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In this work, we study Berwald spacetimes and their vacuum dynamics, where the latter are based on
a Finsler generalization of Einstein’s equations derived from an action on the unit tangent bundle. In
particular, we consider a specific class of spacetimes that are nonflat generalizations of the very special
relativity (VSR) line element, which we call “very general relativity” (VGR). We derive necessary and
sufficient conditions for the VGR line element to be of Berwald type. We present two novel examples with
the corresponding vacuum field equations: a Finslerian generalization of vanishing scalar invariant (VSI)
spacetimes in Einstein’s gravity as well as the most general homogeneous and isotropic VGR spacetime.
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I. INTRODUCTION

By 1977, Bogoslovsky had already studied the most
general transformations that leave the massless wave
equation invariant. These turn out to form the subgroup
DISIMbð2Þ of the Lorentz group [1], the symmetry group
on which special relativity is based. The corresponding
relativistic kinematics were first studied by Bogoslovsky
and Goenner [2–4]. Later, Cohen and Glashow constructed
field theories whose symmetry group is DISIMbð2Þ in a
framework called very special relativity (VSR) [5]. These
two different approaches to study deformations of Lorentz-
invariant physics were afterwards connected by the insight
of Gibbons, Gomis, and Pope [6], namely, that the
symmetries of VSR preserve the line element found by
Bogoslovsky,

ds ¼ ðηcddxcdxdÞ1−b2 ðnadxaÞb; ð1Þ

where η is the Minkowski metric, n ¼ nadxa is a 1-form
with constant components, and b is a dimensionless
parameter. This line element is a flat Finslerian line
element which generalizes the metric line element of
special relativity. The deviation from metric geometry is

parametrized by the parameter b, with the Minkowski
spacetime line element recovered in the limit b ¼ 0.
To be able to compare DISIMbð2Þ-invariant physics

with the usual local Lorentz-invariant formulation, a
rigorous discussion of the influence of the Finslerian line
element (1) on observables on curved spacetimes is
necessary, including dynamical equations which determine
the line element. This can be interpreted as the step from
very special relativity to a precise notion of very general
relativity or general very special relativity [6,7]. In what
follows, we use the abbreviation VGR for both terms.
Carrying out this transition from a flat to a curved
spacetime geometry one obtains a theory of gravity which
is locally DISIMbð2Þ invariant. There exist several
approaches to this transition in the literature. In [8], for
example, the Minkowski metric was replaced by a nonflat
Lorentzian metric satisfying Einstein’s equations, and the
constant 1-form n was generalized to a 1-form naðxÞdxa
satisfying a Klein-Gordon-like equation. This procedure
constructs the curved version of the VSR line element from
different dynamical fields on spacetime. Another approach
is to consider Finslerian generalizations of Einstein’s
equations and solve these for curved versions of the line
element (1). This was done e.g., in [7,9], in the context of
cosmology and exact gravitational waves, respectively.
In this work, we explore this approach in more detail
and lift the line element (1) to a Finsler Lagrangian L con-
structed from a general Lorentzian metric g and a 1-form B.
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We refer to manifolds equipped with such a Lagrangian as
VGR spacetimes. The mathematical tools to do so in a
precise way are provided by the Finsler spacetime frame-
work proposed in [10,11].
The Finsler Lagrangian describing VGR geometries

turns out to be a special instance of so-called (A;B)-
Finsler spacetimes. Their Finsler Lagrangian is a function
of two arguments: A ¼ gðy; yÞ being the metric length
of a vector y and B ¼ BðyÞ being a 1-form acting on a
vector. For this class of Finsler spacetimes, we compute the
geodesic spray explicitly in terms of the Christoffel
symbols of metric g and the Levi-Civita covariant deriv-
atives of the 1-form B. This enables us to identify a special
class of VGR spacetimes, namely those whose underlying
canonical nonlinear connection is affine, even though the
corresponding length element is of nontrivial Finslerian
nature. Finsler spacetimes with this property are called
Berwald spacetimes [12,13].
Berwald spacetimes can be regarded as the mildest

deviation of a Finslerian geometry from metric geometry.
They have recently received attention in the context of
modified dispersion relations inspired by quantum gravity
[14,15], and in relation to the equivalence principle [16,17].
Another important feature of Berwald spacetimes is that
any kind of Finslerian generalization of the Einstein
equations should simplify severely for this class due to
the relatively simple form of the underlying connection.
Among the different suggestions of Finsler generalizations
of Einstein’s vacuum equations [7,11,18–25] we focus here
on the vanishing of the canonical Finsler curvature scalar,
derived from the Finslerian geodesic deviation equa-
tion [23], and on the more involved Finsler spacetime
dynamics derived from an action principle on the unit
tangent bundle [11]. The latter two field equations are
distinguished because they consider the Finsler function or
Lagrangian, i.e., a scalar on the tangent bundle of space-
time, as the fundamental dynamical field which determines
the geometry of spacetime. Their equivalence has actually
been conjectured [26,27] but a precise mathematical
investigation is missing. We compare the two approaches
for Berwald spacetimes and prove that they are not
equivalent in general. A special class of Finsler spacetimes
on which they are equivalent turns out to be VGR Berwald
spacetimes built from a nontrivial 1-form B of vanishing
norm with respect to the metric g. Finally we discuss two
example classes of VGR Berwald spacetimes including
their vacuum dynamics. One class is a generalization of the
Finsler pp-wave spacetimes discussed in [9] while the
other class is given by the most general homogeneous and
isotropic VGR Berwald spacetimes.
The paper is organized as follows. In Sec. II, we recall

the notions of Finsler spaces and their generalization to
Finsler spacetimes. In Sec. III, we show how the general
action-based Finsler gravity field equations simplify for
Berwald spacetimes. Afterwards, in Sec. IVA, we define

VGR spacetimes in general and derive in Sec. IV B
conditions for these to be of Berwald type (Theorem 1).
Moreover, we find conditions for (A;B)-Finsler
spacetimes, and in particular VGR spacetimes, to be
not only Berwald, but also have a geometry fully deter-
mined by the Levi-Civita connection of the Lorentzian
metric involved (Theorem 2). The vacuum dynamics of
VGR Berwald spacetimes are discussed in Sec. IV C, with
special emphasis on the null-VGR case (Theorem 3). In
Sec. IV D, we demonstrate our findings with explicit
examples, which demonstrate the existence of nontrivial
VGR Berwald spacetimes.

