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The Wess-Zumino consistency condition allows more exotic forms of anomalies than those we usually
encounter. For example, in two-dimensional conformal field theories in the curved background with
spacetime-dependent coupling constant A'(x), a U(1) current could possess anomalous divergence of the
form D*J, = €R + y;;0"A'0,4; + i€ 0,A'0,4) + - --. Another example is the CP odd Pontryagin
density in four-dimensional Weyl anomaly. We could, however, argue that they are impossible in
conformal field theories because they cannot correspond to any (unregularized) conformally invariant
correlation functions. We find that this no-go argument may be a red herring. We show that some of these
“impossible anomalies” avoid the no-go argument because they are not primary operators, and the others
circumvent it because they are realized as semilocal terms as is the case with the conformally invariant
Green-Schwartz mechanism and in the higher dimensional analogue of Liouville or linear dilaton theory.
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I. INTRODUCTION

Anomalies' in quantum field theories are constrained
from their algebraic structures given by the Wess-Zumino
consistency condition [1], which demands that the sym-
metry transformation is integrable. One elegant solution
of the Wess-Zumino consistency condition is given by
solving the descent equation and relating it to the higher-
dimensional anomaly polynomial [2]. It has a beautiful
geometric realization as well as physical realization by the
so-called symmetry-protected-topological phases of matter.
In addition, the Wess-Zumino consistency condition for the
Weyl anomaly together with the local renormalization
group gives nontrivial constraint on the renormalization
group flow, and has attracted a lot of attentions over
years [3—5]. Moreover, the effective field theory realization
of the Weyl anomaly is a starting point of the proof of the a-
theorem [6] and discussions on the equivalence between
scale invariance and conformal invariance in four-dimen-
sions [7,8]. See e.g., [9] for a review.

We, however, note that the there are more solutions to the
Wess-Zumino consistency conditions than those obtained
from the anomaly polynomials. For instance, let us consider

'In this paper, we define the anomaly as a c-number violation
of the conservation law under the presence of the nontrivial
background field that cannot be removed by adding local
c-number counterterms.
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four-dimensional field theories with the anomalous con-
servation of the U(1) current under the presence of (the
other) background U(1) gauge fields A, with the field
strength F,,. In addition to the conventional Adler-Bell-
Jackiw anomaly [10,11]

M, =t e"P°F,F,, (1)

we could have the additional (nonconventional) structure of
the form

O, = LF, Fr. 2)

We can easily see that the both forms of anomaly are
allowed by the Wess-Zumino consistency conditions
although the usual descent formalism from the higher
dimensional anomaly polynomial does not give the second
term.” Is there any theoretical principle that the second form
does not appear possibly in CP violating theories? Of
course, with a given Lagrangian theory, one may argue its
absence by perturbative discussions similarly to the Adler-
Bardeen theorem [12], and the usual argument goes as
follows. Suppose the theory under consideration is defined
as an asymptotic free theory. Then we may use t’Hooft
anomaly matching argument to evaluate the anomaly in the
ultraviolet theory, but it is just fixed by the one-loop
diagram. Beyond the perturbation theory or especially in

’In contrast, in the case of the non-Abelian anomaly (i.e., the
violation of D*J§ = 0), the Wess-Zumino consistency condition
is strong enough to fix the form of the anomaly in the conven-
tional form up to an overall factor.
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the non-Lagrangian theories, we might wonder what would
be the fundamental obstructions.’

If there were such anomalies, we might achieve more
intrinsic classifications of (possibly CP violating) quantum
field theories. They might give further constraint on the
renormalization group from the analogue of the ’t Hooft
anomaly matching. For example, if such theories exist, they
cannot be gapped. They might have particle physics
applications as we had in the 7, — 2y decay in the ordinary
chiral anomaly.

