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We study the shadows cast by near-extremal Kerr-modified gravity (MOG) black holes for different
values of the parameter in modified gravity. In particular, we consider an isotropic emitter orbiting near
such black holes and analytically compute the positions, fluxes and redshift factors of their images. The size
of the shadow decreases when the modified parameter is increased. For each shadow, the images of the
emitter appear on a special part of the shadow which has a rich structure. The primary image and secondary
images are similar to those produced for the near-extremal (high-spin) Kerr black hole, but the near-
extremal Kerr-MOG black hole can have a spin (Ĵ=M2

α) which is finitely lower than 1. When the modified
parameter is varied, the typical positions of the corresponding images do not change, nor does the typical
redshift factor associated with the primary image. However, another typical redshift factor associated with
the secondary image increases when the modified parameter is increased. We also find that the fluxes
increase in that case. These images appear periodically with periods greater than that of Kerr. This provides
an alternative signature away from the Kerr case which may be tested by the Event Horizon Telescope.
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I. INTRODUCTION

Black holes play an important role both in under-
standing gravity theories and in explaining astronomical
phenomena. There has been abundant observational evi-
dence for black holes in our Universe [1–3]. Fortunately,
we are entering a new era of more precise astronomical
observations with the efforts of LIGO, Virgo, the Event
Horizon Telescope (EHT), ATHENA, SKA, eLISA, et al.
[4–9]. Among those, EHT is particularly interesting since
it aims at observing the event horizon of a black hole
which is its most striking feature. Thus, we will be able to
observe black holes significantly closer to the event
horizon and obtain their images (shadows). Hence there
is an urgent need for theoretical templates to identify the
images that one expects to observe. This has stimulated
recent theoretical works predicting the signals that EHT
may possibly observe [10–16] and examining the type
of properties of gravity that the shadows can inform us
of [17–19].
Recently, an analytical method was proposed to compute

the observational signature of a near-extremal (high spin)
Kerr black hole [15]. The authors considered an isotropi-
cally emitting point source (“hot spot”) orbiting near a
rapidly spinning Kerr black hole and found that the primary
image and secondary images appear on a vertical line
segment which constitutes a portion of the black hole

shadow. Ref. [15] also discussed the positions, fluxes and
redshift factors of these images in detail, which provide a
unique signature for identifying a high spin Kerr black hole
if detected by observations.
Even though the Kerr solution predicted by general

relativity (GR) is expected to describe astrophysical black
holes, there are indications both from physics and astro-
physics that GR is modified. Therefore, it is important to
obtain templates based on different gravitational theories
[20–27]. One of these candidates is the scalar-tensor-
vector (STVG) modified gravitational (MOG) theory [27].
The motivation of this theory is to construct a theory of
gravity without invoking dark matter, since the hypoth-
esized dark matter has not been observed yet, to release
the discrepancies between some observed data and theo-
retical predictions of GR. For the same motivation, a
series of theories has been proposed prior to the MOG
theory, namely, the modified Newtonian dynamics theory
(MOND) [28] and its relativistic extensions (for a review
see Ref. [29]). Independently, Moffat proposed the MOG
theory by adding a massive vector field to the Einstein-
Hilbert action and replacing constants of the ordinary
theory by scalar fields [27]. The MOG theory has
successfully explained solar system observations [27],
galactic rotation curves [30], dynamics of clusters of
galaxies [31] and cosmological data [32]. However, it
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still remains to be tested in the strong gravity regime [33].
The EHT might hopefully provide such a test.
The static and rotating solutions of MOG were obtained

in Ref. [34] and followed by research works examining
various aspects of these black holes [33,35–42]. The
particular case of rotating black holes known as Kerr-
MOG black holes have gained more astrophysical interests
since the observed black holes are thought to be rotating.
For example, the particle dynamics [40], the innermost
stable circle orbit [39], the accretion disks [33] and the
relativistic jets [38] have been studied. Furthermore, the
shadows cast by MOG black holes have been studied in
Ref. [36], in which it was shown that the sizes of these
shadows increase significantly as the free modified param-
eter is increased. However, the shadow is expected to
exhibit further signals which need to be clarified, such as its
shape and images of orbiting hot spots (if any) on it.
The aim of this paper is to obtain the shadow cast by a

near-extremal Kerr-MOG black hole, following the method
of Ref. [15]. Moreover, we will study the images of an
isotropically emitting point source orbiting this black hole
to explore further signatures. There are two reasons for us
to consider the near-extremal case. First, the nice properties
that the near-extremal case possess enable us to apply a
powerful computational method. Second, a large number of
observed supermassive black holes are thought to be
rotating very fast [43], which is the near-extremal case
at least in Kerr spacetime. The signatures we obtained have
the following properties. The sizes of shadows cast by near-
extremal Kerr-MOG black holes decrease when the modi-
fied parameter is increased. The signals produced by the
orbiting hot spot are similar to those produced in a high
spin Kerr (the extremal value of the reduced spin is 1) [15].
However, the extremal Kerr-MOG black hole can have a
reduced spin with a finite amount below 1 (for the cases we
will consider, it ranges from 0.717 to 1) which gives a wider
range of possible spin for a near-extremal astrophysical
black hole. Furthermore, the observational appearance of
the hot spot is also quantitatively different from Kerr. For
example, when the modified parameter is increased from
zero, the flux increases and the typical redshift factor for the
secondary images also increases. These signatures appear
periodically with period greater than that of Kerr. The
critical allowed inclination for an observer to see this effect
also increases in the MOG cases. This provides other
possible signatures for the EHT to test.
We organize this paper as follows. In Sec. II, we set up

the ray-tracing problem for a general Kerr-MOG black hole
and write down the equations to be solved. In Sec. III, we
solve the equations in the near-extremal limit to leading
order in the deviation from extremality. In Sec. IV, we
compute the shadow of a nonextremal Kerr-MOG black
hole and discuss its near-extremal limit. In Sec. V, we
present our results with figures and discuss these in detail.
We furthermore compare our results with that of the Kerr

black hole. In Appendix, we introduce the computational
method for the integrals that appear in our analysis and list
the related results. We follow the conventions of Ref. [15],
but use ðx; yÞ to denote the apparent positions of the images
instead of ðα; βÞ. We use α (and β) to describe the parameter
of the MOG theory.

II. ORBITING EMITTER NEAR KERR-MOG
BLACK HOLE

The Kerr-MOG black hole is a stationary, axisymmetric
solution of the Scalar-Tensor-Vector Gravity (STVG) or
modified gravity (MOG) theory [27]. The metric in Boyer-
Lindquist coordinate reads [34],

ds2 ¼ −
ΔΣ
Ξ

dt2 þ Σ
Δ
dr2 þ Σdθ2 þ Ξsin2θ

Σ
ðdϕ − ωdtÞ2;

ð1Þ

where we have set Newton’s constant GN ¼ 1 and defined

ω ¼ að2Mαr − β2Þ
Ξ

; Δ ¼ r2 − 2Mαrþ a2 þ β2; ð2aÞ

Σ ¼ r2 þ a2cos2θ; Ξ ¼ ðr2 þ a2Þ2 − Δa2sin2θ; ð2bÞ
with

Mα ¼ ð1þ αÞM; β2 ¼ α

1þ α
M2

α; ð3Þ

where M and a are mass and spin parameters of the black
hole and α is the deformation parameter defined by G ¼
GNð1þ αÞ with G being an enhanced gravitational con-
stant [34]. Mα and Ĵ ¼ Mαa are, respectively, the ADM
mass and angular momentum of the Kerr-MOGmetric [44].
In addition,

K ¼
ffiffiffiffiffiffiffiffiffi
αGN

p
M ð4Þ

is the gravitational charge of the MOG vector field [34,44].
Solving the equation Δ ¼ 0 gives radii of the inner and
outer event horizons,

r� ¼ Mα �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

α − ða2 þ β2Þ
q

: ð5Þ

The extremal limit is obtained for a2 þ β2 ¼ M2
α.

Note that the quantities under the square roots of (4) and
(5) should be non-negative; thus, we obtain physical
bounds on the parameter α as [44]

0 ≤ α ≤
M2

α

a2
− 1: ð6Þ

We assume that there exists an isotropic point source
orbiting on a circular, equatorial geodesic at radius rs.
The angular velocity of this source is [44]
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Ωs ¼ � ΓðrsÞ
r2s � aΓðrsÞ

; ð7Þ

where

Γ2ðrÞ ¼ Mαr − β2; ð8Þ

and the plus or minus sign corresponds to direct (positive
angular momentum) and retrograde orbits, respectively.
Here and hereafter, we use the subscript s to represent
“source”.

A. Photon conserved quantities along trajectories

The photon trajectories which connect a source to an
observer are null geodesics in the Kerr-MOG spacetime.
There are four conserved quantities for a photon along its
trajectory: the invariant mass μ2 ¼ 0, the total energy E, the
angular momentum L and the Carter constant Q [45]. It is
convenient to scale out the energy E from the trajectory by
introducing two rescaled quantities related to the conserved
quantities L and Q as

λ̂ ¼ L
E
; q̂ ¼

ffiffiffiffi
Q

p
E

: ð9Þ

Note that the Carter constant Q is non-negative for any
photon passing through the equator plane and that only q̂2

appears in subsequent formulas, we will always have real
q̂ > 0 for the photons we consider.
Using the Hamilton-Jacobi method we obtain the ray-

tracing equations, which connect a source ðts; rs; θs;ϕsÞ to
an observer ðto; ro; θo;ϕoÞ, as [34,45]:

⨍ ro
rs

dr

� ffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼ ⨍ θo

θs

dθ

� ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð10aÞ

Δϕ ¼ ϕo − ϕs ¼ ⨍ ro
rs

a

�Δ
ffiffiffiffiffiffiffiffiffiffi
RðrÞp ð2Mαr − β2 − aλ̂Þdr

þ ⨍ θo
θs

λ̂csc2θ

� ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ð10bÞ

Δt ¼ to − ts ¼ ⨍ ro
rs

1

�Δ
ffiffiffiffiffiffiffiffiffiffi
RðrÞp ½r4 þ a2ðr2 þ 2Mαr − β2Þ

− að2Mαr − β2Þλ̂�drþ ⨍ θo
θs

a2cos2θ

� ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ;

ð10cÞ

where

RðrÞ ¼ ðr2 þ a2 − aλ̂Þ2 − Δ½q̂2 þ ða − λ̂Þ2�; ð11aÞ

ΘðθÞ ¼ q̂2 þ a2 cos2 θ − λ̂2 cot2 θ: ð11bÞ

The functionRðrÞ is called the radial “potential” and ΘðθÞ
is called the angular “potential”. RðrÞ ¼ 0 corresponds to
turning points in the r direction and ΘðθÞ ¼ 0 corresponds
to turning points in the θ direction. Here and hereafter, the
subscript o stands for “observer”.
Since the integrals are to be evaluated as path integrals

along a trajectory connecting the two points, we have used
the slash notation ⨍ to distinguish them from ordinary
integrals. The r and θ turning points occur any time when
the effective potential RðrÞ ¼ 0 or ΘðθÞ ¼ 0. The signs �
in these geodesic equations are chosen to be the same as
those of dr and dθ, respectively, such that both the lhs and
rhs of Eq. (10a) are always positive. Given these turning
points, there are different possibilities for light connecting a
source to an observer. Thus, we will introduce parameters
b, m, s to distinguish them. For the radial direction, we let
b ¼ 0 label those direct trajectories with no turning points
and b ¼ 1 label those reflected trajectories with one turning
point. For the θ direction, we use m ≥ 0 to record the
number of turning points and use s ∈ fþ1;−1g to denote
the final sign of pθ (the θ-component of the photon’s four-
momentum).
Since the unknowns ϕs and ts are related by ϕs ¼ Ωsts, it

follows from Eqs. (10b) and (10c) that

Δϕ −ΩsΔt ¼ ϕo −Ωsto: ð12Þ

We will place the observer at ϕo ¼ 2πN for an integer N
(physically equivalent to ϕo ¼ 0) for all time to. Plugging
ϕo ¼ 2πN into Eq. (12), one can see that N is the net
winding number which records the extra windings executed
by the photon relative to the emitter between its emission
time and reception time [15]. Then the ray-tracing Eqs. (10)
can be re-expressed as the “Kerr-MOG lens equations”

Ir þ bĨr ¼ Gm;s
θ ; ð13aÞ

Jr þ bJ̃r þ
λ̂Gm;s

ϕ −Ωsa2G
m;s
t

Mα
¼ −Ωsto þ 2πN; ð13bÞ

where we have introduced the factor of Mα to make both
equations dimensionless, and Ir, Ĩr, Jr, J̃r and Gm;s

i
(i ∈ ft; θ;ϕg) are defined in the same way as Ref. [15]
(See also Appendix).
For each choice of net winding number N ∈ Z, polar

angular turning points m ∈ Z≥0, final vertical orientation
s ∈ fþ1;−1g, and radial turning point number b ∈ f0; 1g,
each photon trajectory is labeled by a pair of conserved
quantities ðλ̂; q̂Þ, which connects the source to an observer.
In other words, for given values of N, m, s, b, λ̂ and q̂,
Eqs. (13) determine the observer coordinates to, ro, θo for
given values of the source coordinates rs, θs [We have
chosen ϕo ¼ 2πN and decoupled ts and ϕs using Eq. (12)].
For a distant observer we have ro ¼ ∞ and for an
equatorial source we have θs ¼ π=2. From another point
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of view, by solving Eq. (13) for given choice of N, m, s, b
and given values of θo and rs, one may find the functions of
λ̂ and q̂ in terms of to which are associated with the time-
dependent images of the emitter seen by the observer.