II. FINSLER SPACES AND FINSLER SPACETIMES

Finsler geometry is a well-defined natural extension of
Riemannian geometry based on the most general length
measure for curves on a manifold [22,28,29]. In the context
of relativity, Finsler geometry needs to be adapted such that
it extends Lorentzian geometry. However, the generaliza-
tion of pseudo-Riemannian to pseudo-Finsler geometry is
hindered by several issues, which we briefly review in this
section.
The Finslerian geometry of a manifold M is formulated

in terms of tensors on its tangent bundle TM. In this work,
we use the following notation. An element Y of the tangent
bundle TM is a vector in some tangent space TpM at a point
p ∈ M. In local coordinates around the point p ¼ fxag, the
vector Y ∈ TpM can be expressed in the corresponding
coordinate basis:

Y ¼ ya
∂
∂xa ≡ ðx; yÞ: ð2Þ

We identify the element Y ∈ TM with (x, y), which defines
the manifold-induced coordinates on the tangent bundle.
The canonical coordinate basis of the tangent Tðx;yÞTM and
cotangent T�

ðx;yÞTM spaces of the tangent bundle will be

denoted by:

Tðx;yÞTM ¼ span

� ∂
∂xa ¼ ∂a;

∂
∂ya ¼ ∂̄a

�
;

T�
ðx;yÞTM ¼ spanfdxa; dyag: ð3Þ

A. Finsler spaces

A Finsler space is a smooth manifoldM equipped with a
smooth real function F

F∶ TMnðx; 0Þ → R ð4Þ

ðx; yÞ ↦ Fðx; yÞ ð5Þ

called the Finsler function, such that
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(i) F is homogeneous of degree one with respect to y:

Fðx; λyÞ ¼ λFðx; yÞ; ∀ λ > 0; ð6Þ
(ii) F possesses a nondegenerate and positive definite

Finsler metric gF with components:

gFab ¼
1

2
∂̄a∂̄bF2; ð7Þ

(iii) F defines the length of curves γ on M via the
parametrization-invariant length functional:

S½γ� ¼
Z

dτFðγ; _γÞ; _γ ¼ dγ
dτ

: ð8Þ

The geometry ofM can be derived from F in a similar way
as one usually derives the geometry of a metric manifold
from the metric tensor. A fundamental ingredient in the
construction of the geometry of a Finsler space is the so-
called Cartan nonlinear connection, defined in terms of its
connection coefficients:

Na
bðx; yÞ ¼

1

4
∂̄bðgFacðyd∂d∂̄cF2 − ∂cF2ÞÞ: ð9Þ

The geodesic equation for curves γ on a Finsler space can
be written as

̈γa þ Na
bðγ; _γÞ_γb ¼ 0 ð10Þ

where ̈γ ¼ d2γ=dτ2 and τ is an affine parameter. We also
define the geodesic spray, which can be used to characterize
Berwald spaces, in terms of its coefficients:

Gaðx;yÞ¼Na
bðx;yÞyb¼

1

2
gFacðyd∂d∂̄cF2−∂cF2Þ: ð11Þ

Finsler spaces reduce to Riemannian manifolds when
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gabðxÞyayb

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gðy; yÞp
, with g being a Riemannian

metric. The Finslerian geodesic equation becomes the
geodesic equation on a Riemannian manifold and the
nonlinear connection coefficients become the Christoffel
symbols of the Levi-Civita connection. Finsler geometry is
thus a natural generalization of Riemannian geometry.
However, the following problem arises when employing

Finsler geometry as a generalization of pseudo-Riemannian
geometry. As soon as metric g is indefinite, the correspond-
ing Finsler function F is neither smooth nor real on all of
TMnðx; 0Þ due to the existence of both nontrivial null
vectors and vectors with negative metric length. In the
context of relativity, this is a severe problem since null
spacetime directions are interpreted as those along which
light propagates. In order to employ Finsler geometry
as a generalization of Lorentzian geometry, i.e., of
pseudo-Riemannian geometry with a metric of signature
ð−;þ;þ;þÞ, we recall the construction of Finsler
spacetimes.

B. Finsler spacetimes

Finsler spacetimes are generalizations of Finsler spaces
to manifolds equipped with a Finsler metric of indefinite
signature, i.e., a pseudo-Finsler metric. Physically, they
provide the geometric structures needed to describe observ-
ers, their measurement of proper time as well as the motion
of massive and massless point particles in a most general
way. While several approaches to the construction of
Finsler spacetimes have been proposed [30,31], we con-
sider the framework developed by one of us as most
suitable for our purposes. We briefly summarize it here;
further details can be found in [10,11].
A Finsler spacetime (M, L) is a four-dimensional,

connected, Hausdorff, paracompact, smooth manifold M
equipped with a Finsler Lagrangian. The latter is a
continuous function L∶ TM → R defined on the tangent
bundle with the following properties:

(i) L is smooth on the tangent bundle without the zero
section, TMnðx; 0Þ;

(ii) L is positively homogeneous of real degree r ≥ 2
with respect to the fibre coordinates of TM:

Lðx; λyÞ ¼ λrLðx; yÞ; ∀ λ > 0; ð12Þ
(iii) L is reversible in the sense:

jLðx;−yÞj ¼ jLðx; yÞj; ð13Þ
(iv) the Hessian gLab of L with respect to the fibre

coordinates

gLabðx; yÞ ¼
1

2
∂̄a∂̄bL ð14Þ

is nondegenerate on TMnA, where A has measure
zero and does not contain the null set fðx; yÞ ∈
TMjLðx; yÞ ¼ 0g;

(v) the unit-timelike condition holds, i.e., for all x ∈ M
the set

Ωx ¼
�
y ∈ TxM

����jLðx; yÞj ¼ 1;

gLabðx; yÞ has signature ðϵ;−ϵ;−ϵ;−ϵÞ;

ϵ ¼ jLðx; yÞj
Lðx; yÞ

�
ð15Þ

contains a nonempty closed connected component
Sx ⊂ Ωx ⊂ TxM.

The Finsler function associated with L is then Fðx; yÞ ¼
jLðx; yÞj1=r and the corresponding Finsler metric is as usual
gFab ¼ 1

2
∂̄a∂̄bF2. This definition of Finsler spacetimes is

constructed so as to cover interesting examples from
physics, such as light propagation in area metric geometry
and local and linear pre-metric electrodynamics [32–34],
which include the bi-metric light-cone structure of bire-
fringent crystals. The most important ingredient in our
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definition is the use of a r-homogeneous function L instead
of the 1-homogeneous function F. This circumvents the
problems discussed in the previous section; in particular, it
avoids the issue about the Finsler function possibly
becoming imaginary. Moreover the approach we employ
here extends earlier ones, as one sees when the homo-
geneity degree of L is fixed to r ¼ 2, since then our
definition reduces to the one given by Beem [30].
The geometry of Finsler spacetimes is derived from the

Lagrangian L and the L-metric gL. Similar to Finsler spaces
the fundamental ingredient defining the geometry of M is
the Cartan nonlinear connection, whose connection coef-
ficients are now derived from L:

Na
bðx; yÞ ¼

1

4
∂̄bðgLacðyd∂d∂̄cL − ∂cLÞÞ: ð16Þ

The geodesic equation for curves γ on M reads again

̈γa þ Na
bðγ; _γÞ_γb ¼ 0 ð17Þ

as for Finsler spaces. The geodesic spray coefficients can be
expressed as

Gaðx; yÞ ¼ Na
bðx; yÞyb ¼

1

2
gLacðyd∂d∂̄cL − ∂cLÞ: ð18Þ

Interestingly, (16) is identical to the formulation in terms
of the Finsler function F ¼ jLðx; yÞj1=r wherever F is
differentiable (see [10] for a proof):

Na
bðx; yÞ ¼

1

4
∂̄bðgLacðyd∂d∂̄cL − ∂cLÞÞ

¼ 1

4
∂̄bðgFacðyd∂d∂̄cF2 − ∂cF2ÞÞ: ð19Þ

As an aside, we note that the connection coefficients can
identically be derived from any power m of L, i.e.,
Na

b½L� ¼ Na
b½Lm�, so in particular, as displayed above,

Na
b½L� ¼ Na

b½jLj2r� ¼ Na
b½F2�, taking the norm does not

make a difference. The nonlinear connection defines so-
called horizontal derivative operators, the horizontal basis
of tangent spaces of the tangent bundle

δa ¼ ∂a − Nb
aðx; yÞ∂b; ð20Þ

whose special property is that it transforms as a tensor
under a manifold-induced coordinate change of the base
manifold, i.e., ðx; yÞ ↦ ðx̃ðxÞ; ỹðx; yÞÞ with ỹa ¼ yb∂bx̃a

implies δ̃a ¼ ∂̃axbδb.
Dynamics of Finsler spacetimes can be obtained in terms

of the curvature derived from the Cartan nonlinear con-
nection which drives the gravitational tidal forces, or in
mathematical terms, the geodesic deviation:

Ra
bcðx; yÞ ¼ ½δb; δc�a ¼ δcNa

bðx; yÞ − δbNa
cðx; yÞ: ð21Þ

From here we can construct the canonical Finsler curvature
scalar

Rðx; yÞ ¼ Ra
acðx; yÞyc ≡Rabðx; yÞyayb; ð22Þ

where Rabðx; yÞ is the Finsler-Ricci tensor proposed by
Akbar-Zadeh [35]. This scalar is the building block for the
dynamical field equations of the Finsler Lagrangian, which
we derive for Berwald spacetimes in the next section.

III. FINSLER GRAVITY VACUUM DYNAMICS
FOR BERWALD SPACETIMES

Berwald spacetimes are minimal Finslerian extensions of
pseudo-Riemannian spacetimes. They are equipped with a
nonmetric Finsler Lagragian but their nonlinear connection
is still an affine connection [13]. An equivalent characteri-
zation is that their geodesic spray is quadratic in the
velocities y. The precise mathematical condition for a
Finsler spacetime to be of Berwald type is

∂̄d∂̄c∂̄bGaðx; yÞ ¼ 0: ð23Þ

This condition implies the following:

Gaðx; yÞ ¼ Ga
ijðxÞyiyj and Na

b ¼ GaðbjÞðxÞyj; ð24Þ

where Ga
ijðxÞ are coefficients of an affine connection. In

other words, the geometric structure of Berwald spacetimes
is minimally more general than that of metric spacetimes. In
fact, there exist Berwald spacetimes whose geometry is
identical to metric spacetime geometry. For these the only
difference to their metric counterparts is the length measure
employed for curves (an example is given in Sec. IV D).
Berwald spacetimes are the most conservative Finslerian
extension of metric spacetime geometry and thus plausible
spacetime candidates for extended theories of gravity based
on generalized geometries.
Our goal now is to obtain the vacuum dynamics for

Berwald spacetimes, generalizing Einstein’s equations. In
what follows, we employ the action-based vacuum field
equation for general Finsler spacetimes developed in [11]

r
2
LgLab∂̄a∂̄bR −

2ð2r − 1Þ
ðr − 1Þ R

þ rLgLabð∇B
aSb þ ∂̄aðyq∇B

qSbÞÞ ¼ 0: ð25Þ

where ∇B is the Berwald covariant derivative and S is the
Landsberg tensor (see Appendix A). Note that this is a
scalar equation on the tangent bundle, determined by the
Finsler Lagragian L and its derived objects. In the case of a
metric Finsler Lagrangian, L ¼ gabðxÞyayb, the Finsler
spacetime vacuum equation is equivalent to Einstein’s
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vacuum equations. The Landsberg tensor S vanishes
identically for Berwald spacetimes, which simplifies the
field equation considerably:

r
2
LgLab∂̄a∂̄bR −

2ð2r − 1Þ
ðr − 1Þ R ¼ 0: ð26Þ

Moreover, the curvature scalar (22) can be derived from the
geodesic spray (24) as

Rðx; yÞ ¼ ycδaNa
c − ycδcNa

a

¼ yjycð∂aGaðcjÞ − ∂cGaðajÞ þ GaðarÞGrðcjÞ

− GaðcrÞGrðajÞÞ
≡ yjycRjcðxÞ; ð27Þ

where we define the Berwald Ricci tensorRjcðxÞ, which is
just the Finsler-Ricci tensor for Berwald spacetimes. Note
that, in contrast to the general case, it does not depend on
the velocities y. Employing this result we can reformulate
the Finsler spacetime dynamics on Berwald spacetimes
(26) to

�
LgLab −

ð2r − 1Þ
ðr − 1Þ yayb

�
Rab ¼ 0; ð28Þ

which we call the Berwald gravity equation from now on.
This equation is the generalization of Einstein’s vacuum
equations to Berwald spacetimes, and it is derived here for
the first time.
We finish the section by commenting on the relation to

earlier work on Finsler gravity vacuum dynamics. In [26], it
was suggested that the field equation (25) is equivalent to
the one suggested by Rutz, Rabðx; yÞyayb ¼ 0 [23].
Berwald spacetimes demonstrate that this is only the case
for very special Finsler spacetimes. On Berwald spacetimes
Rutz’s equation reduces toRabðxÞyayb ¼ 0, which implies
RabðxÞ ¼ 0. Hence Rutz’s equation implies that (28)
(which is (25) for Berwald spacetimes) holds. The converse
is however not true. Assume that (28) holds; this does not
imply RabðxÞyayb ¼ 0, unless gLabRabðxÞ ¼ 0 is also
satisfied. Thus, Berwald spacetimes show that field equa-
tion (25) is in general not equivalent toRabðx; yÞyayb ¼ 0,
although there may exist very special Finsler spacetimes for
which this is the case.

IV. VERY GENERAL RELATIVITY

We now turn to the study of VGR spacetimes which are
of Berwald type. In order to do so, we compute the VGR
geodesic spray and derive a necessary and sufficient
condition for the spacetime to be Berwald (Theorem 1).
Moreover, we find a sufficient condition such that a ðA;BÞ-
Finsler spacetime, and in particular a VGR spacetime, is not
only Berwald but its geometry is fully determined by the

Levi-Civita connection of the Lorentzian metric involved
(Theorem 2). And we show that for null-VGR–Berwald
spacetimes the vanishing of the Berwald-Ricci tensor
is equivalent to the action-based Finsler dynamics
(Theorem 3). Last, we demonstrate our findings by dis-
playing examples of VGR-Berwald spacetimes.

A. VGR spacetimes

We recall the length element of very special relativity
introduced in Eq. (1):

ds ¼ ðηcddxcdxdÞ1−b2 ðnadxaÞb: ð29Þ

In order to lift (29) to a length element of a curved
spacetime, we replace the Minkowski metric η with a
general Lorentzian metric g, and the constant components
1-form n with a general 1-form B. We then obtain the
(Finsler function representation of the) length element:

F̃ ¼ ðgcdðxÞycydÞ1−b2 ðBaðxÞyaÞb ¼ gðy; yÞ1−b2 BðyÞb: ð30Þ

As explained in Sec. II A, such Finsler functions are
problematic for indefinite metrics g, since they are not
differentiable on the null structure of the theory and may
also become imaginary. In order to obtain a differentiable,
real Finsler Lagragian which properly defines VGR space-
times, we take an appropriate power of the Finsler function
as Lagrangian,

L ¼ gðy; yÞBðyÞn; ð31Þ

where n ¼ 2b
1−b. Wherever both F̃ and L are differentiable

they define the same geometry of spacetime as explained
around Eq. (19), since L is the 2

1−b power of F̃. We call
manifolds M equipped with a Finsler Lagragian L of the
type (31) VGR spacetimes. The VGR-Finsler Lagragian
remains problematic where BðyÞ vanishes, since the cor-
responding L-metric (14) is not invertible.1 The influence
of this set depends on the causal character of the 1-form B
with respect to the metric g, and may lead to further
constraints on the form of the Lagragian. We do not tackle
this issue here and thus all derivations below hold every-
where except on this set.
The Finsler function which defines the length of curves

on VGR spacetimes is F ¼ jLj 1
nþ2. The length measure on

VGR spacetimes is thus given by, recall Eq. (8):

S½γ� ¼
Z

dτjgð_γ; _γÞBð_γÞnj 1
nþ2: ð32Þ

In order to study VGR spacetimes we need to derive the
Finsler geometric objects of L, with the geodesic spray

1The L-metric and its inverse are given in Sec. IV C.

BERWALD SPACETIMES AND VERY SPECIAL RELATIVITY PHYS. REV. D 98, 084062 (2018)

084062-5



being the fundamental ingredient. First, we observe that the
VGR Lagragian (31) is a particular function of the variables
A ¼ gðy; yÞ and B ¼ BðyÞ:

L ¼ ABn: ð33Þ

We derive next the geodesic spray of VGR spacetimes
using Eq. (B8), which is the geodesic spray for general
Finsler Lagrangians of the type L ¼ LðA;BÞ. For VGR
spacetimes we have

∂AL ¼ Bn; ∂BL ¼ nABn−1; ð34Þ

∂A∂AL ¼ 0; ∂A∂BL ¼ nBn−1;

∂B∂BL ¼ nðn − 1ÞABn−2 ð35Þ

and the desired geodesic spray is thus

2Ga ¼ 2Γa
bcybyc þ n

A
B
ybgacð∇bBc −∇cBbÞ

þ nð2Bya −ABaÞ
2ð1þ nÞB3 − ngðB;BÞAB

× ðnAybBcð∇cBb −∇bBcÞ þ 2Bybyc∇bBcÞ ð36Þ

where Γa
bc are the Christoffel symbols of the Lorentzian

metric g, ∇ denotes the Levi-Civita covariant derivative
and, by abuse of notation, the norm of the 1-form B with
respect to the metric is denoted by gðB;BÞ ¼ gabBaBb.
From the expression above it is clear that the parameter n
and the Levi-Civita covariant derivatives of B define the
deviation of VGR spacetime geometry from metric space-
time geometry, recovered for n ¼ 0. All further geometric
objects, such as the nonlinear connection and the curvature,
can be derived from the geodesic spray.

B. VGR-Berwald spacetimes

We identify next a class of VGR spacetimes which can
be interpreted as a minimal deviation from metric geom-
etry, namely, VGR-Berwald spacetimes. These should yield
a geodesic spray quadratic in the tangent directions y, recall
Sec. III. It can be seen from Eq. (36) that the Levi-Civita
covariant derivative of the 1-form B and the parameter n
determine whether the VGR spacetime is of Berwald type
or not. In order to derive precise conditions we split the
covariant derivative into a symmetric and an antisymmetric
part in the following form

∇aBb ¼ PBaBb þQDab þ gðB;BÞEab ð37Þ

where Dab and Eab are the components of symmetric and
antisymmetric (0,2)-tensors and P, Q are functions on
spacetime we seek to determine. Plugging this ansatz into
the geodesic spray (36) yields

2Ga ¼ 2Γa
bcðxÞybyc þ 2nRgðB;BÞA

×
�
Eb

ayb

B
−

nEbcybBcð2Bya −ABaÞ
2ð1þ nÞB3 − ngðB;BÞAB

�
ð38aÞ

þ 2nðPB2 þQybycDbcÞ
2ð1þ nÞB2 − ngðB;BÞA ð2Bya −ABaÞ: ð38bÞ

In order for these to be quadratic in the velocities y the
following conditions have to be satisfied. On the one hand,
the fraction in (38b) must be independent of y since the
multiplying factor is already quadratic in y. The only way
to achieve this is to set P ¼ 2ð1þ nÞCðxÞ and QDbc ¼
−CðxÞngðB;BÞgbc. This is derived from the fact that
equations of the type

TabðxÞyayb
ZcdðxÞycyd

¼ WðxÞ ð39Þ

can only hold if TðabÞ ¼ WðxÞZðabÞ. In our case the tensors
T and Z are already symmetric, so Tab ¼ WðxÞZab. This
yields the conditions on P, Q and Dbc listed above.
On the other hand, contracting the bracket in (38a) with

Ba yields the necessary condition that the resulting scalar
multiplied by A must be quadratic in y

ABEbcybBc

2ð1þ nÞB2 − ngðB;BÞA ¼ Va
bcðxÞybycBa ð40Þ

which can be solved for:

EbcybBc ¼ 1

AB
Va

bcðxÞybycBað2ð1þ nÞB2 − ngðB;BÞAÞ:
ð41Þ

However, this equation has no solutions for all y except
Ebc ¼ 0 ¼ Va

bc since there exists no Va
bc such that the

polynomials on the right-hand side combine to a first order
monomial in y. We summarize the result in the following
theorem.
Theorem 1. Let ðM;LÞ be a VGR spacetime, i.e.,

L ¼ gðy; yÞBðyÞn. A VGR spacetime is of Berwald type
if and only if there exists a function CðxÞ such that the 1-
form B satisfies:

∇aBb ¼ CðxÞð2ð1þ nÞBaBb − ngðB;BÞgabÞ: ð42Þ
The geodesic spray of such a spacetime is quadratic in the
directions y and reads as follows:

Ga ¼ Γa
bcybyc þ nCðxÞð2Bya −ABaÞ: ð43Þ

For the specific class of null-VGR spacetimes, i.e., VGR
spacetimes for which gðB;BÞ ¼ 0, the Berwald condition
(42) simplifies to

∇aBb ¼ CðxÞ2ð1þ nÞBaBb: ð44Þ
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This theorem identifies a necessary and sufficient condition
for a VGR spacetime, with general metric g and 1-form B,
to be of Berwald type. An earlier sufficient condition (in
terms of the existence of a special vielbein) for Finsler
spacetimes of the form (30) and a Lorentzian metric g
belonging to Kundt’s class [36–38] can be found in [39]. A
simpler class of VGR-Berwald spacetimes can be found
from the next theorem for general ðA;BÞ-Finsler space-
times, which we prove in Appendix B.
Theorem 2. Let ðM;LÞ be a ðA;BÞ-Finsler spacetime,

i.e., L ¼ LðA;BÞ with A ¼ gðy; yÞ and B ¼ BðyÞ. A
sufficient condition for ðM;LÞ to be a Berwald spacetime
is that B is covariantly constant with respect to the
Lorentzian metric g. The geodesic spray of ðM;LÞ is then
given by Ga ¼ Γa

bcybyc, where Γa
bc are the Christoffel

symbols of the metric.
Note that the existence of such a theorem,whichwe proved

now, was conjectured in [40] on the basis of numerical
calculations. Moreover similar results for Randers spaces
have been known for a long time [41–44], and more recently
for Finsler b-spaces in the context of Lorentz-violating
extensions of the Standard Model [45]. For VGR spacetimes
Theorem 2 implies that for a covariantly constant (c.c. from

now on) 1-form B, i.e., ∇aBb ¼ 0 and so CðxÞ ¼ 0, the
geometry of the VGR-Berwald spacetime is fully determined
by the Christoffel symbols of the Lorentzian metric g.
Therefore, the geometry does not depend on the exponent
parameter n and all VGR-Berwald spacetimes Ln ¼
gðy; yÞBðyÞn yield the same geometry regardless of n. The
difference between families of VGR-Berwald spacetimes
ðM;LnÞ and themetric spacetimes ðM; gÞ of general relativity
becomes only apparent when employing the L-metric, and in
the identificationofnormalized timelikevectors. The caseof a
c.c. 1-form Bmay be seen as the mildest deviation of a VGR
model from general relativity.