On the other hand, as we will discuss in the main part of
the paper, there is an argument that these anomalies cannot
be realized in conformal field theories. The main point of
the argument is that if there existed such terms in the
anomaly, there must exist a corresponding three-point
function (J,J,J,) which reduces to (2) after taking the
divergence. The analysis of the conformal symmetry,
however, tells that such a (unregularized) three-point
function supported at the noncoincident point does not
exist and hence it is impossible. The argument sounds
convincing but slightly mysterious. Certainly the anoma-
lous current conservation law itself is Weyl invariant and
there is no violation of the Wess-Zumino consistency
condition either for the U(1) symmetry or the Weyl
transformation. Then what is the underlying conceptual
reason why these terms are not allowed? In other words,
how can we evade the totalitarian principle of Gell-Mann:
“Everything not forbidden is compulsory.”?

In this paper, we call these anomalies “impossible
anomalies” and study the properties and possible realiza-
tions. On one hand, the impossible anomalies look per-
fectly healthy and consistent but on the other hand, it seems
that they are not compatible with the conformal symmetry
in their actual realizations. Our goal it to try to resolve this
dilemma in two different ways. In both cases, we find that
the no-go argument above may be a red herring. In the first
case discussed in Sec. II, we show that the no-go argument
can be avoided by realizing the current operators may not
be primary operators. In the second case discussed in
Sec. III, we show that the no-go argument can be circum-
vented by realizing the anomalous correlation functions can
be only semilocal as is the case with the conformally
invariant Green-Schwartz mechanism. We conclude the
paper with discussions in Sec. I'V.

II. REALIZING IMPOSSIBLE ANOMALIES
FROM DESCENDANTS

In this section, we study the first mechanism to avoid
the no-go argument for impossible anomalies. The main

*In this particular case, one may resort to the quantization of
the U(1) charge and the compactness of the U(1) gauge
symmetry to discard the possibility (2), but we do not always
have such and argument and the necessity of the quantization
could be questioned.

idea is to relax the condition that the current operator is
a primary operator. In fact, the idea itself is ubiquitous
and quite commonly observed in two-dimensional con-
formal field theories, so we begin with our analysis in
two dimensions.

We study a two-dimensional conformal field theory
with conserved U(1) currents J) and J#. Here, super-
script V stands for the vector current whose left-
mover is J and whose right-mover is J, and A stands
for the axial current whose left-mover is J and
whose right-mover is —J. Let us put the theory in
the curved spacetime with the Ricci scalar given by R.
The U(1) current may be anomalous in the curved
background, and we consider the possible anomaly of
the form

DY =aR+ -, (3)

where --- means the other anomaly terms that we will
not discuss for now.

This anomaly term is allowed in the sense of the Wess-
Zumino consistency condition. Indeed, the Wess-Zumino
consistency condition does not say much about the possible
form of the U(1) current anomaly. The commutative nature
of the U(1) anomaly

[04,(x): 81, (0] = O (4)

implies that if the partition function Z[A,(x)] shows the
anomalous variation A[A(x),A,(x)] = 8,y log Z[A,(x)]
under the gauge transformation 6A,(x) = d,4(x) for the
background gauge field A, (x) that couples with J/, it must
satisfy the algebraic constraint

SAI(X)AMZ(X)} = 5/12(x)¢4[/11 (x)]- (5)

This condition, however, is trivially true when the anoma-
lous variation is gauge invariant as in (3)

Amun:/ﬁ%¢m@mR (6)

Therefore the anomaly of the form (3) is integrable and
perfectly healthy in this sense.

However, a closer inspection might indicate that such an
anomaly cannot exist in conformal field theories from the
following argument. Suppose the anomaly is realized as in
(3). Then it must be visible from the study of the two-point
functions of the energy-momentum tensor 7, and the
current J,. More precisely, it should be related to the two-
point function
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(T(2)7(0)) = =, (7)

where we have introduced the complex coordinate
z=x-+ix, and holomorphic tensors 7= T, and J = J,
as usual in two-dimensional conformal field theory. Indeed
the divergence gives the anomalous conservation

T (2)J(0)) = 47ad?*s? (z,7) (8)

from the formula 5% =278 (z,Z), which is equivalent
to (3).

