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The semiclassical approximation of the worldline path integral is a powerful tool to study non-
perturbative electron-positron pair creation in spacetime-dependent background fields. Finding solutions of
the classical equations of motion, i.e., worldline instantons, is possible analytically only in special cases,
and a numerical treatment is nontrivial as well. We introduce a completely general numerical approach
based on an approximate evaluation of the discretized path integral that easily and robustly gives the full
semiclassical pair production rate in nontrivial multidimensional fields, and apply it to some example cases.
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I. INTRODUCTION

A currently unconfirmed prediction of quantum electro-
dynamics is that of nonperturbative electron-positron pair
creation in the presence of a strong electric field [1–3].
Schwinger [4] gave the pair production rate per unit volume
Peþe− (or more properly the rate of vacuum decay [5]) in a
constant, homogeneous electric field E in 3þ 1 dimensions
as (ℏ ¼ c ¼ 1)

Peþe− ¼ ðqEÞ2
4π3

X∞
n¼1

1

n2
exp

�
−nπ

m2

qE

�
; ð1Þ

where q is the elementary charge and m the mass of the
electrons and positrons. The generalization to inhomo-
geneous and time dependent background fields is far from
straightforward, since this is a nonperturbative effect [as is
visible from the inverse dependence on q and E in the
exponent of (1)]. Apart from the fundamental interest in
this effect as a prototypical example for a nonperturbative
phenomenon in quantum field theory, a better understand-
ing is also desirable in view of the various experimental
initiatives aimed at reaching ultrahigh field strengths [6].
It is in general difficult to obtain the pair production

probability for multidimensional fields. While there has
recently been some progress [7–12] in direct numerical

computation of the exact probability for multidimensional
fields, we will instead focus on an approach using the
worldline path integral. This formulation is an alternative to
path integrals over fields to express amplitudes in quantum
field theories. The first steps in this direction were pioneered
by Fock, who expressed solutions of the Dirac equation via a
four-dimensional Schrödinger-type equation with space and
time parametrized by an additional parameter [13]. After
Nambu emphasized how beneficial this representation would
be in the path integral approach [14], Feynman derived the
Klein-Gordon propagator [15] and Dirac propagator [16] in
this worldline formulation. In parallel, Schwinger’s famous
paper [4] used a similar representation. It is possible to
approximate this worldline path integral for inhomogeneous
fields numerically using discretization and Monte Carlo
methods [17–20]. Although our method is based on dis-
cretization as well, we use an instanton approach to compute
the integrals instead of statistical sampling. This instanton
approach is a semiclassical approximation based on a saddle-
point approximation of the worldline path integral where
m2=ðqEÞ plays the role of the large expansion para-
meter. Both Feynman and Schwinger mentioned the four-
dimensional particle’s equations of motion in the classical
limit, but the first explicit mention of an instanton approxi-
mation to the (Euclidean) worldline path integral was given
by Affleck, Alvarez and Manton [21]. They derived the pair
production rate for a constant homogeneous background
field in a way that is very similar to the method used
today. The approach was extended to inhomogeneous fields,
including the subleading fluctuation prefactor [22,23]. An
exact analytic treatment is possible in some simple cases
[22–24] and analytic approximations allow us to study
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suitable limiting cases [25–27], but in general solutions of
the instanton equations of motion have to be found numeri-
cally. This can be done using, e.g., shooting methods [28],
but the highly nonlinear nature of the equations of motion
makes this approach very unstable.
After briefly sketching the semiclassical approximation

of the worldline path integral in Sec. II, we introduce a
different approach to numerically evaluate the path integral
by discretization in Secs. III and IV, and a method to trace
families of solutions over a range of field parameters in
Sec. V. Finally, we will apply the method to some example
cases, both with results known analytically (to assess the
accuracy of the approximation) and new examples to
demonstrate the scope of the approach in Sec. VI.

II. WORLDLINE INSTANTON METHOD

The central object of the method is the effective action
ΓM, defined using the vacuum persistence amplitude

eiΓM ≔ h0outj0ini: ð2Þ

We take the probability for pair creation to be the comple-
ment of the vacuum remaining stable, so

Peþe− ¼ 1 − jh0outj0inij2 ¼ 1 − jeiΓM j2 ≈ 2ℑΓM; ð3Þ

the subscript M denoting the physical, Minkowskian
quantity. We will work with the Euclidean effective action
Γ, related to the Minkowski expression by ΓM ¼ iΓ, so
ℑΓM ¼ ℜΓ [23].
The Euclidean worldline path integral for spinor QED

reads (see, e.g., [29,30])

Γ ¼
Z

∞

0

dT
T

e−
m2

2
T

Z
xðTÞ¼xð0Þ

DxðτÞ

×Φ½x� exp
�
−
Z

T

0

dτ

�
_x2

2
þ iqAðxÞ · _x

��
; ð4Þ

where Aμ is the Euclidean potential representing the
external electromagnetic field Fμν and xμðτÞ are periodic
worldlines in Euclidean space parametrized by the “proper
time” τ with _xμ ¼ dxμ=dτ. There exist a couple of different
representations of the spin factor, see [29,31]. We will use

Φ½x� ¼ 1

2
trPe

i
4

R
T

0
dτσμνqFμνðxÞ; ð5Þ

with P denoting path ordering, tr the trace over spinor
indices and σμν the commutator of the Dirac matrices

σμν ¼
1

2
½γμ; γν�: ð6Þ

For certain simple fields [such as a time-independent
electrostatic potential φðt; rÞ ¼ φðrÞ or a vector potential

Aðt; rÞ ¼ AðtÞ ¼ −Að−tÞ which is an odd function of time
only], the Euclidean potential Aμ and field tensor Fμν are
purely imaginary, so iAμ and iFμν are real. In general they
have both real and imaginary parts, though.
We immediately introduce dimensionless quantities

using some reference field strength E, which makes a
numerical treatment possible and simplifies the following
derivation:

x̃μ ¼ xμ
qE
m

; F̃μν ¼ Fμν
1

E
; Ãμ ¼

qE
m

1

E
Aμ; ð7Þ

and also rescale the integration variable

T̃¼ qET; u¼ 1

T
τ¼ qE

T̃
τ; ↷

∂
∂u¼

T̃
qE

∂
∂τ : ð8Þ

We can now exchange the order of integration,

Γ ¼
Z
xð1Þ¼xð0Þ

DxðuÞ
Z

∞

0

dT̃
Φ½x̃�
T̃

× exp

�
−
m2

qE

�
T̃
2
þ
Z

1

0

du

�
_̃x2

2T̃
þ i _̃x · Ã

���
; ð9Þ

so we can perform the T̃-integration using Laplace’s
method, where, due to our rescaling, m2=qE is singled
out as the large parameter of the expansion, while all
other quantities are assumed to be of order unity. We obtain

the saddle point T̃0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
0 du _̃x2

q
≕ a½x̃�, so including the

quadratic fluctuation around the saddle we arrive at the
approximation

Γ ≈
Z
xðTÞ¼xð0Þ

DxðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

a½x̃�
qE
m2

s
Φ½x̃�e−m2

qEA½x̃�; ð10Þ

with the nonlocal (due to a½x̃�) action

A½x̃� ¼ a½x̃� þ
Z

1

0

du _̃x · iÃðx̃Þ; ð11Þ

and the spin factor

Φ½x̃� ¼ 1

2
trP exp

�
a½x̃�
4

Z
1

0

duσμνiF̃μνðx̃Þ
�
: ð12Þ

Note that in (10) we symbolically restored the original
parametrization DxðτÞ in the path integral differential, this
will be relevant for the discretization in the next section.
Applying Laplace’s method (based on m2 ≫ qE) to the

path integral, we need to find a path x̃μðuÞ that satisfies the
periodic boundary conditions and extremizes the exponent
in (10), so a solution to the Euler-Lagrange equations (the
Lorentz force equation in this case)

̈x̃μ
a½x̃� ¼ iqF̃μν

_̃xν: ð13Þ
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Contracting (13) with _̃xμ we see that (due to the anti-
symmetry of F̃μν) _̃x

2 ¼ const ¼ a2, simplifying the instan-
ton equations of motion to

̈x̃μ ¼ iaqF̃μν
_̃xν: ð14Þ

The prefactor of the Laplace approximation is given by the
second variation of the action around the classical solution
to (14), amounting to an operator determinant. The deter-
minant has to be defined carefully, but we can completely
sidestep this complication by instead performing Laplace’s
method after discretization, when we can calculate the
fluctuation prefactor by standard methods of linear algebra.

III. DISCRETIZATION

We approximate (10) by discretizing the trajectories
x̃μðuÞ into N d-dimensional points (in general d ¼
3þ 1, but for simple field configurations it is possible to
only consider d ¼ 1þ 1 or d ¼ 2þ 1 dimensions, so we
will keep the dimensionality variable):

x̃iμ ≔ x̃μ

�
l
N

�
; l ¼ 0; 1;…; N − 1: ð15Þ

The velocity is then approximated using (forward) finite
differences

_̃xlμ ≈
x̃lþ1
μ − x̃lμ

ε
; ε ¼ 1

N
; ð16Þ

with the identification x̃Nμ ≡ x̃0μ.
Discretizing the path integral requires a normalization

factor for each x̃iμ integral. We could find these factors by
performing the integration in the free case, however this is
not necessary: In the derivation of (4) the path integral
arises as an ordinary nonrelativistic transition amplitude, so
we can use Feynman’s normalization 1=A for each integral
(see, e.g., [32]), with

A ¼
ffiffiffiffiffiffiffiffiffiffi
2πT0

N

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πa½x�
qEN

s
: ð17Þ

Using this normalization and replacing the N × d integra-
tions by the dimensionless versions we arrive at the
discretized worldline path integral

Γ ≈
�YN−1

k¼0

Z
ddx̃k

��
m2

qE
N

2πa½X̃�

�
Nd=2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

a½X̃�
qE
m2

s
Φ½X̃�e−m2

qEA½X̃�: ð18Þ

To ease notation, we have condensed the proper time index
l and the spacetime index μ into a single vector

X̃ ¼ ðx̃01; x̃02;…; x̃0d; x̃
1
1;…; x̃N−1

d Þ; ð19Þ

where the square brackets ½X̃� denote dependence on all
points x̃lμ with μ ¼ 1;…; d and l ¼ 1;…; N.
As we have now expressed everything in terms of the

dimensionless variables, we will from now on drop the
tilde. We still need discretized expressions for a, A and Φ,

a½X� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN−1

k¼0

ðxkþ1
ν − xkνÞ2

vuut ð20Þ

A½X� ≔ a½X�

þ
XN−1

k¼0

�
Aνðxkþ1

μ Þ þ AνðxkμÞ
2

�
ðxkþ1

ν − xkνÞ: ð21Þ

The form of discretization of the gauge term is not at all
obvious, other choices like having just AνðxkμÞ or Aνðxkþ1

μ Þ
or evaluating the gauge field between points Aνððxkμ þ
xkþ1
μ Þ=2Þ would yield the same classical continuum limit.
That does not mean however that the resulting propagator is
the same, see [33–36]. The midpoint prescription in (21)
arises when the path integral representation is derived from
the vacuum persistence amplitude using the time slicing
procedure, see e.g., [37].
Special care has to be taken to define a discretized

expression for the spin factor that obeys path ordering.
Instead of approximating the integral by summation and
taking the exponential, we employ the product representa-
tion of the exponential function which is automatically path
ordered (cf. [38]),

Φ½X� ≔ tr

�YN−1

k¼0

�
1þ a½X�

4N
σμνiFμνðxkλÞ

��
: ð22Þ

The finite dimensional integral (18) can now be approxi-
mated using Laplace’s method as well, by finding an
N × d-dimensional vector x̄lμ (a discrete worldline instan-
ton) that extremizes the action function A½X�, i.e.,

dA
dxlμ

����
xlμ¼x̄lμ

¼ 0; ð23Þ

so a discrete instanton X̄ has the property

F½X̄� ≔ ∇A½X�jX̄ ¼ 0: ð24Þ

Equation (24) describes a system of N × d nonlinear
equations in N × d unknowns, which can be solved
numerically using the Newton-Raphson method or a
similar root finding scheme.

DISCRETE WORLDLINE INSTANTONS PHYS. REV. D 98, 085009 (2018)

085009-3



In this discretized picture, the fluctuation prefactor is
readily computed as well, via the determinant of the
Hessian of A:

H½X̄� ¼ ð∇ ⊗ ∇ÞA½X�jX̄; ð25Þ

giving the full semiclassical approximation of the discre-
tized worldline path integral

Γ ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
2π

acl
qE
m2

r �
N
acl

�
Nd=2 Φ½X̄�e−m2

qEA½X̄�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH½X̄�

p ; ð26Þ

with acl ≔ a½X̄�. If the function A½X̄� were entirely well
behaved we would be done now, we would just need to find
solutions of (24) and plug them into (26). The Gaussian
integration resulting in the determinant prefactor however
is only defined for positive definite matrices in the
exponent, which our Hessian H is not.

IV. REGULARIZATION OF THE PREFACTOR

We have two problems with the Hessian matrix of the
action A. One is that of negative eigenvalues of H. The
corresponding direction in the Gaussian integration
diverges, and the integral has to be defined by analytic
continuation. A single negative mode (which is present for
a static electric field) thus turns the determinant negative,
and the whole expression (26) imaginary. This could seem
troubling at first, as the pair production is given by the real
part of the Euclidean effective action. For a field not
depending on time we expect a volume factor from the x4
integration though, which has to be purely imaginary for a
real temporal volume factor Vt ¼ −iVx4.
A more serious technical issue is that of zero modes. One

or more zero eigenvalues ofH immediately spoil our result,
so they have to be removed from the integration in some
way. One zero mode that is always present in the worldline
path integral is the one corresponding to reparametrization.
Due to the periodic boundary conditions we can move
every point of the curve along the trajectory without a
change in action. We would thus like to separate the
integration in this direction (resulting in a “volume factor”
of the periodicity, in our rescaled expression just unity)
from the other integrations.
We will use the Faddeev-Popov method [39] to perform

this separation. While it is commonly used to remove
gauge-equivalent configurations from a gauge theory path
integral, it can be applied to this simpler scenario as well.
We insert a factor of unity into the path integral in terms of
the identity

1 ¼ 1

w

Z
dλδðχðλÞÞ

���� ddλ χðλÞ
����; ð27Þ

where χðλÞ is some function chosen so that χ ¼ 0 fixes the
zero mode, λ parametrizes the symmetry and w is the
number of times χðλÞ ¼ 0 occurs over the integration
interval [40]. The idea is now that the λ integration can
be performed due to the symmetry of the path integral,
resulting in the desired volume factor and a Dirac delta that
fixes the corresponding mode. This is especially elegant
for a discrete numerical evaluation of the semiclassical
approximation, as we can use an exponential representation
of the delta function

δðχÞ ¼ lim
ε→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=qE

ε

r
exp

�
−
π

ε

m2

qE
χ2
�
; ð28Þ

where the Gaussian integration over the zero mode pro-
duces a factor of

ffiffiffi
ε

p
canceling the prefactor, enabling us to

simply set ε ¼ 1. We insert the factor of m2=qE for
convenience, so the action A in (18) just gets an additional
term πχ2.
To fix the reparametrization mode, we take (cf. [40–42])

χuðλuÞ ¼
2

ðaclÞ2
Z

1

0

du _xclν ðuÞxνðuþ λuÞ; ð29Þ

which is chosen so that

1

w
jχ0uð0Þj ¼

1

2

2

ðaclÞ2
Z

1

0

du _xclν ðuÞ_xνðuÞ ¼x¼xcl
1; ð30Þ

at the saddle point. Due to the translation invariance we can
set λu ¼ 0 in the integrand so the λu integration is equal to
one. This means we only need to add the (discretized
version of) χuð0Þ to the action as in (28), the second
derivatives to H and a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=qE

p
from (28) to the

prefactor, and just proceed as if no zero mode were present.
Other zero eigenvalues appear if the electric background

field does not depend on all spacetime coordinates. They
are of course easier to deal with, we could just omit the
corresponding integrals and add a volume factor L̃μ (the
tilde is to stress that this is in terms of the dimensionless
coordinates) per invariant direction xμ. We can, however,
treat these just as the reparametrization direction, which
simplifies a numerical implementation that supports arbi-
trary fields. Choosing χμ to be the average of xμ along the
trajectory we obtain the volume L̃μ, and again a factor

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=qE

p
.

To summarize, our final expression for the semiclassical
approximation of the effective action is

Γ ≈
VN0

m−N0

�
qE
m2

�N0
2

ffiffiffiffiffiffi
2π

acl

r �
N
acl

�Nd
2 Φ½X̄�e−m2

qEA½X̄�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH½X̄�

p ; ð31Þ

where the appropriate terms of χ and its derivatives have
been added to A and H, N0 is the number of invariant
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spacetime directions, and VN0
the corresponding volume

factor (with units reinstated). Note that (31) unambiguously
contains the full prefactor including spin effects for
an arbitrary background field, without having to resort
to limiting cases to determine any normalization constants.
This demonstrates an advantage of our discretized
approach: In a continuum description, special care is
required in order to collect all the minus signs correctly
(e.g., by calculating the Morse index in order to obtain the
correct phase, as in [23]). In our approach, the HessianH is
discrete and thus has a well-defined number of positive,
vanishing, and negative eigenvalues—which automatically
yield the correct phase [43].
In addition, the reference field strength E enters only in

the combination qE=m2 in front of the action and in the
prefactor, which has two advantages. First, having found an
instanton X̄, we can evaluate (31) for arbitrary values of
qE=m2 without any additional computational effort.
Second, the accuracy of the discretization does not depend
on the field strength, so there are no numerical instabilities
for small E.
Figure 1 shows how the discretization error scales with

the number of points N for a constant, homogeneous
electric field. For scalar QED (that is, without the spin
factor Φ) the error in the prefactor decreases as N−1 as
expected for a first order discretization procedure. As the
first variation of the action vanishes for an instanton, the
error of the exponent even decreases as N−2. For spinor
QED, on the other hand, the error in the prefactor decreases
as N−2 as well. The reason for this is not obvious, as the
only difference is an additional, seemingly independent
multiplicative spin factor.

V. NUMERICAL CONTINUATION

For most fields we are interested in, there is one
(or multiple) parameter that we would like to vary, for
example the timescale of a pulsed field or the inhomoge-
neity of a spatially varying field configuration. Let us
denote such a parameter γ. In general we are interested in
the full family of instantons X̄ðγÞ. Methods to numerically
map such a solution space are known as numerical
continuation algorithms [44,45].
If we know an instanton for a particular value γi of the

parameter (e.g. the limitω → 0 for a time-dependent pulse),
we can use it as the starting point for the numerical solution
of (24) for a parameter value γiþ1 ¼ γi þ Δγ, which is the
method used in [46]. Ifwe choose a sufficiently smallΔγ, we
can expect the root finding procedure to quickly converge.
This process is called natural parameter continuation,
because we vary a physical parameter of the problem
at hand, instead of introducing an artificial variable to
blend between an easy and our actual problem [e.g. solving
0 ¼ GðX; γÞ ≔ γFðXÞ þ ð1 − γÞF0ðXÞ].
Natural parameter continuation works well if the sol-

utions X̄ðγÞ depend on the parameter in a smooth and
uniform manner. If, however, the dependence on γ varies
strongly, it is difficult to choose appropriate step lengths
Δγ. For some spatially inhomogeneous fields the instantons
even grow infinitely large in some limit γ → γcrit, so we
need to take ever smaller steps to reach this value. We
could, in principle, adaptively adjust the step length when
the root finding for the next parameter value converges
poorly, but there is an easier method of choosing the
increment Δγ.
Natural parameter continuation can be viewed as a

predictor-corrector scheme, with the “zeroth-order” pre-
dictor step of just taking the last solution as the starting
point for the next parameter, and performing the numerical
root finding as a corrector step. We can find a better
prediction by taking the γ derivative of (24), yielding the
Davidenko differential equation [47]:

0 ¼ d
dγ

FðX̄; γÞ ¼ HðX̄; γÞ · dX̄
dγ

þ ∂
∂γ FðX̄; γÞ ð32Þ

and thus, provided that H is invertible (which it is by our
regularization scheme),

dX̄
dγ

¼ −ðHðX̄; γÞÞ−1 ·
� ∂
∂γ FðX̄; γÞ

�
: ð33Þ

We can now use (33) in two ways: first, having found an
instanton X̄i for a parameter value γi, it tells us in which
way the instanton for a slightly different value of γ differs
from the current one, so we can use it as a much improved
predictor in our predictor-corrector scheme, i.e., X̄iþ1≈
X̄i þ ΔγdX̄=dγ. In fact, we could directly integrate (33) to

FIG. 1. Accuracy of the method for a constant, homogeneous
field. The error of the prefactor decreases as 1=N (the first order
discretization error) for scalar QED (upper markers in the bottom
plot), the error of the action as 1=N2 (because the action has an
extremum at that point, upper plot). Interestingly, for spinor QED
the prefactor decreases as 1=N2 as well (lower markers).
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obtain all solutions. Unfortunately, evaluating the Hessian
is costly and we can afford a much larger step size by
performing the corrector steps. As a compromise it is
possible to perform multiple steps according to (33) before
starting the root finding routine. Furthermore, we can use
the derivative to scale the step Δγ by instead specifying a
maximum (or mean) difference between the points of X̄i

and the proposed guess for X̄iþ1, or even a fixed arclength
Δs of the solution curve in RN×dþ1,

Δs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔγdX̄=dγÞ2 þ ðΔγÞ2

q
⇔ Δγ ¼ Δsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdX̄=dγÞ2 þ 1
p : ð34Þ

A situation may be conceivable where it is not possible to
parametrize the solution set as X̄ðγÞ at all, because such a
function would not be single valued or have infinite slope
somewhere. In this case, we can parametrize both the
solution and the parameter γ by a new parameter

ȲðuÞ ¼ ðX̄ðuÞ; γðuÞÞ⊺

⇒ 0 ¼ d
du

F̃ðȲÞ ¼ H̃ ·
dȲ
du

; ð35Þ

where H̃ is now an ðNdþ 1Þ × ðNdÞ matrix, so (35) has to
be augmented by an additional condition. This is chosen to
be a constraint on the orientation and the “velocity” of the
flow 1 ¼ kdȲ=duk, so ȲðuÞ is parametrized by arclength,
hence the name pseudo-arclength continuation (pseudo
because this is only approximately true, as we are taking
discrete steps). As long as γ is a suitable parameter, this is
equivalent to (34), which is what we will be using in the
following.

VI. APPLICATIONS

Let us now apply the method outlined above to some
background fields. The strategy in all cases is to start with a
limit that is reasonably close to a static, homogeneous field
and perform pseudo-arclength continuation to map the
solution space for a chosen parameter range. In all figures
depicting worldline instantons we color the homogeneous
limit (i.e., a circular instanton) purple, and all further
instantons proportional to the change in action (blue for
a decrease, red for an increase, so blue means more, red less
pair production). In all figures that show the full effective
action we choose E ¼ 0.033m2=q for the reference field
strength. This is simply the value we already used in earlier
works, and it does not influence the quality of the
discretization in any way. We also use N ¼ 500 points
in the discretization, which yields good accuracy while it
still takes less than thirty seconds to obtain the family
of instantons in the cases below, with the exception of the
e-dipole pulse.

A. Temporal Sauter pulse

First let us consider simple, one-dimensional inho-
mogeneities where we can compare to analytic results.
As an example, we choose the Euclidean four-potential
iA3 ¼ tanðγωx4Þ=γω describing the (physical) field E ¼
E cosh−2ðωtÞez with the Keldysh parameter γω ¼ mω=qE
[48]. Since the field does not depend on any spatial
coordinates, we have N0 ¼ 3 translational zero modes that
need to be held fixed.
The analytical worldline instanton result for this field

is [23]

ℑΓSauterω
M

V3

¼ ðqEÞ3=2
ð2πÞ3

ð1þ γ2ωÞ5=4
γω

× exp
�
−
m2π

qE
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2ω

p �
: ð36Þ

In Fig. 2 the first plot shows a family of instantons in
the range of 0 < γω < 3.5, and the top panel in Fig. 3
compares the numerical result (31) in this parameter range
to the analytical expression (36), showing near-perfect
agreement.

B. Spatial Sauter pulse

We can also consider the spatially inhomogeneous
profile iA4 ¼ tanhðγkx3Þ=γk describing the (physical) field
E ¼ E cosh−2ðkzÞez with (the spatial analog of) the
Keldysh parameter γk ¼ mk=qE. The analytical result is
related to (36) by γω → iγk [23],

ℑΓSauterk
M

VtV2

¼ ðqEÞ3=2
ð2πÞ3

ð1 − γ2kÞ5=4
γk

× exp

�
−
m2π

qE
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q �
; ð37Þ

where the instanton is now confined in the x3 direction and
we obtain a “temporal volume factor” Vt instead. The
worldline instantons in this field for the range 0 < γk < 1
are depicted in the middle of Fig. 2, and the comparison of
the numeric result and the analytic expression (37) in the
bottom panel of Fig. 3.

C. Spacetime Sauter pulse

As a simple example of a both space- and time-dependent
background we choose the product of the preceding profiles
with γ≔γω¼γk=3, i.e., iA3¼cosh−2ð3γx3Þtanðγx4Þ=γ. The
resulting worldline instantons in the range 0 < γ < 2.5 are
shown in the bottom plot of Fig. 2 and in Fig. 4, and the
resulting pair production rate in Fig. 5. The minimum in
Fig. 5 at γ ≈ 1=2 reflects the competition between the impact
of the temporal dependence, which tends to increase the
pair-creation probability, cf. Eq. (36), and the spatial
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FIG. 3. Imaginary part of the Minkowskian effective action
(i.e., the pair production rate) for E ¼ 0.033m2=q. Top: temporal
Sauter pulse; bottom: spatial Sauter profile. Numerical results are
given by markers and the analytic expressions (36) and (37) by
lines. Note the spacing of markers in the spatial case, the step
length decreases to keep the overall arclength Δs constant.

FIG. 2. Planar instantons for multiple background fields and
increasing values of γω=k. Top: temporal Sauter field E ¼
E cosh−2ðωtÞez; middle: spatial Sauter field E ¼ E cosh−2ðkzÞez;
bottom: spacetime bump profile E ¼ E cosh−2ðωtÞ cosh−2ðkzÞez
with k ¼ 3ω. The purple trajectories are the limit γω=k → 0, blue
denotes a decrease in action, red an increase.As iswell known,while
temporal variation shrinks the instantons anddecreases theworldline
action (top), spatial inhomogeneity has the opposite effect (middle).
As the bottom plot shows, field configurations are possible that both
increase and decrease the action in different regimes.

–1

0

1

x1
–1

0

1

x2

0.0

0.5

1.0

1.5

2.0

FIG. 4. The same worldline instantons as in the third plot of
Fig. 2, but stacked, with the z-coordinate given by the parameter
γ. This presentation makes it easier to correlate the instantons’
change in shape with the parameter.
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dependence,which tends to decrease it, cf. Eq. (37).With the
chosen ratio γk=γω ¼ 3, these two opposite effects operate
on different scales. For small γ, the spatial inhomogeneity
dominates and results in shrinking instantons with a
decreasing action and a growing effective volume, leading
to an increasing pair-creation probability, as γ goes to zero.
For large γ, on the other hand, the temporal dependence
dominates and produces smaller instantons, reduced action
and increased pair production as γ grows.

D. Multidimensional instantons

In [28] multidimensional instantons were found for
background fields that depend on multiple spatial coordi-
nates using the shooting method. We can obtain instantons
for these fields using discretization as well. Consider the
potential

iA4 ¼
1ffiffiffi
2

p
k

tanhðkx1 þ kx2Þ
1þ ðkx1Þ2 þ 10ðkx2Þ2

ð38Þ

from Fig. 1 in [28] (with the factor of 1=
ffiffiffi
2

p
added so the

peak strength is 1). This yields three-dimensional instantons

FIG. 5. Imaginary part of the Minkowskian effective action for
the spacetime bump profile E ¼ E cosh−2ðωtÞ cosh−2ðkzÞez with
k ¼ 3ω and E ¼ 0.033m2=q. Here (and in the following cases)
there are no analytical results to compare with, so we just add the
connecting dashed lines as a guide to the eye.

–2
–1

0
1
2

x1

–2 –1 0 1 2

x 2

–4

–2

0

2

4

x4

FIG. 6. Worldline instantons for the four-potential (38) from
[28]. As before, stronger inhomogeneity stretches the instantons
(in a more complicated way than for the one-dimensional fields)
and increases the action.

FIG. 7. The same worldline instantons as in Fig. 6, projected
onto the coordinate planes.
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(in the x1, x2 and x4 direction). Figure 6 depicts a family of
instantons in a three-dimensional plot, while Fig. 7 shows all
two-dimensional projections of the same trajectories. The
resulting pair production rate is given in Fig. 8.

E. Plane wave plus electric field

In [49] we already applied the discrete worldline
instanton method to calculate the pair creation rate for
the superposition of a weak propagating plane wave and a
constant field, a variant of dynamically assisted pair

production [25]. Different pulse shapes have been consid-
ered for the weak field before [50], however a plane wave is
special in that it cannot produce pairs on its own, so the
process is fully nonperturbative for all frequencies. In
the case of parallel polarization (the plane wave and the
constant field point in the same direction, but perpendicular
to the propagation direction) this combination can be
represented by the four-potential

iA4 ¼ x3; iA3 ¼ i
ε

γ
sin ðγðx1 − ix4ÞÞ: ð39Þ

The method can handle the perpendicularly polarized case
just as well, however that leads to four-dimensional
instantons that are cumbersome to visualize.

–0.5
0.0

0.5Im(x1)
–1.0

–0.5

0.0

0.5

1.0

x3–1.0

–0.5

0.0

0.5

1.0

x4

FIG. 9. Worldline instantons for the superposition of a static,
homogeneous field and a weak, propagating plane wave. The
ratio of the plane wave amplitude and the strong field is 10−2.
The x1 component of the trajectories is purely imaginary, hence
the imaginary part of x1 on the first axis.

FIG. 10. The same worldline instantons as in Fig. 9, projected
onto the coordinate planes.

FIG. 8. Imaginary part of the effective action for the multidi-
mensional field from [28] for E ¼ 0.033m2=q. The dashed,
connecting line is again a visual aid only.

DISCRETE WORLDLINE INSTANTONS PHYS. REV. D 98, 085009 (2018)

085009-9



In contrast to the examples considered before, the field
(39) leads to complex instantons, in particular purely real
x3ðuÞ, x4ðuÞ and purely imaginary x1ðuÞ. A family of
instantons is shown in Figs. 9 and 10, while the full pair
production rate is given in Fig. 11.

F. E-dipole pulse

An especially interesting, highly nontrivial example is
that of an e-dipole pulse. It is a solution to Maxwell’s
equations in vacuum that represents a localized pulse of
finite energy [51]. It saturates the theoretical upper bound
of peak field strength for given laser power [52] and is thus
in a sense the optimal (and at the same time physically
viable) configuration to study pair creation [53]. Its name
stems from the structural similarity to dipole radiation,
however it does not suffer from the strong singularities at
the origin for a simple nonstationary dipole.
The electromagnetic field of the e-dipole pulse can

be given in terms of a driving function g using the
vector Z [53]:

Z ¼ ez
d
jrj ðgðtþ jrjÞ − gðt − jrjÞÞ;

E ¼ −∇ × ð∇ × ZÞ; B ¼ −∇ × _Z: ð40Þ

We choose the function

gðtÞ ¼ t
4ω2

e−ω
2t2 þ

ffiffiffi
π

p
8ω3

ð1þ 2ω2t2ÞerfðωtÞ ð41Þ

and the virtual dipole moment d ¼ 3E=4, so that at the
origin

E ≈ Ee−ω
2t2ez: ð42Þ

We cannot immediately apply the instanton approach
to this field since it is not given in terms of a four-potential.
It is however possible to obtain an expression for the
potential in coordinate gauge AðxÞ · x ¼ 0 from the field
tensor [54],

AM
μ ðxÞ ¼ −

Z
1

0

dαFM
μνðαxÞαxν: ð43Þ

For the field (40) this gives a lengthy expression, which can
now be used to obtain worldline instantons.
Figure 12 shows the result. The top plot compares the

instanton action for the e-dipole pulse (markers) to the
action for a spatially constant field with only Gaussian time
dependence, i.e., (42) (line). Due to the additional spatial
inhomogeneity in the e-dipole field the action is slightly
larger (and thus pair production slightly lower) than for the
purely time dependent pulse. We can also compare the full
imaginary part of the effective action with the locally
constant field approximation, where the constant field
result (1) with n ¼ 1 is assumed to hold at each spacetime
point (see e.g. [53]),

FIG. 11. Pair production rate for a constant field (EStrong ¼
0.033m2=q) with superimposed plane wave (EWeak ¼
10−2EStrong). The temporal volume factor Vt arises from the
number of instantons, one per oscillation of the wave at a fixed
spatial point. The dashed line is added as a guide to the eye.

FIG. 12. Top: Instanton action for the Gaussian e-dipole given
by (40) and (41) which depends on space and time (markers) in
comparison to a spatially homogeneous electric field E ¼
E expf−ω2t2gez with Gaussian time dependence (solid curve).
Bottom: Ratio of the effective action and the locally constant field
approximation for E ¼ 0.033m2=q, with a dashed connecting
line as a visual aid.
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ℑΓLCFA ¼
Z

d4x
ðqEðxÞÞ2
ð2πÞ3 exp

�
−π

m2

qEðxÞ
�
: ð44Þ

Here E denotes the Lorentz invariant electric field
component of the field strength tensor Fμν which is given
by E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−FμνFμν=2
p

for electrically dominated fields
FμνFμν < 0 and E ¼ 0 for magnetically dominated fields
FμνFμν > 0. Again, for electric fields well below the
critical field strength, the spacetime integral can be
approximated using the saddle-point method, where the
global maximum of E dominates. For the field profile given
by (40) and (41), the global maximum lies at the origin
where Eðt ¼ 0; r ¼ 0Þ ¼ E such that we obtain the same
exponent as in (1). In order to derive the prefactor, we have
to calculate the second spacetime derivatives ∂μ∂νE at the
origin, which determine the effective four-volume for pair
creation. Altogether, we find

ℑΓe−dipole
LCFA ≈

5
ffiffiffi
5

p

2ð2πÞ3γ4 exp
�
−π

m2

qE

�
; ð45Þ

where the factor 1=γ4 corresponds to the effective four-
volume for pair creation. This result of the locally constant
field approximation is shown in the bottom plot of Fig. 12
in comparison to the worldline instanton result.
As expected, the worldline instanton result tends to the

locally constant field approximation for small values of γ,
while it is exponentially larger for higher γ. For the
parameters considered in [53] the adiabaticity is very small,
with γ < 10−3, so the locally constant field approximation
is accurate. For high frequency pulses however, the pair
production rate is higher than the constant field estimate.

G. Transversal standing wave

Let us now briefly consider a purely transversal inho-
mogeneity. Two counterpropagating laser beams create a
standing wave pattern, i.e., E ¼ cosðωtÞ cosðkxÞez with
k ¼ ω. In [10] the authors find that omitting the spatial
inhomogeneity leads to qualitatively incorrect results in the
high frequency regime. In [8] strong deviations in the
momentum spectrum have been found in the homogeneous
approximation as well.
Let us compare the total pair-creation probability for a

standing wave E ¼ cosðωtÞ cosðkxÞez, where k ¼ ω with
that of a spatially homogeneous but time-dependent sinus-
oidal field E ¼ cosðωtÞez. In the semiclassical regime
m2 ≫ qE and for moderate values of γ [55], we find that
the two results agree quite well, see Fig. 13. It is easy to see
that the transversal inhomogeneity does not change the
instanton and thus the action [50], but the effect on the
prefactor is not as obvious. Calculating the full effective
action using the discrete instantons shows that while the
prefactor does change, the difference from the homo-
geneous result is small and barely visible, see Fig. 13.
Thus, omitting the spatial dependence is a fairly good

approximation in this regime. Note, however, that the
momentum spectrum could still display noticeable
differences between the standing wave and the purely time
dependent field. See [56,57] for a treatment of the spectrum
in the worldline approach.

H. Constant electric and magnetic fields

In all examples up to now, the spin factor had only a
small impact, apart from the trivial factor of 2 in the pair
production probability. Let us finally consider a simple
example where there is a large, qualitative difference
between scalar and spinor QED, a parallel superposition
of constant electric and magnetic fields of strength E and B
respectively.
The (first term of the) effective action for this combi-

nation is given by (see e.g. [58] and references therein)

ΓScalar ≈
ðqEÞ2
ð2πÞ3 π

B
E
csch

�
π
B
E

�
exp

�
−π

m2

qE

�
;

ΓSpinor ≈
2ðqEÞ2
ð2πÞ3 π

B
E
coth

�
π
B
E

�
exp

�
−π

m2

qE

�
: ð46Þ

Figure 14 depicts the prefactors of these expressions, so the
B=E dependence, together with the discrete instanton
result, showing perfect agreement.

FIG. 13. Top: Instanton action for a transversally polarized
standing wave (markers) compared to just the oscillating time
dependent field (line). Bottom: The same comparison for the
imaginary part of the effective action with E ¼ 0.033m2=q
including the prefactor. The transversal inhomogeneity does
not change the exponent at all, but has a small effect on the
prefactor.
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VII. SUMMARY AND CONCLUSION

We have introduced a new approach to numerically
implement the worldline instanton method for electron-
positron pair creation. We use a discretization scheme that
turns the infinite-dimensional path integral into a finite
dimensional integration that we can then perform using
Laplace’s method. Crucially, this also means that the

fluctuation prefactor is simply given by a finite dimensional
determinant that can be computed without the great care
that is needed for a properly normalized treatment of the
functional determinant.
After having implemented the necessary root finding and

continuation steps outlined in Secs. III, IV and V, full pair
production results for arbitrary background fields can be
obtained in minutes. Section VI gives a (by no means
exhaustive) sample of such applications.
Although we used a frequency or inhomogeneity scale as

the continuation parameter in all examples, we could have
also chosen a different field parameter like the polarization
direction or the ellipticity of the field, or even an entirely
synthetic parameter to slowly transition to an especially
complicated field configuration.
In this paper we have only considered cases for which

there is one dominant instanton, which is continuously
connected to a circular one in the constant field limit. It
would be interesting for future studies to consider cases
where there are more than one instanton, and where some
of them might have a nontrivial topology.
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