C. Dynamics of VGR-Berwald spacetimes

We consider now the vacuum dynamics of VGR-
Berwald spacetimes. These can be derived from
the Berwald gravity vacuum Eq. (28), for which we
need to compute the (inverse) L-metric for VGR space-
times of the type (33). Note that the homogeneity
degree r of L is related to the exponent parameter
n as r ¼ nþ 2. With the help of the formulas in
Appendix B we calculate

gLab ¼ Bngab þ nBn−1ðBayb þ BbyaÞ þ
n
2
ðn − 1ÞABn−2BaBb ð45Þ

and

LgLab ¼ Agab −
2nBA

2ð1þ nÞB2 − ngðB;BÞA ðBayb þ BbyaÞ þ 2n2gðB;BÞA
ð1þ nÞð2ð1þ nÞB2 − ngðB;BÞAÞ y

ayb

þ nA2

2ð1þ nÞB2 − ngðB; BÞABaBb: ð46Þ

The Berwald vacuum gravity equation for VGR spacetimes thus becomes

�
Agab −

2nBA
2ð1þ nÞB2 − ngðB;BÞA ðBayb þ BbyaÞ þ

�
2n2gðB;BÞA

ð1þ nÞð2ð1þ nÞB2 − ngðB;BÞAÞ −
2nþ 3

nþ 1

�
yayb

þ nA2

2ð1þ nÞB2 − ngðB;BÞABaBb

�
Rab ¼ 0: ð47Þ

Recall that Berwald spacetimes have the property Rab ¼ RabðxÞ. Next, we multiply the expression by the denominator
ð1þ nÞð2ð1þ nÞB2 − ngðB;BÞAÞ and obtain a fourth-order polynomial in y:

Gðx; yÞ ¼
�
ð2ð1þ nÞB2 − ngðB;BÞAÞ

�
Agab −

2nþ 3

nþ 1
yayb

�
− 2nBAðBayb þ BbyaÞ þ 2n2gðB;BÞAyayb

þ nA2BaBb

�
Rab ¼ 0: ð48Þ

Taking a fourth-order derivative with respect to y yields a purely tensorial equation on spacetime which determines the
dynamics of the 1-form B and the Lorentzian metric g:

∂̄a∂̄b∂̄c∂̄dGðx; yÞ ¼ GabcdðxÞ ¼ 0: ð49Þ
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We now analyze the above equation for null-VGR–Berwald spacetimes, i.e., those for which gðB;BÞ ¼ 0. In this case
Eq. (48) reduces to

Gðx; yÞ ¼
�
2ð1þ nÞB2

�
Agab −

2nþ 3

nþ 1
yayb

�
− 4nBABayb þ nA2BaBb

�
Rab ¼ 0: ð50Þ

Studying the corresponding tensor Eq. (49) yields the integrability condition RabBaBb ¼ 0 (from gabgcdGabcd ¼ 0).
Evaluating Gðx; yÞ on this condition yields:

Gðx; yÞjRabBaBb¼0 ≡GRðx; yÞ ¼
�
2ð1þ nÞB

�
Agab −

2nþ 3

nþ 1
yayb

�
− 4nABayb

�
Rab ¼ 0: ð51Þ

The third derivative of this equation with respect to y and its contractions yield additional integrability conditions:

yagbc∂̄a∂̄b∂̄cGRðx; yÞ ¼ 0 ⇔ RabyaBb ¼ Ra
aB

3þ 4n
2ð3þ 8nÞ ð52Þ

yaybBc∂̄a∂̄b∂̄cGRðx; yÞ ¼ 0 ⇔ RabyaBb ¼ Ra
aB

1þ n
3þ 4n

: ð53Þ

Thus, either n ¼ − 3
2
or Ra

a ¼ 0 and RabybBa ¼ 0. The
latter condition reduces the field Eq. (51) to Rabyayb ¼ 0,
which for Berwald spacetimes implies Rab ¼ 0. Alterna-
tively, fixing n yields the expression 6RabybBa ¼ Ra

aB
and reduces the field Eq. (51) to

ARa
a − 3Rabyayb ¼ 0: ð54Þ

Another second derivative with respect to the directions y
and contraction of the resulting equation with the spacetime
metric components gab enforces Ra

a ¼ 0 and hence, also
in this case, Rabyayb ¼ 0 implying again Rab ¼ 0. We
summarize the discussion in the following theorem.
Theorem 3. Let ðM;LÞ be a null-VGR–Berwald space-

time, i.e., L ¼ gðy; yÞBðyÞn with a 1-form B satisfying
gðB;BÞ ¼ 0 and ∇aBb ¼ CðxÞ2ð1þ nÞBaBb. The
Berwald gravity vacuum equation

�
LgLab −

ð2r − 1Þ
ðr − 1Þ yayb

�
Rab ¼ 0 ð55Þ

is equivalent to the vanishing of the Berwald-Ricci tensor:

Rab ¼ 0: ð56Þ

This result also implies that for null-VGR–Berwald space-
times Rutz’s equation Rabyayb ¼ 0 is equivalent to (55),
which is in general not true as we discussed below Eq. (26).
In the case of a non-null VGR–Berwald spacetime the
dynamics are governed by Eq. (55), with Rab ¼ 0 being a
sufficient but not necessary condition. The field equation in
this case will be analyzed in more detail in future work.

D. Examples of VGR-Berwald spacetimes

We present next two novel explicit examples, which
demonstrate the existence of nontrivial (null and non-null)
VGR-Berwald spacetimes. They represent a VGR gener-
alization of vanishing scalar invariant (VSI) spacetimes and
the most general homogeneous and isotropic VGR-
Berwald spacetime. We also discuss their corresponding
vacuum dynamics.

