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General relativity predicts mass and spin growth of an inspiralling black hole due to an energy-
momentum flux flowing through the black-hole horizon. The leading-order terms of this horizon flux
introduce 2.5 and 3.5 post-Newtonian corrections to inspiral motions of binary black holes. The corrections
may be measurable by gravitational waves detectors. Since the proper improvements to general relativity
are still a mystery, it is possible that the true modified gravity theory introduces negligible direct corrections
to the geodesics of test masses, while near-horizon corrections are observable. We introduce a
parametrization to describe arbitrary mass and spin growth of inspiralling black holes. Comparing signals
of gravitational waves and a waveform model with parametrized horizon flux corrections, deviations from
general relativity can be constrained. We simulate a set of gravitational wave signals following an
astrophysical distribution with horizon flux modifications. Then, we perform a Bayesian analysis to obtain
the expected constraints from the simulated response of the Advanced LIGO-Virgo detector network to
the simulated signals. We show that the constraint can be improved by stacking multiple detections. The
constraints of modified horizon flux can be used to test a specific class of modified gravity theories which
predict dominant corrections near black-hole horizons over other types of corrections to general relativity.
To support Hawking’s area theorem at 90% confidence level, over 10000 LIGO-Virgo detections are
required. Within the lifetime of the LIGO and Einstein Telescope, a future ground-based gravitational wave
detector, near-horizon corrections of modified gravity theories are potentially detectable if one of the
modified gravity theories is true and the theory predicts a strong correction.
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I. INTRODUCTION

In the observable Universe, regions near black hole
horizons contain the most extreme spacetimes. The strong
curvature nature of black hole horizons provides a stage for
interesting physical phenomena, both classically and quan-
tum mechanically. A set of thermodynamics laws gov-
erning the evolution of black hole horizons is predicted by
general relativity and quantum physics [1,2]. It is natural to
ask if we can observe deviations from general relativity in
such a strong curvature regime. In fact, modified gravity
theories can predict significantly different features of black
holes or black-hole-like objects. For example, a specific
type of scalar-tensor gravity predicts black holes with zero
temperature [3]. It is possible to construct theories which
predict observable deviations from general relativity in the
near-horizon regime, while effects on the orbital motion
of test particles are negligible. Examples include scalar-
tensor-vector gravity thermodynamics and quantum cor-
rections to black hole entropy. Those corrections may lead
to violation of the area theorem. Constraining near-horizon
modifications with observational data can rule out some of
the theories in this category and hint at the correct form
of gravity.

Currently, x-ray binary systems [4,5], measurements of
stellar orbitalmotions around supermassive blackholes [6–8],
and gravitational waves [9–13] are the main ways to observe
black holes and provide the possibility of observing the
physics of black hole horizons. X-ray binary systems require
complicatedmodels to describe atomic processes [14], which
makes it hard to extract the information of horizons. The
EventHorizon Telescope is a telescope network that observes
astronomical objects near supermassive black hole horizons
directly [15]. In contrast, we propose an alternativemethod to
extract the physics of horizons through observing binary
black hole merger by gravitational waves.
A gravitational wave emitted by a binary black hole

merger consists of three phases: inspiral, merger, and
ringdown. The properties of black hole horizons during
the merger, including the area theorem, are discussed in
[16]. To extract the information of black hole horizons from
a gravitational wave detection, Cabero et al. [17] proposed
an observational test by checking the consistency between
the initial black-hole area in the inspiral phase and the final
black hole area in the ringdown phase. In this paper, we
propose another way to extract the evolution of black hole
horizons from the inspiral phase only.
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In general relativity, the inspiral motion of a binary black
hole can be described by post-Newtonian (PN) formalism
[18]. The inspiral motion and the corresponding gravitation
waves in modified gravity theories can be described
under parametrized frameworks, including the parametrized
post-Newtonian (PPN) [19] and the parametrized post-
Einsteinian [20] formalism, where deviations from general
relativity are parametrized by a set of independent variables.
Through comparing parametrized waveforms and gra-
vitational waves detected by the Laser Interferometer
Gravitational-Wave Observatory (LIGO), parameters of
the parametrized waveforms can be constrained by
Bayesian analysis [21,22]. No significant deviations from
general relativity have been found so far [13,20].
Waveforms in the PN formalism can be derived without