B. Observational appearance

Following Refs. [15,46,47], we will now consider the
observational appearance of the point emitter: the images
positions, redshift factors and fluxes. These observational
quantities can be expressed in terms of the conserved
quantities.
The apparent position ðx; yÞ of images on the observer’s

screen is given by

x ¼ −
λ̂

sin θo
; ð14aÞ

y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2 þ a2 cos2 θo − λ̂2 cot2 θo

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘðθoÞ

p
: ð14bÞ

The sign � is equal to the sign of pθ (i.e., the final vertical
orientation s) at the observer, which represents whether the
photon arrives from above/below.
The “redshift factor” g is given by

g ¼ 1

γ

ffiffiffiffiffiffiffiffiffiffi
ΔsΣs

Ξs

s
ð1 − Ωsλ̂Þ; ð15Þ

where we introduced the boost factor γ, which is defined as

vs ¼
Ξs

Σs
ffiffiffiffiffiffi
Δs

p ðΩs − ωsÞ; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2s

p : ð16Þ

The ratio between the image flux Fo and the comparable
“Newtonian flux” FN is given by

Fo

FN
¼ g3

q̂Mα

γ sin θo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣsΔs

ΞsΘðθoÞΘðθsÞRðrsÞ

s ���� det ∂ðB; AÞ∂ðλ̂; q̂Þ
����−1;
ð17Þ

where we defined

A≡ Ir þ bĨr −Gm;s
θ �Mα

Z
θs

π=2

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð18aÞ

B≡ Jr þ bJ̃r þ
λ̂Gm;s

ϕ −Ωsa2G
m;s
t

Mα
: ð18bÞ

The � sign in (18a) corresponds to pushing the source
above/below the equatorial plane.
Note that the conserved quantities (14), (15) and (17)

have the same form as that of Kerr [15], but the difference is
implied via the specific expressions for Mα Δs, ωs and Ωs.

If we take α ¼ 0, the above results reduce to the Kerr case
(see Ref. [15]).

III. NEAR-EXTREMAL EXPANSION

Without loss of generality, we take the observer to sit in
the northern hemisphere θo ∈ ð0; π=2Þ and set Mα ¼ 1 in
the following. We consider an emitter on, or near, the
(prograde) innermost stable circular orbit (ISCO) of a near-
extremal Kerr-MOG black hole. We introduce a dimen-
sionless radial coordinate R for convenience, which is
related the Boyer-Lindquist radius r by

R ¼ r − 1; ð19Þ
We also introduce a small parameter ϵ to describe the
deviation of the black hole from extremality,

a2 þ β2 ¼ 1 − ϵ3 ð20Þ
For simplicity, instead of using the parameter α, we will use
the spin a in the following expressions as the free parameter
that describes the modified black hole. We can get the
relation between α and a from (3) and (20), as

α ¼ 1

a2
− 1þOðϵ3Þ: ð21Þ

Using the standard procedure [48] along with the constraint
formula (20), one finds that the ISCO of a near-extremal
Kerr-MOG black hole to the leading order in ϵ is at

RISCO ¼
�

2a2

2a2 − 1

�
1=3

ϵþOðϵ2Þ: ð22Þ

Note that we have to choose a >
ffiffiffi
2

p
=2 to guarantee the

ISCO is in the outside of the event horizon, this corre-
sponds to a restriction for the modified parameter α,

α < 1: ð23Þ
In terms of the dimensionless radius R, the observer is

located at Ro ¼ ðro − 1Þ ≈ ro, while the source orbits on or
near the ISCO,

Rs ¼ ϵR̄þOðϵ2Þ; R̄ ≥
�

2a2

2a2 − 1

�
1=3

: ð24Þ

Thus, to leading order in ϵ we have

rs ¼ 1þ ϵR̄: ð25Þ
Following Ref. [15,43], we will also introduce new
quantities λ and q defined by

λ̂ ¼ 1þ a2

a
ð1 − ϵλÞ; q̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
− q2

r
: ð26Þ

For later reference, we expand the orbital frequency Ωs
and period Ts in ϵ, leading to the expressions
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Ωs ¼
a

1þ a2
þOðϵÞ; Ts ¼

2ð1þ a2Þπ
a

þOðϵÞ: ð27Þ

Note that the orbital frequency/period in the near-extremal
Kerr-MOG case is smaller/greater as compared to the near-
extremal Kerr case [15] for 0 < a < 1.
If we take a ¼ 1 (corresponding to α ¼ 0), the above

results reduce to the Kerr case (see Ref. [15]).

A. Photon conserved quantities along trajectories

We will find solutions of Eq. (13) (λ̂, q̂, or equivalently,
λ, q) to leading order in ϵ. Note that we must keep theOðϵ0Þ
terms in the equations in order to achieve a quantitative
validity at reasonable values of ϵ.

1. First equation

We start by solving the first equation (13),

Ir þ bĨr ¼ mGθ − sĜθ: ð28Þ
The I integrals and G integrals are performed in Appendix.
Since to does not appear in the first equation, for given
choice of m, s, b, we will express λ as a function of q by
plugging the results of integrals in the equation. Following
the method of Ref. [15], for each choice of m, b, s, and q,
we obtain the solution of Eq. (28) and the conditions for its
existence. The conditions are given by

R̄ <
4ϒ
q2

�
1þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − q2
p �

if b ¼ 0; ð29aÞ

R̄ >
4ϒ
q2

�
1þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − q2
p �

if b ¼ 1; ð29bÞ

and the solution is

λ ¼ 4ϒ
ð1þ a2Þð4 − q2Þ

�
2 − q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 − q2

2ϒ
R̄

r �
: ð30Þ

Here, ϒ > 0 is defined by

ϒ≡ q4Ro

q2 þ 2Ro þ qDo
e−qG

m̄;s
θ ¼ q4

qþ 2
e−qG

m̄;s
θ þO

�
1

Ro

�
;

ð31Þ
where Do is defined in (A7) and Gm̄;s

θ is defined in (A13)
and (A14), with

m̄ ¼ mþ 1

qGθ
log ϵ: ð32Þ

Note that ϒ is independent of Ro for large Ro.