1. Null-VGR–Berwald spacetimes:
Finsler-VSI spacetimes

We present a generalization of the Finsler pp-waves in
[9], given by the following VGR Lagrangian (recall
L ¼ gðy; yÞBðyÞn)
L ¼ ð−2ðyuyv þ ½Φðu; xiÞ þ vΦ̃ðu; xiÞ�ðyuÞ2

þW1ðu; xiÞyuy1 þW2ðu; xiÞyuy2Þ þ ðy1Þ2
þ ðy2Þ2ÞðyuÞn ð57Þ

expressed in coordinates ðu; v; x1; x2; yu; yv; y1; y2Þ, where
u ¼ ð1= ffiffiffi

2
p Þðt − x3Þ and v ¼ ð1= ffiffiffi

2
p Þðtþ x3Þ are light-

cone coordinates, and Φ, Φ̃, W1 and W2 are real functions.
The Lorentzian metric g is given by:

ds2 ¼ −2duðdvþ ½Φðu;xiÞ þ vΦ̃ðu;xiÞ�du
þW1ðu;xiÞdx1 þW2ðu;xiÞdx2Þ þ ðdx1Þ2 þ ðdx2Þ2:

ð58Þ
This metric is of Kundt type and belongs to the class of VSI
spacetimes [46], and in particular to the subclasswheremetric
functionsW1 andW2 do not depend on coordinate v. This is
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an exact vacuum solution of Einstein’s equations for certain
functional dependencies of Φ and Φ̃ in terms of Wi. In the
case Φ̃ ¼ 0 it reduces to the gyratonic pp-wave metric
[47,48], and to the usual pp-waves for Φ̃ ¼ W1 ¼ W2 ¼ 0.
Note that (57) reduces to the (Lorentzian) Lagrangian

L ¼ gðy; yÞ induced by the VSI metric (58) in the case
n ¼ 0, and to the (Finsler) Lagrangian induced by the
Finsler pp-waves in [9] for vanishing metric functions
Φ̃ ¼ W1 ¼ W2 ¼ 0. The case Φ̃ ¼ 0 provides a Finsler
version of the gyratonic pp-wave metric, presented here for
the first time. The 1-form defining the VGR spacetime in
consideration is B ¼ du. It is null with respect to the
Lorentzian metric g: gðB;BÞ ¼ 0 and its covariant

derivative has one nonzero component ∇uBu ¼ Φ̃ðu; xiÞ.
Thus, B satisfies the VGR-Berwald condition stated in
Eq. (44) of Theorem 1 with CðxÞ ¼ Φ̃ðu; xiÞ=ð2ðnþ 1ÞÞ,
which reduces to CðxÞ ¼ 0 for the Finsler gyratonic pp-
waves. Our result is completely consistent with Theorem 2
in [39], which states that a Finsler spacetime of the form
(30) and a Lorentzian metric g of the Kundt type with
Wi;v ¼ 0 is always Berwald.
Calculating the geodesic spray, using Eq. (43), yields

Gu ¼ −
ðyuÞ2
1þ n

Φ̃ ð59Þ

Gv ¼ ðyuÞ2
ð1þ nÞ ðð1þ nÞðΦ̃ðW2

1 þW2
2Þ þW1∂uW1 þW2∂uW2 þ ð∂u −W1∂x1 −W2∂x2ÞðΦþ vΦ̃ÞÞ þ ð2þ nÞΦ̃ðΦþ vΦ̃ÞÞ

−
yuy1

1þ n
ðð1þ nÞðW2ð∂x2W1 − ∂x1W2Þ − 2∂x1ðΦþ vΦ̃ÞÞ þ nW1Φ̃Þ þ 2yuyvΦ̃þ ðy1Þ2

�
n

2ð1þ nÞ Φ̃þ ∂x1W1

�

þ yuy2

1þ n
ðð1þ nÞðW1ð∂x2W1 − ∂x1W2Þ þ 4∂x2ðΦþ vΦ̃ÞÞ − nW2Φ̃Þ þ ðy2Þ2

�
n

2ð1þ nÞ Φ̃þ ∂x2W2

�

þ y1y2ð∂x2W1 þ ∂x1W2Þ ð60Þ

G1 ¼ ðyuÞ2ð∂x1ðΦþ vΦ̃Þ −W1Φ̃ − ∂uW1Þ þ
n

nþ 1
yuy1Φ̃þ yuy2ð∂x1W2 − ∂x2W1Þ ð61Þ

G2 ¼ ðyuÞ2ð∂x2ðΦþ vΦ̃Þ −W2Φ̃ − ∂uW2Þ þ
n

nþ 1
yuy2Φ̃þ yuy1ð∂x2W1 − ∂x1W2Þ ð62Þ

where we suppressed the arguments of the metric functions for the sake of readability. In the case Φ̃ ¼ 0 the 1-form B is c.c.
(since CðxÞ ¼ 0) and the geodesic spray reduces to Ga ¼ Γa

bcybyc (recall Sec. IV B), with Γa
bc being the Christoffel

symbols of the gyratonic pp-wave metric. The Berwald-Ricci tensor can now be computed using Eq. (27), and the field
dynamics RabðxÞ ¼ 0 (Theorem 3) become:

0 ¼ Ruu ¼ −
2ð2þ nÞ
2ð1þ nÞ2 Φ̃

2 þ ð∂2
x1 þ ∂2

x2ÞðΦþ vΦ̃Þ þ 2n∂uΦ̃þ 1

2
ð∂x1W2 − ∂x2W1Þ2 − ∂uð∂x1W1 þ ∂x2W2Þ

− 2ðW1∂x1 þW2∂x2ÞΦ̃ − Φ̃ð∂x1W1 þ ∂x2W2Þ ð63Þ

0 ¼ Ru1 ¼
1

2
ð∂2

x2W1 − ∂x1∂x2W2Þ þ
2þ n

2ð1þ nÞ ∂x1Φ̃ ð64Þ

0 ¼ Ru2 ¼
1

2
ð∂2

x1W2 − ∂x1∂x2W1Þ þ
2þ n

2ð1þ nÞ ∂x2Φ̃: ð65Þ

The last two equations determine Φ̃ in terms ofW1 andW2,
while Φ can subsequently be obtained from the Poisson-
type Eq. (63). And, as consistency check, observe that for
n ¼ 0 the equations become the Einstein vacuum equations
of the VSI spacetimes (58).In the Φ̃ ¼ 0 case, the Berwald-
Ricci tensor reduces to the Ricci tensor of the Lorentzian
metric g, and hence the field equations become identical to

Einstein’s vacuum equations for the gyratonic pp-wave
metric. Note that for n ¼ 0 we recover Einstein’s equations
corresponding to the VSI spacetimes (58).

2. Non-null-VGR–Berwald spacetimes

Homogeneous and isotropic spacetimes are typically
encountered in cosmology. InLorentzian geometry these sym-
metry demands on spacetime lead to a metric of Friedman-
Lemaître-Robertson-Walker (FLRW) type. Finsler geometry
has also been considered in the context of cosmological
models [49–54]. In [11] the most general homogeneous
and isotropic Finsler spacetimes were derived. Applying this
procedure to VGR spacetimes we find the Lagrangian
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L ¼ ð−ðytÞ2 þ A2ðtÞw2ÞðBðtÞytÞn; with

w2 ¼ ðyrÞ2
1 − kr2

þ r2ðyθÞ2 þ r2 sin θ2ðyϕÞ2 ð66Þ

expressed in coordinates ðt; r; θ;ϕ; yt; yr; yθ; yϕÞ. The
Lorentzian metric g is given by the FLRW metric, with
AðtÞ the scale factor and k the spatial curvature constant.
Evaluating condition (42) for the Lorentzian metric and
1-form defining this VGR spacetime we find that it is of
Berwald type if and only if:

BðtÞ ¼ cAðtÞ−2þn
n ; ð67Þ

where c is a constant. By direct calculation, one can check
that B satisfies the VGR-Berwald condition

∇aBb ¼ −
A0ðtÞ

ncAðtÞ−2
n

ð2ð1þ nÞBaBb − ngðB;BÞgabÞ; ð68Þ

with CðxÞ ¼ −ðA0ðtÞ=ncAðtÞ−2=nÞ and prime denoting
derivative with respect to t. Note that in this case
gðB;BÞ ≠ 0, and thus (66) is a non-null-VGR–Berwald
spacetime. We compute next the geodesic spray employing
Eq. (43):

Gt ¼ −ðytÞ2 A
0ðtÞ

AðtÞ ; Gθ ¼ 2

r
yryθ − ðyϕÞ2 cos θ sin θ;

Gϕ ¼ 2

r
yryϕ þ 2 cot θyθyϕ; ð69Þ

Gr ¼ kr
1 − kr2

ðyrÞ2 − rð1 − kr2ÞððyθÞ2 þ sin θ2ðyϕÞ2Þ:
ð70Þ

Note that the spray coefficients are independent of the
parameter n parametrizing the deviation from metric
spacetime geometry, which is striking given the explicit
dependence on n of Eq. (43). Thus, the geometry of the
homogeneous and isotropic VGR-Berwald spacetime, i.e.,
the geodesic spray and its derived quantities, does not have
a metric spacetime limit for n → 0, while the defining
Lagrangian Eq. (66) does. This is a result of the specific
form of function CðxÞ, which cancels the n-dependence of
Eq. (43). Seemingly, this type of geometry only exists in a
proper (n ≠ 0) Finsler setting. The deeper geometrical
meaning and physical interpretation of this new family
of spacetimes is unclear so far and will be investigated in
future work.
The curvature scalar (22) can now be calculated from the

geodesic spray, taking the surprisingly simple form:

R ¼ 2k

� ðyrÞ2
1 − kr2

þ r2ðyθÞ2 þ r2 sin θ2ðyϕÞ2
�
: ð71Þ

For non-null-VGR–Berwald spacetimes, the field equa-
tion does not reduce to RabðxÞ ¼ 0, and it is necessary to
consider the full Eq. (28), which in this case reads:

−
6ðytÞ2
A2ðtÞ þ w2

�
7nþ 5

2n2 þ n − 1

þ 8nðytÞ2
ð2þ nÞðytÞ2 þ nw2A2ðtÞ

�
¼ 0: ð72Þ

Here, the scale factor AðtÞ appears only through the Finsler
Lagrangian and the L-metric. Performing the procedure
outlined in Sec. IV C, we can multiply the equation by the
y-dependent denominator and obtain the tensorial equa-
tion (49) on spacetime for this case, by applying four y
derivatives. The analysis of the resulting equation reveals
that there exists no AðtÞ such that (72) is solved. The only
exception is the spatially flat case k ¼ 0; for such geom-
etries any choice of AðtÞ solves the field equation since, by
Eq. (71), k ¼ 0 impliesRabðxÞ ¼ 0 independently of AðtÞ.
Comparing homogeneous and isotropic VGR-Berwald

vacuum spacetimes to vacuum solutions of the Friedmann
equations one finds quite some differences. In general
relativity, for nonvanishing k, there exists the Milne
Universe [55] as solution with k ¼ −1, while for k ¼ 0
Minkowski spacetime is the only solution. For the gener-
alizations of general relativity studied here we found that
for k ≠ 0 there exist no solutions, but for k ¼ 0 there exists
a whole family of solutions parametrized by the functions
AðtÞ. Note that the same is true for non-action-based Finsler
gravity equations such as R ¼ 0 [23] and Rab ¼ 0 [26].
We would like to stress that these statements only hold for
Berwald gravity vacuum dynamics; in the presence of
matter, there may exist interesting homogeneous and
isotropic VGR-Berwald spacetimes solving the field equa-
tions. The coupling between VGR spacetimes and matter
will be investigated in future work.

V. DISCUSSION

Finsler spacetimes are natural generalizations of
Lorentzian spacetimes. They are viable candidates for an
improved description and understanding of the geometry of
spacetime, i.e., gravity [56,57]. Finsler geometry immedi-
ately emerges in the context of modified dispersion rela-
tions. These may for example arise from an effective
description of Planck scale quantum gravity effects
[14,58,59], or from field theories with field equations not
(solely) defined by a Lorentzian metric [33,34,40,60–62].
Part of the motivation for this work lies in a particular
instance of the latter, the very special relativity (VSR)
framework by Cohen andGlashow [5]. However, the variety
of possible modified dispersion relations and corresponding
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Finsler geometries is vast, which complicates the inves-
tigation of the physical viability of general Finsler geometry
as possible spacetime geometry. In order to derive physical
observables and compare them with experiments it is
therefore necessary to consider a specific class of Finsler
spacetimes. This has been done for certain Finsler space-
times at the solar system scale [63] and in a cosmological
setting [54].
Berwald spacetimes are a particularly interesting class of

Finsler spacetimes. They can be regarded as the minimal
Finsler generalization of Lorentzian spacetimes, i.e., the
mildest deviation from metric geometry, and are physically
relevant [14,16]. We consider the Berwald generalization of
Einstein’s equations, derived from an action principle on
the unit tangent bundle. We show that in this framework the
vanishing of the Berwald-Ricci tensor is a sufficient
(although in general, not necessary) condition for the
vacuum dynamics to be satisfied, which is analogous to
the vanishing of the Ricci tensor in Einstein’s vacuum
equations.
Next we undertake a rigorous analysis of very general

relativity (VGR) spacetimes, which are curved generaliza-
tions of flat VSR spacetimes. We derive the geodesic spray,
the fundamental building block of the corresponding
geometry, and identify a necessary and sufficient condition
for the spacetime to be of Berwald type (Theorem 1). We
find necessary conditions for ðA;BÞ-Finsler spacetimes,
and in particular VGR spacetimes, to be not only Berwald
but also have a geometry fully determined by the Levi-
Civita connection of the Lorentzian metric involved
(Theorem 2). This is closely related to similar results for
Randers and Finsler b-spaces involving covariantly con-
stant 1-forms [41–45]. Moreover, we show that the
Berwald-VGR field equations are equivalent to the vanish-
ing of the Berwald-Ricci tensor if and only if the 1-form
appearing in the VGR line element is null with respect to
the Lorentzian metric (Theorem 3). Hence in general the
vanishing of the Finsler-Ricci tensor, previously proposed
in the literature as vacuum field equation, is not equivalent
to the unit tangent bundle action-based Finsler gravity field
equation.
Finally, we prove that the Berwald-VGR class of space-

times is nonempty by presenting two novel examples,
namely a Finslerian generalization of VSI spacetimes in
Einstein’s gravity, and the most general homogeneous and
isotropic VGR spacetime. We also derive the corresponding
vacuum field equations, which for (a subclass of) the first
example adopt the same form as the one in Einstein’s
gravity. In the second example it turns out that all
homogeneous and isotropic VGR-Berwald spacetimes
which are spatially flat solve the vacuum equations, while
there exists no solution for spatially nonflat geometries
(which occurs in Einstein’s gravity).
A next step in the analysis of VGR-Berwald spacetimes

would be to perform an exhaustive classification of all

possible such spacetimes, by studying the most general
form of the Lorentzian metric and 1-form in the line
element which are compatible with the Berwald require-
ment. A complete mathematical classification of general
ðA;BÞ-Finsler spacetimes may also be done in the future,
based on their geodesic spray presented in the Appendix.
A physically interesting research direction is the addition

of matter to the investigated Berwald vacuum dynamics.
This coupling could be realized in different ways, for
example by formulating the VSR framework of Cohen and
Glashow in the same language as the Finslerian gravita-
tional action [11], or by stating field theories directly on the
tangent bundle where they couple naturally to a Finslerian
geometry [10]. A perfect fluid coupling to VGR space-
times, particularly relevant as source for the homogeneous
and isotropic case and its application to cosmology, may be
achieved by employing the kinetic gases description on the
tangent bundle as introduced by Ehlers [64] and later
connected to Finsler geometry in [65].
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APPENDIX A: THE LANDSBERG TENSOR AND
THE BERWALD COVARIANT DERIVATIVE

In the formulation of the Finsler spacetime vacuum
dynamics (25), we encountered the Berwald covariant
derivative and the Landsberg tensor, which we will prop-
erly introduce here.
The Berwald linear covariant derivative ∇B is a linear

covariant derivative on the tangent bundle of a Finsler
spacetime ðM;LÞ defined by the following action on the
horizontal-vertical basis of the tangent spaces of the tangent
bundle,

∇B
δa
δb ¼ ∂̄aNq

bδq; ∇B
δa
∂̄b ¼ ∂̄aNq

b∂̄q; ðA1Þ

∇B
∂̄aδb ¼ 0; ∇B

∂̄a ∂̄b ¼ 0; ðA2Þ

where Na
b are the connection coefficients of the Cartan

nonlinear connection (16) and δa are the horizontal
basis (20).
The Landsberg tensor S is the difference between the δ-

Christoffel symbols,
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Γδa
bc ¼

1

2
gLaqðδbgLcq þ δcgLbq − δqgLbcÞ; ðA3Þ

and the connection coefficients of the Berwald connection
[10],

Sabc ¼ Γδa
bc − ∂̄bNa

c: ðA4Þ

APPENDIX B: THE GEODESIC SPRAY
OF ðA;BÞ-FINSLER SPACETIMES

To derive the geodesic spray of a VGR spacetime in
Sec. IVA and to proof Theorem 2 of Sec. IV B, it is most
convenient to consider general ðA;BÞ-Finsler spacetimes
and in particular the VGR-Finsler Lagrangian expressed as

L ¼ ABn; ðB1Þ

with variables A ¼ gðy; yÞ ¼ gabðxÞyayb and B ¼ BðyÞ ¼
BaðxÞya.

This can be done for general ðA;BÞ-Finsler spacetimes
based on Lagrangians of the form L ¼ LðA;BÞ as follows.
We need to calculate ∂cL, yd∂d∂̄cL and the inverse Finsler
metric gLab, as displayed in Eq. (18).
Let us write down the results and use the following

abbreviations: ∂A ¼ ∂
∂A, ∂B ¼ ∂

∂B, Γa
bc are the Christoffel

symbols of the metric g and as short-hand notation we write
gðB;BÞ ¼ gabBaBb, where we identified the metric dual
g−1ðB; ·Þ with B itself for the sake of readability. The
calculations below were performed with help of the
computer algebra program XAct for Mathematica.

(i) The first derivatives of L

∂cL ¼ ∂AL∂cgabyayb þ ∂BL∂cBaya ðB2Þ

∂̄cL ¼ 2∂ALgacya þ ∂BLBc: ðB3Þ

(ii) The mixed derivative of L

yd∂d∂̄cL ¼ 2∂ALymydðgmiΓi
dc þ gcaΓa

dmÞ þ ∂BLydð∇dBc þ Γm
dcBmÞ þ ∂A∂AL4ycydΓm

dbymyb

þ ∂B∂BLBcybydð∇dBb þ Γm
dbBmÞ þ ∂B∂ALð2ycydð∇dBb þ Γm

dbBmÞyb þ Bc2ymydΓm
dbybÞ: ðB4Þ

(iii) The L-metric

gLab ¼ gab∂ALþ 2yayb∂A∂ALþ ðyaBb þ ybBaÞ∂A∂BLþ 1

2
BaBb∂A∂AL: ðB5Þ

(iv) The inverse L-metric

gLab ¼ 1

∂AL
gab þ 1

Q
ðBayb þ BbyaÞðB∂A∂AL∂B∂BL − ∂A∂BLðB∂A∂BLþ ∂ALÞÞ þ

1

Q
yaybðgðB;BÞð∂A∂BLÞ2

− ∂A∂ALðgðB;BÞ∂B∂BLþ 2∂ALÞÞ þ
1

Q
BaBb

�
Að∂A∂BLÞ2 −

1

2
∂B∂BLð2A∂A∂ALþ ∂ALÞ

�
; ðB6Þ

where Q is given by

Q ¼ ∂AL

�
ð∂ALÞ2 þ ∂AL

�
1

2
gðB; BÞ∂B∂BLþ 2B∂A∂BLþ 2A∂A∂AL

�

þ ðB2 − gðB;BÞAÞðð∂A∂BLÞ2 − ∂A∂AL∂B∂BLÞ
�
: ðB7Þ

These ingredients can be combined into Eq. (18) and we obtain

Gaðx; yÞ ¼ Γa
bcðxÞybyc þ

1

2

∂BL
∂AL

ybgacð∇bBc −∇cBbÞ þ
1

4

1

Q
ðybBcð∇cBb −∇bBcÞ∂BLþ ybycð∇cBb þ∇bBcÞ∂ALÞ

× ½2yað∂A∂BLð∂ALþ B∂A∂BLÞ − B∂A∂AL∂B∂BLÞ þ Bað∂B∂BLð∂ALþ 2A∂A∂ALÞ − 2Að∂A∂BLÞ2Þ�:
ðB8Þ

Note that the corresponding expression of the geodesics spray for ðα; βÞ-Finsler spaces (the positive definite predecessor of
ðA;BÞ-Finsler spacetimes) has been obtained e.g., in [66] and in [67]. Since the homogeneity of L depends on the Finsler
spacetime one considers, and since we seek to discuss general ðA;BÞ-Finsler spacetimes we did not introduce a zero-
homogeneous variable s ¼ B2

A as done in the discussions on ðα; βÞ-Finsler spaces, but keptA and B separately as variables.
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The expression derived so far lead to an easy proof of
Theorem 2, which we repeat here again for easy readability
of this Appendix.
Theorem 2. Let ðM;LÞ be a ðA;BÞ-Finsler spacetime,

i.e., L ¼ LðA;BÞ with A ¼ gðy; yÞ and B ¼ BðyÞ. A
sufficient condition for ðM;LÞ to be a Berwald spacetime
is that B is covariantly constant with respect to the
Lorentzian metric g. The geodesic spray of ðM;LÞ is then
given by Ga ¼ Γa

bcybyc, where Γa
bc are the Christoffel

symbols of the metric.
Proof: For ∇aBb ¼ 0 it is clear that (B8) becomes

quadratic in the velocities. It is given by the Christoffel

symbols of the metric defining the ðA;BÞ-Finsler space-
time

Ga ¼ Γa
bcðxÞybyc:□ ðB9Þ

Due to the complicated structure of the geodesic spray, like
the fact that Randers spaces are Berwald spaces if and only
if the 1-form B is covariantly constant with respect to g
[29], stronger statements cannot be formulated in general.
Only for specific examples are such statements possible. In
this article, we establish such statements for VGR space-
times of the form L ¼ ABn in Sec. IV B.
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