considering the internal structure of the objects, which is
known as the effacement principle [23]. For the purpose of
detecting gravitational waves, the effacement principle is
sufficient [24]. However, modified gravity theories may
predict observable corrections near black hole horizons,
while direct effects on geodesics of black holes are negli-
gible. Different phenomena have been investigated to under-
stand the effects of near-horizon corrections [25], including
the tidal Love number [26,27], echoes [28,29], and tidal
heating with LISA binaries [30]. In this paper, we investigate
the constraint on a modified horizon flux,1 predicted by
some modified gravity theories, by simulating responses of
an Advanced LIGO-Virgo detector network to waveforms in
a modified PN formalism. The constraint can be used to test
those modified gravity theories with dominating corrections
near black-hole horizons. The methodology has a similar
philosophy to [30], but we focus on the stellar-mass black
hole binaries which are detectable by the Advanced LIGO-
Virgo detector network other than the supermassive black
hole considered in [30]. Since the surface gravity on a
spherically symmetric stellar-mass black hole is stronger
than that on a spherically symmetric supermassive black
hole, some modified gravity theories may predict stronger
near-horizon corrections for a stellar-mass black hole, and
thus the corrections may be better constrained by the
Advanced LIGO-Virgo detector network.
This paper is structured as follows. Section II describes

the origin of the horizon flux and the parametrized
modification of the flux, Sec. III shows the simulated
constraints of the parametrized modification, and Sec. IV
discusses the limitations of the methodology and points to
future research.

II. PARAMETRIZED HORIZON EFFECTS IN
GRAVITATIONAL WAVEFORMS

In this section, we review the horizon flux into a black
hole, derived by Alvi [31], Poisson [32], and Chatziioannou

et al. [33,34]. Assuming that the spacetime around a black
hole horizon deviates from general relativity, we introduce
a parametrization to model the effect of the horizon flux to a
gravitational waveform. The applications of this paramet-
rization are also discussed.

A. Configuration and notations

We focus on the inspiral phase of a binary black hole
coalescence, which allows us to separate and study the
black hole horizon effects. Black holes i (i ¼ 1, 2) are
described by mass mi and angular momentum Ji, where
m1 < m2, and where we require Ji to stay parallel/anti-
parallel to the orbital angular momentum for simplicity,
which is sufficient to cover most of the sources to which
LIGO is sensitive [35]. The dimensionless spin parameters
are defined as χi ¼ Ji=m2

i . For convenience, we show some
of the equations in total massM ¼ m1 þm2 and symmetric
mass ratio ν ¼ m1m2=M2. The PN velocity is denoted by
x ¼ ðπMfÞ1=3, where f is the frequency of the orbital
motion. Throughout the paper, we use the geometrized
units c ¼ G ¼ 1.
Each black hole is bounded by a few horizons. The event

horizon (EH) and the apparent horizon (AH) are two of the
most important horizons of black holes. EH is defined as
the boundary of a region where no null curve can reach
future null infinity [36], while AH is defined as the
outermost marginally trapped surface [37]. During the
inspiral phase of a binary black hole coalescence, we
show that EH and AH are indistinguishable by the LIGO
detectors in Appendix A. As a result, we do not discrimi-
nate between AH and EH cross-section areas in a time slice;
the horizon areas of the two black holes are denoted as Ai.

B. Growth of black hole area, mass, and spin

By adopting the ingoing Kerr coordinates ðv; r; θ;ϕÞ, the
growth of a black hole horizon can be written as [32]

dAi

dv
¼

I
ΘdS; ð1Þ

whereΘ denotes the expansion scalar which quantifies how
the black hole area changes, and dS denotes the differential
surface area of the horizon.
The first law of black hole thermodynamics and the

mode decomposition of matter fields can be written as (see
[32] for details)

κ

8π
h _Aii ¼ h _mii −ΩHh _Jii; ð2Þ

h _miiμ;ω ¼ ω

μ
h _Jiiμ;ω; ð3Þ

where ΩH is the angular velocity of the unperturbed
black hole, the brackets denote accumulative growths while1Horizon flux is another name for the tidal heating effect.
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eliminating the highly oscillating modes, and note that μ
here refers to an index of the Fourier modes. After solving
Teukolsky’s equation, we have [33]

�
dJi
dx

�
¼ ðΩH − ΩÞC0

x; ð4Þ

�
dmi

dx

�
¼ ΩðΩH −ΩÞC0

x; ð5Þ

�
dAi

dx

�
¼ −

�
8π

κ

�
ðΩH −ΩÞ2C0

x; ð6Þ

where Ω is the angular velocity of the tidal field created
by its companion black hole, respectively. C0

x < 0 [33]
is a function of m1, m2, χ1, χ2, and x. Together with
dx=dt > 0 [38], Eq. (6) implies Hawking’s area theorem
hdAi=dti > 0.
Equations (4) and (5) can be interpreted as the angular

momentum flux and mass flux into a Kerr black hole
horizon. Mass flux and angular momentum flux flow into a
general horizon are well defined, though the fluxes are
derived in a different approach [39].

C. 2.5PN and 3.5PN horizon terms
in frequency domain

Equations (4) and (5) can be integrated in the PN
barycentric frame to give a 2.5PN and 3.5PN phase term
(Appendix B). We follow the logic of [40] to derive the
effect of the horizon flux in the TaylorF2 formalism.2

In the frequency domain, the TaylorF2 gravitational
waveform hðfÞ with the horizon effect can be written as

hðfÞ ¼ AF2ðfÞe−i½ΨF2ðfÞþΨF2
H ðfÞ�; ð7Þ

where AF2ðfÞ and ΨF2ðfÞ are the amplitude and the phase
of the TaylorF2 waveform, respectively, without the hori-
zon effect (we refer to [38,41] for the 3.5PN aligned spins
TaylorF2 waveform without the horizon terms), and
ΨF2

H ðfÞ corresponds to the horizon effect phase term.
The horizon flux introduces extra 2.5PN (ΨF2

H;5) and
3.5PN (ΨF2

H;7) phase terms. The phase terms are given by

ΨF2
H ¼

�
1þ 3 ln

�
x
xreg

��
ΨF2

H;5 þ x2ΨF2
H;7; ð8Þ

where

ΨF2
H;5 ¼ C5α1 þ C5α2;

ΨF2
H;7 ¼ C7α1 þ C7α2 þ C7β1 þ C7β2; ð9Þ

and where we ignore the effect of spins on the innermost
stable orbit and choose the PN velocity of the Schwarzschild
innermost stable orbit xISCO ¼ xreg ¼ 1=

ffiffiffi
6

p
as the stopping

condition of the waveform. C5α1,C5α2, C7α1,C7α2, C7β1, and
C7β2 are given in Appendix B.

D. Modified mass and spin flux

The variation of mass and spin produces observable
effects in the inspiral phase. To test any theory which
deviates from general relativity in the near-horizon regime,
we insert mass-growth parameters α1, α2 and spin-growth
parameters β1, β2 to parametrize the mass and spin flux
deviations on black holes 1 and 2, respectively:

�
dm1

dx

�
→ ð1þ α1Þ

�
dm1

dx

�
; ð10Þ

�
dm2

dx

�
→ ð1þ α2Þ

�
dm2

dx

�
; ð11Þ

�
dJ1
dx

�
→ ð1þ β1Þ

�
dJ1
dx

�
; ð12Þ

�
dJ2
dx

�
→ ð1þ β2Þ

�
dJ2
dx

�
; ð13Þ

where the unmodified flux follows Eqs. (4) and (5).
In general, α1, α2, β1, and β2 depend on x. In the PN
framework, α1, α2, β1, and β2 can be expressed as
polynomial series of x. To investigate the simplest case
of the horizon flux modification, we restrict α1, α2, β1, and
β2 to be constant throughout the paper.
With the parametrized mass and spin flux modifications,

the modified TaylorF2 2.5PN and 3.5PN horizon phase
terms are given by

ΨF2
H ¼

�
1þ 3 ln

�
x
xreg

��
ΨF2

H;5ðα1; α2Þ

þ x2ΨF2
H;7ðα1; α2; β1; β2Þ; ð14Þ

ΨF2
H;5 ¼ ð1þ α1ÞC5α1 þ ð1þ α2ÞC5α2;

ΨF2
H;7 ¼ ð1þ α1ÞC7α1 þ ð1þ α2ÞC7α2

þ ð1þ β1ÞC7β1 þ ð1þ β2ÞC7β2; ð15Þ

where C5α1, C5α2, C7α1, C7α2, C7β1, and C7β2 are given
in (B29).
ΨF2

H;5 is a function of α1 and α2, while ΨF2
H;7 is a function

of α1, α2, β1, and β2. When α1 ¼ α2 ¼ β1 ¼ β2 ¼ 0,

2While we agree on the 2.5PN phase term, we compute a
slightly different 3.5PN phase term comparing to Eq. (4.40) in
[40]. However, the difference is negligible for the cases consid-
ered in this paper; see the discussion in Appendix B.

CONSTRAINING BLACK HOLE HORIZON EFFECTS BY … PHYS. REV. D 98, 084059 (2018)

084059-3



Eq. (14) reduces to the horizon terms in general relativity,
given by Eqs. (8) and (9).
The TaylorF2 waveform with the parametrized phase

terms is utilized to analyze the constraint on the horizon
effect in Sec. III. Even though the TaylorF2 model can
accurately describe the early inspiral phase [38], it fails to
capture the higher frequency late-inspiral-merger-ringdown
phase [24]. For investigative purposes, we use TaylorF2
for both signal simulations and data analysis instead of
analyzing real signals (such as GW150914 [9]) to avoid
misinterpretation of the errors caused by the inaccurate late-
inspiral-merger-ringdown band in the TaylorF2 model as a
violation of general relativity. However, to test general
relativity with real LIGO signals, a more detailed study on
the potential systematic error induced by the inaccuracy of
the model is required. With the simplifying assumption in
this paper, the results can be interpreted as an optimistic
estimation compared to an actual study on real signals.

E. Application of the horizon effect parametrization

If a theory predicts observable deviations from general
relativity around black hole horizons, these deviations
can be parametrized by nonzero α1, α2, β1, and β2.
Furthermore, if the theory predicts negligible direct effects
on geodesics of test masses, α1, α2, β1, and β2 are the
leading-order measurable deviations.
To quantify the requirement where corrections from

horizon effects dominate, we consider a point-mass binary
system in a modified gravity theory. The orbital energy Eorb
can be expressed as a deviation δ from the PN energy EPN,

Eorb ¼ EPNð1þ δÞ: ð16Þ

The dominating order of EPN is proportional to the orbital
separation 1=r, where r is proportional to 1=x2. If δ can be
expressed in a power law, i.e., δ ∝ 1=rn þOð1=rnþ1Þ,
where n > 3.5, then δ has no effect on the 3.5PN wave-
form. Therefore, the lowest-order correction from the
horizon effect can become the leading-order correction
to general relativity.
To relate the parametrization to a specific modified

gravity theory, the horizon effect should be derived from
the theory. Following the philosophy of deriving the
horizon effect in general relativity [32], the metric pertur-
bation equation, the gravitational flux flowing into a black
hole horizon, and the black hole thermodynamics laws are
potentially essential to derive the horizon effect in a
modified gravity theory. However, horizons may not exist
in some modified gravity theories [42], which means the
derivation process of the horizon effect may not be valid in
those theories.
If we adopt the parametrization α1 ¼ α2 ¼ β1 ¼ β2 ¼ α,

then deviations from general relativity including violation
of the black hole area theorem, scalar-tensor-vector gravity
thermodynamics, and quantum corrections to black hole

entropy can be expressed in terms of α (see Table I and
Appendix C). Since the complete modification due to a
modified gravity theory is not included, Table I suggests
some signatures of the modification instead of providing
a precise description of the waveform in a modified
gravity theory.

III. CONSTRAINTS ON HORIZON EFFECTS

To study the constraints on α1, α2, β1, and β2, we
simulate waveforms and analyze the simulated data using
the nested sampling [46] algorithm in LALInference
[47]. Motivated by Sec. II E, we focus on the minimal
parametrization α1 ¼ α2 ¼ β1 ¼ β2 ¼ α. The following
binary black hole parameters are free parameters in the
inference process: α, masses, aligned/antialigned (with
orbital angular momentum) spins, inclination, angular
sky location, and distance. Noise is simulated assuming
that all three Advanced LIGO-Virgo detectors are opera-
tional at their design sensitivity [48,49]. To estimate the
constraints on horizon effects from multiple LIGO-Virgo
detections, multiple α ¼ 0 (without modification of general
relativity) events are simulated and analyzed.

A. Dependence between constraints of α and binary
black hole parameters

The area theorem discussed in Sec. II E motivates us to
search for α at order 1. Therefore, it is sufficient to set the
prior of α to be uniformly distributed within−50 < α < 50.
We investigate the constraints on α of different kinds of
binary black holes by Bayesian analysis. Equation (15)
indicates that constraints on α are related to total mass M,
symmetric mass ratio ν, and spin parameters χ1 and χ2. To
investigate the dependencies between the above parameters
and constraints on α, we fix all inclinations (0°); sky
locations (longitude ¼ 120°, latitude ¼ −70°); and distan-
ces (400 Mpc) of the simulated gravitational waves events
in this section. We simulate three sets of 50 gravitational
waves events: (1) chirp mass Mc ¼ ðm1m2Þ3=5=M1=5

uniformly distributed from 5 M⊙ to 35 M⊙, χeff ¼ 0.9
and ν ¼ 0.16; (2) ν distributed from 0.08 to 0.25,
Mc ¼ 30 M⊙, and χeff ¼ 0.9; and (3) χ1 and χ2 uniformly

TABLE I. Expressions of the area theorem (Appendix C 1),
scalar-tensor-vector gravity thermodynamics (Appendix C 2),
and quantum gravity correction to black hole entropy (Appen-
dix C 3) in terms of α. Symbols α0 and Ξ are the independent
parameters in the corresponding models, while A is the area of a
black hole.

Theory α

Area theorem [43] ≥ −1
Scalar-tensor-vector gravity
thermodynamics [44]

¼ − γ
1þγþ ffiffiffiffiffiffi

1þγ
p

Quantum corrections to black hole entropy [45] ¼ 256π2Ξ
A

KWUN-HANG LAI and TJONNIE GUANG FENG LI PHYS. REV. D 98, 084059 (2018)

084059-4



distributed from −0.9 to 0.9, Mc ¼ 30 M⊙, and ν ¼ 0.16.
For each event, a posterior distribution of α is obtained, and
the width (Δα) of the 90% confidence interval of α is
calculated from the posterior distribution. The results are
summarized in Fig. 1, where the variables χ1 and χ2
are collected into a single variable χeff . Figure 1 shows
that constraints on α improve with decreasing Mc and η,
while the constraints are only weakly dependent on χeff . As
demonstrated in Fig. 1, the dependencies are quantified by
the normalized covariances between the variables and Δα.
Among the three variables, the constraint of α depends
most on Mc. Therefore, keeping η fixed, a cleaner
constraint on the horizon effect can be obtained by

analyzing a lower mass binary black hole merger, despite
a lower signal-to-noise ratio (SNR). The constraint on
the horizon effect from multiple LIGO-Virgo detections
(see Sec. III B) depends on the astronomical source mass
distribution. For example, an astrophysical distribution
favoring lower mass black hole mergers implies a cleaner
constraint on the horizon effect by LIGO-Virgo detections.

B. Stacking posteriors of multiple events

The constraint on α from a single event may not be
strong enough to prove or rule out any theory. Stacking
posteriors of different events can give a much better
constraint if there is no systematic bias in the posteriors
[50]. Suppose there are n independent detection events
fH1; H2;…; Hng. For each event Hi, a posterior distribu-
tion is obtained to give a probability density function
PðαjHiÞ. The multiple events posterior PðαjH1;…; HnÞ
can be calculated by

PðαjH1;…; HnÞ ∝ PðαÞ
Yn
i¼1

PðHijαÞ ∝
Yn
i¼1

PðαjHiÞ: ð17Þ

Note that we make use of the uniform prior of
α, PðαÞ ¼ const.
In Sec. III A, we show that the dependency between the

chirp mass and the constraint on α is stronger than between
the mass ratio and the constraint. To understand the
quantitative behavior of the constraint on α, we decided
to investigate constraints on α from multiple events with
different total masses while keeping the mass ratio fixed.
We simulate multiple α ¼ 0 waveforms which are distrib-
uted uniform in χ1 and χ2, isotropic in sky location and
uniform in volume. Binaries with source masses (5,5) M⊙
distributed from 100 Mpc (redshift ∼ 0.02) to 200 Mpc
(redshift ∼ 0.05) are simulated to investigate an optimistic
case since Fig. 1 shows that we can constrain α better
for smaller chirp mass. Additionally, binaries with source
masses (30,30) M⊙ from 100 Mpc (redshift ∼ 0.02) to
600 Mpc (redshift ∼ 0.15) are simulated to investigate how
much can we constrain α in a higher source mass case. The
source masses of most of the future LIGO detections of
binary black hole mergers are expected to be in between
(5,5) M⊙ and (30,30) M⊙ [51]. Priors of α are enlarged to
be uniformly distributed in−500 < α < 500 to allow larger
fractional deviation from general relativity (compared to
the prior in Sec. III A) during the Bayesian analysis, which
helps avoid truncation effects of the posterior when the
horizon effect is weak. The waveforms are analyzed using
LALInference. Figure 2 shows the constraints on α of
the two sets of simulated events, where the constraints of
multiple events are calculated by Eq. (17).
In our simulations, 100 gravitational-wave events of

(5,5) and (30,30) M⊙ binaries constrain α within −2.8þ3.3
−4.9

and −1.1þ5.6
−4.9 (90% confidence interval), respectively.

FIG. 1. 90% confidence interval (Δα) for α versus (top) Mc,
(middle) η, (bottom) χeff . The dependencies are quantified by
their normalized covariances (top) (0.52), (middle) (0.27), and
(bottom) ð−0.03Þ. Constraints on α improve with decreasing Mc
and η, while the constraints are only weakly dependent on χeff .
The result suggests that an astrophysical distribution favoring
lower mass black hole mergers implies a cleaner constraint on the
horizon effect by LIGO-Virgo detections.
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The better constraint of the (5,5) M⊙ (lower chirp mass)
case confirms the relation in Sec. III A. The width (Δα) of
the 90% confidence interval of α is ∼10. The independence
of the simulated events suggests that the multiple events
posteriors can be approximated by a Gaussian distribution,
which implies Δα ∝ 1=

ffiffiffiffi
N

p
, where N is the number of

events. When N ∼ 10000, Δα ∼ 1, suggesting that it is
possible to prove the area theorem α > −1 (Appendix C 1)
at a 90% confidence level. The number of events required
to support/disprove a modified theory depends on the
corresponding horizon effects parameter in the theory
(see Sec. II E). Approximately 100 detections of gravita-
tional waves can constrain γ and Ξ to γ > −0.99 and
−150M2

⊙ < Ξ < 150M2
⊙, respectively. The constraint rules

out a range of parameters in those theories, which provides
grounds for further theoretical research.

IV. DISCUSSION

In this paper, we have developed a practical connection
between horizon effects predicted by abstract theories and
observable gravitational waves. During the inspiral phase
of a binary black hole coalescence, horizon effects can be
separated and parametrized by mass-growth parameters α1,

α2 and spin-growth parameters β1, β2 to describe the mass
and spin flux deviations on black holes 1 and 2 respectively.
With the minimal parametrization α1 ¼ α2 ¼ β1 ¼ β2 ¼ α,
we show that the 90% confidence interval of α can be
constrained to Δα ∼ 10 with 100 gravitational-wave detec-
tions from binary black hole mergers by the Advanced
LIGO-Virgo detector network. If the modified gravity
theory further satisfies the condition where the predicted
horizon effect correction dominates over other types of
corrections to the geodesic motions, then it is suitable to
test the theory by the constraints on the horizon effect. For
example, the black hole area theorem, scalar-tensor-vector
gravity thermodynamics, and quantum corrections to black
hole entropy are suitable to be tested or constrained by their
horizon effects.
The parametrized test proposed in this paper can be

considered as a subset of LIGO’s parametrized test [20], but
aims at separating and measuring the horizon effect alone.
Theoretically, LIGO’s parametrized test is general enough to
capture a large set of modified gravity theories. However, the
possibility where the horizon effect corrections dominate
in some theories motivates us to study the slightly more
specific parametrized horizon effect instead of considering
the full generic test. Although only the parametrization
α1 ¼ α2 ¼ β1 ¼ β2 ¼ α has been considered in our study, a
generic α1, α2, β1, and β2 as a function of the parameters of
the binary black holes are also possible in some modified
gravity theory. The different functional forms of α1, α2, β1,
and β2 can lead to a significantly different constraint. In
principle, if a generic parametrized test has been done on a
detected signal jointly on the 2.5PN and 3.5PN phase terms,
it is possible to reinterpret the posterior and search for a
specific functional form of degeneracies predicted by the
horizon effect, but extra effort should be spent to avoid bias
introduced by the choice of prior probability distributions
[52]. Instead, it is cleaner to constrain horizon effects directly
by the method proposed in the paper.
It is possible that extra corrections to general relativity

other than those from the horizon effect correction exist.
Depending on the functional form of the extra corrections,
we may not be able to discriminate the extra corrections
from the horizon effect due to degeneracies between
the parameters of the horizon effect and parameters
describing these extra effects. Therefore, the horizon effect
parametrization is not guaranteed to be a fully model-
independent way to extract the information of black hole
horizons. Instead, we suggest that the horizon effect para-
metrization can be used to test a modified gravity theory
only if the theory predicts a dominant horizon effect
correction over other types of corrections to general
relativity. Theories falling into this category can be ruled
out by comparing the predicted horizon effects with the
constraints obtained by gravitational-wave detections.
When extracting the horizon effects from real signals,

caution should be taken to avoid interpreting systematic

FIG. 2. Median (dots) and 90% confidence interval (cross hairs)
for α as a function of number of events. Injections were
performed using α ¼ 0 (red line), distributed uniform in χ1
and χ2, isotropic in sky location and uniform in volume, with
(top) source masses (5,5) M⊙ distributed from 100 Mpc to
200 Mpc and (bottom) source masses (30,30) M⊙ distributed
from 100 Mpc to 600 Mpc. As the number of events increases,
constraints on α improve and approach α ¼ 0.
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errors as a violation of general relativity. Since the TaylorF2
model is inaccurate in the late-inspiral-merger-ringdown
band, systematic errors arise naturally when a real signal is
analyzed by the inaccurate model [53]. Applying a low-
pass filter to remove the late-inspiral-merger-ringdown
signal from the data helps to ensure that the violation
detected does not come from a misinterpretation of the late-
inspiral, merger, and ringdown waveforms. However, the
low-pass filter reduces the strength of the signal, which
may weaken the constraint of the horizon effect, and
systematic bias can be caused by the abrupt frequency
cut [54]. On the other hand, improper calibrations of
detectors can also induce systematic errors [55]. Without
proper treatments, the systematic errors can exceed the
statistical errors when we try to extract weak horizon effects
from real signals [56]. To establish a rigorous constraint on
the horizon effects, studies should be conducted in the
future to understand the influence of various systematic
errors to the constraint.
Even though the analytical expression of the horizon flux

is used to analyze the detectability of the horizon effects in
this paper, there are a few theoretical subtleties in the topic.
While following similar derivation steps as [40], we obtain
a slightly different numerical expression of the TaylorF2
horizon effects in Eqs. (B29) and (B30) (see Appendix B
for details). Besides, Chatziioannou et al. [33] point out a
disagreement with the extreme mass ratio result in [57].
We do not use the unsettled PN-order expression in our
derivation. Moreover, we do not consider the full correction
from a self-consistent theory in Sec. II E. Other corrections
including metric perturbation corrections and gravitational
flux corrections could either amplify or reduce the horizon
effect predicted by thermodynamics. Due to the uncertain-
ties, rather than positioning our result as a rigid reference,
the paper aims at investigating the possibility of con-
straining horizon effects using advanced gravitational-wave
detectors and the potential of applying a constraint to
theories. However, even if the numerical details are not
accurate, the effects are expected to be of a similar order of
magnitude.
Assuming that the interpretation in Sec. II E is correct,

the area theorem requires ∼10000 events to give a reason-
able constraint at a 90% confidence level depending on the
masses of black holes. LIGO may not be able to detect such
a large number of events [51]. However, the Einstein
Telescope is more sensitive than LIGO, especially at lower
frequencies, which means signals can be detected starting
from a lower frequency [58,59]. Thus, the constraints on α
can also be improved by detecting longer signals. Together
with the potentially higher event rate [59], we may have
enough events in the Einstein Telescope to test the area
theorem in the foreseeable future. On the other hand, if the
strongly spinning, supermassive black hole binaries are
considered, the LISA detector can pose a reasonable
constraint on the horizon effect even by the detection of

a single event [30]. However, the near-horizon correction
predicted by a specific modified gravity theory may be
mass dependent, such as the 1=A dependence of α of the
quantum corrections to black hole entropy. The theory
predicts a stronger correction when the area of the black
hole is smaller, which means a lower mass of the black
hole. Thus, instead of using the supermassive black hole
binaries detectable by the LISA detector, this kind of theory
can be better constrained by the advanced LIGO-Virgo
detector network or the Einstein Telescope.
Despite the exciting future outlook, the work in this

paper has demonstrated that constraints can still be posed
on the horizon effects of modified gravity theories using the
Advanced LIGO-Virgo detector network. The results moti-
vate us to further investigate the theoretical ground of
horizon effects in different modified gravity theories and
extend signatures of horizon effect modification to suitable
models which can describe the late inspiral, merger, or
ringdown phase accurately [60]. Ultimately, constraints on
horizon effects can be improved by extracting the effects
from full inspiral-merger-ringdown signals.
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APPENDIX A: DIFFERENCE BETWEEN EVENT
HORIZONS AND APPARENT HORIZONS

DURING THE INSPIRAL PHASE

Consider a spherically symmetric black hole which is
growing at a constant rate. The difference between the EH
radius and the AH radius in a time slice is given by [61]

δr ¼ rEH − rAH ¼ 2
_mi

κ
þOð _mi

2Þ; ðA1Þ

wheremi and _mi denote the Misner-Sharp mass and its time
derivative (with respect to ingoing Eddington-Finkelstein
coordinate) of the black hole, respectively, and κ denotes
the dynamical surface gravity [62].
For a typical binary black hole detected by LIGO,

δmi=mi ∼ 10−6 [40], timescale T ∼ 1s, mi ∼M⊙, and
κ ∼ 1=mi implies

δr
rAH

∼
mi

T
δmi

mi
∼ 10−12; ðA2Þ

which is negligible unless we can probe the horizon at
that scale. Note that the slowly varying approximation
Oð _mi

2Þ ∼ 0 is valid only for the inspiral phase.
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APPENDIX B: FULLY MODIFIED HORIZON
FLUX TERM

In this section, we follow the logic of [40] to compute the
full modified horizon flux term.
Define the following symbols for computation

convenience:

Δ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
; ðB1Þ

Sl ¼
M2

4
ð1þ ΔÞ2χ1 þ

M2

4
ð1 − ΔÞ2χ2; ðB2Þ

Σl ¼ −
M2

2
ð1þ ΔÞχ1 þ

M2

2
ð1 − ΔÞχ2: ðB3Þ

Integration of Eqs. (46) and (47) of [33] gives individual
mass and spin variations δm1, δm2, δJ1, and δJ2 as a
function of PN velocity x. With the parameters α1, α2, β1,
and β2 introduced in Sec. II D, the variations are translated
into δM, δν, δSl, and δΣl at their leading PN order, where δ
means the deviation from the initial value, and the PN
velocity x ¼ ðπMfÞð1=3Þ is also modified due to the mass
modification:

δM ¼ 1

56
M½ð1þ α1ÞCm1σ1 þ ð1þ α2ÞCm2σ2�x7; ðB4Þ

δν ¼ 1

56
ν½ð1þ α1ÞCν1σ1 þ ð1þ α2ÞCν2σ2�x7; ðB5Þ

δSl ¼
1

32
M2½ð1þ β1ÞCS1σ1 þ ð1þ β2ÞCS2σ2�x4; ðB6Þ

δΣl ¼
1

32
M2½ð1þ β1ÞCΣ1σ1 þ ð1þ β2ÞCΣ2σ2�x4; ðB7Þ

δx
x
¼ 1

3

δM
M

; ðB8Þ

σ1 ¼ χ1ð1þ 3χ21Þ;
σ2 ¼ χ2ð1þ 3χ22Þ;

Cm1 ¼ −ð1þ ΔÞνþ ð3þ ΔÞν2;
Cm2 ¼ −ð1 − ΔÞνþ ð3 − ΔÞν2;
Cν1 ¼ ð1þ ΔÞν − 2ð2þ ΔÞν2;
Cν2 ¼ ð1 − ΔÞν − 2ð2 − ΔÞν2;
CS1 ¼ −ð1þ ΔÞνþ ð3þ ΔÞν2;
CS2 ¼ −ð1 − ΔÞνþ ð3 − ΔÞν2;
CΣ1 ¼ ð1þ ΔÞν − 2ν2;

CΣ2 ¼ −ð1 − ΔÞνþ 2ν2: ðB9Þ

Note that m1 < m2, m1 ¼ Mð1þ ΔÞ=2, and m2 ¼
Mð1 − ΔