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The presence of isotropic Lifshitz points for a Uð1Þ symmetric scalar theory is investigated with the help
of the functional renormalization group at the conjectured lower critical dimension d ¼ 4. To this aim, a
suitable truncation in the expansion of the effective action in powers of the field is considered and,
consequently, the renormalization group flow is reduced to a set of ordinary differential equations for the
parameters that define the effective action. Within this approximation, indications of a line of Lifshitz
points are found that present evident similarities with the properties shown by the line of fixed points
observed in the two-dimensional Berezinskii-Kosterlitz-Thouless phase. In particular, this line of Lifshitz
points exhibits the vanishing of the expectation value of the field, together with a finite stiffness and, for
specific combinations of the parameters that define the effective action, also the algebraic decay at a large
distance of the order parameter correlations.
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I. INTRODUCTION

Among the various classes of fixed points that character-
ize the structure of phase diagrams, the Lifshitz point (LP)
is of particular interest because it is associated to the
coexistence of three phases which count, together with the
two, more common, ordered (with an homogeneous order
parameter) and disordered (with zero order parameter)
phases, an inhomogeneous phase where the order param-
eter, instead of being constant, is spatially modulated with a
finite wave vector [1].
Around the LP, phase separation lines are determined by

the interplay between the derivative term involving the
square gradient of the field Oð∂2Þ and the higher derivative
operatorOð∂4Þ, when the coefficient of the former vanishes
or becomes negative and its effects are contrasted by the
latter, which instead becomes the leading derivative term of
the action. The first analysis of the properties of the LP
was presented in [1] (see also [2–4]) for the general case of
the anisotropic LP in which the space coordinates of the
d-dimensional space are separated in parallel and orthogo-
nal components, respectively, spanning an m- and a
d −m-dimensional space, and while the coordinates of
the d −m-dimensional set have standard scaling laws,
for the coordinates belonging to the m-dimensional sub-
space, the scaling is regulated by the higher derivative
operator Oð∂4Þ. Therefore the scaling law of each

parameter entering the effective action is modified accord-
ingly [1,5].
The LP theory finds application in various phenomeno-

logical contexts such as liquid crystals, or polymer mix-
tures, or high-Tc superconductors, or magnetic systems (for
reviews see [5,6]), but also in the high energy sector, LPs
turn out to be relevant in the formulation of emergent
gravity [7–10] or higher spin gravity [11,12] or in the study
of Lorentz invariance violation [13,14], as well as in the
analysis of dense quark matter [15–17].
The nature of the LP is essentially established by the

three parameters (d, m, N), where N indicates the number
of fields and, in particular, its properties are crucially
related to the parameter of anisotropy m. So, for instance,
the analysis in [1] indicates an m-dependent upper critical
dimension duðmÞ ¼ 4þm=2while, as indicated in [5], one
expects for the lower critical dimension of theOðNÞ theory:
dlðmÞ ¼ 2þm=2. At the same time it is clear that even the
techniques selected to analyze the problem must be adapted
to the specific value of m. In fact, the difficulties encoun-
tered in handling the propagators for generic m and d (see
[18]) made the calculation of theOðϵ2Þ contribution in the ϵ
expansion a very difficult task which was eventually solved
in [19–21]. Analogous difficulties appeared in the compu-
tation of the critical properties at large N with the relative
Oð1=NÞ corrections [22]. Another approach adopted in the
analysis of the anisotropic LPs is the functional renorm-
alization group (FRG) [23–25] technique, which has
initially been employed to investigate the structure of the
uniaxial, m ¼ 1, LP [26,27].
Among the various models corresponding to different

values of the parameter m, the isotropic case, defined by
m ¼ d, is simpler to treat because the symmetry of the d
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coordinates is recovered. This specific case has been ana-
lyzed in the ϵ expansion, by expanding around d ¼ 8 with
ϵ ¼ 8 − d [1,2,28], as well as by a numerical Monte Carlo
study [29]. In addition, more recently, the FRG was used in
the analysis of the isotropic LP, both for the Ising-like theory
[30] (i.e., N ¼ 1) and for the OðNÞ symmetric theory [31].
For the N ¼ 1 theory, a numerical resolution of the FRG

flow equations in the derivative expansion was performed,
by resorting to the proper time representation of the flow
equations [32–36], as this scheme already turned out to be
quite accurate in the numerical analysis of the critical
properties of a theory [34,37–39] and, in addition, the
differential flow equation of the Oð∂4Þ operator (necessary
in the study of the LP) had been derived before [39]. In
[30], it is shown that beyond the lowest order approxima-
tion (known as the local potential approximation), the LP
solution is found in the range 5.5 < d < 8, with a negative
anomalous dimension (and the negative sign is confirmed
in the analysis of [40]), but it is not clear whether the lack of
solutions at smaller d is a physical effect due to the action
of the infrared fluctuations, or it is related to some draw-
backs in the numerical analysis.
On the other hand in [31], the flow equations of the

OðNÞ theory are treated in the framework of the 1=N
expansion and the LP solution is observed in the range
4 < d < 8, as expected from the general expressions of dl
and du, with the anomalous dimension η → 0 when
d → 4þ. This analysis suggests that many properties of
the isotropic LP of the OðNÞ theory between dl and du
could resemble those of the Wilson-Fisher fixed point
between the lower and upper critical dimensions associated
to this point (which, respectively, are d ¼ 2 and d ¼ 4), as,
for instance, the fact that the isotropic LP in d ¼ 4 could
have a multicritical nature (with regard to this point, see
also [40–42]).
Following the above indication, in this paper we explore

the possibility that nontrivial properties observed for the
scalar theory in d ¼ 2 dimensions could have a counterpart
related to the LP in d ¼ 4. In fact, although in d ¼ 2 the
Coleman-Mermin-Wagner theorem [43,44] forbids, for
theories with a continuous symmetry, phase transitions
of the kind observed in d ¼ 3, a different kind of phase
transition of topological nature, namely the Berezinskii-
Kosterlitz-Thouless (BKT) transition [45,46], nevertheless
occurs from a disordered to a quasiordered phase, for the
Oð2Þ symmetric theory. Accordingly, it is worth exploring
whether at the lower critical dimension of the isotropic LP,
dl ¼ 4, a similar nonstandard transition could show up. To
this purpose, we resort to the FRG approach which is
particularly suitable for the analysis of the scaling asso-
ciated to an isotropic LP and, at the same time, has already
been used for reproducing the main features of the BKT
transition [47–51].
In fact the FRG determines, through a functional flow

