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We show that one can reduce the coupled system of seven field equations of the (3þ 1)-dimensional
gauged Skyrme model to the Heun equation (which, for suitable choices of the parameters, can be further
reduced to the Whittaker-Hill equation) in two nontrivial topological sectors. Hence, one can get a complete
analytic description of gauged solitons in (3þ 1) dimensions living within a finite volume in terms of classic
results in the theory of differential equations and Kummer’s confluent functions. We consider here two types
of gauged solitons: gauged Skyrmions and gauged time crystals (namely, gauged solitons periodic in time,
whose time period is protected by a winding number). The dependence of the energy of the gauged
Skyrmions on the baryon charge can be determined explicitly. The theory of Kummer’s confluent functions
leads to a quantization condition for the period of the time crystals. Likewise, the theory of Sturm-Liouville
operators gives rise to a quantization condition for the volume occupied by the gauged Skyrmions. The
present analysis also discloses that resurgent techniques are very well suited to deal with the gauged Skyrme
model as well. In particular, we discuss a very nice relation between the electromagnetic perturbations of the
gauged Skyrmions and the Mathieu equation which allows to use many of the modern resurgence techniques
to determine the behavior of the spectrum of these perturbations.
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I. INTRODUCTION

In [1] it was shown that the low energy limit of QCD can
be described by Skyrme theory [2]. The dynamical field of
the Skyrme action is an SUðNÞ valued scalar field (here we
will consider the SUð2Þ case) whose topological solitons
(called Skyrmions) describe baryons. In this context, the
Baryon charge has to be identified with a suitable topo-
logical invariant (see [1,3–10] and references therein).
Hence, not surprisingly, the Skyrme model is very far

from being integrable and, until very recently, no analytic
solution with nontrivial topological properties was known.
One of the problematic consequences of this fact is that the
analysis of the phase diagram is quite difficult. In particular,
analytic results on finite density effects and on the role of

the isospin chemical potential were unavailable despite the
huge efforts in the pioneering Refs. [11–15].
Even less is known on the (3þ 1)-dimensional gauged

Skyrmemodelwhich describes the coupling of aUð1Þgauge
field with the Skyrme theory. The importance, in many
phenomenologically relevant situations,1 to analyze the
interactions between baryons, mesons, and photons makes
mandatory the task to arrive at a deeper understanding of the
gauged Skyrme model (classic references are [1,16–20]).
Obviously, the Uð1Þ gauged Skyrme model is “even less

integrable” than the original Skyrme model. Consequently,
as it was commonly assumed that to construct analytic
gauged Skyrmions was a completely hopeless goal, mainly
numerical tools were employed. Detailed numerical analy-
sis of the gauged Skyrme model in nontrivial topological
sectors can be found in [21,22] and references therein.
Here it is worth it to point out that to construct explicit

topologically nontrivial solutions is not just of academic
interest. First, such solutions allow us to compute explicitly
quantities of physical interest (such as the mass spectrum
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1For the above reasons, when the coupling of baryons with
strong electromagnetic fields cannot be neglected, the gauged
Skyrme model comes into play: its role is fundamental in nuclear
and particle physics, as well as in astrophysics.
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and the critical Isospin chemical potential). Second, once
such solutions are available, one can test some modern
ideas on how nonperturbative configurations can improve
usual perturbation theory. We will come back to this issue
in a moment.
Recently, in [23–31] and references therein, new theo-

retical tools have been developed both in Skyrme and
Yang-Mills theories (see [32–34] and references therein),
which allow us to build topologically nontrivial configu-
rations even without spherical symmetry.
The first (3þ 1)-dimensional analytic and topologically

non-trivial solutions of the Skyrme-Einstein system have
been found in [28] using such tools. Skyrmions living
within a finite box in flat space-times have been constructed
using similar ideas in [35]: these results lead to the
derivation of the critical isospin chemical potential beyond
which the Skyrmion living in the box ceases to exist.
Moreover, in the same reference, it has been shown for the
first time that the Skyrme model admits Skyrmion-anti-
Skyrmion bound states.2 In [36], using the results in
[28,35], a very efficient method to build analytic and
topologically nontrivial solutions of the Uð1Þ gauged
Skyrme model has been proposed: such a method will
be exploited here.
There are two types of topologically nontrivial gauged

solitons which can be obtained with the approach. The first
type can be described as gauged Skyrmions living within a
finite volume. The second type are smooth solutions of
the Uð1Þ gauged Skyrme model whose periodic time-
dependence is topologically protected (this type of solitons
can be called topologically protected time crystals).
Here we will show that both types of gauged solitons

possess very special configurations which allow a complete
analytic description (which, in the generic case, is not
available) in terms of classic results in the theory of
differential equations. In these two special cases it is
possible to reduce the full system of seven coupled non-
linear field equations of the gauged Skyrme model in
nontrivial topological sectors to the Heun equation (which,
in some cases, can be further reduced to the Whittaker-Hill
equation). The only difference between the Heun equations
appearing in the gauged Skyrmions and the gauged time-
crystal sectors appears in the corresponding parameters.
This remarkable mapping allows to argue, among other
things, that the time period of the time crystal is quantized
(as it will be discussed in the following sections). Likewise,
Sturm-Liouville theory gives rise to a quantization con-
dition for the volume occupied by the gauged Skyrmions.
Moreover, we will also show that a particular type of
electromagnetic perturbations of these gauged solitons are

described by the Mathieu equation (another very well
analyzed equation in mathematical physics).
This brings another surprising outcome of the present

construction. Namely resurgence does manifest itself in
the (3þ 1)-dimensional gauged Skyrme model as well.
Resurgence (very nice physically-oriented reviews are
[37–39]) is currently the main framework which allows
us (at least in certain situations) to give a precise math-
ematical sense (using suitable nonperturbative information)
to the usual divergent perturbative expansions in quantum
mechanics (QM) and quantum field theory (QFT).
As it is well known, most of the perturbative expansions

appearing in theoretical physics are quite generically diver-
gent. Resurgence helps in the following way. The prolifer-
ation of Feynman diagrams leads to a factorial growth of the
perturbative coefficients and to the fact that the perturbative
series is, at most, an asymptotic series. One can try Borel
summation as a tool to give a meaning to such divergent
series. However, in all the physically interesting situations
analyzed so far, the initial divergent series becomes (through
the Borel transform) a finite but ambiguous expression
(these ambiguities manifest themselves along suitable lines
in the complex g-plane, g being the perturbative parameter).
Obviously, this situation is unsatisfactory as well. However,
when one analyzes theories with nonperturbative sectors
one has to consider the perturbative expansions in each of
these nonperturbative sectors too (as well as the fluctuations
around them). It turns out that these nonperturbative
contributions are also ambiguous in the Borel sense.
Remarkably, as shown for the first time in the physical
literature in [40,41], the nonperturbative ambiguities, at least
in the models analyzed in that references, exactly cancel
those of the perturbative sector. Hence, the perturbative
divergence can be compensated by the nonperturbative
sectors. This is, roughly speaking, the resurgent paradigm.
Starting from the beautiful applications of resurgence
techniques in [39], there has been a renewed interest on
the applications of these ideas in theoretical physics.Most of
the results have been obtained in topological strings, QFT in
1þ 1 and 2þ 1 dimensions (in model such as the principal
chiral models; see [42] and references therein) and in many
quantum mechanical problems (see [43,44] and references
therein).Twoclassic ordinarydifferential equations inwhich
the resurgenceparadigmworksperfectly are theMathieu and
the Whittaker-Hill equations.3

On the other hand, there have been very few explicit
expressions of resurgence in nonintegrable (3þ 1)-
dimensional models. Thus, one may wonder whether the
appearance of resurgent behavior is, in a sense, generic or it
should be only expected in theories with a high degree of

2This is a very important result since, in particles physics, it is
known that baryon-antibaryon bound states do exist. From the
Skyrme theory point of view it is then necessary to prove that
Skyrmion-anti-Skyrmion bound states do exist as well. This
result has been achieved in [35].

