were calculated in [10] [Eqs. (4.14) and (4.28)]. The
contribution with the coefficient a0 results from the empty
space (it describes the black body radiation) and is not
present in our formulas after we dropped the empty space
contribution in formula (10).
In (14) we restored for a moment the dependence on kB,

ℏ and c (usually ℏ is included in the coefficients) in order to
demonstrate that the contributions displayed there are
unphysical because of the inverse powers of ℏ (see also
the discussion in Sec. 5.1 in [12]). These contributions must
be subtracted. Such subtraction may be considered as part
of the ultraviolet renormalization which is needed for the
zero temperature part of the free energy, i.e., for the vacuum
energy, anyway. As known, the contributions form the
coefficients ak with k ≤ 2 must be subtracted. The renorm-
alization procedure allows for a freedom of a finite
renormalization with the same set of heat kernel coeffi-
cients. Frequently, this freedom is fixed by a normalization
condition. We use this freedom to subtract the contributions
growing in T which are shown in (14) and have ℏ in their
denominators. This way we make sure that after subtraction
the free energy tends for T → ∞ to the classical limit which
is linear in T, including possibly terms proportional to
T lnðTÞ. This way, the classical limit may be considered as
a kind of normalization condition. Thus we define

F high ¼ ðkBTÞ3
ðℏcÞ2 a1

2
þ ðkBTÞ2

ℏc
a1;

Shigh ¼ −3kB
ðkBTÞ2
ðℏcÞ2 a1

2
− 2kB

kBT
ℏc

a1; ð15Þ

as high temperature parts and consider the differences

F subtr ¼ F − F high; Ssubtr ¼ S − Shigh; ð16Þ
as the physical free energy and entropy of the considered
systems.

B. Models for flat sheets

1. Thin plasma sheet

First we consider an infinitely thin sheet with in-plane
polarizability. It can be thought as a two dimensional
distribution of oscillators allowed to vibrate in the plane. In
[17] it was called a monoatomically thin insulator polar-
izable perpendicularly. It is characterized by a frequency
dependent plasma frequency

Ω ¼ Ω0

ω2

ω2 − ω2
0 þ i0

ð17Þ

where

Ω0 ¼
4πe2ρ
m

ð18Þ

is a plasma frequency. Here e is the charge and m is the
mass of the oscillators which are present with a two
dimensional density ρ. We call Ω0 plasma frequency since
for ω0 ¼ 0 we get a model for a charged fluid in the sheet.
For more details we refer to [9], where Ω0 is called q. We
mention that the fluid needs for a immovable homogenous
neutralizing background to avoid Coulomb interaction.
The dipoles as well as the fluid have a nonrelativistic

dynamics and the usual coupling to the electromagnetic
field. The resulting Maxwell equations remain unchanged
outside the sheet, but are supplemented by matching con-
ditions across the sheet. The details can be found in [9] and
[17]. For ω0 ¼ 0 this model is also called hydrodynamic
model and mimics to some extend the interaction of the
electromagnetic field with the π-electrons in graphene,
whereby it must be mentioned that the Dirac model gives
a much more accurate description as it was shown in [18].
The scattering setup in direction perpendicular to the

sheet results in transmission coefficients

tTE ¼ ð1þQTEÞ−1 with QTE ¼ iΩ
p

;

tTM ¼ ð1þQTMÞ−1 with QTM ¼ iΩp
ω2

; ð19Þ

for the two polarizations of the electromagnetic field. The
momenta are k in direction parallel to the sheet and p in
perpendicular direction. The dispersion relation is as usual,

ω2 ¼ k2 þ p2: ð20Þ
The related by (11) phase shifts are

δTE ¼ − arctan
Ω
p
; δTM ¼ −

π

2
þ arctan

ω2

Ωp
: ð21Þ

with Ω is defined in (17). We mention that the phases (21)
are written in a way that the arctangents do not leave the
interval ½π

2
; π
2
�.

The spectrum of the electromagnetic field consists of
photonic (scattering) modes having real ω and p and, for
the TM polarization, of surface modes having imaginary
momentum, p ¼ iη. The wave functions of these modes
decrease exponentially in direction perpendicular to the
sheet. The frequency ωsfðkÞ of this mode is determined by
the pole of the transmission coefficient, i.e., it is solution of
the equation 1þQTM ¼ 0. With (19) the equation can be
written in the form

ω ¼ Ωffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
k

Ω=2

�
2

s
− 1

vuut ; ð22Þ
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where for ω0 ≠ 0 the frequency ω is implicit in the right
side by virtue of (17). We mention that the role of the
surface modes in the Casimir effect was investigated in [19]
and in [20].

2. Dielectric slab with plasma model

In this model we consider a slab of finite thickness L and
permittivity given by the so-called “plasma model,”

εðωÞ ¼ 1 −
ωp

2

ω2 þ i0
; ð23Þ

where ωp is the plasma frequency of the model. Also in this
case a electron fluid is considered, now three dimensional,
filling the slab, with the usual coupling to the electromag-
netic field. In this case the Maxwell equations result in
dispersion relations

ω2 ¼ k2 þ p2; outside the slab;

εðωÞω2 ¼ k2 þ q2; inside the slab; ð24Þ

and the well known matching conditions on the surfaces of
the slab. The corresponding transmission coefficients read

tTE ¼ 4pqe−ipL

ðpþ qÞ2e−iqL − ðp − qÞ2eiqL ;

tTM ¼ 4εðωÞpqe−ipL
ðεðωÞpþ qÞ2e−iqL − ðεðωÞp − qÞ2eiqL : ð25Þ

The corresponding scattering phase shifts can be derived
using (11). However, these are not very useful for the
numerical calculations in Sec. III and we do not write them
down here.
Also in this model there are surface plasmons in the TM

polarization, having now both imaginary, p ¼ iη and
q ¼ iγ. Writing the dispersion relation (24) with permit-
tivity (23) in the form

ω2 ¼ ωp
2 þ k2 þ q2; ð26Þ

we see that with imaginary q and p still one can have real
frequency ω. The frequency ωsfðkÞ of the plasmon is as
before defined by the pole of the transmission coefficient
and it is solution of the transcendent equation

cothðγLÞ ¼ εðωÞ2η2 þ γ2

2εðωÞηγ : ð27Þ

We mention the solution for large L, which is at once the
plasmon traveling on a single surface,

ωsingle
sf ðkÞ ¼ ωpffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
k

ωp=
ffiffiffi
2

p
�

2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k

ωp=
ffiffiffi
2

p
�

4

þ 1

svuut ;

ð28Þ
and we mention the bound

ωsfðkÞ ≤
ωpffiffiffi
2

p : ð29Þ

For a more detailed discussion we refer to the end of Sec. II
in [21], where also the wave guide modes were discussed
which are, however, not present in the geometry used in the
present paper.

III. FREE ENERGY AND ENTROPY

In this section we calculate the temperature dependent
part of the free energy (10) and the entropy (12).

A. Plasma model

We start with the plasma model and consider Eq. (10) for
the free energy, whereby we disregard for the moment the
contribution from the surface plasmon. We need the
derivatives of the phase shifts (21) with account for (17),

∂
∂p δTE ¼ Ω0ðk4 − k2ðω2

0 − 2p2Þ þ p2ðω2
0 þ p2ÞÞ

k4Ω2
0 þ ððk2 − ω2

0Þ2 þ 2k2Ω2
0Þp2 þ ð2k2 − 2ω2

0 þΩ2
0Þp4 þ p6

;

∂
∂p δTM ¼ Ω0ðω2

0 þ p2 − k2Þ
ðk2 − ω2

0Þ2 þ ð2k2 − 2ω2
0 þ Ω2

0Þp2 þ p4
: ð30Þ

Here, with (17), ℑðωÞ > 0 is assumed.
In the integrations over k and p, which form a half R3, it is meaningful to change for spherical coordinates p ¼ εω,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
ω, where we used ε ¼ cosðθÞ ∈ ½0; 1�. We get

ΔTFTX ¼ T
2π2

Z
∞

0

dω ω2 ln ð1 − e−ω=TÞhTXðωÞ ð31Þ

with

hTXðωÞ ¼
Z

1

0

dε δ0TXðωÞ: ð32Þ
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For the two polarizations we insert the corresponding expressions. The integrations can be carried out explicitly,

hTEðωÞ ¼
2ωðω2 − ω2

0Þω2
0Ω0 þ ððω2 − ω2

0Þ2 − 2ω2ω2
0Ω2

0Þarccotð ωΩ0

ω2−ω2
0

Þ
ωðω2 − ω2

0Þ2
;

hTMðωÞ ¼
2ωΩ0 − ð2ω2 − 2ω2

0 þ Ω2
0Þarccotð ωΩ0

ω2−ω2
0

Þ
ωΩ2

0

: ð33Þ

Inserting (33) into (10), the temperature dependent part of the
free energy appears represented by a single integration. We
consider its behavior at high temperature. For this to do we
make the substitution ω → ωT,

ΔTF ¼ T4

2π2

Z
∞

0

dωω2 ln ð1 − e−ωÞhTXðωTÞ: ð34Þ

Using the expansions for large argument,

hTEðωÞ ¼
π

2ω
−
Ω0

ω2
…; hTMðωÞ ¼ −

Ω0

3ω2
þ…; ð35Þ

we obtain for T → ∞

ΔTFTE ¼ −
T3ζð3Þ
4π

þ Ω0T2

12
þOðT lnðTÞÞ;

ΔTFTM ¼ Ω0T2

36
þOðT lnðTÞÞ: ð36Þ

These are contributions growing faster than the first power in
temperature and must be subtracted according to the dis-
cussion in Sec. II. That can be achieved by the following
subtractions in hTX,

hsubtrTE ðωÞ ¼ hTEðωÞ −
π

2ω
þ Ω0

ω2
;

hsubtrTM ðωÞ ¼ hTMðωÞ þ
Ω0

3ω2
: ð37Þ

With these functions, the subtracted free energy becomes

ΔTFsubtr
TX ¼ T

2π2

Z
∞

0

dωω2 ln ð1 − e−ω=TÞhsubtrTX ðωÞ ð38Þ

and the subtracted entropy becomes

SsubtrTX ¼ 1

2π2

Z
∞

0

dωω2g
�
ω

T

�
hsubtrTX ðωÞ ð39Þ

with the function gðxÞ defined in (13). Further we have to
consider the contribution from the surface plasmon. The
solution of the defining equation (22) is

ωsfðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 −

1

2
Ω2

0 þ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

0 þ
1

4
Ω2

0

rs
ð40Þ

and it is real for ω0 > 0. Its contribution to the free energy
reads

ΔTF sf ¼
T
2π

Z
∞

ω0

dk k ln ð1 − e−ωsfðkÞ=TÞ: ð41Þ

Changing variables from k to ω we arrive at

ΔTF sf ¼
T
2π

Z
∞

maxð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0
−Ω2

0
=2

p
Þ
dωω

�
1 −

2ω2
0

Ω2
0

þ 2ω2

Ω2
0

�

× ln ð1 − e−ω=TÞ: ð42Þ

For ω0 > Ω0=
ffiffiffi
2

p
the integration can be rewritten asR

∞
0 −

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0
−Ω2

0
=2

p
0 . The integration in the first integral can

be carried out explicitly,

ΔTF sf ¼ −
�
1 −

2ω2
0

Ω2
0

�
T3ζð3Þ
2π

−
6T5ζð5Þ
πΩ2

0

− Θ
�
ω0 −

Ω0ffiffiffi
2

p
�

T
2π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0
−Ω2

0
=2

p

0

dωω

×

�
1 −

2ω2
0

Ω2
0

þ 2ω2

Ω2
0

�
ln ð1 − e−ω=TÞ; ð43Þ

where the step function indicates that the second contribution
is present for ω0 > Ω0=2 only.
The first two contributions, which are powers of T, must

be subtracted in accordance with (16) and from (43) the
integral contribution,

ΔTF subtr
sf ¼ −Θ

�
ω0 −

Ω0ffiffiffi
2

p
�

T
2π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0
−Ω2

0
=2

p

0

dωω

×

�
1 −

2ω2
0

Ω2
0

þ 2ω2

Ω2
0

�
ln ð1 − e−ω=TÞ; ð44Þ

remains. With (12) we get accordingly for the entropy
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Ssubtrsf ¼ −Θ
�
ω0 −

Ω0ffiffiffi
2

p
�

1

2π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0
−Ω2

0
=2

p

0

dωω

×
�
1 −

2ω2
0

Ω2
0

þ 2ω2

Ω2
0

�
g
�
ω

T

�
: ð45Þ

This way, the complete temperature dependent part of
the free energy, following from (38) and (41), and that of
the entropy, following from (39) and (45), are

ΔTF subtr ¼ ΔTF subtr
TE þ ΔTF subtr

TM þ ΔTF subtr
sf ;

Ssubtr ¼ SsubtrTE þ SsubtrTM þ Ssubtrsf : ð46Þ

These are the final expressions for the temperature depen-
dent part of the free energy and the entropy. Obviously, the
entropy is a dimensionless function of Ω0T and ω0T. Since
it is represented by single, fast converging integration, the
numerical evaluation is straightforward. Plots are shown
in Fig. 1.
The expansion for small temperature can be obtained

from (39) by inserting the expansions of the functions
hsubtrTX ðωÞ for small argument. The leading order, however,
follows from the subtraction terms and is

SsubtrTE ¼ Ω0T
6

þOðT2Þ; SsubtrTM ¼ Ω0T
18

þOðT2Þ: ð47Þ

From the surface plasmon we have with (43) Ssubtrsf ¼ OðTÞ,
demonstrating together with (47) that Nernst’s theorem is
satisfied for this model.
Next to discuss is the behavior of the entropy for high

temperatures. For the free energy we expand the logarithm
in (38) and get

F subtr
TX ¼ 1

2π2

Z
∞

0

dωω2hsubtrTX ðωÞT lnðTÞ þOðTÞ: ð48Þ

The integral is converging due to the decrease of the
function hsubtrTX ðωÞ for ω → ∞ which results from the
subtractions done in (37). From (44) we get in a similar way

ΔTF subtr
sf ¼ −

1

4πΩ2
0

�
ω2
0 −

Ω2
0

2

�
2

T lnðTÞ þOðTÞ ð49Þ

from the surface plasmon’s contribution.
For the entropy we expand the function g in (39),

g

�
ω

T

�
¼ lnðTÞ þ… ð50Þ

in (39) and (45) and arrive at

SsubtrTX ¼ 1

2π2

Z
∞

0

dωω2hsubtrTX ðωÞ lnðTÞ þOð1Þ;

Ssubtrsf ¼ ðω2
0 −

Ω2
0

2
Þ2

4πΩ2
0

lnðTÞ þOð1Þ: ð51Þ

From the above asymptotic expansions for T → ∞ one can
get the heat kernel coefficients from comparing with the
general expansion (14). Using (36), (48) and (49) we get

aTE1
2

¼ ffiffiffi
π

p
; aTE1 ¼ −2Ω0;

aTM1
2

¼ 2
ffiffiffi
π

p �
1 − 2

ω2
0

Ω2
0

�
; aTM1 ¼ −

2

3
Ω0: ð52Þ

From (48) and (49) we get

aTE3
2

¼ 4ffiffiffi
π

p
Z

∞

0

dωω2hsubtrTE ðωÞ;

aTM3
2

¼ 2
ffiffiffi
π

p
Ω2

0

�
ω2
0 −

Ω2
0

2

�
2

Θ
�
ω0 −

Ω0ffiffiffi
2

p
�
: ð53Þ

FIG. 1. The entropy (46) of a flat plasma sheet (solid line) with ω0 ¼ 0 (left panel) and ω0 ¼ 1.16Ω0 (right panel) as function of
temperature T for radius R ¼ 1. The dotted line is the TE-contribution, the dashed line is the TM-contribution and the dot-dashed line is
the contribution from the surface plasmon.
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For ω0 ¼ 0 we get back the coefficients derived in [10] [in
Eq. (4.29) it must be B1=2 ¼ 2

ffiffiffi
π

p
]. As mentioned in [10],

the heat kernel KðtÞ has a nonstandard behavior for t → 0

which corresponds to the T5-term in (43) and can be
formally expressed as heat kernel coefficient with negative
number, a−1=2 ¼ 4

ffiffiffi
π

p
Ω−2

0 .
It is interesting to mention that in (48) for the TM caseR

∞
0 dωω2hsubtrTM ðωÞ ¼ 0 holds. The behavior of aTE3

2

as

function of the intrinsic oscillator frequency ω0 is shown
in Fig. 3. As can be seen, it changes sign at ω0 ¼ Ω0=

ffiffiffi
2

p
.

For larger ω0 it becomes negative and competes with aTM3
2

,

(53), which results from the surface plasmon. There is a
small region where their sum is negative which makes the
entropy for large temperature taking negative values as
shown in Fig. 2.

B. Dielectric slab

In this subsection we consider the dielectric slab as
defined in Sec. II B 2. We represent the transmission
coefficients (25) as products

tTX ¼ tsTXt
L
TXe

iðq−pÞL; ð54Þ

where

tsTE ¼ 4pq
ðpþ qÞ2 ; tsTM ¼ 4εðωÞpq

ðεðωÞpþ qÞ2 ð55Þ

are the contributions from the surfaces of the slab,

tLTE ¼ 1

1 − ðpþq
pþqÞ2e2iqL

;

tLTM ¼ 1

1 − ðεðωÞpþq
εðωÞpþqÞ2e2iqL

; ð56Þ

are the contributions depending on the thickness L of the
slab, i.e., on the thickness between the two surfaces, and the
exponential in (54) is what remains. As we will see below
the latter gives a contribution which is proportional to the
thickness of the slab. According to (11), the factorization
(54) delivers a sum of the corresponding phase shifts,

δTXðpÞ ¼ δsTXðpÞ þ δLTXðpÞ þ ðp − qÞL; ð57Þ

and by means of (10) of the free energy,

FTXðpÞ ¼ F s
TX þ FL

TX þ F exp: ð58Þ

We consider these contributions separately.

1. Thickness independent contribution F s
TX

We start with the thickness independent contributions
from the surfaces (55). When inserting into (11) we
have a nonzero contributions only from the momentum
region p < ωp, where q is imaginary, q ¼ iγ with γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp

2 − p2
q

. The contribution to the free energy is

F s
TX ¼

Z
dk
ð2πÞ

Z
ωp

0

dp
π

T ln ð1 − e−ω=TÞ ∂
∂p δsTXðpÞ: ð59Þ

We continue with the TE contribution. With (55) we get

δsTEðpÞ ¼
π

2
− 2 arctan

�
γ

p

�
: ð60Þ

We change the integration in (59) from k to ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

p
,

F s
TE ¼ T

2π2

Z
∞

0

dωω ln ð1 − e−ω=TÞ

×
Z

minðω;ωpÞ

0

dp
∂
∂p δsTEðpÞ: ð61Þ

Since δsTEðpÞ does not depend on ω [in opposite to δsTMðpÞ
which does through εðωÞ], the integration over p can be
carried out,

FIG. 2. The entropy (46) of a flat plasma sheet (solid line) with
ω0 ¼ 0.85Ω0 as function of temperature T for radius R ¼ 1. The
dotted line is the TE-contribution, the dashed line is the
TM-contribution and the dot-dashed line is the contribution from
the surface plasmon.

FIG. 3. The heat kernel coefficient aTE3=2, Eq. (53), as function of
ω0 for R ¼ 1. It changes sign at ω0 ¼ Ω0

2
.
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F s
TE ¼ T

2π2

Z
ωp

0

dωω ln ð1 − e−ω=TÞ
�
δsTEðωÞ þ

π

2

�

þ T
2π

Z
∞

ωp

dωω ln ð1 − e−ω=TÞ; ð62Þ

where we accounted for δsTEð0Þ ¼ − π
2
and δsTEðωpÞ ¼ π

2
. We

rearrange the integrations,

F s
TE¼

T
2π

Z
∞

0

dωω lnð1−e−ω=TÞ

þ T
2π2

Z
∞

ωp

dωω lnð1−e−ω=TÞ
�
δsTEðωÞ−

π

2

�
: ð63Þ

The first integration is explicit and with (60) we arrive at

F s
TE¼−

ζð3Þ
2π

T3−
T
π2

Z
ωp

0

dωω lnð1−e−ω=TÞarctan
�
γ

ω

�
:

ð64Þ

We mention that for T → 0 the T3-contributions cancel
and the expression starts with T4 as can be seen easily. For
T → ∞ we expand the logarithm and get

F s
TE ¼ −

ζð3Þ
2π

T3 −
T
π2

Z
ωp

0

dωω ln

�
ω

T

�
arctan

�
γ

ω

�
þ…:

ð65Þ

The integration can be carried out and the behavior for
T → ∞ is

F s
TE

subtr ¼ ωp
2

8π
T ln

�
2T
ωp

�
þ…; ð66Þ

where we subtracted the T3-term according to (16).
Now we consider the TM-contribution. Here it is not

possible to integrate simply the derivative like in (61) since
the phase shift depends on the frequency. Nevertheless,
this integration can be done explicitly. With (55) and (11)
we get

δsTMðp;ωÞ ¼ −
π

2
þ 2 arctan

 �
1 −

ωp
2

ω2

�
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp
2 − p2

q
!

ð67Þ

for p ≤ ωp, otherwise it is zero. We mention the special
cases

δsTMð0;ωÞ ¼ −
π

2
; δsTMðωp;ωÞ ¼

(
− 3π

2
; ðω < ωpÞ;

π
2
; ðω > ωpÞ:

ð68Þ

Next we consider the free energy (59) and integrate by
parts. We get

F s
TM ¼ Aþ B; ð69Þ

where we introduced the notations

A ¼
Z

dk
ð2πÞ2

T
π
ðlnð1 − e−

ffiffiffiffiffiffiffiffiffiffi
k2þω2

p

p
=TÞδsTMðωp;ωÞ

− lnð1 − e−k=TÞδsTMð0;ωÞÞ;

B ¼
Z

dk
ð2πÞ2

Z
ωp

0

dp
π

p
ω

−1
eω=T − 1

δsTMðp;ωÞ: ð70Þ

Here, A denotes the surface term. Using (68) it simplifies
and with a change of the integration variable it can be
written in the form

A¼ T
4π

�
2

Z
∞

0

dωωlnð1−e−ω=TÞ−
Z

ωp

0

dωωlnð1−e−ω=TÞ
�
;

¼−
ζð3Þ
2π

T3−
T
4π

Z
ωp

0

dωωlnð1−e−ω=TÞ: ð71Þ

The behavior for T → 0 has contributions from both terms
in the last line and reads

A ¼ −
ζð3Þ
4π

T3 þ…: ð72Þ

For T → ∞ we expand the logarithm and get

A ¼ −
ζð3Þ
2π

T3 þ ωp
2T

8π

�
ln

�
T
ωp

�
þ 1

2

�
þ…: ð73Þ

Now we consider B, (70), and make a substitution of
variables k → ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

p
,

B ¼ −
1

2π2

Z
∞

0

dωω

eω=T − 1
hðωÞ; ð74Þ

where

hðωÞ ¼
Z

minðω;ωpÞ

0

dpδsTMðp;ωÞ≡
�
h1ðωÞ; ðω < ωpÞ;
h2ðωÞ; ðω > ωpÞ:

ð75Þ

These functions can be calculated explicitly,
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h1ðωÞ ¼ −
πω

2
þ 2ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp
2 − 2ω2

q
2
64− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp
2 − 2ω2

q
arccot

 
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp
2 − ω2

q
!

þ ω arccoth

0
B@ ω2 − ωp

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω4 − 3ω2ωp

2 þ ωp
4

q
1
CAþ ω arctanh

0
B@ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp

2 − 2ω2
q
ωp

2 − ω2

1
CA
3
75;

h2ðωÞ ¼
πωp

2
þ 2ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω2 − ωp
2

q arctan

0
B@ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω2 − ωp

2
q
ωp

2 − ω2

1
CA: ð76Þ

Their asymptotics read

hðωÞ ¼
ω→0

−
3π

2
ωþ…;

hðωÞ ¼
ω→∞

−
π − 4

2
ωp −

2ωp
3

3ω2
þ…: ð77Þ

With the substitution ω → ωT in (74) we find immediately
for T → 0

B ¼ 3ζð3Þ
2π

T3 þ…: ð78Þ

In order to get the behavior for T → ∞ we rewrite the
integral (74) in the form

B ¼ −
1

2π2

Z
∞

0

dωω

eω=T − 1

π − 4

2
ωp

−
1

2π2

Z
∞

0

dωω

eω=T − 1

�
hðωÞ − π − 4

2
ωp

�
: ð79Þ

The first integral is explicit and the parenthesis in the
second integral decreases like 1=ω2 for ω → ∞. That
allows us to expand the Boltzmann factor and we get

B ¼ 4 − π

24
ωpT2 þ c

2π
ωp

2T þ…; ð80Þ

where c ¼ R∞0 dω ðhðωÞjωp¼1
− π−4

2
Þ ≃ 1.5708.

Collecting from (72) and (78) we get for the free energy
(69) for T → 0

F s
TM ¼ 5ζð3Þ

4π
T3 þ… ð81Þ

and from (73) and (82) for T → ∞

F s
TM ¼ −

ζð3Þ
2π

T3 þ 4π

24
ωpT2

þ ωp
2T

8π

�
ln

�
T
ωp

�
þ 1

2
þ 4c

π

�
þ…: ð82Þ

Finally we have to define the subtracted free energy.
Using (82) we get

F s
TM

subtr ¼ F s
TM þ ζð3Þ

2π
T3 −

4π

24
ωpT2: ð83Þ

By means of (12), taking the derivative with respect to
temperature, we get also the subtracted entropy SsTE

subtr and
SsTM

subtr as well as their sum. These are shown in Fig. 4.

FIG. 4. The thickness independent part of the entropy (83) of a dielectric slab with ωp ¼ 1 as function of the temperature (left panel)
and, separately, the region of small temperature (right panel) for R ¼ 1. The dotted line is the TE-contribution, the dashed line is the TM-
contribution and the solid line is the sum, Ss subtr ¼ SsTE

subtr þ SsTM
subtr.
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2. Thickness dependent contribution FL
TX

Now we consider the thickness (thickness) dependent
part which is given by the transmission coefficients tLTX,
(56). We call it Lifshitz part since it is just what one gets
from the Lifshitz formula. Using (11) we get from (56) for
p < ωp

δLTEðpÞ ¼
1

2i
ln

 
1 − ðpþiγ

p−iγÞ2e−2γL
1 − ðp−iγpþiγÞ2e−2γL

!
;

δLTMðp;ωÞ ¼
1

2i
ln

 
1 − ðεðωÞpþiγ

εðωÞp−iγÞ2e−2γL
1 − ðεðωÞp−iγεðωÞpþiγÞ2e−2γL

!
ð84Þ

with γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp

2 − p2
q

and for p > ωp

δLTEðpÞ ¼
1

2i
ln

�
1 − ðp−qpþqÞ2e−2iqL
1 − ðp−qpþqÞ2e2iqL

�
;

δLTMðp;ωÞ ¼
1

2i
ln

�
1 − ðεðωÞp−qεðωÞpþqÞ2e−2iqL
1 − ðεðωÞp−qεðωÞpþqÞ2e2iqL

�
ð85Þ

with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ωp

2
q

. We indicated explicitly that the

phase shift for TE depends on p only, whereas that for
TM has also a dependence on with ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

p
. The

Lifshitz-part of free energy is given by the formula

FL
TX ¼

Z
dk

ð2πÞ2
Z

∞

0

dp
π

T ln ð1 − e−ω=TÞ ∂
∂p
�
δLTEðpÞ;
δLTMðp;ωÞ:

ð86Þ
Again, we consider first the TE-contribution. We change
the integration over k for ω and since the phase shift does
not depend on ω we can carry out the integration over p,

FL
TE ¼ T

2π2

Z
∞

0

dωω ln ð1 − e−ω=TÞδLTEðωÞ: ð87Þ

For the TM contribution we first integrate by parts in p
in (86),

FL
TM ¼ −

Z
dk

ð2πÞ2
Z

∞

0

dp
π

p
ω

1

eω=T − 1
δLTMðp;ωÞ: ð88Þ

We change the variable k for ω,

FL
TM ¼ −

1

2π2

Z
∞

0

dω
1

eω=T − 1
hðωÞ; ð89Þ

where we defined

hðωÞ ¼
Z

ω

0

dppδLTMðp;ωÞ: ð90Þ

In this case the integration over p cannot be carried out
analytically and one is left with the asymptotics of this

function and numerical integration. For instance we note

hðωÞ ¼
ω→0

4ω3

ωpðe2ωpL − 1Þ þ…: ð91Þ

Together with

δLTEðpÞ ¼p→0

4p
ωpðe2ωpL − 1Þ þ…: ð92Þ

which follows directly from (84) we get for T → 0

ΔTFL
TE ¼ −2π2

45ωpðe2ωpL − 1ÞT
4 þ…;

ΔTFL
TM ¼ −2π2

15ωpðe2ωpL − 1ÞT
4 þ…: ð93Þ

For T → ∞we simply expand the logarithm in (87) resp. the
exponential in (89). We get from (87)

ΔTFL
TE ¼ T

2π2

Z
∞

0

dωω ln

�
ω

T

�
δLTEðωÞ þ…

¼ dωp
2T þ…; ð94Þ

where d ¼ 1
2π2

R
∞
0 dωω lnðωÞδLTEðωÞjωp¼1

≃ −0.0005936.
The integration

R
∞
0 dωωδLTEðωÞjωp¼1

≃ 0, whichwould result

in a logarithmic contribution in (94), gives zero within the
precision of numerical integration.
From (89) we get

FL
TM ¼ −

T
2π2

Z
∞

0

dω
1

ω
hðωÞ þ… ¼ cωp

2T þ…: ð95Þ

We get the same constant d as from the TE polarization,
again within the numerical precision.
In the Lifshitz part we do not need to do any subtraction

since the growth with temperature of the free energy
does not exceed the first power. Therefore the entropy
tends for T → ∞ to a constant, −dωp

2 > 0, and is sub-
leading as compared to the thickness independent part. It
should be mentioned, that the common way to get the
T → ∞-behavior of the free energy is to take the
l ¼ 0-contribution in the Matsubara representation. As
mentioned in [22], this does not give a correct result.
The entropy of the Lifshitz part follows with (11) from

(76) and (89) and reads

SLTE ¼ 1

2π2

Z
∞

0

dωωg

�
ω

T

�
δLTEðωÞ;

SLTM ¼ T−2

2π2

Z
∞

0

dωω
eω=T

ðeω=T − 1Þ2 hðωÞ: ð96Þ

These are shown in Fig. 5.
Now we come to the contribution from surface plas-

mons. These are poles of the transmission coefficient tLTM
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(56) of the Lifshitz part. Their frequencies ωsfðkÞ are
solutions of the Eq. (27). These enter the free energy
through the first term in the square bracket in (10). For the
dielectric slab this contribution is infinite since the fre-
quency ωsfðkÞ does not grow with k as follows from the
bound (29). This is a property of the model. In applications
it is not a problem since arbitrary high momenta k are not
supported by real materials and one has a Debye-cutoff.
However, for the complete free energy and the entropy,
which we calculate, this would imply a dependence of the
result on that cutoff. We do not go into more details and
keep this as an open question, speculating that like in the
plasma sheet model the surface plasmons give a subleading
contribution at high temperature.

3. Contribution proportional to thickness F exp

We still have to consider the contributions from the
exponential in the right side of (54), i.e., ΔTF exp in
Eq. (58). These are equal for the two polarizations. The
corresponding factor in the transmission coefficient is

simply t ¼ eiðq−pÞL with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ω2

p

q
, resulting in the

phase shift

δðpÞ ¼
�−pL; ðp < ωpÞ;
ðq − pÞL; ðp > ωpÞ:

ð97Þ

The free energy takes the form

ΔTF exp¼
Z

dk
ð2πÞ2

�Z
ωp

0

dp
π
T lnð1−e−ω=TÞ ∂

∂pð−pÞL

þ
Z

∞

ωp

dp
π
T lnð1−e−ω=TÞ ∂

∂pðq−pÞL
�
: ð98Þ

Carrying out the derivatives and rearranging the integrals
we get

ΔTF exp ¼ LT
Z

dk
ð2πÞ2

�Z
∞

0

dp
π

lnð1 − e−ω=TÞ

þ
Z

∞

ωp

dp
π

p
q
lnð1 − e−ω=TÞ

�
: ð99Þ

The first term in the square bracket results in an explicit
integration. In the contribution from the second term
we interchange the order of integrations and after that
the p-integration can be carried out,

ΔTF exp¼ π2

90
LT4þ LT

2π2

Z
∞

ωp

dωω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−Ω2

p
lnð1−e−ω=TÞ:

ð100Þ

The behavior for T → 0 is given by the first term; the
second is exponentially small. The behavior for T → ∞ can
be obtained by a Mellin transform and reads

ΔTF exp ¼
T→∞

ω2
p

24
LT2 −

ω3
p

12π
LT þ…: ð101Þ

The T2-contribution must be subtracted and we get

ΔTF exp subtr ¼ π2

90
LT4 −

ω2
p

24
LT2

þ LT
2π2

Z
∞

ωp

dωω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −Ω2

p
ln ð1 − e−ω=TÞ:

ð102Þ

The entropy can be obtained using (12) and reads

FIG. 5. In the left panel the thickness dependent (Lifshitz) part of the entropy SL, (96), of a dielectric slab with ωp ¼ 1 and L ¼ 1 as
function of the temperature. The dotted line is the TE-contribution, the dashed line is the TM-contribution and the solid line is the sum,
SL ¼ SLTE þ SLTM. In the right panel the contribution Sexpsubtr, (104), to the entropy which is proportional to the thickness for
L ¼ 1 and ωp ¼ 1.
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Sexp subtr ¼ −
2π2

45
LT3 þ ω2

p

12
LT

þ L
2π2

Z
∞

ωp

dωω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −Ω2

p
g
�
ω

T

�
ð103Þ

with the function g defined in (13). Its asymptotic
for T → ∞ is

Sexp subtr ¼
T→∞

ω3
p

12π
Lþ… ð104Þ

and has no logarithmic contribution (which occurs in the
next order of the expansion).

IV. CONCLUSIONS

We calculated the entropy for a flat plasma sheet and for
a dielectric slab. We had to subtract the contributions
growing for high temperature faster than the first power
of T [and T lnðTÞ] as being unphysical. We use a repre-
sentation of the free energy and the entropy in terms of real
frequencies. This method of calculation allows to get an
unambiguous result without any regularization. A special
role play the surface plasmons which are present in the TM
polarization. For the plasma sheet these give a well defined
contribution to the entropy. For the dielectric slab the
surface plasmons make the free energy and the entropy ill
defined. We concluded that this behavior is a property of
the model and restricted ourself to the calculation of the
remaining contributions.
In Fig. 2, we observe negative entropy for the plasma

sheet with intrinsic frequency ω0 ¼ 0.85Ω0=
ffiffiffi
2

p
, i.e., for a

sheet of polarizable dipoles. In the case of ω0 ¼ 0, i.e., for a
sheet filled with a charged fluid, which was considered in
[23], the entropy is positive. We mention that the behavior
of the entropy for T → ∞ is logarithmic,

S ¼
T→∞

cðω0;Ω0Þ lnðTÞ þ…; ð105Þ

where cðω0;Ω0Þ is some function which changes
sign in dependence on the frequencies entering. The region
where it takes negative values is narrow, Ω0ffiffi

2
p < ω0 ≲ 1.2 Ω0ffiffi

2
p .

For the dielectric slab we observe a similar picture for
T → ∞ where the corresponding function is explicit,

cðωpÞ ¼ − ω2
p

8π , (82). This contribution results from the
thickness independent part, whereas the Lifshitz part,
which shows an interesting behavior [see Fig. 3 (left
panel)] but stays positive in agreement with [1].
We mention that negative entropy appears in the

above examples for large temperature, whereas in the
case of the spherical plasma shell [8] it was observed
for rather small temperature too. So we conclude that this
is a rather typical phenomenon for single bodies. Any
further interpretation of these results we leave for
future work.
As mentioned in the introduction, the free energy

and entropy of a flat plasma sheet were also investigated
in [3]. However, we were not able to extract clear cut
results which could be compared with ours. There is
another problem which is still not really solved, namely
the strong coupling limit. In the plasma model, the limit
Ω0 → ∞ turns the boundary conditions into that of a
conducting plane. As mentioned in [3] and [24], the free
energy should (and does in that papers) tend to the
corresponding limit. In the present paper we did not
investigate the strong coupling limit and left this for
future work.
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