equation, the evolution with the running scale k of the

effective action, starting from the bare action, given as the
initial condition of the equation at some ultraviolet scale
k ¼ KUV, down to the generator of the one-particle irreduc-
ible vertex functions, which is obtained at k ¼ 0. Then, by
using a derivative expansion to parametrize the effective
action, the Oð2Þ theory was studied in d ¼ 2 [47–49], by
pointing out peculiar properties of the BKT phase transition
such as the essential singularity of the correlation length
when the transition is approached from the disordered phase
or the continuous line of fixed points associated with the
algebraic decay of the order parameter correlations at a large
distance in the BKT phase. In addition, the critical value of
the anomalous dimension and of the stiffness at the transition
point, associated with the Kosterlitz-Thouless temperature,
are accurately reproduced [49].
In the case of the BKT transition, this approach amounts

to solving three coupled partial differential equations for
the effective potential and the two coefficients of theOð∂2Þ
terms of the effective action, with these three variables
depending both on the scale k and on the fieldϕ. If extended
to the study of the LP, this approach would require the
simultaneous resolution of two additional differential equa-
tions, as in this case the inclusion of the Oð∂4Þ operators is
needed. This turns out to be a rather complex numerical
exercise and therefore it would be preferable to rely on a less
demanding approximation scheme.
Actually, a simpler treatment of the flow equations, that

reproduce at least partially the main properties of the BKT
transition, is presented in [50], where the effective action is
expressed by means of a truncated expansion in powers of
the field and parametrized in terms of a minimal set of
variables that depend on the scale k only. In particular, the
coupled partial differential equations are reduced to a set of
ordinary differential equations for the mass of the radial
coordinate, the field expectation value and the two wave
function renormalization parameters.
This simple truncation succeeds in recovering a (approxi-

mate) continuous line of fixed points and also the algebraic
decay of the order parameter correlations, thus providing a
good description of theBKTphase (which is realized at large
values of the stiffness parameter J); however it becomes less
accurate at smaller J and fails in reproducing the transition
point. Interestingly, in [50] is shown an enlightening com-
parison between the results obtained in this truncation, either
with the Cartesian decomposition of the complex field ϕ or
by using a modulus-phase representation of ϕ, that clarifies
the origin of some shortcomings of the cartesian decom-
position and therefore the limits of the approximation
considered. This analysis provides the simplest scheme that
can be suitably adjusted to study the isotropic LP of a Oð2Þ
[or equivalently a Uð1Þ] symmetric theory in d ¼ 4 and
investigate whether properties similar to those observed in
the BKT phase are recovered also in this case.
The scheme of the paper is the following. In Sec. II we

examine the general structure of the Uð1Þ symmetric
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effective action in the derivative expansion and determine
the conditions that lead to the algebraic, large distance
decay of the order parameter correlation for the isotropic
LP case. In Sec. III we adapt the flow equations determined
in [50] to our problem. In Sec. IV the results obtained by
neglecting the longitudinal fluctuations are presented. In
Sec. V the numerical output obtained with the inclusion of
the longitudinal fluctuations is shown and the conclusions
are reported in Sec. VI.

II. EFFECTIVE ACTION

We focus on a four-dimensional scalar theory, whose
degrees of freedom are described by a complex field ϕðrÞ,
with a Uð1Þ-invariant effective action, and the FRG
properties are derived from the general flow equation for
the scale -dependent effective action Γk½ϕ� [25]:

∂tΓk½ϕ� ¼
1

2

Z
q
∂tRkðqÞ½Γð2Þ

k ½q;−q;ϕ� þ RkðqÞ�−1 ð1Þ

that describes the evolution of Γk½ϕ� from the bare action,
taken at some large UV scale, k ¼ KUV, down to the full
effective action, i.e., the generator of the one-particle
irreducible vertex functions, obtained at k ¼ 0. In Eq. (1),

t≡ lnðKUV=kÞ (and ∂t ¼ −k∂k), Γ
ð2Þ
k ½q;−q;ϕ� is the sec-

ond functional derivative of Γk½ϕ� with respect to the field,
and RkðqÞ is a suitable regulator that suppresses the modes
with q ≪ k and allows one to integrate those with q ≫ k.
Then, the main issue concerns the choice of a specific

parametrization for Γk½ϕ� and therefore an approximation
that is sufficiently comprehensive to exhibit the relevant
properties of the theory. In [50], it is shown that many
fundamental properties of the low-temperature BKT phase
in d ¼ 2 dimensions are recovered in this framework, by
including very few terms in the corresponding parametri-
zation of the effective action. Namely, besides a Mexican-
hat-like quartic potential, characterized by three parameters
(mass, quartic coupling and field expectation value), the
derivative part of the action consists of the two operators
Zð∂ϕðrÞ∂ϕ�ðrÞÞ and Yð∂jϕðrÞj2Þ2, where the two param-
eters Z and Y are field independent. These two operators
correspond to the minimal choice in a derivative expansion
to order Oð∂2Þ, of the effective action of a two-component
Uð1Þ-invariant theory, in a nonsymmetric phase. In fact, the
term proportional to Y gets a nonvanishing renormaliza-
tion from the two-point function of the longitudinal field
already at one-loop order.
According to these results, when considering the LP in

d ¼ 4 dimensions, where the main derivative terms are
operators containing four derivatives of the field, one

can simply consider the straightforward generalization of
the choice made in [50], by taking the two operators
WAð∂2ϕðrÞ∂2ϕ�ðrÞÞ and WBð∂2jϕðrÞj2Þ2, again with
different normalization of the longitudinal and of the
transverse component of the field ϕ. However, one must
be aware that a complete treatment of the derivative
expansion at the fourth order, respecting the Uð1Þ sym-
metry, includes many more terms. For instance, we con-
sider the effective action ΓE

k ½ϕ� that includes, in addition to
the potential VkðρðrÞÞ [with ρðrÞ≡ jϕðrÞj2], operators
containing up to the fourth power of the field and up to
four field derivatives:

ΓE
k ½ϕ� ¼

Z
d4rfVkðρÞ þ ða1 þ a2ρÞð∂ϕ∂ϕ�Þ þ a3½ϕ�∂↔ϕ�2

þ ðb1 þ b2ρÞ½∂2ϕ∂2ϕ�� þ b3½ϕ�∂↔2

ϕ�2

þ b4∂ϕ∂ϕ�½ϕ�∂↔2

ϕ�
þ b5½ð∂ϕ∂ϕÞðϕ�∂2ϕ�Þ þ ð∂ϕ�∂ϕ�Þðϕ∂2ϕÞ�
þ b6½∂ϕ∂ϕ��2 þ b7½ð∂ϕ∂ϕÞð∂ϕ�∂ϕ�Þ�g; ð2Þ

where the k-dependent parameters ai and bi are, respec-
tively, associated to theOð∂2Þ andOð∂4Þ operators, with a1
and b1 corresponding to terms that are quadratic in the

field, and where we defined ½ϕ�∂↔ϕ�≡ ϕ�∂ϕþ ϕ∂ϕ�, as

well as ½ϕ�∂↔2

ϕ�≡ ϕ�∂2ϕþ ϕ∂2ϕ�. One can easily iden-
tify the coefficient Z and Y of [50], respectively, with a1
and a3 of Eq. (2), whileWA, introduced above, corresponds
to b1 and WB to a combination of b3, b4 and b6.
For VkðρÞ in Eq. (2), we make the minimal choice of a

quartic (in the field ϕ) potential, with quartic coupling uk,
and a degenerate minimum at ρ ¼ ρ0:

VkðϕÞ ¼
uk
8
ðjϕj2 − ρ0Þ2: ð3Þ

By representing the field in polar coordinates

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðrÞ

p
eiϑðrÞ ð4Þ

and rewriting ρ in terms of the field expectation value plus a
fluctuation term, ρðrÞ ¼ ρ0 þ ρ̃ðrÞ, we can rearrange
Eq. (2) in a simpler form. In fact, if we look at the infrared
regime below the scale set by the expectation value ρ0, we
can neglect the effect of the fluctuations ρ̃ðrÞ that are
suppressed with respect to ρ0, while we retain the fluctua-
tions of the angular field ϑðrÞ, and we get the following
effective action in the infrared regime:

ΓIR
k ½ϕ�¼

Z
d4r

�
ða1ρ0þa2ρ20Þð∂ϑ∂ϑÞþðb1ρ0þb2ρ20Þð∂2ϑ∂2ϑÞþ

�
b1
ρ0

þb2þ4b3−2b4þb5þb6þb7

�
ρ20ð∂ϑ∂ϑÞ2

�
: ð5Þ
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We observe that neither the potential nor the term
proportional to a3 appear in Eq. (5), as they yield
contributions proportional to ρ̃ðrÞ or ∂ρ̃ðrÞ that are dis-
carded. Instead, terms with two derivatives in Eq. (2)
generate in Eq. (5) quadratic terms in ϑ, and those with
four derivatives yield both quadratic and quartic terms in ϑ.
If the terms proportional to ð∂ϑ∂ϑÞ2 in Eq. (5) were

absent, the remaining effective action would be quadratic in
the angular field ϑ, leading to a simple infrared behavior of
the theory, which is instead the case of the truncation of the
effective action studied in [50], where only two derivatives
of ϕ are retained; i.e., in Eq. (5) all bi ¼ 0. In fact, in this
case the infrared effective action is quadratic in ϑ, as all the
parameters ai are related to the operator ð∂ϑ∂ϑÞ. Therefore,
the general truncation in Eq. (2) does not produce an
infrared effective action quadratic in ϑ, and even the more
restricted approximation involving only the two operators
proportional toWA andWB generates terms that are quartic
in ϑ.
However, from Eq. (2) it is also evident that there are

specific combinations of the parameters bi that cancel the
coefficient of the operator ð∂ϑ∂ϑÞ2 yet with a nonvanishing
coefficient of ð∂2ϑ∂2ϑÞ. If this fine-tuning is realized, then
the corresponding effective theory in the infrared is a
quadratic theory in the angular field ϑ, with a coordinate-
independent background ρ0 and, under these conditions, it
is straightforward to determine the algebraic decay of the
correlator of the field ϕ in the same way as for the BKT
phase [50,52].
In fact, if we look at the large distance (or infrared)

behavior of the correlation function

hϕðrÞϕ�ð0Þi ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrÞρð0Þ

p
ei½ϑðrÞ−ϑð0Þ�i; ð6Þ

we are allowed to compute the average by making use of
the effective action in Eq. (5) with both ρðrÞ and ρð0Þ
replaced by ρ0, as the fluctuations of the modulus around ρ0
are neglected. In addition, if the quartic term in ϑ is
canceled by a suitable choice of the bi as discussed above,
the action is quadratic in the angular field, and Eq. (6)
becomes

hϕðrÞϕ�ð0Þi ¼ ρ0 exp

�
−
1

2
h½ϑðrÞ − ϑð0Þ�2i

�
; ð7Þ

where the expectation value of the squared angular field is

h½ϑðrÞ − ϑð0Þ�2i ¼
Z

d4q
ð2πÞ4

jeiqr − 1j2
½2ρ0ðb1q4 þ a1q2Þ�

ð8Þ

and the factor 2ρ0 in the denominator in Eq. (8) comes from
the normalization of the terms quadratic in ϑ in Eq. (5).
To avoid lengthy expressions, in Eq. (8)we chose, without

loss of generality, a2 ¼ b2 ¼ 0 in the ϑ propagator, and after
performing the angular integration we get (r≡ jrj)

h½ϑðrÞ − ϑð0Þ�2i ¼ 2

η1

Z
Λr

0

dx
x3½1 − ð2=xÞJ1ðxÞ�
½x4 þ ða1r2=b1Þx2�

; ð9Þ

where Λ is an ultraviolet cutoff on the momentum, J1ðxÞ is
theBessel function of the first kind of order 1, andwedefined

η1 ¼
1

16π2ρ0b1
: ð10Þ

Due to the asymptotic form of the Bessel function at large x:
J1ðxÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπxÞp

cosðx − 3π=4Þ and at small x: J1ðxÞ∼
x=2 − x3=16, one easily realizes that the part of the integrand
proportional to J1ðxÞ is regular and produces a finite
contribution to the integral, while the remaining part of
the integrand vanishes at x ¼ 0 but yields a logarithmic
divergence at large x, made finite by the insertion of Λ, so
that, after integrating, the dominant term is ð2=η1Þ lnðΛrÞ.
We notice that the parameter a1, associated to the operator

containing two derivatives of ϑ, does not contribute to the
leading result, while the addition of the term proportional to
b2, which was discarded in Eq. (8), would have simply
produced a redefinition of η1. When the leading term of
Eq. (9) is inserted in Eq. (7), we recover the algebraic large
distance decay of order parameter correlation

hϕðrÞϕ�ð0Þi ∝ ρ0
rη1

ð11Þ

with the exponent η1 inversely proportional to the product of
the renormalization factor of the four derivative operator b1
times the symmetry breaking scale ρ0. This finding is
essentially the same of the result obtained for the BKT
phase [50,52], with b1 replaced by the renormalization factor
of the two-derivative term ð∂ϑ∂ϑÞ.

III. FLOW EQUATIONS

Now we turn to the standard Cartesian representation of
the complex field ϕðrÞ by decomposing it into a longi-
tudinal and a transverse component and, as we are
interested to explore the phase of the theory that could
possibly display properties similar to the low-temperature
BKT phase, we separate in the longitudinal component the
constant term corresponding to the minimum of the
potential in Eq. (3), α ¼ ffiffiffiffiffi

ρ0
p

:

ϕðrÞ ¼ αþ σðrÞ þ iπðrÞ: ð12Þ

Then, instead of considering the general structure of the
effective action in Eq. (2), it is convenient to start from the
simple ansatz considered in [50] for the BKT phase,
suitably rearranged to the LP case, so that the particular
truncation here adopted reads
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Γk½ϕ� ¼
Z

d4r

�
uk
8
ðjϕj2 − α2kÞ2 þ

WA
k

2
½∂2ϕ∂2ϕ��

þWB
k

8
½∂2jϕj2�2 þ ZA

k

2
½∂ϕ∂ϕ�� þ ZB

k

8
½∂jϕj2�2

�
;

ð13Þ
where we used the potential (3) and kept, together with the
Oð∂4Þ, also theOð∂2Þ operators, both with the same kind of
parametrization. Although Eq. (13) does not correspond to
a complete parametrization to orderOð∂4Þ and to the fourth
power of ϕ, which is instead given in Eq. (2), it includes all
the operators in Eq. (2) that contribute to the propagator of
the two real fields σðrÞ and πðrÞ. In fact, once ϕ is replaced
by the expression in Eq. (12) that contains the coordinate-
independent term αk, those operators not included in
Eq. (13) do appear only in three- or four-point functions
and not in the two-point functions, due to the effect of the
derivatives of the field ϕ. Our goal is to check whether this
truncation still maintains those features of the BKT phase
that are illustrated in [50].
The flow of the effective action is determined by the

FRG equation and therefore the various parameters in
Eq. (13), namely (in the following, for simplicity we omit
the subscript k of the various parameters) u, α,WA,WB, ZA,
and ZB, are obtained by solving Eq. (1) for specific initial
conditions given at a large value of the scale k ¼ KUV.
Clearly, one has to select a particular procedure to extract
from Eq. (1) the flow equation of each parameter and, in the
case of the quartic coupling, it turns out to be more
convenient to replace the flow equation of u with that of
the σ field mass, defined as the coefficient of σ2 in the
effective potential of our model, that is

m2
σ ¼ uα2; ð14Þ

while for the coefficients of the Oð∂4Þ and of the Oð∂2Þ
operators, the rearrangement

Wσ ¼ WA þWBα2; Zσ ¼ ZA þ ZBα2;

Wπ ¼ WA; Zπ ¼ ZA ð15Þ

yields the following simple form of the two-point functions
of the fields σ and π (by construction the field π is
massless):

Γð2Þ
σ ðqÞ ¼ Wσq4 þ Zσq2 þm2

σ; ð16Þ

Γð2Þ
π ðqÞ ¼ Wπq4 þ Zπq2: ð17Þ

To derive the FRG equations of mσ , α, Wπ, Wσ, Zπ , and
Zσ , we follow the approach displayed in [50] (see also [53])
in which the flow of these parameters is extracted from

the FRG equations of the two-point functions Γð2Þ
σ ðqÞ and

Γð2Þ
π ðqÞ which, in turn, come from Eq. (1), with the

exception of α, whose equation follows from the condition
that the effective action must have a minimum at jϕj2 ¼ α2

at each value of the scale k (in the following we use the

notation
R
q ≡

R dq4

ð2πÞ4):

dα2

dt
¼ −

Z
q

��
1þ 2UðqÞ

u

�
G0

σðqÞ þ G0
πðqÞ

�
; ð18Þ

where we made use of the relation (14), introduced the
momentum-dependent vertex

UðqÞ ¼ uþWBq4 þ ZBq2; ð19Þ

and also introduced the propagators of σ and π modified by
the infrared regulator RðqÞ (here the subscript τ stands
either for σ or for π):

GτðqÞ ¼ ½Γð2Þ
τ ðqÞ þ RðqÞ�−1: ð20Þ

Finally, we adopt the notation used in [50] of indicating
with a prime the derivative of the regulator Rwith respect to
t; i.e., for a generic function FðRðqÞÞ one has

F0ðRðqÞÞ ¼ dFðRÞ
dR

dR
dt

: ð21Þ

The structure of the flow equation of the two-point
functions Γð2Þ

σ ðqÞ and Γð2Þ
π ðqÞ with our effective action is

exactly the same as the one obtained for the two-point
functions of the BKT phase, derived in Ref. [50]. Therefore
in our case, after the required changes, we get for the

longitudinal component Γð2Þ
σ ðpÞ

dΓð2Þ
σ ðpÞ
dt

¼ 1

2
½uþ 2UðpÞ� dα

2

dt
þ 1

2

Z
q
f½uþ 2Uðpþ qÞ�G0

σðqÞ þ uG0
πðqÞg

−
α2

2

Z
q
½UðpÞ þ UðqÞ þ Uðpþ qÞ�2½GσðqÞGσðpþ qÞ�0

−
α2

2

Z
q
½UðpÞ�2½GπðqÞGπðpþ qÞ�0 ð22Þ
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and for the transverse component Γð2Þ
π ðpÞ

dΓð2Þ
π ðpÞ
dt

¼ u
2

dα2

dt

þ u
2

Z
q

��
1þ 2Uðpþ qÞ

u

�
G0

πðqÞ þ G0
σðqÞ

�

− α2
Z
q
½UðqÞ�2½GσðqÞGπðpþ qÞ�0: ð23Þ

It must be noticed that the first terms in the right-hand
side of both Eqs. (22) and (23) come from the dependence
of the two-point function on the parameter α2, which in turn
carries a dependence on the running scale t and therefore
contributes to the flow equation.
From Eqs. (22) and (23), one directly derives the flow of

the other parameters. In fact, the flow of the squared mass
m2

σ is simply obtained by taking the momentum-

independent projection of the equation for the longitudinal
two-point function, i.e., by putting p ¼ 0 in Eq. (22):

dm2
σ

dt
¼ 3u

2

dα2

dt
þ 1

2

Z
q
f½uþ 2UðqÞ�G0

σðqÞ þ uG0
πðqÞg

−
α2

2

Z
q
f½uþ 2UðqÞ�2G2

σðqÞ þ u2G2
πðqÞg0: ð24Þ

The flow equations of the parameters W and Z, due to
their definition in Eqs. (16) and (17), are obtained by
selecting the coefficients of p4 (for W) and of p2 (for Z) in
Eqs. (22) and (23). This requires an expansion in powers of
the external momentum p, of the various terms appearing in
the right-hand side of Eqs. (22) and (23). Therefore, by
indicating with a subscript p4 or p2 the operation of
selecting only the coefficient of that particular power of
p, the flow of Wσ reads

dWσ

dt
¼ WB dα

2

dt
þWB

Z
q
G0

σðqÞ −
α2

2

�Z
q
½UðpÞ þ UðqÞ þUðpþ qÞ�2½GσðqÞGσðpþ qÞ�0

�
p4

−
α2

2

�Z
q
½UðpÞ�2½GπðqÞGπðpþ qÞ�0

�
p4

; ð25Þ

while the flow for Zσ is

dZσ

dt
¼ ZB dα

2

dt
þ
Z
q
ðZB þ 3WBq2ÞG0

σðqÞ −
α2

2

�Z
q
½UðpÞ þ UðqÞ þ Uðpþ qÞ�2½GσðqÞGσðpþ qÞ�0

�
p2

−
α2

2

�Z
q
½UðpÞ�2½GπðqÞGπðpþ qÞ�0

�
p2

; ð26Þ

whereWB and ZB are expressed in terms ofWσ ,Wπ and Zσ,
Zπ through the relations in (15).
The flow equation forWπ, obtained from Eq. (23), can be

further simplified [50] by using the relation α2UðqÞ ¼
G−1

σ ðqÞ − G−1
π ðqÞ, thus obtaining

dWπ

dt
¼ 1

α2

�Z
q
½G−1

π ðqÞGπðpþ qÞ

−GσðqÞG−2
π ðqÞGπðpþ qÞ�0

�
p4

; ð27Þ

and, similarly, the flow equation for Zπ reads

dZπ

dt
¼ 1

α2

�Z
q
½G−1

π ðqÞGπðpþ qÞ

−GσðqÞG−2
π ðqÞGπðpþ qÞ�0

�
p2

: ð28Þ

The set of six flow equations (18) and (24)–(28)
represents the output of the specific truncation made on
the effective action in Eq. (13). It is a closed set, as it is
possible to get rid of the coupling u through Eq. (14), as
well as of the field renormalization parameters WB and ZB

with the help of Eqs. (15), without explicitly computing the
flow of these quantities. The numerical analysis of the six
flow equations is presented in Sec. V.

IV. TRANSVERSE COMPONENT
APPROXIMATION

Before turning to the numerical analysis, it is instructive
to observe that a fixed-point solution occurs in a simpler
framework. This further simplification consists in neglect-
ing the effects of the longitudinal fluctuations, i.e., in
neglecting the flow of Wσ, Zσ, and m2

σ and discarding
GσðqÞ from the remaining equations. Then, by retaining
only the transverse fluctuations, one can check that the
renormalized field expectation value
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J ¼ Wπα
2 ð29Þ

does not depend on t and therefore, each different value of J
corresponds to a fixed-point solution. Incidentally, we
observe that J in Eq. (29) is chosen in analogy with the
BKT quantity JBKT (by only replacing in the definition the
coefficient of the two-derivative term with that of the four-
derivative term) and JBKT coincides with the spin wave
stiffness, which measures the change in free energy of the
system, when a gradient is applied to the spin field. Since
for the LP scaling the usual role of the two-derivative term
in the effective action (or free energy) is played by the four-
derivative term, it is natural to regard J in Eq. (29) as the
stiffness of this problem.
In order to find the fixed points of the system we need to

search for t-independent solutions of the flow equations of
the parameters, properly rescaled in units of the running
scale k ¼ KUVe−t, that for the scaling close to a LP means
a2 ¼ k−ηα2, wπ ¼ kηWπ , and zπ ¼ kη−2Zπ. The corre-
sponding FRG equations are (the momenta are also
rescaled in units of k so that q̃ in the following integrals
is dimensionless)

∂ta2 − ηa2 ¼ ðη − 4Þwπ

Z
q̃
G̃2

π; ð30Þ

∂twπ þ ηwπ ¼
ð4 − ηÞw2

π

a2

Z
q̃
G̃2

π; ð31Þ

∂tzπ þ ðη − 2Þzπ ¼
ð4 − ηÞwπ

a2

Z
q̃
ðzπ þ 3wπq̃2ÞG̃2

π; ð32Þ

and the rescaled propagator is

G̃π ¼ ½wπðq̃4 þ 1Þ þ zπq̃2�−1; ð33Þ

where the term not depending on q̃ comes from the
rescaling of the regulator R, for which we made the
minimal choice (but sufficient for our purpose) R ¼ Wπk4.
Stationary (i.e., t-independent) solutions of this set of

three equations provide the fixed points of the simplified
problem. Moreover, to get rid of the redundant overall
multiplicative factor in the effective action we must
set wπ ¼ 1, and we are left with the three independent
parameters η, zπ , and a2. However, it is easy to realize that
Eqs. (30) and (31) are not independent, and therefore one of
the three parameters cannot be constrained. Since, accord-
ing to the definition in Eq. (29), the stiffness is J ¼ a2, it is
convenient to solve Eqs. (31) and (32) in terms of the free
parameter a2, thus obtaining the two fixed-point conditions

ηa2 ¼ ð4 − ηÞ
Z
q̃
½q̃4 þ zπq̃2 þ 1�−2; ð34Þ

zπa2 ¼ ðη − 4Þ
Z
q̃

3q̃2

2
½q̃4 þ zπq̃2 þ 1�−2; ð35Þ

which represent a continuous line of fixed-point solutions
for both η and zπ , parametrized by the stiffness J, exactly as
it happens for the BKT phase [50].
This line of solutions is displayed in Fig. 1, and one

immediately observes that while η is positive, zπ is
negative, with both parameters vanishing for large values
of a2 and both showing a divergent behavior at small a2.
Therefore, the fixed-point solution requires a negative value
of zπ to compensate the effect of the q̃4 term in the
propagator. For comparison, in Fig. 1 we also plotted
the anomalous dimension shown in Eq. (10) by identifying
a2 ¼ J ¼ 2b1ρ0, in accordance with Eqs. (5), (13), and
(29), and qualitative agreement with η coming from
Eqs. (34) and (35) is observed. [Incidentally, by setting
a2 ¼ 2b1ρ0 and zπ ¼ 0, the integral in Eq. (34) is per-
formed analytically and we recover again the relation given
in Eq. (10).]
Concerning the extension of the range of a2 for which

there are fixed-point solutions, one finds that there is no
limit for a2 → ∞ and the corresponding solutions η,
zπ → 0, while it is easy to understand that a singularity
in the propagator does show up at small a2, due to the large
negative value of zπ , thus interrupting the line of solution at
about a2 ¼ 0.065 with η ¼ 0.402 and zπ ¼ −0.824.
However we do not expect that this end point could be
related to a possible phase transition to the disordered phase
because it is originated by a singularity in Eqs. (34)
and (35) which are the result of an approximation that
becomes less reliable at small a2.
In fact, according to the results obtained in d ¼ 2, this

approximation does not predict a critical point of the
stiffness J that indicates the transition from the BKT phase
to the disordered phase, despite that it captures many

0 0.4 0.8 1.2 1.6 2
a

-0.2

0

0.2  η
 zπ
 η1

2

FIG. 1. Fixed-point values of η, zπ , and η1 [see Eqs. (34), (35),
and (10)] as functions of the stiffness.
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peculiar properties of the BKT phase at large J. Therefore,
one could expect that also in d ¼ 4, a similar transition
could possibly occur at some value of a2, larger than the one
at which the coupled equations (34) and (35) no longer
have a fixed-point solution.
Now we turn to the study of the eigendirections of

Eqs. (30)–(32) around the fixed-point solutions. This is
realized by considering the following small corrections to
the stationary solutions, which present a dependence
on the running parameter t through an exponential factor:
δa2 exp½λt�, δwπ exp½λt�, and δzπ exp½λt�, and then by
solving the set of three equations, linear in the perturbations
δa2, δwπ , and δzπ , that are obtained from an expansion of
Eqs. (30)–(32) around the fixed-point solution. This pro-
cedure amounts to the resolution of the eigenvalue problem
for the set of three perturbations with eigenvalue λ, whose
sign, positive or negative (or vanishing), characterizes the
associated eigenstate as relevant or irrelevant (or marginal).
In fact, when t → ∞, a positive λ corresponds to a growing,
and therefore relevant, perturbation, while negative (zero)
values of λ give decreasing (constant), i.e., irrelevant
(marginal), perturbations.
This analysis turns out to be rather simple if we focus on

the region of very large a2 where, according to Eqs. (34)
and (35), the fixed-point solutions for η and zπ are of order
1=a2 and we can treat these three quantities as OðϵÞ terms,
with ϵ≡ 1=a2. Then, the resolution of the linear equations
to Oð1Þ order gives one relevant solution with λ ¼ 2 and
two marginal solutions with λ ¼ 0. If the OðϵÞ effects are
included, the three eigenvalues become

λ1 ¼ 2 −
24

a2

Z
q̃
q̃4½q̃4 þ zπq̃2 þ 1�−3;

λ2 ¼ η;

λ3 ¼ −η; ð36Þ

which are, respectively, very close to the scaling dimen-
sions of Zπ , α2, and Wπ .
Before concluding this section, two comments are in

order. First, we observe that the fixed-point solutions here
shown are strictly related to theOð2Þ [in replacement of the
originalUð1Þ] symmetry of the model. In fact, the presence
of additional transverse components of a OðNÞ theory
would produce a multiplicative factor (N − 1) in the
right-hand side of Eq. (30), but leave unchanged
Eqs. (31) and (32), because the factor (N − 1) would only
replace the term h1i in the square brackets in the second
line of Eq. (23), and this term does not contribute to the
flow equations of Zπ and Wπ , i.e., to Eqs. (31) and (32).
Therefore, additional transverse components would spoil
the relation between Eqs. (30) and (31) that is essential in
determining the fixed-point solutions.
The second comment concerns the appearance of

a relevant direction related to the parameter Zπ, with

eigenvalue λ1 ∼ 2 that is peculiar of this line of fixed
points and has no counterpart in the analysis of two-
dimensional BKT phase.