3Besides the intrinsic interest of these two potentials, they
often appear in the reduction of quantum field theories in 1þ 1
dimensions on R × S1 (see [42] and references therein) as well as
in the analysis of the Nekrasov-Shatashvili limit for the low-
energy behavior of N ¼ 2 supersymmetric SU(2) gauge theories
(see [43] and references therein).
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symmetries. The present results provide with strong evi-
dence supporting the first hypothesis. Indeed, resurgence
tools are very useful when analyzing the spectrum of
electromagnetic perturbations of these gauged solitons.
This paper is organized as follows: In Sec. II, a short

review of the gauged Skyrme model is presented. In
Sec. III, gauged Skyrmions and time crystals are intro-
duced. In Sec. IV, the relations between the Heun equation
and the gauged solitons are explored. In Sec. V, we draw
some concluding ideas.

II. THE Uð1Þ GAUGED SKYRME MODEL

The action of the Uð1Þ gauged Skyrme model in four
dimensions is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
K
2

�
1

2
TrðRμRμÞ þ

λ

16
TrðGμνGμνÞ

�

−
1

4
FμνFμν

�
; ð1Þ

Rμ ¼U−1DμU; Gμν ¼ ½Rμ;Rν�; Dμ ¼∇μþAμ½t3; :�;
ð2Þ

U∈SUð2Þ; Rμ¼Rj
μtj; tj¼ iσj; Fμν¼∂μAν−∂νAμ;

ð3Þ
where g is the metric determinant, Aμ is the gauge potential,
∇μ is the partial derivative, the positive parameters K and λ
are fixed experimentally and σj are the Pauli matrices. In
our conventions c ¼ ℏ ¼ μ0 ¼ 1, the space-time signature
is ð−;þ;þ;þÞ and Greek indices run over space-time. The
stress-energy tensor is

Tμν ¼ −
K
2
Tr

�
RμRν −

1

2
gμνRαRα

þ λ

4

�
gαβGμαGνβ −

gμν
4

GσρGσρ

��
þ T̄μν;

with

T̄μν ¼ FμαFν
α −

1

4
FαβFαβgμν; ð4Þ

being the electromagnetic energy-momentum tensor. The
field equations read

Dμ

�
Rμ þ

λ

4
½Rν; Gμν�

�
¼ 0; ð5Þ

∇μFμν ¼ Jν; ð6Þ

where Jμ is given by

Jμ ¼ K
2
Tr

�
ÔRμ þ λ

4
Ô½Rν; Gμν�

�
; ð7Þ

with

Ô ¼ U−1t3U − t3:

It is worthwhile to note that when the gauge potential
reduces to a constant along the timelike direction, the field
equations (5) describe the Skyrme model at a finite isospin
chemical potential.
The term gauged Skyrmions and gauged time crystals

will refer to smooth regular solutions of the coupled system
in Eqs. (5) and (6) possessing a nonvanishing winding
number [defined below in Eq. (11)].

A. Gauged topological charge

The standard parametrization of the SUð2Þ-valued scalar
UðxμÞ

U�1ðxμÞ¼Y0ðxμÞI�YiðxμÞti; ðY0Þ2þYiYi¼1; ð8Þ

where I is the 2 × 2 identity matrix and

Y0 ¼ cosC; Yi ¼ ni · sinC; ð9Þ

n1¼ sinFcosG; n2¼ sinFsinG; n3¼ cosF; ð10Þ
will be useful in the following computations.
The expression for the topological charge for the gauged

Skyrme model has been constructed in [16] (see also the
pedagogical analysis in [21]):

W ¼ 1

24π2

Z
Σ
ρB; ð11Þ

where

ρB ¼ ϵijkTrfðU−1∂iUÞðU−1∂jUÞðU−1∂kUÞ
− ∂i½3Ajt3ðU−1∂kU þ ð∂kUÞU−1Þ�g: ð12Þ

There is an extra contribution with respect to the usual
topological charge in the Skyrme model which is respon-
sible for the so-called Callan-Witten effect [16].
The only case which is usually considered in the

literature corresponds to a spacelike Σ. In these situations
W is the baryon charge of the configuration.
However, from the mathematical point of view, one can

integrate the three-form ρB on any three-dimensional
hypersurface and, in any case, the number W one obtains
from Eq. (11) will be a topological invariant. In particular,
in [35,36] it has been shown that very interesting configu-
rations are obtained when Σ is timelike (the lightlike case is
also worth to be further investigated). The interest of this
case arises from the following considerations. First of all,
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when W ≠ 0 (no matter which hypersurface one chooses)
one cannot deform continuously the corresponding ansatz
intoU ¼ I. Therefore, when ρB is different from zero along
a timelike hypersurface so that Σ must be timelike in order
to get W ≠ 0 one gets nontrivial gauged solitons which
depend on time (otherwise ρB would vanish along timelike
hypersurfaces). Moreover, the time-dependence of these
gauged solitons is topologically protected since, by homo-
topy theory, W cannot change under continuous deforma-
tions and this implies that they cannot decay into static
configurations (since, for static configurations, ρB vanishes
along a timelike hypersurface). Since it turns out that these
gauged solitons are periodic in time they can be called
topologically protected time crystals. To the best of authors
knowledge, the examples constructed in the following
sections are the first time-periodic solutions whose time-
period is topologically protected by homotopy theory. As it
will be discussed in the following sections, classic results in
the theory of Kummer’s confluent functions determine the
allowed time periods.

III. GAUGED SKYRMIONS AND TIME CRYSTALS

Here we will describe the theoretical tools introduced
in [36], which are needed to build the novel gauged
Skyrmions and the gauged time crystals which will be
analyzed in the following sections. Since one of the main
physical motivations behind the analysis in [35,36] was to
study finite volume effects, the first step of the analysis is to
put the gauged Skyrme model within a box of finite
volume. The easiest way to achieve this goal is to introduce
the following flat metric

ds2 ¼ −dt2 þ l2ðdr2 þ dγ2 þ dϕ2Þ: ð13Þ

The length scale l represents the size of the box. The
dimensionless coordinates r, γ and ϕ have the periods:

0 ≤ r ≤ 2π; 0 ≤ γ ≤ 4π; 0 ≤ ϕ ≤ 2π: ð14Þ

The following parametrization of the SUð2Þ-valued
scalar U will be considered:

U ¼ et3αet2βet3ρ; ð15Þ

where α, β and ρ are the Euler angles which in a single
covering of space take the values α ∈ ½0; 2π�, β ∈ ½0; π

2
�

and ρ ∈ ½0; π�.