2. Second equation

Next we move on to second equation (13b) which gives
another relation between to, λ and q for given choice of m,

s, b. We will look for functions λðt̂oÞ and qðt̂oÞ which are
associated with the time-dependent tracks of images. We
introduce a dimensionless time coordinate t̂o such that the
emitter has unit periodicity in terms of it,

t̂o ¼
to
Ts

¼ ato
2ð1þ a2Þπ þOðϵÞ: ð33Þ

Eq. (13b) can be rewritten in terms of this dimensionless
time coordinate, as

t̂o ¼ N þ G; ð34aÞ

G≡ −
1

2π

�
Jr þ bJ̃r þ

1þ a2

a
Gm;s

ϕ −
a3Gm;s

t

1þ a2

�
: ð34bÞ

The J integrals and G integrals are given in Appendix.
Since the problem is periodic, we will consider the single

period t̂o ∈ ½0; 1�. For each given choice ofm, s, b having a
nonzero range of q satisfying the condition (29), the first
equation (13a) gives a function λðqÞ [(30)], the second
equation (13b) [or, equivalently, Eq. (34)] then gives a
function t̂oðqÞ for each choice of an integer N. In the given
period 0 ≤ t̂o < 1, N is uniquely determined for each q,
and the multivalued inverse qðt̂oÞ corresponds to the time-
dependent tracks of images. For each allowed N within the
corresponding range of q, t̂oðqÞmay either be monotonic or
has local maxima and/or minima. For the monotonic ones,
we are able to get the inverse qðt̂oÞ. For the nonmonotonic
ones, we divide t̂oðqÞ into several invertible parts to get
their inverse and label each inverse qiðt̂oÞ with a discrete
integer i. The image track can then be divided into several
segments which associate with these functions qðt̂oÞ, each
such track segment is uniquely labeled by ðm; b; s; N; iÞ.
Finding all the track segments for all choices ofm, b, s,N, i
gives the tracks of all the images which associate with the
complete observable information. We give an example in
Sec. V to describe a practical approach.

3. Winding number around the axis of symmetry

The winding number around the axis of symmetry for a
photon trajectory is n ¼ mod2πΔϕ, where Δϕ can be
obtained from Eq. (10b). Using the method of matched
asymptotic expansions (MAE) described in Appendix, Δϕ
is expressed to the leading order in ϵ as

Δϕ ¼ a
ð1þ a2Þλϵ

�
Ds

R̄
− q

�
þOðlog ϵÞ; ð35Þ

where Ds is defined in (A5). Note that this leading order
expression scales as ϵ−1.

B. Observational appearance

Recall from the beginning of Sec. III that for near-
extremal Kerr-MOG we have
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α ¼ 1

a2
− 1þOðϵ3Þ; rs ¼ 1þ ϵR̄; ð36aÞ

λ̂ ¼ 1þ a2

a
ð1þ ϵλÞ; q̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
− q2

r
: ð36bÞ

We now expand the observational quantities for an indi-
vidual image to the leading order in ϵ. The quantities
involved are the position (14), the redshift factor (15) and
the flux (17).

1. Image positions and redshift factors

The image position (14) on the observer’s screen is
expanded as

x ¼ −
1þ a2

a
1

sin θo
þOðϵÞ; ð37aÞ

y ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
− q2 þ a2 cos2 θo −

ð1þ a2Þ2
a2

cot2 θo

s

þOðϵÞ: ð37bÞ

Note that the leading order of position does not include λ.
We should impose a requirement that y is real to make sure
the photons can reach infinity, which gives a range of q:

q ∈

2
640;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
þ a2cos2θo −

ð1þ a2Þ2
a2

cot2θo

s 3
75: ð38Þ

As ϵ → 0, Eqs. (37) and (38) gives a vertical line segment
on which all images of the hot spot appear. We call this
vertical line the NHEK-MOG line, being the analog of
NHEKline for Kerr [15] (Sec. IV). We find that there is no
range of q at all when θo < θcrit, which means that the
NHEK-MOG line will disappear (Sec. IV) in that case.
The redshift (15) is expanded as

g ¼ 1ffiffiffiffiffiffiffiffiffi
4a2−1

p
a þ 2að1þa2Þffiffiffiffiffiffiffiffiffi

4a2−1
p λ

R̄

þOðϵÞ: ð39Þ

Note that the cosines of emissive direction establish an
above bound for g [15], which is

g ≤
að1þ 2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − 1

p : ð40Þ

2. Image fluxes

The ratio of image flux (17) is expanded as

Fo

FN
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − 1

p
ϵR̄

2a2Ds

qg3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 1

a2 − q2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Θ0ðθoÞ
p

sin θo

×

���� det ∂ðB; AÞ∂ðλ; qÞ
����−1; ð41Þ

where g and Ds are given in Eqs. (39) and (A5), and [see
Eq. (37)]

Θ0ðθoÞ ¼ ΘðθoÞjλ¼0 ¼ 4 −
1

a2
− q2 þ a2 cos2 θo

−
ð1þ a2Þ2

a2
cot2 θo ¼ y2; ð42Þ

and [recall the definition of A and B, Eq. (A18)],���� det ∂ðB;AÞ∂ðλ; qÞ
���� ¼

���� ∂∂λ ðJr þ bJ̃rÞ
� ∂
∂q ðIr þ bĨrÞ −

∂Gm;s
θ

∂q
�

−
∂
∂λ ðIr þ bĨrÞ

� ∂
∂q ðJr þ bJ̃rÞ þ

∂Gm;s
tϕ

∂q
�����

þOðϵ log ϵÞ; ð43Þ

where we introduced

Gm;s
tϕ ¼ λ̂Gm;s

ϕ −Ωsa2G
m;s
t

¼ 1þ a2

a
Gm;s

ϕ −
a3

1þ a2
Gm;s

t þOðϵÞ: ð44Þ

The G, I, J integrals and variations of I, J integrals are
given in Appendix.

IV. SHADOW AND NHEK-MOG LINE

The entire image of a black hole seen from the Event
Horizon Telescope is expected to be the black hole
“shadow”. To understand the images of the emitter better,
we compute the edge of a shadow cast by a near-extremal
Kerr-MOG black hole. The edge of a black hole shadow is
the boundary from where the photons can escape [49],
which corresponds to spherical massless geodesics with
fixed r ¼ r̃.
First, we consider the nonextremal case and restore Mα.

These “spherical photon orbits” satisfy

Rðr̃Þ ¼ R0ðr̃Þ ¼ 0; ð45Þ

where RðrÞ is defined in (11) and the prime repre-
sents derivative. For a Kerr-MOG black hole we have
0 < a2 þ β2 < M2

α. Then, from Eq. (45), we get

λ̂ ¼ −
r̃ðr̃2 −Mαr̃ − 2Γðr̃Þ2Þ þ a2ðr̃þMαÞ

aðr̃ −MαÞ
; ð46aÞ

q̂ ¼ r̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2Γðr̃Þ2 − ðr̃2 −Mαr̃ − 2Γðr̃Þ2Þ2

p
aðr̃ −MαÞ

; ð46bÞ

where Γðr̃Þ is defined in (8). The shadow edge is the curve
ðxðr̃Þ; yðr̃ÞÞ obtained by substituting Eqs. (46) for λ̂ and q̂
into Eq. (14).
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A. Extremal limit

Following the procedure of Ref. [15], we now consider
the extremal limit. We set Mα ¼ 1 again and let
a2 þ β2 → 1. Then Eq. (46) gives