V. TRANSVERSE AND LONGITUDINAL
COMPONENTS

After the determination of a line of fixed points for the
simplified set of flow equations, we include the effects of the
longitudinal fluctuations and analyze the full set, Eqs. (18)
and (24)–(28). One can easily check that now α2 andWπ do
not show a compensating behavior such that their product
J ¼ Wπα

2 is t independent, as observed when the longi-
tudinal fluctuations are neglected. Therefore, at least in
principle, the line of fixed points is no longer present.
Then, from the analysis [50], it is known that the

inclusion of the longitudinal fluctuations produces the
following effect for the two-dimensional case: the line of
fixed points, peculiar of the BKT phase, is only partially
observed in this approximation, and the flow of J is
practically stationary only at very large initial values of
J (which corresponds to the small temperature regime of
[50]), but when the flow starts at smaller J, this parameter,
after remaining almost constant in a long range of t,
decreases rapidly at some, still large, value of t. When
starting the flow at even smaller J, the almost constant
region shrinks and tends to disappear, so that not even an
approximate fixed point is observed. One can even provide
an intuitive explanation of the progressive worsening of the
results when the initial value of J at t ¼ 0 is lowered. In
fact, apart from small corrections due to Wπ and to the
coupling u, J is proportional to the squared mass m2

σ , and
large values of the mass imply a progressive decoupling of
the longitudinal fluctuations which, in turn, produces a
picture similar to the one described in Sec. IV, with a line of
fixed-point solutions. However, the incomplete decoupling
induces a decrease in α2 (and therefore in m2

σ) along the
flow, as will be evident from the following numerical
analysis, and this implies an increase of the relevance of the
longitudinal fluctuations at large t, which eventually ends
up in the vanishing of the quasi-fixed-point solution.
Clearly, diminishing the initial value of J does anticipate
the breakdown of the quasi-fixed-point regime until the
total disappearance of the solution. It is natural to expect
that, in the four-dimensional problem, the same truncation
could at most lead to a similar picture with an approximated
line of fixed points.
Therefore, we solve numerically the flow equations (18)

and (24)–(28) for the parameters α2, m2
σ , Wπ , Wσ, Zπ , and

Zσ , with the “time” t ¼ lnðKUV=kÞ running from t ¼ 0 to
large positive values (infrared region) and, in particular, we
monitor the t dependence of J, as the approaching of a fixed
point requires an asymptotically constant J.
The numerical analysis is more easily performed by

using the minimal infrared regulator introduced before,
R ¼ Wπk4, which does not depend on the propagator
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momentum. Actually, as the aim of this paper is not to
provide accurate determinations but rather to reproduce an
already approximated result such as the line of quasi-fixed
points, then the success in retrieving this property in our
case is sufficient to justify the use of this simple regulator.
The flow equations are studied for different initial values

of the six parameters, and in all cases the two field
renormalizations that set the overall normalization of the
action are taken Wπ ¼ Wσ ¼ 1 at the starting point of the
flow, t ¼ 0 (in the following, underlined quantities indicate
the particular value taken by such parameters at t ¼ 0).
Consequently the spanning of J is obtained by taking
different initial values α2.
The choice of the initial value of the remaining param-

eters requires some care. In fact, once α2 is fixed, the flow
typically stops at finite t, because some parameter goes to
zero or to infinity, unless m2

σ , Zπ and Zσ are suitably tuned:
only for a specific choice of these parameters can the
running scale t grow to much larger values. This effect is
not surprising as it is known that the flow reaches a fixed
point only if all the relevant parameters are taken on the
critical manifold; otherwise the flow is driven away from
the fixed point in the infrared limit, and in our particular
case, m2

σ, Zπ and Zσ are expected to be relevant parameters
from an inspection of their scaling dimensions.
In Fig. 2 the evolution with t of the logarithm of the two

parameters α2 and Wπ, both normalized to their respective
initial value, is reported for three different initial values. In
particular the two almost flat lines, solid (black) for lnðα2Þ
and dashed (red) for lnðWπÞ, are obtained for α2 ¼ 1.1 (all
dimensionful quantities are expressed in units of the energy
scale KUV, corresponding to t ¼ 0), while the contiguous
steeper couple of lines correspond to α2 ¼ 0.5 and the
remaining steepest couple of lines to α2 ¼ 0.24. We
observe that, after a transient regime, the first two couple

of curves become practically straight with opposite slope,
which indicates a constant stiffness J, but at smaller α2 the
curves show some deviation from a straight line, at large t.
A more detailed picture of the stiffness J, that confirms

the indications of Fig. 2, is reported in Fig. 3 for 12
different values of α2, that can be arranged in three groups.
Namely, going from top to bottom, the first group is (1.5,
1.1, 0.8, 0.5) corresponding to solid (black) curves, the
second is (0.3, 0.25, 0.24) with dashed (blue) curves, and
finally the third is (0.23, 0.226, 0.22, 0.21, 0.2) with dot-
dashed (red) curves. For the first group we observe straight
lines (up to t ¼ 8), with the lowest case showing a very
slight slope, while in the second group the slope is more
pronounced and the curves start to be turned downwards at
large t. The last group correspond to curves that are no
longer straight and reach zero at t < 8. Therefore, for the
first group a quasi-fixed-point regime is observed, that is
eventually altered at some extremely low energy scale,
whereas the quasi-fixed-point features are totally absent for
the last group of curves. The second group has an
intermediate behavior and it is evident that J reaches zero
at some, not too far, value of t.
The anomalous dimension η, computed from the field

renormalization as

η ¼ ∂t lnðWπÞ; ð37Þ

is reported in Fig. 4 for the same initial values α2 and with
the same notation used in Fig. 3. In the presence of a fixed
point, η must approach asymptotically a constant value, as
it is almost realized in the first group of curves. Even in this
figure the dissimilar regimes of the three groups are
evident.
As already noticed, the parameters m2

σ , Zπ and Zσ are
expected to be relevant and therefore an accurate

0 2 4 6 8
t

-1

0

ln (α2 )

ln (Wπ )

FIG. 2. Flow of lnðα2Þ (solid, black line) and lnðWπÞ (dashed,
red line), with initial values α2 ¼ 1.1 (the two inner curves), 0.5
(two intermediate curves), and 0.24 (two external curves).