A. Gauged Skyrmions

The ansatz for the gauged Skyrmion can be chosen as

α¼p
γ

2
; β¼HðrÞ; ρ¼q

ϕ

2
; p;q∈N: ð16Þ

In order for the ansatz to cover SUð2Þ an integer number of
times, the two parameters p and q must be integer.
The profile H must be static, and the electromagnetic

potential has to be chosen as

Aμ ¼ ðb1ðrÞ; 0; b2ðrÞ; b3ðrÞÞ: ð17Þ

As it has been shown in [36], if one requires the
following two conditions

X1 ¼ −
λðp2 þ q2Þ

2
¼ constant; ð18Þ

where

X1ðrÞ ≔ 4λð−2l2b21 þ b2ð2b2 þ pÞ þ b3ð2b3 − qÞÞ; ð19Þ

and

b2ðrÞ ¼ −
q
p
b3ðrÞ −

p2 − q2

4p
; ð20Þ

then the coupled Skyrme Maxwell system made by Eqs. (5)
and (6) in a topologically nontrivial sector can be reduced
consistently to the following system of two ODEs below

�
8l2

p2 þ q2
þ 2λ cos2ðHÞ

�
H00 þ sinð2HÞðl2 − λH02Þ ¼ 0;

ð21Þ

b003 −
K
4
ðq − 4b3Þ sin2ðHÞ

× ð4l2 þ 4λH02 þ λðp2 þ q2Þ cos2ðHÞÞ ¼ 0: ð22Þ

In other words, the three coupled gauged Skyrme
equations in Eq. (5) and the corresponding four Maxwell
equations in Eq. (6) with the Skyrme ansatz in Eqs. (15) and
(16) and the gauge potential in Eq. (17) reduce to Eqs. (21)
and (22) when the two algebraic conditions in Eqs. (18) and
(20) are satisfied. This is a remarkable simplification and
below we will show that indeed this sector contains
physically relevant configurations.
Consequently, in order to construct explicitly gauged

Skyrmions, the optimal strategy is to determine the Skyrme
profile HðrÞ from Eq. (21) and then, once HðrÞ is known,
Eq. (22) becomes a linear Schrodinger-like equation for the
component b3ðrÞ of gauge potential. Once b3 is known, the
other two components of the gauge potential are deter-
mined by the two algebraic relations in Eqs. (18) and (20).
It is worth to note that, generically, once Eq. (21) is

solved in terms of suitable elliptic integrals, the resulting
Eq. (22) (despite being a linear equation) will not have
explicit analytic solutions. The reason is that the effective
potential one gets replacing the solution of Eq. (21) into
Eq. (22) will not be a solvable potential in the generic case.
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In fact, in the following sections wewill analyze the most
elegant solutions of the above sector in which it is possible
to obtain a complete analytic construction of gauged
Skyrmions in terms of classic results in the theory of
differential equations.
The baryon number corresponding to the Skyrme

ansatz in Eqs. (15) and (16) and to the gauge potential
in Eq. (17) is

B ¼
Z

B0drdγdϕ

¼ −pq
Z

sinð2HÞdH

þ 2½cos2ðHðrÞÞðqb2ðrÞ − pb3ðrÞÞ�2π0 ; ð23Þ

and it leads to

B ¼ −pq − 2ðqb2ð0Þ − pb3ð0ÞÞ

¼ −
ðp2 þ q2Þðq − 4b3ð0ÞÞ

2p
; ð24aÞ

B ¼ pqþ 2ðqb2ð2πÞ − pb3ð2πÞÞ

¼ ðp2 þ q2Þðq − 4b3ð2πÞÞ
2p

; ð24bÞ

depending on the boundary values that we assume:
Hð2πÞ ¼ π=2, Hð0Þ ¼ 0 or Hð2πÞ ¼ 0, Hð0Þ ¼ π=2
respectively.
It is worth to point out that the gauged Skyrmions

which will be constructed here are periodic in two spatial
directions (namely γ and ϕ), while satisfy Dirichlet
boundary condition in the coordinate r (as it is clear from
the fact that the values of HðrÞ at r ¼ 0 and r ¼ π

2
are

fixed). Therefore, the spatial topology does not correspond
to a 3-torus but rather to a ð2-torusÞ × ðfinite intervalÞ,
where the 2-torus corresponds to the γ and ϕ coordinates
while the finite interval corresponds to the r coordinate.

B. Gauged time crystal

Quite recently Wilczek and Shapere [45–47], asked the
following very intriguing question (both in classical and in
quantum physics): is it possible to spontaneously break
time translation symmetry in physically sensible models?
These questions, until very recently, have been mainly

analyzed in condensed matter physics. It is well known
that powerful no-go theorems [48,49] severely restrict the
concrete realization of time crystals. Novel versions of the
original ideas (see [45–47]; a nice review is [50]) allowed to
realize time crystals in “solid-states” settings (see [51–56]
and references therein).
On the other hand, it seems that the first examples of

time-periodic solutions which are topologically protected
by homotopy theory in nuclear and particles physics have

been found in [35,36]. The key ingredients of the gauged
Skyrme model is the possibility to have configurations
with non-vanishing winding number along timelike hyper-
surfaces. Thanks to this fact, one can construct analytic
time-periodic configurations which cannot be deformed
continuously to the trivial vacuum as they possess a
nontrivial winding number. Moreover, homotopy theory
ensures that such solitons can only be deformed into other
solitons with the same time period. Hence, these configu-
rations can decay only into other time-periodic configura-
tions. For these reasons, the name topologically protected
time crystals is appropriate.
We will consider the line element in Eq. (13). The

Skyrme ansatz in this case is

α ¼ ϕ

2
; β ¼ HðrÞ; ρ ¼ ωt

2
; ð25Þ

where ω is a frequency so that ρ is dimensionless (as it
should be). One can see that, with the above ansatz, the
topological density ρB in Eq. (12) has a term proportional to

ρB ∼ dt ∧ dr ∧ dϕþ � � � ;

where the dots represent terms which depend on Aμ.
As far as the ansatz for the gauged-time crystal is

concerned, it basically corresponds to a Wick rotation of
the gauged Skyrmion in which one takes one of the two
spatial periodic coordinates (which, for the gauged
Skyrmions, are γ and ϕ) as timelike coordinate. Because
of this, the dependence of the time crystal on time is
necessarily periodic. This explains why, in the case of the
time crystal, one can compute the winding number along the
three-dimensional timelike hypersurface corresponding to
the coordinates t, ϕ, and r. The time-integration domain in
the three-dimensional integral defining the winding number
in the gauged time crystal case corresponds to one period.
Thus, the above ansatz is a good candidate to be a time

crystal since its topological density can be integrated along
a timelike hypersurface. The electromagnetic potential has
the form (17), but the coordinate ordering is

xμ ¼ ðγ; r; t;ϕÞ: ð26Þ

In this case as well, as it has been shown in [36], if the
following two relations among the three components of the
gauge potential in Eq. (17)

X2 ¼ λðl2ω2 − 1Þ ¼ constant; ð27Þ

where

X2ðrÞ ≔ 8λðl2b1ðω − 2b1Þ þ 2b22 þ b3ð1þ 2b3ÞÞ; ð28Þ

and
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b3ðrÞ ¼ l2ωb1ðrÞ −
l2ω2

4
−
1

4
; ð29Þ

hold, then the coupled Skyrme Maxwell system made by
Eqs. (5) and (6) in a topologically nontrivial sector can be
reduced consistently to the following system of two ODEs
below:

2ðλðl2ω2 − 1Þ cos2ðHÞ − 4l2ÞH00

þ ðl2ω2 − 1Þ sinð2HÞðl2 − λH02Þ ¼ 0; ð30Þ

b001 þ
K
8
ðω − 4b1Þ sin2ðHÞðl2ðλω2 − 8Þ − λ

þ λðl2ω2 − 1Þ cosð2HÞ − 8λH02Þ ¼ 0: ð31Þ

The optimal strategy is then to determine the Skyrme
profile HðrÞ from Eq. (30). Once HðrÞ is known, Eq. (31)
becomes a linear Schrodinger-like equation for the gauge
potential component b1ðrÞ. The other components of the
gauge potential are determined by solving the simple
algebraic conditions in Eqs. (27) and (29).
Generically, once Eq. (30) is solved in terms of suitable

elliptic integrals, the resulting Eq. (31) will not have
explicit analytic solutions (despite being a linear equation).
The reason is that the effective potential one gets replacing
the solution of Eq. (30) into Eq. (31) will not be solvable.
In fact, in the following sections wewill analyze the most

elegant time crystals in which it is possible to obtain a
complete analytic construction in terms of classic results in
the theory of differential equations.
As we did in the previous section for the gauged

Skyrmion, we also calculate here for the time crystal the
nonvanishing winding number, that is

W ¼
Z

B2drdðωγÞdϕ

¼ 1þ 2

�
cos2ðHðrÞÞ

�
b1ðrÞ
ω

− b3ðrÞ
��

2π

0

¼ 1 − 2

�
b1ð0Þ
ω

− b3ð0Þ
�

¼ ð1 − l2ω2Þðω − 4b1ð0ÞÞ
2ω

; ð32Þ

if we consider r ∈ ½0; 2π�, ωγ ∈ ½0; 4π�, ϕ ∈ ½0; 2π�, and
Hð2πÞ ¼ π=2, Hð0Þ ¼ 0.
However, a normal topological charge is also present

here due to the correction from the electromagnetic
potential. By taking B0 as defined in (12) as an integral
over spatial slices, we obtain

B ¼
Z

B0drdzdϕ ¼ −2½cos2ðHðrÞÞb2ðrÞ�2π0

¼ 2b2ð0Þ ¼
l
2
ðω − 4b1ð0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ω2

p
;

with the same boundary values used as in (32), with the
difference now that we have z in place of γ for which we
consider z ∈ ½0; 2π�. The charge B is nonzero as long
as b2ð0Þ ≠ 0.
In the following sections we will analyze the most

elegant solutions of the above sector.

C. Extended duality

In this subsection it is shown that a sort of electromagnetic
duality exists between the gauged Skyrmion and the gauged
time crystal constructed above. In order to achieve this goal,
it is useful to observe that a mapping between the time
crystal to the Skyrmion should involve a transformation

γ → ilγ; z →
i
l
z; ð33Þ

so that the signature can be changed appropriately. Then, it is
an easy task to see that Eqs. (30) and (31) are mapped to
Eqs. (21) and (22) under the linear transformation

a1 ¼
i
l
b2; a2 ¼ ilb1; a3 ¼ −b3: ð34Þ

The appearance of the imaginary units is not alarming, since
one also needs a coordinate transformation like (33) to map
the one space-time metric to the other. Notice that the
imaginary part of the transformation involves only the γ and
z components of Aμ. Hence, the end result after utilizing (33)
is a real electromagnetic tensor of the Skyrmion case.
In the following two tables we gather the electromag-

netic potentials of the Skyrmion and of the time crystal
(T.C.) as well the necessary transformations that need to be
made—not only to the field but also to parameters and
variables—in order to make the transition from the one case
to the other.

Aμ

Coordinate
system xμ

Time
variable

Skyrmion ðb1ðrÞ; 0; b2ðrÞ; b3ðrÞÞ ðz; r; γ;ϕÞ z
T. C. before
transformation

ða1ðrÞ; 0; a2ðrÞ; a3ðrÞÞ ðγ; r; z;ϕÞ γ

T:C: → Skyrmion

a1ðrÞ ib2ðrÞ=l
a2ðrÞ ilb1ðrÞ
a3ðrÞ −b3ðrÞ
ω −i=l
ðγ; zÞ ðilγ; iz=lÞ
ðE1; B2; B3Þ ð−B3;−B2; E1Þ

IV. HEUN EQUATOIN AND GAUGED SOLITONS

Here it will be discussed how the Heun and Whittaker-
Hill equations appear in the construction of both gauged
Skyrmions and gauged time crystals described above. In
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the first subsection we will analyze the gauged Skyrmions
and in the second subsection the gauged time crystals will
be considered. In both subsections, we will use following
simple generalization of the metric (13)

ds2 ¼ −dt2 þ l21dr
2 þ l22dθ

2 þ l23dϕ
2; ð35Þ

corresponding to a box with sides with different sizes
while the periods of the coordinates will be the same as in
Eq. (14). The reduction of the coupled gauged Skyrme and
Maxwell field equations obtained in [36] also holds with
the above metric.
It is a quite remarkable feature of the present gauged

solitons that, in both families, one can give a complete
analytical description of these (3þ 1)-dimensional topo-
logical objects in a theory (the gauged Skyrme model),
which is far from being integrable, in terms of the solutions
of the Heun and Whittaker-Hill equations (which are well-
known example of quasi-integrable equations [57,58]).
Besides the intrinsic interest of this result, the present
framework clearly shows that the resurgence paradigm is
also very effective in the low energy limit of QCD coupled
to electrodynamics. In particular, electromagnetic pertur-
bations of the gauged Skyrmions satisfy the Mathieu
equation which is very well suited for the resurgence
approach in [42–44].

In view of the results of [42], the present results disclose
an unexpected relation between the (3þ 1)-dimensional
gauged Skyrme model and the so-called η-deformed
Principal Chiral Models.

A. Heun equation and gauged Skyrmions

A direct computation shows that, using the line element
in Eq. (35), the three coupled gauged Skyrme equations
(namely, Ej ¼ 0, j ¼ 1, 2, 3) in Eq. (5)

Dμ

�
Rμ þ

λ

4
½Rν; Gμν�

�
¼ Ejtj ¼ 0

and the corresponding four Maxwell equations in Eq. (6)
are greatly simplified by the Skyrme ansatz in Eqs. (15) and
(25) and the gauge potential in Eq. (17).
Indeed, Eq. (5) reduce to only one Skyrme field equation

(since the third Skyrme equation is identically satisfied
while the first and the second are proportional):

E3¼0;

E1¼ I1P½H�; E2¼ I2P½H�; I1≠0; I2≠0;

where Ij are real and nonvanishing, while

0 ¼ P½H� ¼ 4

�
X1sin2ðHÞ þ λl21

2

�
p2

l22
þ q2

l23

�
þ 2l21

�
H00 þ 2X1 sinð2HÞH02 þ 4sin2ðHÞX0

1H
0

þ
�
2λl41

�
pb2
l22

þ qb3
l23

��
pb2
l22

þ qb3
l23

þ 1

2

�
p2

l22
−
q2

l23

��
−

l41
l22l

2
3

λp2q2

2
−
l21
4

�
p2

l22
þ q2

l23

�
X1

�
sinð4HÞ − 2l21

λ
X1 sinð2HÞ;

where

X1 ¼ 4λ

�
−2l21b21 þ

l21
l22
b2ð2b2 þ pÞ þ l21

l23
b3ð2b3 − qÞ

�
:

On the other hand, the Maxwell equations reduce to

b00I ¼ −
K
2
ðMIJbJ þ NIÞ;

with

M11 ¼ 4sin2ðHÞ
�
2λH02 þ λl21

2

�
p2

l22
þ q2

l23

�
cos2ðHÞ þ 2l21

�
; M23 ¼ −

l21
2l23

λpq sin2ð2HÞ;

M22 ¼ M11 þ
p
q
M32; M32 ¼

l23
l22
M23; M33 ¼ M11 þ

q
p
M23; N1 ¼ 0;

N2 ¼
p
4
M11 þ

1

4q

�
l23p

2

l22
− q2

�
M23; N3 ¼ −

q
4
M11 þ

1

4p

�
l23p

2

l22
− q2

�
M23:
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Once again, when algebraic relations below hold

X1 ¼ −
λl21
2

�
p2

l22
þ q2

l23

�
¼ constant;

p
l22
b2 þ

q
l23
b3 ¼ −

1

4

�
p2

l22
−
q2

l23

�
; ð36Þ

the system of seven coupled nonlinear field equations of the
gauged Skyrme model reduce to

�
8

�
p2

l22
þ q2

l23

�
−1

þ 2λ cos2ðHÞ
�
H00

þ sinð2HÞðl21 − λH02Þ ¼ 0; ð37Þ

b003 −
K
4
ðq − 4b3Þsin2ðHÞ

�
4l21 þ 4λH02

þ λl21

�
p2

l22
þ q2

l23

�
cos2ðHÞ

�
¼ 0: ð38Þ

The above system is a slight generalization of the one
obtained in [36].
The simplest topologically nontrivial solution for the

profile HðrÞ is given by

HðrÞ ¼ l1ffiffiffi
λ

p rþ h0; ð39Þ

where h0 is a constant. It is important to satisfy the
necessary conditions needed to have a nonvanishing
topological charge:

Hð2πÞ ¼ π=2; Hð0Þ ¼ 0; or Hð2πÞ ¼ 0; Hð0Þ ¼ π=2:

The above conditions fix l1 and h0 as follows:

l1 ¼
ffiffiffi
λ

p

4
; h0 ¼ 0; or l1 ¼ −

ffiffiffi
λ

p

4
; h0 ¼

π

2
: ð40Þ

Moreover, the energy density of the system is found to be

ε ¼ K
2

�
1

λ
þ 1

2

�
p2

l22
þ q2

l23

�
þ
�

1

λl21
X1 þ 16b21

�
sinH2 þ λ

4

�
b21

�
p2

l22
þ q2

l23

�
þ 1

4l22l
2
3

ð2qb2 − 2pb3 þ pqÞ2
�
sin ð2HÞ2

�

þ 1

2l21

�
b021 þ b022

l22
þ b023

l23

�
: ð41Þ

The above expression will be discussed in more details after
constructing the complete solution of the problem in terms
of the Heun functions.
In what follows, we will study Eq. (38). By introducing

the new variables x and y given by

x ¼ l1ffiffiffi
λ

p rþ h0; y ¼ q − 4b3; ð42Þ

we can rewrite the Eq. (38) as

d2y
dx2

þ ð8Kλsin2xþ Γ2sin22xÞy ¼ 0; ð43Þ

with a non-negative constant Γ ≥ 0,

Γ2 ≔
Kλ2

4

�
p2

l22
þ q2

l23

�
:

Equation (43) can be cast into the famous confluent Heun’s
equation,

d2

dz2
YðzÞ þ

�
γ

z
þ δ

z − 1
þ ϵ

�
d
dz

YðzÞ þ αz − q
zðz − 1ÞYðzÞ ¼ 0

ð44Þ

where

z¼ cos2x; YðzÞ¼e−iΓzyðarccos ffiffiffi
z

p Þ;
γ¼δ¼1=2; ϵ¼2iΓ; α¼ iΓþ2Kλ; q¼ iΓ=2þ2Kλ:

ð45Þ

A general solution to this equation is found to be

YðzÞ ¼ C1HeunCðiΓþ 2Kλ; 1=2; 1=2; 2iΓ; iΓ=2þ 2Kλ; zÞ
þ C2

ffiffiffi
z

p
HeunCð2iΓþ 2Kλ; 3=2; 1=2; 2iΓ; 3iΓ=2

þ 2Kλ − 1=4; zÞ; ð46Þ
where C1 and C2 are integration constants, and
HeunCðα; γ; δ; ϵ; q; zÞ is the confluent Heun’s function.

1. Electric field, magnetic field and boundary conditions

The nonzero components of the electromagnetic tensor
in our configuration are given by
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Er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l23p

2 þ l22q
2

p
l23p

b03; Bθ ¼
1

l21l
2
3

b03; Bϕ ¼
q

l21l
2
3p

b03:

The requirement that the electric field on the surface
of the box (r ¼ 0 and r ¼ 2π) vanishes leads to
b03ð0Þ ¼ b03ð2πÞ ¼ 0. Since in Eq. (38) the unknown is
b3ðrÞ, imposing a condition on the electric and magnetic
field induces Neumann boundary conditions for this
potential (note also that since b3 is part of a gauge
connection, it is defined up to an additive constant).
Notwithstanding Eq. (38) can be solved analytically in
terms of confluent Heun functions, it is simpler to impose
the boundary condition in a numerical integration. Then
Eq. (43) defines the following Sturm-Liouville problem

d
dx

�
p̂ðxÞ d

dx
yðxÞ

�
þ Q̂ðxÞyðxÞ ¼ −Γ2ŵðxÞyðxÞ; ð47Þ

where

ŵðxÞ ¼ sin22x; p̂ðxÞ ¼ 1 Q̂ðxÞ ¼ 8Kλ sin2x:

Since Γ2 plays the role of the eigenvalue of the Sturm-
Liouville problem defined above, then there is a countable
infinity of values for Γ which are consistent with the
boundary conditions imposed. Since p and q are integers,
the quantization of Γ induces a quantization on the possible
values of the volume within which the gauged baryons are
confined.
Figure 1 shows the profiles for b03 for the first five

allowed values of Γ. The nontriviality of the profile inside
the box is due to the presence of the current.

2. Gauged Skyrmion energy

In order to do the energy plots it is enough to consider the
case in which

p ¼ q; l2 ¼ l3;

so that the baryon charge is

B ¼ p2 ¼ q2;

while the area Ã of the box orthogonal to the r-axis is

A ¼ Ã
8π2

¼ l22 ¼ l23:

On the other hand, the total volume is

V ¼ 2πl1Ã ¼ 32π3
ffiffiffi
λ

p

4
l22:

Thus, the energy density of the system reads

ε¼K
2

�
1

λ
þB
A
þ
�

1

λl21
X1 þ 16b21

�
sinH2 þ λ

4

�
2
B
A
b21 þ

1

4A2
ð2B1=2b2 − 2B1=2b3þBÞ2

�
sin ð2HÞ2

�
þ 1

2l21

�
b021 þ b022 þ b023

A

�

¼ K
32A2λ

ð16A2 þ 24ABλþB2λ2 −Bλð8Acosð2HÞþBλcosð4HÞÞ
− 32KλðB1=2 − 2b3Þb3ð8AþBλcosð2HÞÞsin2ðHÞþ 256Ab023 Þ: ð48Þ

Figure 2 show the energy as function of the area. The
divergence for low values of the area is expected on general
ground since, at very small distances, the Skyrme model
should be replaced by QCD.

3. Relation with the Whittaker-Hill equation

If we take a coordinate transform

y ¼ q − 4b3; x ¼ l1ffiffiffi
λ

p rþ h0; ð49Þ

and use Eq. (39) in (38), then we have a Whittaker-Hill
equation

d2y
dx2

þ ð4αs cosð2xÞ þ 2α2 cosð4xÞ þ λ0Þy ¼ 0; ð50Þ

where

α2¼−
Kλ2

16

�
p2

l22
þq2

l23

�
; s¼4i

�
p2

Kl22
þ q2

Kl23

�
−1=2

; ð51Þ

1=3.20502

2=35.1465

3=88.4042

4=161.767

5=255.032

2 4 6 8
r

−0.5

0.0

0.5

b3

FIG. 1. Behavior of b03ðrÞ for the first values of Γ.
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λ0 ¼ Kλ

�
4þ λ

8

�
p2

l22
þ q2

l23

��
; ð52Þ

and λ0 is an eigenvalue of the differential operator. It is not
true, however, that the Heun equation discussed in the
previous subsection is equivalent to the Whittaker-Hill
equation (indeed, the relation of the present gauged solitons
with the Heun equation is more natural), because the
parameters α and s are not independent (unlike what would
happen in a “proper” Whittaker-Hill equation). Thus, s
need not be an integer. Indeed,

α ¼ −Kλ=s; λ0 ¼ 4Kλ − 2K2λ2=s2: ð53Þ

Now, we can compare Eq. (50) with the Whittaker-Hill’s
equation in [42],

ψ 00 þ ða − 2b cos 2x − 2c cos 4xÞψ ¼ 0; ð54Þ

where

a ¼ λ0; b ¼ −2αs; c ¼ −α2: ð55Þ

From their analysis we can obtained the resurgent param-
eter of our model, that is

g2 ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ 2αs

p ¼ il2l3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kλðλl22q2 þ λl23p

2 þ 8l22l
2
3Þ

p : ð56Þ

4. Perturbations, Mathieu equation, and resurgence

In this subsection we will discuss how typical electro-
magnetic perturbations of the gauged Skyrmions con-
structed above disclose the resurgence structure of these
(3þ 1)-dimensional gauged solitons. Before entering into
the technical details, it is worth to remind how standard
large N arguments can simplify the analysis of the present
subsection (see for a detailed review chapter 4-in particular,

Sec. IV B of the classic reference [5]). As it is well known,
in the leading ’t Hooft approximation, in meson-Baryon
scattering, the very heavy baryon (the Skyrmion in our
case) is essentially unaffected and, basically, only the
meson can react. This is even more so in the photon-
baryon semiclassical interactions (due to the masslessness
of the photon). Thus, in this approximation, electromag-
netic perturbations perceive the Skyrmions as an effective
medium. From the practical point of view, this simplifies
the analysis since one can neglect the perturbations of the
Skyrmions (suppressed by powers of 1=N) and one is
allowed to only consider the reaction of the Maxwell
equations to perturbations around the gauged Skyrmion
background. In other words, one can consider electromag-
netic perturbations of Eqs. (6) and (7) in which the
background solution is the gauged Skyrmion defined in
Eqs. (16), (17), (35), (36), (39), and (40).
As it is well known, the full power of resurgence

manifests itself especially in relating the perturbative
expansion around the trivial vacuum with the perturbative
expansions around nontrivial saddles. In the present case,
the analysis of the full perturbative expansion around the
gauged solitons constructed in the previous sections
would correspond to the analysis of seven coupled linear
PDEs in the background of gauged solitons discussed
above. This analysis is extremely difficult even numeri-
cally. Consequently, we considered a simpler (yet interest-
ing) situation in which the Skyrme background is
considered to be fixed and one analyzes magnetic pertur-
bations of the Maxwell equations in the background of the
gauged Skyrmion itself (this situation is enough to show
that resurgence appears also in the gauged Skyrme model).
Thus, let us consider the following perturbations around

the solutions defined in Eqs. (16), (17), (36), (39), and (40):

b2ðrÞ → b2ðrÞ þ ϵc2ðrÞ sinðΩtÞ;
b3ðrÞ → b3ðrÞ þ ϵc3ðrÞ sinðΩtÞ; ð57Þ

Ω being the frequency of the perturbation: the mathematical
problem is to find how Ω depends on the parameters of the
problem. To first order in ϵ, Eqs. (6) and (7) reduce to

0 ¼ 4l23c
00
2ðrÞ − Kl21pqλc3ðrÞsin2ð2HÞ

þ 1

2
l21c2ðrÞð32Kl23 þ Kq2λþ 8l23Ω2

− 32Kl23 cosð2HÞ − Kq2λ cosð4HÞÞ; ð58Þ

0 ¼ 4l22c
00
3ðrÞ − Kl21pqλc2ðrÞsin2ð2HÞ

þ 1

2
l21c3ðrÞð32Kl22 þ Kp2λþ 8l22Ω2

− 32Kl22 cosð2HÞ − Kp2λ cosð4HÞÞ: ð59Þ

In the present subsection, we will consider

p=1

p=2

p=3

p=4

p=5

0.002 0.004 0.006 0.008 0.010

1 × 107

2 × 107

3 × 107

4 × 107

5 × 107

FIG. 2. Energy of the system as a function of the area for p ¼ 1,
2, 3, 4, 5.
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l3 ¼ l2; p ¼ q;

and introduce the normal variables

UðrÞ ¼ c3ðrÞ þ c2ðrÞ; VðrÞ ¼ c3ðrÞ − c2ðrÞ;

such that the system given by Eqs. (58) and (59) decouples
and leads to

d2U
dr2

þ l21ð8K sin2ðHÞ þ Ω2
UÞU ¼ 0; ð60Þ

d2V
dr2

þ l21

�
Kq2λ
2l22

sin2ð2HÞ þ 8Ksin2ðHÞ þΩ2
V

�
V ¼ 0:

ð61Þ

These equations correspond to a Mathieu equation and a
Whittaker-Hill equation, respectively (see [44] for a resur-
gence analysis of the Mathieu equation). It is interesting to
note that the equation for the normal coordinate U does not
depend on the details of the electromagnetic background
defined by b3ðrÞ, while the equation for V depends
explicitly on the quotient q2=l22 which is different for each
of the possible background configurations and depends
on the number of nodes of the function b3ðrÞ within the
cavity. We will focus on perturbations of the ground state,
i.e., the nodeless b03. We have introduced an index
for the normal frequencies ΩU, ΩV associated with the
normal coordinates UðrÞ, VðrÞ, respectively. It is natural to
restrict the perturbations ci to fulfill the same boundary
conditions than the unperturbed solution, therefore
c0iðr ¼ 0Þ ¼ c0iðr ¼ 2πÞ ¼ 0. This induces a Neumann
boundary condition for U and V, such that one has to
solve Eqs. (60) and (61) restricted to

U0ðr ¼ 0Þ ¼ U0ðr ¼ 2πÞ ¼ 0; ð62Þ

V 0ðr ¼ 0Þ ¼ V 0ðr ¼ 2πÞ ¼ 0: ð63Þ

As expected, this quantizes the normal frequencies of the
perturbations ΩU and ΩV which leads to the normal modes
of the system inside the box. Thus, the interesting problem
is to determine Ω2

ðU;VÞ ¼ Ω2
ðU;VÞðK; λ; nÞ, with n an integer

labeling the mode. Namely, we would like to know how the
frequency of the electromagnetic perturbation depends on
the label n and on the coupling constants K and λ of the
theory. Obviously, since the problem is linear, the general
solutions will be given by an arbitrary linear superposition
of the normal modes multiplied by harmonic time factors
with the corresponding normal frequencies. Figure 3
shows the first four normal modes for the normal coor-
dinates U and V.
The Eq. (60) can be brought into the standard Mathieu

form

U00 þ ðA − 2Q cosð2xÞÞU ¼ 0; ð64Þ

when the parameters are related as

A ¼ ð4K þ Ω2
UÞl21; 2Q ¼ 4Kl21: ð65Þ

The comparison with Eqs. (7) and (8) of [44] shows the
correspondence between the Skyrme and Mathieu param-
eters:

2

ℏ2
¼ Kl21; ð4K þΩ2

UÞl21 ¼
8u
ℏ2

⇒ ð66Þ

Ω2
U ¼ 8u

l21ℏ
2
− 4K; ℏ2

eff ¼
2

Kl21
¼ 32

Kλ
; ð67Þ

where the combination 32=Kλ plays the role of the
“effective Planck constant” ℏ2

eff of the problem so that
the parameter u does not depend separately on K and λ but
only on their product (as well as on the label n of the
discrete energy level). Well known results in the theory
of the Mathieu equation can be used to determine the

1=1.366

2=3.522

3=5.663

4=7.748

1 2 3 4 5 6
r

–1

0

1

2

3
U

1=1.0249

2=3.4705

3=5.6508

4=7.7405

1 2 3 4 5 6
r

–1

0

1

2

3
V

FIG. 3. First four normal modes for the normal coordinates U and V, together with the corresponding normal frequencies. Neumann
boundary conditions have been imposed on the electromagnetic perturbation.
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spectrum (in particular, the parameter ΩU: see Fig. 4) of the
above perturbations in Eqs. (57). Let us focus on Eqs. (60),
(65)–(67). The results of [44] which can be applied directly
to our case are (with the obvious replacement ℏ → ℏeff ):
(1) To expand uðK; λ; nÞ [or equivalently ΩðK; λ;nÞ2

through Eq. (67)] in power series of the effective
Planck constant ℏ2

eff is not enough to get a math-
ematically well-defined answer. The perturbative
series is not even Borel summable. However, the
inclusion of nonperturbative contributions discloses
the resurgent phenomenon.

(2) One needs to express u as a trans-series:

ðutransðℏeff ;nÞÞ2 ¼
X∞
k¼0

X∞
j¼0

Xk−1
l¼1

ck;j;lðnÞðℏeffÞj

×

�exp ½− S
ℏeff

�
ðℏeffÞnþ1=2

�k�
ln

�
−

1

ℏeff

��
l
;

ð68Þ

where, with the normalizations in Eqs. (7)–(9) of
[44] the S in the exponential factors (the “instanton”
action) in the above trans-series is

S ¼ 8:

(3) The above trans-series in Eq. (68) allows to define
clearly a strong coupling (nℏeff ≫ 1) regime and
weak coupling regime (nℏeff ≪ 1). The correspond-
ing expansions (reviewed in [44]) can be applied
directly to the present case. We will not report these
expansions here4 since the main aim of the present
subsection is to show the explicit relations of the
present gauged Skyrmion and its electromagnetic

perturbations with (well-known results on) the
Mathieu equation.

The analogy with the Mathieu equation analyzed in [44]
is not complete since, in that reference, the Mathieu
equation was interpreted as a Schrodinger equation so that
the unknown function in Eq. (7) of [44] is a complex wave
function satisfying the boundary conditions in Eq. (36) of
the same reference. In the present case, the unknown
function U in Eq. (60) is real and satisfies Eq. (62). On
the other hand, some of the results in [44] can be applied
directly: in particular, the results which do not depend on
the boundary conditions in Eq. (36) of [44] (such as the
ones on the asymptotic expansions of uðK; λ;nÞ) hold in
the present case as well. It is a quite remarkable feature of
the present gauged solitons in (3þ 1) dimensions that the
resurgent structures are so transparent in this setting. The
gauged Skyrme model in (3þ 1) dimensions is definitely
not a toy model and yet the importance of the resurgence
interplay between the perturbative expansion and the
nonperturbative contributions is manifest. We hope to
come back on the appearance of resurgence in the gauged
Skyrme model in a future publication.
On the other hand, the normal coordinate VðrÞ is deter-

mined by Eq. (65) which being a Whittaker-Hill equation
admits a mapping with the parameters in Eq. (50) to Eq. (54)
by setting

α2 ¼ −
Kq2λl21
8l22

; s ¼ iKl1l2
q

ffiffiffiffiffiffi
8

Kλ

r
;

λ0 ¼
l21
4l22

ð16Kl22 þ Kq2λþ 4l22Ω2Þ;

and

a¼ l21
4l22

ð16Kl22þKq2λþ4l22Ω2Þ; b¼2Kl21; c¼Kq2λl21
8l22

:
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FIG. 4. The spectrum of the electromagnetic perturbation. One sees that rapidly, as a function of the mode number, the frequencies
tend to an equispaced, i.e., linear spectrum. The equation for the normal variable U depends on the details of the background
configuration. We have selected the nodeless configuration for b03ðrÞ as a background.

4The reader can refer to [44] and references therein.
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Consequently, the resurgence parameter in this case is

g2 ¼ i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cþ b

p ¼ il2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kλðλq2 þ 4l22Þ

p
l1
:

B. Heun equation and gauged time crystals

The Skyrme configuration for time crystals reads

α ¼ ϕ

2
; β ¼ HðrÞ; ρ ¼ ωγ

2
;

with the coordinates ordering as

xμ ¼ ðγ; r; t;ϕÞ:

Also in this case, a direct computation shows that,
using the line element in Eq. (35), the three coupled

gauged Skyrme equations (namely, Ej ¼ 0, j ¼ 1, 2, 3)
in Eq. (5)

Dμ

�
Rμ þ

λ

4
½Rν; Gμν�

�
¼ Ejtj ¼ 0

and the corresponding four Maxwell equations in Eq. (6)
are greatly simplified by the Skyrme ansatz in Eqs. (15),
(26), (25), and the gauge potential in Eq. (17).
Indeed, Eq. (5) reduce to only one Skyrme field equation

(since the third Skyrme equation is identically satisfied
while the first and the second are proportional):

E3 ¼ 0;

E1 ¼ I1PTC½H�; E2 ¼ I2PTC½H�; I1 ≠ 0; I2 ≠ 0;

where Ij are real and nonvanishing while the only non-
trivial Skyrme field equation PTC½H� ¼ 0 reads