λ̂ ¼ −
1

a
ðr̃2 − 2r̃ − a2Þ; ð47aÞ

q̂ ¼ r̃
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − ðr̃ − 2Þ2

q
; ð47bÞ

and the condition q̂ is real and gives the range of r̃;

r̃ ∈ ½r̃−; r̃þ� ¼ ½1; 2ðaþ 1Þ�: ð48Þ

The shadow edge is then given by the curve

xðr̃Þ ¼ 1

a
ðr̃2 − 2r̃ − a2Þ csc θo; ð49aÞ

yðr̃Þ ¼ �
�
r̃2

a2
ð4a2 − ðr̃ − 2Þ2Þ þ a2cos2θo

−
�
r̃2 − 2r̃ − a2

a

�
2

cot2θo

�
1=2

: ð49bÞ

However, curves given by these equations are not closed in
general. We show the curves for different values of a in the
dashed line in Fig. 1. The two end points are at the positions
where r̃ ¼ r̃− ¼ 1, which are given by

xend ¼ −
1þ a2

a
csc θo; ð50aÞ

yend ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
þ a2 cos2 θo −

ð1þ a2Þ2
a2

cot2 θo

s
: ð50bÞ

Note that there are no end points at all when the
quantity under the square root is negative, and thus the
curve is closed. The condition for an open curve is
θcrit<θo<π−θcrit, where

θcrit ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 3 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ a2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ a2

p
− 3

s
: ð51Þ

Therefore, this a2 þ β2 → 1 limit has missed an impor-
tant piece for the open curve. To make the curve be closed
in that case, we reconsider this limit by introducing an
alternative parameter R̃ defined by

a2 þ β2 ¼ 1 − δ2; r̃ ¼ 1þ δR̃: ð52Þ

As δ → 0, we recover the missing part of the shadow, which
is given by

x ¼ −
1þ a2

a
csc θo; ð53aÞ

jyj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
þ a2 cos2 θo −

ð1þ a2Þ2
a2

cot2 θo

s
: ð53bÞ

We show this in the solid lines in Fig. 1 and name this
segment the NHEK-MOG line which is the analog of the
NHEKline in Kerr spacetime [15]. We find the images of an
emitter orbiting on (or near) the ISCO appear on the
NHEK-MOG line [see from Eq. (37)].
Therefore, the extremal limit of the Kerr-MOG black

hole shadow is given by the union of the open curve (49)
and the NHEK-MOG line (53).

V. RESULTS AND DISCUSSION

We now describe the results with figures and discuss
them in detail. First we will look at the whole silhouettes
(shadow) of a near-extremal Kerr-MOG black hole and
discuss how the size is changed when the free parameter α
(we will also equivalently use a as the free parameter in
later discussion since there is the relation (21) between
them for the near-extremal cases) is changed. Then, we will
focus on a special portion of the shadow, which we call
the “NHEK-MOG line” (in analogy to the so-called
NHEKline in Ref. [15]), where the images of the point
emitter appear. These images have some characteristic
features which are similar to that of a near-extremal (high
spin) Kerr black hole.

FIG. 1. Edges of near-extremal Kerr-MOG black hole shadows,
where the dashed lines are the open parts (49) and the vertical
solid lines are the NHEK-MOG lines (53). The green, magenta,
blue and red curves have a ¼ 1, 0.9, 0.8, 0.717, respectively.
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The modified parameter that we wish to consider should
satisfy the physical bounds (6) and (23), which gives a
range of 0 ≤ α < 1 (corresponding to 1 ≥ a >

ffiffiffi
2

p
=2).

These choices are also in the allowed range for super-
massive black holes, 0.03 < α < 2.47 [33] (except for the
critical case α ¼ 0). For each choice of the modified
parameter α (in our formulas, we use a instead), the
observable quantities of a hot spot depend on four param-
eters, ϵ, R̄, Ro, and θo. To make our approximations
sufficiently accurate, one must choose ϵ ≪ 1 and
Ro ≫ 1. For the emitter to be on a stable orbit of a
near-extremal Kerr-MOG black hole, one must choose
R̄ ≥ ð 2a2

2a2−1Þ1=3. To ensure that an observer can possibly see
the flux, one needs to set the observer on a place with

inclination satisfying arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ3−2

ffiffiffiffiffiffiffiffi
2þa2

p
2

ffiffiffiffiffiffiffiffi
2þa2

p
−3

r
<θo < π

2
. When

a ¼ 1 it reduces to the Kerr case. We will consider a
special example with the same choice of parameters as in

[15], in order to compare the results. The parameters are
as follows:

Ro ¼ 100; θo ¼
π

2
−

1

10
¼ 84.27°; ð54aÞ

ϵ ¼ 10−2; R̄ ¼ R̄ISCO ¼
�

2a2

2a2 − 1

�
1=3

: ð54bÞ

This describes an emitter (or hot spot) on the ISCO of a
near-extremal Kerr-MOG black hole with spin a, viewed
from a nearly edge-on inclination. (Note that the parameter
a is the spin of a precisely extremal black hole; however, it
is also the spin of a near-extremal black hole to leading
order in ϵ. Here and hereafter, we ignore this difference.)
Table I shows the ranges of α, R̄ISCO and θcrit corresponding
to different values of a. We find that R̄ISCO and θcrit [(51)]
increase when α is increased and that a decreases when α is
increased. This agrees with Ref. [39] where the authors find
that the ISCOs of Kerr-MOG black holes are always greater
than that of Kerr black hole.

A. Silhouettes of black hole

Figure 1 shows the edges of near-extremal Kerr-MOG
black hole shadows (see Sec. IV). We find that the sizes of
shadows cast by a near-extremal Kerr-MOG black hole
decrease when the free parameter α is increased from zero.
The length of the NHEK-MOG line and the angle corre-
sponding to it also decrease while the free parameter α is
increased from zero. In Ref. [36], Moffat found that the
sizes of shadows cast by Kerr-MOG black holes increase
significantly as the free parameter α is increased from zero.
This is not conflicting with our results because in that paper
one compares the sizes of shadows for black holes with

TABLE I. The range of the deformation parameters α, the
dimensionless radii of the ISCO R̄ISCO [Eq. (54b)] and the critical
observer inclinations θcrit [Eq. (51)], corresponding to different
values of the spin parameters a for the extremal Kerr-MOG black
holes, where we choose a ¼ ffiffiffi

2
p

=2þ 10−2 ≈ 0.717 as the critical
case.