On the other hand, if we assume that 7" and J are (quasi-)
primary operators, we immediately realize that the con-
formal invariance demands that the two-point functions
between primary operators of different twists A &+ J vanish.
Since T and J have different twists, we conclude a = 0 in
conformal field theories. As a matter of fact, the anomaly
equation (3) itself may not look Weyl invariant from the
beginning because the Ricci scalar has the nontrivial Weyl
transformation R — ¢=2°(R — 2[Jc), and does not seem to
make sense in conformal field theories. We will come back
to this point later after showing how to circumvent this no-
go argument.

Nevertheless, we actually know that such anomalies
do exist. For example, if we study the string world-
sheet theory, the ghost number conservation is anoma-
lous and indeed it has the same form as in (3) (see e.g.,
[13]]). The above no-go argument is avoided because
the ghost number current is not a primary operator. In
unitary conformal field theories, conserved current
operators are necessarily primary operators, but it is
not the case here.

Actually, the situation is more generic. Let us consider
any two-dimensional conformal field theories with U(1)
current algebra with the standard operator product expan-
sion (OPE):

IO =55

2
(T(2)J(0)) =0 ©)

[\

For simplicity, we assume that the theory is left-right
symmetric so that the right-mover with (T, J) has the
same OPE with z replaced by z

Let us now define the twisted energy-momentum
operator by

T=T+adl
+adJ, (10)

~Nn
|
~

or equivalently, we modify the coupling to the back-
ground metric by [ d*x,/ga(JWw + Jw), where w is the spin
connection.

Then one can immediately see that the two-point
functions have the form

(T(2)J(0)) = - . (11)

This means that the U(1) current under consideration
realizes the impossible anomaly once we couple the theory
to the background curvature through the twisted energy-
momentum tensor 7 rather than 7. We note that a priori
there is no preferred choices of a for the energy-momentum
tensor in two-dimensions: they are all traceless and con-
served (unlike in the other dimensions where the trace
becomes nonzero by the twist). For example, in the ghost
number current, the particular « is chosen from the other
principle of the physics (e.g., world-sheet BRST sym-
metry). The same is true in the case of topological twist in
¢ = 3 superconformal field theories. Whether we prefer the
topologically twisted energy-momentum tensor to the
untwisted energy-momentum tensor simply depends on
the problem we would like to study.

At the same time, from the same two-point function,
we see that the energy-momentum tensor has the Weyl
anomaly

— 6ka?
(= bkr) 162“ )R—%G””Fﬁy (12)

"
b=

under the presence of the background axial U(1) curvature
F j}y. This gives the reciprocal relation between the impos-
sible U(1) current anomaly and the impossible Weyl
anomaly. This Weyl anomaly has a tantalizing physical
interpretation. Suppose we want to gauge the axial current
in two-dimensional conformal field theories. The gauging
would introduce the nontrivial beta functions for the gauge
field strength. The Weyl anomaly (12) indeed suggests that
the U(1) theta angle acquires the “one-loop” beta function,
but the point is that the coefficient is unfixed unless we
specify how the theory couples to the background metric.

*At this point, we might be tempted to say that these are not
really anomalies because we can change them by adding local
operator—dependent counterterms, and indeed this is the case. We,
however, defined our anomalies as those which we cannot remove
by introducing the local c-number counterterms. We could take the
former viewpoint and then the ghost number anomaly is not an
anomaly (contrary to the common use of the terminology). Of
course, if we removed the ghost number anomaly in this way, then
the world-sheet BRST symmetry is lost.
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In other words, the beta function for the U(1) theta angle is
completely arbitrary from the viewpoint of the flat space
theory unless other principles of physics are introduced.
One caveat of this construction is that the resulting
theory has the nonunitary interpretation. To see this, the
twisted OPE is equivalent to the commutation relation

[L1.7(0)] = ka, (13)

which is the manifestation of the fact that J is not a
conformal primary, but at the same time, the vacuum
expectation values of the right hand side does not seem
vanish while the left hand side does if we assume that
vacuum is annihilated by L,. Therefore, we do not have the
unitary field theory interpretation of the i“mpossible
anomalies” in this construction. At the same time this
commutation relation makes it manifest that J, is not a
primary operator,” and this is how the anomalous con-
servation law (3) is actually conformally covariant. Indeed,
if we naively apply the Wess-Zumino consistency condition
for the mixed U(1) transformation and the Weyl trans-
formation, it appears to fail if we assume that Weyl
transformation and the U(1) transformation commute.
Naively, the U(1) transformation of the Weyl anomaly is
zero while the Weyl transformation of the U(1) anomaly is
nonzero. However, the commutation relation (13) actually
states that they do no commute and the anomaly is
consistent, which is obviously the case since we can
construct examples.