4

�
l23ð4 − λω2Þ þ l23

l21
X2sin2ðHÞ þ λ

�
H00 þ 2l23

l21
X2 sinð2HÞH02 þ 4l23

l21
sin2ðHÞX0

2H
0

þ
�
1

4
ðl23ω2 − 1ÞX2 þ

λl21
l23

ð2l23ωb1 − 2b3 − 1Þð2l23ωb1 − 2b3 − l23ω
2Þ
�
sinð4HÞ − 2l23

λ
X2 sinð2HÞ ¼ 0; ð69Þ

where

X2ðrÞ ¼ 8λ

�
l21b1ðω − 2b1Þ þ

2l21
l22

b22 þ
l21
l23
b3ð1þ 2b3Þ

�
:

ð70Þ

The Maxwell equations are written in the same form as the
previous section, where the matrix for this case is given by

M11 ¼ 2sin2ðHðrÞÞ
�
4λH02 þ λl21

l23
cos2ðHÞ þ 4l21

�
;

M13 ¼ −
λωl21
2l23

sin2ð2HÞ;

M22 ¼ M11 þ l23ωM13;

M33 ¼ M11 þ
l23ω

2 þ 1

ω
M13;

M31 ¼ −l23M13;

while

N ¼
�
1

4
ðM13 − ωM11Þ; 0;

1

4

�ð2l23ω2 þ 1Þ
ω

M13 þM11

��
:

When we impose the relations

X2 ¼
λl21
l23

ðl23ω2 − 1Þ ¼ constant;

b3ðrÞ ¼ l23ωb1ðrÞ −
l23ω

2

4
−
1

4
; ð71Þ

the field equations are reduced to

2ðλðl23ω2 − 1Þ cos2ðHÞ − 4l23ÞH00

þ ðl23ω2 − 1Þ sinð2HÞðl21 − λH02Þ ¼ 0; ð72Þ

b001 þ
K
8
ðω − 4b1Þ sin2ðHÞ

�
l21ðλω2 − 8Þ − l21

l23
λ

þ λl21
l23

ðω2l23 − 1Þ cosð2HÞ − 8λH02
�

¼ 0: ð73Þ

Equation (72) has the solution

HðrÞ ¼ l1ffiffiffi
λ

p rþ h0;

with which Eq. (73) becomes
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b001 þ
K
8
ðω − 4b1Þ sin2ðHÞ

�
l21ðλω2 − 16Þ − l21

l23
λ

þ λl21
l23

ðω2l23 − 1Þ cosð2HÞ
�

¼ 0: ð74Þ

In terms of the same variables of Eq. (42), Eq. (73) can
be written as a form of confluent Heun’s equation as in the
previous section. That is,

d2y
dx2

þ ð8Kλ sin2 x − Δ2 sin2 2xÞy ¼ 0; ð75Þ

with a non-negative constant Δ ≥ 0,

Δ2 ≔
Kλ2

4

�
ω2 −

1

l23

�
:

In this section, we assume that ω2 ≥ 1=l23. Equation (75)
can be cast into the confluent Heun’s equation

d2

dz2
YðzÞ þ

�
γ

z
þ δ

z − 1
þ ϵ

�
d
dz

YðzÞ þ αz − q
zðz − 1ÞYðzÞ ¼ 0;

ð76Þ

where

z¼ cos2x; YðzÞ¼e−Δzyðarccos ffiffiffi
z

p Þ;
γ¼δ¼1=2; ϵ¼2Δ; α¼Δþ2Kλ; q¼Δ=2þ2Kλ:

ð77Þ

A general solution to this equation is known as

YðzÞ ¼ C1HeunCðΔþ 2Kλ; 1=2; 1=2; 2Δ;Δ=2þ 2Kλ; zÞ
þ C2

ffiffiffi
z

p
HeunCð2Δþ 2Kλ; 3=2; 1=2; 2Δ; 3Δ=2

þ 2Kλ − 1=4; zÞ: ð78Þ

The confluent Heun’s function can be expanded in terms of
Kummer’s confluent functions when ϵ ≠ 0, and γ þ δ is not
zero nor negative integer [59]. Our equation satisfies this
condition so that

YðzÞ ¼
X∞
n¼1

an1F1

�
nþ 1

2
;
1

2
;−2Δz

�
; ð79Þ

where 1F1 is the Kummer’s confluent hypergeometric
function, and the coefficients are determined by the
recursion relation

n

�
n −

Kλ

Δ

�
an þ

�
−2n2 þ

�
2Kλ
Δ

þ 2Δþ 3

�
n

−
�
3Kλ
2Δ

þ 2Kλþ 3Δ
2

þ 5

4

��
an−1

þ
�
n −

3

2

��
n −

3

2
−
Kλ

Δ

�
an−2 ¼ 0: ð80Þ

It is worth to notice that this kind of series is terminated if

Kλ
Δ

¼ N þ 1

2
; ð81Þ

⇒ ωðNÞ ¼ �
�
1

l23
þ 4K
ðN þ 1=2Þ2

�
1=2

; ð82Þ

for some natural number N ∈ N.
A possible criticism to the time crystals constructed in

the previous Refs. [35,36] is that there was no argument to
fix the corresponding time periods. It is a very intriguing
results that the classic theory of Kummer’s confluent
functions is able to fix the time period of the present
gauged time crystals based on the Heun equation through
the quantization condition in Eq. (82).

1. Relation with the Whittaker-Hill equation

Following the same steps as the gauged Skyrmion, the
mapping with the Whittaker-Hill equation

y00 þ ðλ0 þ 4αs cos ð2xÞ þ 2α2 cos ð4xÞÞy ¼ 0;

determines the coefficients as

λ0 ¼
Kλ

8l23
ðλ − l23ðλω2 − 32ÞÞ; α2 ¼ Kλ2

16l23
ðl23ω2 − 1Þ;

s ¼ −4l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

l23ω
2 − 1

s
;

so that, the resurgence parameter is given by

g2 ¼ l3ðλKðl23λω2 − 8l23 − λÞÞ−1=2:

V. CONCLUSIONS AND PERSPECTIVES

We have shown that one can get a complete analytic
description of gauged Skyrmions in (3þ 1) dimensions
living within a finite volume in terms of classic results in
the theory of ordinary differential equations. In particular, we
have been able to reduce the coupled field equations of the
gauged Skyrmemodel (which, in principle, are seven coupled
nonlinear PDEs) in two nontrivial topological sectors (one
corresponding to gauged Skyrmions and the other to gauged
time crystals) to the Heun equation (which, for some
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particular choice of the parameters, can be further reduced to
the Whittaker-Hill equation). This technical result has many
intriguing consequences. First of all, one obtains a complete
explicit construction of these gauged solitons in terms of
Heun and Kummer functions (so that, for instance, it is
possible to compute the energy of the system in terms of
the Baryon charge and the volume of the region). Second, the
time period of the time crystals is quantized. Likewise, the
volume occupied by the gauged Skyrmions is quantized. The
present analysis also discloses the appearance of resurgent
phenomena within the gauged Skyrme model in (3þ 1)
dimensions. In particular, suitable electromagnetic perturba-
tions of the gauged Skyrmions satisfy the Mathieu equation
(which is a well known example in which the resurgent
paradigm works very well). Thus, the spectrum of these
perturbations can be determined in terms of known results in
the theory of the Mathieu equation.

It is worth to further analyze the appearance of
resurgent phenomena in the Skyrme model as this
analysis could help to shed new light on resurgence in
QCD as well. We hope to come back on this important
issue in a future publication.
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