No. a α R̄ISCO θcrit

1 0.717 0.945 3.317 54.758°
2 0.75 0.778 2.080 53.228°
3 0.8 0.563 1.660 51.353°
4 0.85 0.384 1.481 49.881°
5 0.9 0.235 1.377 48.716°
6 0.95 0.108 1.309 47.792°
7 1 0 1.260 47.059°

FIG. 2. Left to right: plots of GðqÞ, qðt̂oÞ and Fo=FNðqÞ for a ¼ 1 (light curves) and a ¼ 0.8 (bright curves) with m ¼ 2, b ¼ 0,
s ¼ þ1 and the parameters choices of (54b). For a ¼ 1, the light yellow, light magenta and light cyan curves have N ¼ −6, −7, −8,
respectively, and no extra label i, while the light red, light green and light blue curves have N ¼ −9 and i ¼ 1, 2, 3, respectively. For
a ¼ 0.8, the yellow and magenta curves have N ¼ −6;−7, respectively, and no extra label i, while the cyan, red and green curves have
N ¼ −8 and i ¼ 1, 2, 3, respectively. Note that for a ¼ 1, the Kerr-MOG case reduce to the Kerr case so that the light curves agree with
those in Ref. [15] exactly. (Although the condition (29) allows the whole range of q, we have imposed a small q cutoff since the
corresponding image fluxes are negligibly small.)
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same parameter M, while we compare that for black holes
with same ADM mass Mα ¼ ð1þ αÞM.

B. Images on the NHEK-MOG line

Following the procedure of Ref. [15] and using the open
numerical code therein, we now show the images of the of
an emitter orbiting on ISCO. As discussed in Sec. IV, the

images appear on a vertical line, the NHEK-MOG line.
These images are photons arriving with different combi-
nations of the discrete parameters m, s, b N as well as an
additional label i if the function t̂oðqÞ [or equivalently
GðqÞ] has maxima or minima [see the discussion below
Eq. (34)]. To show this, we choose m, s, b first and then
find the allowed range of N as well as the possible i for

FIG. 3. Observables of the most important few images for three different values of near-extremal spin of Kerr-MOG black holes with
the parameter choices of (54b). From top to bottom, we plot positions, fluxes and redshift factors. Form left to right, we have a ¼ 1 (Kerr
case [15]), a ¼ 0.8 and a ¼ 0.717 (critical case for there exist ISCO for a near-extremal Kerr-MOG black hole). The color-coding is the
same as that of Ref. [15]: each of these colored lines maybe a composed of continuous multiple track segments. For example, the green
line (denoting the primary image) is composed of 4, 3, and 3 segments in the a ¼ 1, 0.8, 0.717 cases, respectively.
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those have extra images due to maxima or minima. Figure 2
shows examples of such segments for a ¼ 1 and a ¼ 0.8.
We choose m ¼ 2, b ¼ 0, s ¼ þ1 with parameter choices
of (54b), which is the same as Ref. [15] for comparison. We
find that the cases with a ¼ 1 (the Kerr case) and a ¼ 0.8
have similar features but the modified parameter α causes
corrections to the associated functions: G decreases and
Fo=FN increases while a is decreased.
For each track segment qðt̂oÞ labeled by ðm; b; s; N; iÞ,

we may determine λðt̂oÞ by Eq. (30). From these two
conserved quantities we may then compute the main
observables for the segment. The observables involved
are the image position ðx; yÞ [Eq. (37)], the image redshift g
[Eq. (39)], and the image flux Fo=FN [Eq. (41)]. We then
build up the complete observable information by including
all such track segments. Note that only a few values of N
and m are important because the flux of others are
vanishingly small (see Fig. 2 and Fig. 4 for details).
Below we describe the most important features of the
images in Fig. 3.

Figure 3 shows the main observables for three different
values of spin, a ¼ 1, a ¼ 0.8 and a ¼ 0.717, with the
small parameters choose as ϵ ¼ 0.01. In each case, the
green line is a bright primary image while others are
secondary images. For a ¼ 1, it reduces to the Kerr case
and we see that our results exactly agree with Ref. [15]. For
a ¼ 0.8 and a ¼ 0.717 (the critical case), the general
features are qualitatively similar to the case of a ¼ 1 but
quantitatively corrected. The track segments line up in to
continues tracks and flash [15] when different tracks
intersect, and the typical positions of images do not change.
However, from Fig. 1, we see that the length of the NHEK-
MOG line decreases when a is decreased; i.e., the maxi-
mum value of the screen coordinate ymax decreases when
the free parameter α is increased from zero. The flux
intensity increases when the black hole spin is decreased.
This is also true in the near-extremal Kerr cases when
considering different values of ϵ (and considering the
precise spins of the black holes) [15] since the typical
flux scales as ϵ= log ϵ. In each case for a ¼ 1, 0.8, 0.717,

FIG. 4. Left to right: plots of Fo=FN for a ¼ 1 (Kerr case [15]), a ¼ 0.8 and a ¼ 0.717 (critical case for there exist ISCO for a near-
extremal Kerr-MOG black hole) with parameter choices of (54b). We set q ¼ 1.5, 1.38, and 1.35 for a ¼ 1, 0.8, and 0.717, respectively,
and we letm vary in each case. We denote the direct/reflect (b ¼ 0=b ¼ 1) images by blue/red dots. Form ¼ 0, we have only one image
corresponding to s ¼ −1, for each other value of m, we have two images corresponding to s ¼ �1.

FIG. 5. Left to right: plots of flux Fo=FN (green) and winding number Δϕ=2π (gray) of the primary image for a ¼ 1 (Kerr case [15]),
a ¼ 0.8 and a ¼ 0.717 (critical case for there exist ISCO for a near-extremal Kerr-MOG black hole) with parameter choices of (54b).
Note that as mentioned below Fig. 3, the single primary image for each case is a composed of multiple track segments.
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the primary image appears near the center of the NHEK-
MOG line before moving downward while blueshifting and
spiking in brightness. The winding number of these seg-
ments of primary images in the modified cases are
decreased when α is increased. For example, the winding
numbers range between 17 and 23, 11 and 16, 6 and 8, for
spin a ¼ 1, 0.8, and 0.717, respectively (see Fig. 5). For the
near-extremal Kerr-MOG cases, the peak redshift factors
are all at g ≈ 1.6 but correspond to different emission
angles. For example, they correspond to light emitted in
cones of 27°, 20° and 25° around the forward direction [15]
for a ¼ 1, 0.8 and 0.717, respectively. However, another
typical redshift factor (corresponding to λ ∼ 0) associated
with the secondary images increases when the spin param-
eter a is decreased, at g ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − 1

p
. For the near-

extremal Kerr cases, both typical redshifts do not change
when the spin is increased (by choosing different value of ϵ
and considering the precise spins of the black holes) [15].
The reason for this difference is that the range of spin is
very limited for the near-extremal Kerr black hole, but it
becomes wider for near-extremal Kerr-MOG black holes.
This is why we only take ϵ ¼ 0.01 into consideration. In
addition, the above signatures in the near-extremal Kerr-
MOG case appear periodically with period greater than that
in near-extremal Kerr case [see Eq. (27)].
The typical redshift factors are related to observations

since they could shift the iron line EFeKα ¼ 6.4 keV to
6.4g keV. For blueshifted primary image, the factor g ≈ 1.6
will shift the iron line to 10.2 keV. For redshifted secondary
images, the redshift factors for a ¼ 1, 0.8 and 0.717 will
shift the iron to 3.7, 4.1 and 4.5 keV, respectively. However,
rather than close to the observed peak at 3.5 keV [50], they
are even further away from it in modified cases than in Kerr
case [15].