0 2 4 6 8
t

0.2

0.4

0.6

0.8

1

J

FIG. 3. Flow of the stiffness J for values of α2 (from top to
bottom): 1.5, 1.1, 0.8, and 0.5 (solid, black curves), 0.3, 0.25, and
0.24 (dashed, blue curves), and 0.23, 0.226, 0.22, 0.21, and 0.2
(dot-dashed, red curves).
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adjustment of their initial values is required to avoid a rapid
breakdown of the flow of the various parameters and so, for
instance, in the case with α2 ¼ 0.2 we found m2

σ ¼ 0.0175
and Zπ ¼ Zσ ¼ −8.665 × 10−3, while, with α2 ¼ 0.8, we
got m2

σ ¼ 0.498 and essentially the same value of the
previous case for the other two parameters. The quantity
lnðm2

σÞ (with m2
σ normalized to its initial value) is shown in

Fig. 5 for the following cases: α2 ¼ 1.5, 0.8, and 0.3 (the
three curves that reach t ¼ 8) and α2 ¼ 0.23, 0.22, and 0.2
(the remaining three curves that rapidly turn downwards at
t < 8). After the initial transient interval, the curves of the
first group become straight lines with common slope,
which is in agreement with the power law dependence,
m2

σ ∝ k4−η, characteristic of the scaling at the LP.
In the same spirit of Fig. 5, we show in Fig. 6 the logarithm

of Zπ (dashed) and Zσ (solid) in the straight line regime, for
α2 ¼ 1.1 (most external curves, black), 0.5 (intermediate
curves, red), and 0.24 (inner curves, blue). Apart from the last
case where some deformation shows up, in the other two

cases the slope of Zπ and Zσ is essentially the same and
corresponds to the expected exponent: Zπ ∝ k2−η.

VI. CONCLUSION

Prompted by the similarities observed between the
characteristics of the Wilson-Fisher fixed point in d=2
dimension and those of the d-dimensional isotropic LP, in
this paper we searched for indications of a continuous line
of LP for the Uð1Þ symmetric scalar theory at the isotropic
LP lower critical dimension, d ¼ 4, analogous to the line of
fixed points observed in d ¼ 2. The latter fixed-point line,
which cannot be related to a standard order-disorder phase
transition because of the Coleman-Mermin-Wagner theo-
rem, is instead associated to the BKT transition, which is a
transition of topological nature to a quasiordered phase
exhibiting the vanishing of the order parameter and an
algebraic decay of the correlator.
In particular, we limited our analysis to the determination

of LP solutions and to the study of their scaling properties,
without investigating on the explicit, presumably topologi-
cal, nature of the mechanism that drives the transition. To
this aim, we exploited the analysis presented in [50] where,
with the help of a particular approximation of the FRG flow
equations, many peculiar properties of BKT phase were
recovered; therefore, we considered a suitable truncation in
the expansion of the effective action in powers of the field
and solved the corresponding flow equations in the form of
a set of ordinary differential equations.
Whereas for the BKT phase the algebraic decay of the

order parameter correlations is observed by using a
modulus-phase representation of the complex field ϕ and
within a minimal truncation of the derivative sector of the
effective action, that includes only two parameters toOð∂2Þ
(in addition to the effective potential approximated to the
fourth power of ϕ), in the case of the LP we found that the

0 2 4 6 8
t

-20

-10

0

ln
  (

m
2 σ )

FIG. 5. Flow of lnðm2
σÞ for the following cases (from bottom to

top): α2 ¼ 1.5, 0.8, and 0.3 (solid, black line) and 0.23, 0.22, and
0.2 (red, blue and violet lines, respectively).

2 4 6 8
t

-10

0

10

ln ( Zπ )

ln ( Zσ )

FIG. 6. Flow of lnðZπÞ (dashed curves) and lnðZσÞ (solid
curves) for α2 ¼ 1.1 (external, black curves), 0.5 (intermediate,
red curves), and 0.24 (inner, blue curves).

2 4 6 8
t

0

0.05

0.1

0.15
 η

FIG. 4. Anomalous dimension η as defined in Eq. (37) vs t. The
same notation as in Fig. 3.
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same result is not recovered for the equivalent minimal
truncation. However, this minimal truncation does not
correspond to a systematic truncation in the derivative
expansion for the LP case. Then, by systematically includ-
ing all operators up toOð∂4Þ and, at the same time, up to ϕ4

in the ansatz of the effective action, we observed that it is
possible to find suitable combinations of the coefficients of
the various gradient terms, that reduce the effective action
to a quadratic action in the angular field ϑ, through suitable
cancellations. This immediately leads to the searched
algebraic decay. Moreover, the fixed-point nature of the
quadratic effective action should protect against possible
changes of the coefficients due to infrared fluctuations, that
could spoil the cancellation of the unwanted terms.
Then, turning to the usual Cartesian representation of ϕ

in terms of real longitudinal and transverse components, we
analyzed the flow of the parameters corresponding to the
minimal truncation of the effective action studied in [50]. In
this case, as observed for the BKT phase in [50], we found
that the suppression of the longitudinal fluctuations leads to
a very clear picture of a line of LPs, parametrized by the
stiffness. In addition, we studied the spectrum of eigen-
values for the perturbations around these LPs, pointing out
the presence of a relevant operator associated to the Oð∂2Þ
term of the transverse field. As expected, this relevant
direction, not present in the BKT phase, is now generated
because the leading derivative operator in the LP case
corresponds to the Oð∂4Þ term, whose scaling is regulated
by the anomalous dimension only. Consequently, due to
dimensional arguments, the general scaling at a LP requires
the Oð∂2Þ term to be relevant.
Finally, we included the longitudinal fluctuations and

considered the resulting FRG equations that, similarly to
the BKT case, no longer exhibit an exact line of fixed points

but rather produce a flow which, at least for very large
initial values of the stiffness J, shows the typical scaling of
the parameters at a LP for a very long interval of the
running parameter t. However, in this approximation the
exact fixed-point solution is missing and the regime of
the flow described above eventually breaks down at some
extremely large value of t. At smaller J, the interval of t
where the quasi-fixed-point regime is realized gets smaller
and the breakdown scale becomes visible; at even smaller J,
it disappears essentially in the same way as it is found in
[50] for the BKT phase.
We conclude that the particular approximation scheme

adopted here for the LP in d ¼ 4 substantially reproduces
the same properties that are observed, within the same
approximation, in the BKT phase of the Uð1Þ model in
d ¼ 2. In the latter case, the reliability of the approximation
depends on the fact that the results obtained, although not
accurate in the region of small J, for large J reproduce
specific properties of the BKT phase that are established
otherwise. Turning to our four-dimensional problem, we
cannot count on alternative evidence of a line of LPs that
possibly ends at a transition point to a new phase; therefore,
we take the findings obtained in this approximation as a
first indication of a nontrivial aspect of the Uð1Þ theory,
associated to the Lifshitz scaling and possibly related to a
transition of topological nature.
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