Let us study three examples. The first example is the
(twisted) free fermion also known as the bc ghost system.
As we already mentioned, the world-sheet ghost number
current is an example of impossible anomalies. Let us
consider the free Dirac fermion

S = /dzx\/a(lpL}/”Dﬂl//L +Wrr*Duyywr).  (14)

The standard choice of the spin connection in D, =
d, +w, £ A, defines the spin 1/2 free fermion, but one
can twist the fermion to have different spin connection. The
twisted energy momentum tensor and U(1) current are
given by

1. 1_ _
T =500y = 5W0yL —ad(yLyy)
J=—wry. (15)

The world-sheet ghost system is realized at a = % The
fermion number is anomalous:

>This commutation relation further implies that J, is not a
descendant either. Again this is only allowed in nonunitary
conformal field theories.

DrJ, = gR. (16)

The second example is the twisted free boson (also
known as linear dilaton or Liouville theory):

S = / d’x\/g G 90,00, + aVkRp — VkpF e,
+ Vk0,pAY + 0(A2)>. (17)

One may regard it as the bosonized version of the first
example. Here J = \/Eﬁqﬁ and J = \/Eéqﬁ, and note that the
two-point function of the current is normalized with an
extra negative sign.

The advantage of this model is that we can reproduce the
anomaly from the classical analysis,

1 1 1
Th = — Ea\/Eljcp =3 a*kR + 3 ake™ Fl,
1 1 1
DU} = ViOp = 4 OkR = Zke’“’F;‘,, (18)

when A =0 (up to O(1) quantum correction). In this
sense, the twisted boson gives the Wess-Zumino effective
action for the (impossible) anomalies. However, note that
this action not only reproduces the anomalous correlation
functions, but also the nonanomalous correlation functions
supported on noncoincident point, so one may regard it as a
bona fide quantum field theory with impossible anomalies.
This is a generalization of that the Liouville action or
nonlocal Polyakov action gives the effective action for the
local as well as nonlocal Weyl anomaly in two-dimensions.
As we will see, the discussions are more subtle in higher
dimensions because local terms and nonlocal terms may
have different origins.

Our third example is the holographic realization of the
impossible anomaly. We can realize the impossible
anomaly in the holographic bulk gravity in 1 + 2 dimen-
sion with the holographic topological twist. The minimal
setup is to realize the three-dimensional gravity as the
SL(2,R) x SL(2, R) Chern-Simons theory [14] and realize
the U(1) current sector by the SU(1) x U(1) Chern-
Simons theory with the action

2
Szf/Tr(AAdAJrgA/\A/\A)+(B/\dB)
T
_ 2. - _ _
+Tr<AAdA+§A/\A/\A>+(B/\dB). (19)

To realize the topological twist, we simply replace A; —
A3 4 aB in A= A161 +A262 +A363. The impOSSible
anomaly is manifest in the boundary term in the bulk
gauge transformation B — dA. We also see that there is a
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off-diagonal two-point function of 7" and J through the
kinetic term [ A;dB.

III. REALIZING IMPOSSIBLE ANOMALIES
FROM THE SEMILOCAL TERM

Another way to realize impossible anomalies is based on
the semilocal terms in the correlation functions, which
should be distinguished from the one in the previous
section in which we had the direct implication of the
impossible anomalies in nonlocal correlation functions
supported at noncoincident points.6 To illustrate the idea,
we again begin with the two-dimensions.

Let us consider a two-dimensional conformal field
theory with marginal coupling constants A’, which couples
with the operator O, and the U(1) current J,. Let us then
consider the possibility to realize the current anomaly of the
following form

8”Jﬂ :)(ijaﬂlliaﬂllj —l—)?ije””aﬂ/lial,/lj + e (20)

Here, we have promoted the coupling constants A’ to be a
spacetime-dependent background scalar field. We can
easily see that they satisfy the Wess-Zumino consistency
condition by assuming 4; are not charged under the U(1)
symmetry associated with the current J,. Since they are
consistent, how can we realize them?

As in the previous section, we can again propose the
following no-go argument. Suppose that y;; and y;; are
nonzero. Then, we must be able to see it from the three-
point functions of (J(x)0,(y)0;(z)). However, we know
that the conformal invariance completely fixes the (unregu-
larized) three-point functions at noncoincident points in
two-dimensional conformal field theory [20] as

<’““%000K@>=<x_yxy_zﬁi_xxy_zy- (21)

Taking the derivative with respect to X, we see that it
satisfies the nonanomalous Ward-Takahashi identities;

9, (J(x)0;(»)0;(z))

=278 (x—y) G I —278*(x—2z) G 7l
ly—z] ly—z]
=5 (x—y)q:(0;()0;(2)) +8*(x—2)q,;(0;(y) 0;(2))

(22)

indicating c;; are charges of operator O; and O; (denoted
by ¢; and g; in the Ward-Takahashi identity). At this point,

®There has been some interest in understanding the role of
semilocal terms in correlation functions in momentum space [ 15—
18]. They may be in particular important in its application to
holographic cosmology (see e.g., [19] and reference therein).

one might conclude that the anomaly of (20) is impossible.
The semilocal term appearing in (22) is the nonanomalous
contribution, and it has nothing to do with the anomaly (20).
In particular, when O; and O are not charged, then the three-
point functions at noncoincident point vanish due to the
conformal invariance. How can we get anything from zero?
On the other hand, it seems that we may realize such
anomalies by mimicking the free boson construction in the
previous section. Let us consider the free bosonic action

S = / dzx (;3”¢3”¢+¢()(Zja”i’8”/1’ +)~(,»j€””a”liay/1j)> s
(23)

and we study the anomalous divergence of the vector current
J, = 0,¢, whichis conserved when 1 = const. Asis the case
with the previous section, one may easily see that it shows the
anomaly through the classical equations of motion,

3"]” = 8”8M¢ :)(,16”/118”/1/ —l—)?ije”’“aﬂﬂiay/lj, (24)

realizing the impossible anomaly. This construction shows
explicitly that the Wess-Zumino consistency condition is
indeed satisfied because otherwise there should be no
effective field theory realization at all. This also shows that
not only the anomaly equation but also the equation before
computing the divergence is compatible with conformal
invariance because the construction here is perfectly con-
formally invariant.

To see what is happening and the actual origin of the
dilemma, let us compute the three-point function
(J(x)0;(y)0;(z)) from this free boson action. In addition
to the terms coming from the explicit insertion of O;(y),
which vanishes when O;(y) are not charged (i.e., non-
anomalous contributions), we have

R
ol () ﬁj(Z) =0
— - [ @wlopwgm)
X (ij0"8*(y —w)0,6*(z —w)
+ 716" 0,06%(y = w)0,6%(z — w))
(25)

(J(x)0i(y)0;(2)) (09 (x))

with (¢(x)p(w)) = log(x — w)>.

In this expression, it is not difficult to check that the
three-point function is indeed conformal invariant but
semilocal, where the support is localized at z =y with
arbitrary x.” We also note that the structure is intrinsically

"Under the infinitesimal special conformal transformation
X — xt + ox? = 2(vPx,)x*, the delta function &°(x—y) is
invariant.
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different from (21), and the anomalous term should have
different origins than the regularization ambiguities in (21).

In momentum space (where we are not careful about the
overall factors), we have

{(J(k)0i(p)0;(q))

k .
=6(k+p+q) P (vijP"a, + i€ pugy).  (26)

and it reproduces the anomalous divergence that we have

anticipated:

(0J(k)O,(p)0;(q)) = 6(k+p +q) (xij P* 6y + 716" Py )-
(27)

Note again this is different from the nonanomalous diver-
gence in the momentum space

(0J(k)0;(p)O;(q))
=6(k+ p+q)(q1p*1og|p|* + g2g* log|q*).  (28)

which gives the nonanomalous Ward-Takahashi identity.
Note that the anomalous divergence in (27) is completely
local while the nonanomalous divergence in (28) is still
semilocal. Therefore, we may be able to construct the
model of an impossible anomaly but only in the semilocal
terms. The existence of the anomaly is not explained by the
nonanomalous part of the correlation function but is fixed
by some other means.

The similar construction is available for the four-
dimensional impossible anomaly of the form that we
began with:

&J, = ,F*F,,. (29)

Assuming that the current J, is a conserved primary
operator, one may again argue that there is no conformally
invariant three-point function at noncoincident point that
shows the structure of the impossible anomaly. This is in
accord with the observation that the CP even three-point
function (J4J2JS) vanishes in conformal field theories
unless there is a totally antisymmetric structure constant
fabc [21]

To be more precise, the conformal invariance and the
current conservation at the noncoincident point demands
that the CP even part of the three-point function of the
current operators at the noncoincident point must be given
by a combination of the two independent terms [22,23],

(TR (T2 (0)T5(2)) = KDy (x. . 2) + k5" Clip (x. . 2),
(30)

where Dj; (x,y,z) and C,2, (x,y,z) are permutation odd
tensor functions constructed out of

1 9 9
(x = y)*(z = y)*(x — 2)* Ox, Dy,

e o G

Duvﬂ('xv Y, Z) =

10 9 9 9
= 7 % log(x—2)?
Cﬂ’//’<x’y’Z) (x—y)4 axﬂ 0z Og(x Z> Jy, 0z,
B (x—Z)Z)
1 — 27 31
x log(y - z) oz, Og((y—z)2 (31)

by symmetrization

D;}l//gl(x’%z) :DWP()C,)),Z) +Dup;4(y’z’x) +Dp/w(z’x7y)
C:l}ll/r;;(x’y’z) - C,uup(x’yiz) + Cupy(yiz’x) + Cp/w(zvx’y)'
(32)

Since the three-point function is permutation invariant,
the coefficient k¢%¢ and k§”° must be permutation-odd.
To fix these coefficients, we note that when we compute
the divergence of (30), we find contact terms from
DZyb?(x, v,z). These contact terms at the coincident point
has the interpretation that J® is charged under J* and the
symmetry group is actually non-Abelian. Then the coef-
ficient k{°¢ must be related to the structure constant f*¢ of
the non-Abelian group through the Ward-Takahashi iden-
tity. Due to the absence of the coincident singularities in
Civp (x,¥,2), however, k3%¢ is not fixed by the group
structure. Therefore if we have more than three U(1)s
one may have such a term in Abelian global symmetries.8
This is an interesting point, but since k5 is permutation
odd anyway, it does not directly give rise to our anomaly
because our anomaly is permutation even in » and c. In this
way, we may conclude that the conformal symmetry does
not allow the impossible anomalies of the form (29).

However, one may still realize the anomaly in the
semilocal terms. Indeed, one may consider the free boson
with the higher derivative conformal action

S = / d*x (%qﬁmzqs + B0, - ¢F,,DFW>’ (33)

which may be regarded as a four-dimensional dilaton
theory. In order to study the anomalous divergence of
the current Jff = 0,¢, we can compute the conformally
invariant semilocal three-point function

*One way to introduce such a term is to consider the holo-
graphic bulk theory with the three U(1) gauge fields with the

cubic interaction [ d°x,/gF,, VF} pF?, .,
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(JB1,1,) = / (00, (x)p(w))
X (8,075 (W — y) 08" (W — 2)
- 9,84(w—)9,6*(w—2z)). (34)

with the desired (impossible) anomalous divergence,

(0"98J,J,) = 6,008 (x — )0,6*(x — z)
- 9,84(x —y)0,8*(x — 2). (35)

Alternatively, in the momentum space, we have

<8MJ5JDJ/)> = 6(k +p+ CI) (pyqp - (pQ)éb/))’ (36)

which is equivalent to the anomalous conservation (29).
The structure is very similar to the two-dimensional one
discussed in this section but quite different from the one
discussed in the previous section. The free boson con-
struction only gives rise to the semilocal terms and they are
not directly connected to the nonlocal three-point functions
allowed in the conformal field theories.

It is instructive to compare the results here with the one
with the more conventional anomaly realized in the con-
formally invariant Green-Schwartz mechanism. Instead of
(33), we consider the higher derivative action

S = / d4x% (9% + B0, — pe’°F , F ;). (37)

One may regard it as the conformal invariant version of the
Wess-Zumino action for the chiral anomaly. Alternatively,
one may regard it as the conformal invariant Green-
Schwartz action for the U(1) current anomaly.

As before, one can compute the current three-point
function as

(JB1,1,) = / dw(00,4(x)p(w))
X (€,qp0°6(w — y)PS(w —z2)).  (38)

In the momentum space, it is given by

=~

(Jidudp) = 8(k+p+4) 15 (€upop’a”)  (39)

or its divergence
(0I37,d,) = 8(k+ p + q)(€upar’q"),  (40)
Note that the semilocal term (39) does not correspond to

the local three-point functions that we usually obtain in the
(unregularized) triangle diagram

(a2 (9)T5(2))
Trysy,u(Xe = Ya) 770 (Vs — 25777 (25— X5)7°)]
(x=y)*y-2)*(z—-x)* ’
(41)

— dabc

which is known as the only conformally invariant CP-odd
three-point functions of conserved current with nonzero
support at noncoincident point. Also they are different from
the completely local contact term ambiguities in regular-
izing (41)

(I D)T5(2))amb = A €ps 008 (x = ¥)5(y = 2).
(42)

that appears in the shifting momentum in the linearly
divergent integral.

Nevertheless its anomalous divergence is the same as
that we observe in conformal field theories. We, therefore,
can use the semilocal terms to cancel the current anomaly
as we do in the Green-Schwartz mechanism. In other
words, not accepting the realization of the impossible
anomalies by semilocal terms is equivalent to not allowing
Green-Schwartz mechanism to cancel anomalies.

IV. DISCUSSIONS ON IMPOSSIBLE
WEYL ANOMALIES

In this paper, we have discussed two mechanisms to
realize impossible anomalies. Impossible anomalies are
defined such that while they satisfy the Wess-Zumino
consistency conditions, they do not seem to possess the
corresponding flat space conformal correlation functions.
One way to circumvent the difficulty is to make the current
not primary operators, and the other way to circumvent is to
use the semilocal terms in the correlation functions.

There are more impossible anomalies reported in the
literature, some of which will be discussed here briefly for
future investigations. Consider the two-dimensional Weyl
anomaly. With spacetime-dependent coupling constants A,
we may have

TMM =cR + nij(?”ﬂiaﬂﬂj + ﬁ,-jef‘”aﬂiiauﬂj =+ (43)

The manifestation of the Weyl anomaly in the correlation
functions is slightly more nontrivial than the one for the
current anomaly. In [24], they argued that 77;; is an example
of impossible anomalies. Suppose we have nonzero 7;;,
then we should be able to see it from the scale anomaly in
the two-point functions (O;0;), but there is no such terms
simply because " p,p, = 0, and there is no CP violating
two-point functions. In contrast 7;; can be directly mea-
sured in the two-point functions of (0;(p)0;(q)) =

ni;6(p + q)p* log p*.
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On the other hand, the semilocal terms that correspond to
the Weyl anomaly with 7;; do exist. The most convenient way
to realize it to use the bosonic Liouville-like construction

/ d’x\/g (% 0,0"p + Rp + (716" 0,A'0, )/ )> . (44)

It is more nontrivial to see how the induced Weyl anomaly
affects the correlation functions than the case in the U(1)
current anomaly. Instead of computing the insertion of the
trace of the energy-momentum tensor directly, let us compute
the three-point functions of (7'(k)0;(p)0;(q)) from (44). In
the momentum space it is given by the semilocal term

(T()0p)O,(@) = 8(k +q + p) Lewr'a’. (49

so its divergence gives the contact term

(0T (k)0i(p)O;(q)) = 6(k + q + p)ke,,p'q”.  (46)

This term does not come from the semilocal terms in the
ordinary Ward-Takahashi identity of the energy-momentum
tensor conservation, so it must be cancelled from the insertion
of 9T*, to avoid the gravitational anomaly, which in turn
means that the trace of the energy-momentum tensor has the
(semi)local terms in the flat spacetime limit.

(1",(k)0i(p)O;(q)) = 6(k + g+ plenp'q”.  (47)

This is not inconsistent with the dilatation Ward-Takahashi
identity because

5di1ataion<0i(p) Oj (t])> = kli_r{})(T”” (k)Ol(p)O](q)>

=6(q + plewr'q” =0, (48)

and as we saw, there is no C P odd term in two-point functions,
and the CP odd term in the left hand side is zero from the
beginning. Thus, the Weyl anomaly here does not correspond
to the dilatation anomaly in the two-point function.

The similar construction is possible for the four-
dimensional Weyl anomaly. There has been some debates
over whether the CP-odd Pontryagin term can appear in
the four-dimensional Weyl anomaly [25-30]. It satisfies
the Wess-Zumino consistency condition, but there is no
conformally invariant CP-odd three-point functions of
(T, T 5T ) supported at noncoincident points. Therefore,
itis an example of impossible anomalies in our terminology.

Our construction, however, suggests that at least
the semilocal correlation functions including the
Pontryagin Weyl anomaly exist. To see this, we consider
the Riegert-type effective action for the four-dimensional
Pontryagin Weyl anomaly given by

1
S= / d*x\/g (E PA1p — Q¢ — ¢€aﬁy5RaﬁﬂvRﬂU75)’
(49)

where A, = [ +2G,,D*D* + 1 (D*R)D, + 1RO is the
Fradkin-Tseytlin-Riegert-Paneitz operator [31-34] and Q =
—t0OR —JR*™R,, + ¢ R* is the so-called Q-curvature [35].
The classical equations of motion gives the Weyl anomaly

T+, = QA = 0°Q + QPR R*,5  (50)
due to the nice conformal properties of Q-curvature:
Q — e™(Q+ Ayo). (51)
This effective action does reproduce

<Tﬂ,u (x) Tap (y) Taﬁ(z)>
= Qeaasrc[(aﬁap - azéﬁp) (aeé(x - y)a’(ﬁ(x - Z))] -+sym
(52)

reported in [25,26] in its CP odd part.

The realization of the Weyl anomalies from semilocal
terms need further comments. There has been another
debate if the CP even part of the Weyl anomaly can
reproduce the flat space conformal three-point functions in
this Riegert-type action [36,37]. Since we do not have the
noncoincident three-point functions with CP violation
anyway (see e.g., [38,39]), we are not concerned about
this point, but further studies would clarify the role of our
effective action in relation to the one-loop computations in
[26]. By the same token, the two-point functions of the
energy-momentum tensor at the noncoincident point do not
depend on Q as observed in [40] while the Weyl anomaly
does. This is not a contradiction because the Weyl anomaly
is realized by semilocal terms in this model, but we may
miss the connection between the energy-momentum tensor
central charge C7 and the Weyl anomaly.9

The existence of the conformally invariant semilocal terms
to realize the mpossible Weyl anomaly means that such an
anomaly is indeed consistent, which should be contrasted
with the inconsistent Weyl anomaly such as R?, but we
should realize that the above effective realization requires the
nonunitary field theories in four-dimensions because of the
higher derivative kinetic term. Thus, even if such amplitudes
can be found in actual conformal field theories in a certain
regularization, we might have to worry about the unitarity of
such theories. In this regard, it would be more satisfactory to
see if there are more intrinsic problems in these impossible
anomalies from the direct studies of correlation functions
rather than from a particular realization.

’In particular, in the Riegert-type action, we can further change
the Weyl anomaly coefficient ¢ by adding [ d4x\/§queyl2 as we
like while keeping Cr fixed.
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