VI. SUMMARY

In this paper, we analytically compute the observational
signature of a near-extremal rotating black hole in the
modified gravity theory (MOG), which is also referred as
scalar-tensor-vector theory (STVG). The rotating black
hole in this theory called as the Kerr-MOG black hole,
introducing a modified parameter α in addition to the
parameters of Kerr black hole. When the parameter α goes
to zero, the modified black hole reduces to Kerr black hole.
The range of the modified parameter that we considered is
0 ≤ α < 1, which is in the supposed range for a super-
massive black hole [33]. To be specific, we compute the
near-extremal Kerr-MOG black hole’s shadow and the
position, redshift and flux of a orbiting hot spot’s image.
Compared with the signature produced in the Kerr back-
ground, the MOG case exhibits the following differences:

(i) The size of the shadow cast by a Kerr-MOG black
hole decreases when the modified parameter α is
increased.

(ii) The targeted astrophysical black hole could be one
that has a smaller spin than a corresponding near-
extremal Kerr black hole, since the spin parameter a
can be in the range 0.717 < a < 1. The spin of a
near-extremal Kerr-MOG black hole decreases when
the modified parameter is increased.

(iii) The image of the hot spot appears in the leftmost
vertical line (NHEK-MOG line) of the shadow
periodically with a period greater than that of Kerr.
The period increases when the modified parameter is
increased.

(iv) The flux of the image increases when the modified
parameter is increased.

(v) The typical redshift associated with the secondary
image increases when the modified parameter is
increased.
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APPENDIX: INTEGRALS

1. Matched asymptotic expansion method
and radial integrals

The radial integrals appearing in the “Kerr-MOG lens
equations” (13) are defined as [15]

Ir ¼ Mα

Z
ro

rs

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ; Ĩr ¼ 2Mα

Z
rs

rmin

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ; ðA1aÞ

Jr ¼
Z

ro

rs

J rffiffiffiffiffiffiffiffiffiffi
RðrÞp dr; J̃r ¼ 2

Z
rs

rmin

J rffiffiffiffiffiffiffiffiffiffi
RðrÞp dr; ðA1bÞ

J r ¼
1

Δ
½að2Mαr− β2 − aλ̂Þ−Ωsðr4 þ a2ðr2 þ 2Mαr− β2Þ

− að2Mαr− β2Þλ̂Þ�; ðA1cÞ
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whereMα and β are defined in (3),RðrÞ is defined in (11a),
rmin is the largest (real) root of RðrÞ ¼ 0. These equations
are valid when rmin < rs, which is always true for light that
can reach infinity. These equations are very similar to the
Kerr case [15] but the differences are implied in the specific
expressions of Mα, Δ, Ωs and J r.
We then get the radial integrals in the limit ϵ → 0 by

using the matched asymptotic expansion (MAE) method
which was introduced in Ref. [15,43].

a. First example: Ir
We first perform the lhs integral of Eq. (A1a). We set

Mα ¼ 1 in the following. For near-extremal Kerr-MOG
black hole, we have [according to (36)]

α ¼ 1

a2
− 1þOðϵ3Þ; rs ¼ 1þ ϵR̄; ðA2aÞ

λ̂ ¼ 1þ a2

a
ð1þ ϵλÞ; q̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

1

a2
− q2

r
ðA2bÞ

We will use the dimensionless radial coordinate R ¼ r − 1.
We introduce constants 0 < p < 1 and C > 0 to split the
integral into two pieces

Ir ¼
Z

ϵpC

ϵR̄

dRffiffiffiffiffi
R

p þ
Z

Ro

ϵpC

dRffiffiffiffiffi
R

p : ðA3Þ

The scaling of ϵp introduces a separation of scales ϵ ≪
ϵp ≪ 1 as ϵ → 0, such that the first part of the integral is in
the near horizon region R ∼ ϵ and the second in the far
region R ∼ 1.
In the near horizon region, we make the change of

variables x ¼ R=ϵ and expand in ϵ at fixed x. Thus, the first
part of the integral is:Z

ϵpC

ϵR̄

dRffiffiffiffiffi
R

p

¼
Z

ϵp−1C

R̄

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x2 þ 4ð1þ a2Þλxþ ð1þ a2Þ2λ2

p þOðϵÞ

¼ 1

q
log

�
2q2

qDs þ q2R̄þ 2ð1þ a2Þλþ ðp− 1Þ log ϵþ logC

�
þOðϵpÞ; ðA4Þ

where Ds is defined as

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2R̄2 þ 4ð1þ a2ÞλR̄þ ð1þ a2Þ2λ2

q
: ðA5Þ

In the far region, we expand in ϵ at fixed R. The second
integral then reads

Z
Ro

ϵpC

dRffiffiffiffiffi
R

p ¼
Z

Ro

ϵpC

dR

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4Rþ R2

p þOðϵÞ

¼ 1

q
log

�
2q2Ro

qDo þ q2 þ 2Ro
− p log ϵ − logC

�
þOðϵpÞ; ðA6Þ

where Do is defined as

Do ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4Ro þ R2

o

q
: ðA7Þ

By adding Eqs. (A4) and (A6), we get the complete
integral:

Ir ¼
1

q
log

�
4q4Ro

ðqDo þ q2 þ 2RoÞðqDs þ q2R̄þ 2ð1þ a2ÞλÞ
�

−
1

q
log ϵþOðϵÞ: ðA8Þ

b. Second example: Ĩr
Next, we perform the rhs integral of Eq. (A1a). This

integral is in the near horizon region R ∼ ϵ. Introducing
x ¼ R=ϵ, we get the larger root of RðrÞ ¼ 0 as

xmin ¼
1þ a2

q2

�
−2λþ jλj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − q2

q 	
: ðA9Þ

For λ > 0, the turning point is inside the horizon, so that we
should exclude that case. However, since we have the 1=Δ
factor in Eq. (A1c) (which is meaningless when it goes
through the horizon), the integral of J̃r does not exist at all
in that case which precludes the existence of a valid
geodesic trajectory. Therefore, we may still compute the
integral regardless whether λ is negative or positive. Then
we also set Mα ¼ 1 and get the integral as

Ĩr ¼ 2

Z
R̄

xmin

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x2 þ 4ð1þ a2Þλxþ ð1þ a2Þ2λ2

p þOðϵÞ

¼ 1

q
log

�ðqDs þ q2R̄þ 2ð1þ a2ÞλÞ2
ð1þ a2Þ2ð4 − q2Þλ2

�
þOðϵÞ:

ðA10Þ

c. List of results

The remaining radial integrals Jr and J̃r [Eq. (A1b)] can
be obtained using these methods. Note that the integral J̃r is
only valid when λ < 0 since it does not exist when λ > 0
[see the discussion below (A9)]. We now list all of the
radial integrals appearing in the Kerr-MOG equations (13)
as follows:
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Ir ¼ −
1

q
log ϵþ 1

q
log

�
4q4Ro

ðqDo þ q2 þ 2RoÞðqDs þ q2R̄þ 2ð1þ a2ÞλÞ
�
þOðϵÞ; ðA11aÞ

Ĩr ¼
1

q
log

�ðqDs þ q2R̄þ 2ð1þ a2ÞλÞ2
ð1þ a2Þ2ð4 − q2Þλ2

�
þOðϵÞ; ðA11bÞ

Jr ¼ −
að6þ a2Þ
1þ a2

Ir −
a

1þ a2
ðDo − qÞ − 4a2 − 1

2að1þ a2Þ2
�
qR̄
λ

−
Ds

λ

�

þ 2a
1þ a2

log

� ðqþ 2Þ2R̄
ðDo þ Ro þ 2ÞðDs þ 2R̄þ ð1þ a2ÞλÞ

�
þOðϵÞ; ðA11cÞ

J̃r ¼ −
að6þ a2Þ
1þ a2

Ĩr −
4a2 − 1

að1þ a2Þ2
Ds

λ
þ 2a
1þ a2

log

�ðDs þ 2R̄þ ð1þ a2ÞλÞ2
ð4 − q2ÞR̄2

�
þOðϵÞ; ðA11dÞ

where Ds and Do are defined in Eqs. (A5) and (A7). Next, the variations are

∂Ir
∂λ ¼ 1

λ

�
R̄
Ds

−
1

q

�
;

∂ Ĩr
∂λ ¼ −

2

λ

R̄
Ds

; ðA12aÞ

∂Ir
∂q ¼ −

1

q
Ir −

1

qð4 − q2Þ
�
ð8 − q2Þ

�
R̄
Ds

þ 1

Do
−
2

q

�
þ 2ð1þ a2Þλ

Ds
þ 2Ro

Do

�
; ðA12bÞ

∂ Ĩr
∂q ¼ −

1

q
Ĩr þ

2

qð4 − q2Þ
�
ð8 − q2Þ R̄

Ds
þ 2ð1þ a2Þ λ

Ds

�
; ðA12cÞ

∂Jr
∂λ ¼ −

1

2aDs
−
1

λ

�
1þ a2

a
R̄
Ds

−
að6þ a2Þ
1þ a2

1

q

�
−

4a2 − 1

2að1þ a2Þ2
Ds − qR̄

λ2
; ðA12dÞ

∂J̃r
∂λ ¼ 1

aDs
þ 2ð1þ a2ÞR̄

aDsλ
þ ð4a2 − 1ÞDs

að1þ a2Þ2λ2 ; ðA12eÞ

∂Jr
∂q ¼ að6þ a2ÞIr

ð1þ a2Þq þ 4a2 − 1

2að1þ a2Þ2
�
Ds

qλ
−
R̄
λ

�
þ a
1þ a2

−
2að10þ a2Þ
ð1þ a2Þq2 −

8að2þ a2Þ
ð1þ a2Þð4 − q2Þq2

þ ½2a2ð2þ a2Þð8 − q2Þ þ 4ð4 − q2Þ�R̄þ ð1þ a2Þ½4a2ð2þ a2Þ þ ð4 − q2Þ�λ
2að1þ a2Þð4 − q2ÞqDs

þ a½ð8 − q2 þ 2RoÞð6þ a2 − q2Þ�
ð1þ a2Þð4 − q2ÞqDo

; ðA12fÞ

∂J̃r
∂q ¼ að6þ a2ÞĨr

ð1þ a2Þq −
½2a2ð2þ a2Þð8 − q2Þ þ 4ð4 − q2Þ�R̄þ ð1þ a2Þ½4a2ð2þ a2Þ þ ð4 − q2Þ�λ

að1þ a2Þð4 − q2ÞqDs

−
ð4a2 − 1ÞDs

að1þ a2Þ2qλ : ðA12gÞ

2. Angular integrals

The angular integrals appearing in the “Kerr-MOG lens equations” (13) are defined as [15]

Gm;s
i ¼



Ĝi m ¼ 0;

mGi − sĜi m ≥ 1;
i ∈ ft; θ;ϕg; ðA13Þ
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with

Gθ ¼ Mα

Z
θþ

θ−

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ðA14aÞ

Ĝθ ¼ Mα

Z
π=2

θo

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ðA14bÞ

Gϕ ¼ Mα

Z
θþ

θ−

csc2 θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ðA14cÞ

Ĝϕ ¼ Mα

Z
π=2

θo

csc2 θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ðA14dÞ

Gt ¼ Mα

Z
θþ

θ−

cos2 θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ðA14eÞ

Ĝt ¼ Mα

Z
π=2

θo

cos2 θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ðA14fÞ

where ΘðθÞ is defined in (11b) and θ� are roots of it.
We then perform the angular integrals. Note that we have

the same expressions for ΘðθÞ in both Kerr spacetime and
Kerr-MOG spacetime, so that we quote relevant results
from Ref. [15]. For the near-extremal Kerr-MOG space-
time, we have the expansions (A2). We set Mα ¼ 1 and
obtain the integrals as

Gθ ¼
2

a
ffiffiffiffiffiffiffiffiffi
−I−

p K

�
Iþ
I−

�
þOðϵÞ; ðA15aÞ

Ĝθ ¼
1

a
ffiffiffiffiffiffiffiffiffi
−I−

p F

�
Ψo

���� Iþ
I−

�
þOðϵÞ; ðA15bÞ

Gϕ ¼ 2

a
ffiffiffiffiffiffiffiffiffi
−I−

p Π
�
Iþ

���� Iþ
I−

�
þOðϵÞ; ðA15cÞ

Ĝϕ ¼ 1

a
ffiffiffiffiffiffiffiffiffi
−I−

p Π
�
Iþ;Ψo

���� Iþ
I−

�
þOðϵÞ; ðA15dÞ

Gt ¼ −
4Iþ

a
ffiffiffiffiffiffiffiffiffi
−I−

p E0
�
Iþ
I−

�
þOðϵÞ; ðA15eÞ

Ĝt ¼ −
2Iþ

a
ffiffiffiffiffiffiffiffiffi
−I−

p E0
�
Ψo

���� Iþ
I−

�
þOðϵÞ; ðA15fÞ

where

I� ¼ q2 − 6

2a2
� 1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 3q2 þ ð4 − q2Þa2 þ

�q2
2

	
2

r
;

ðA16Þ

and

Ψo ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θo
Iþ

s
: ðA17Þ

Furthermore, E0ðϕjmÞ ¼ ∂mEðϕjmÞ, and FðϕjmÞ, EðϕjmÞ,
Πðn;ϕjmÞ are the incomplete elliptic integrals of the first,
second and third kind, respectively, and KðmÞ, EðmÞ,
ΠðnjmÞ are the complete elliptic integrals of the first,
second and third kind, respectively.
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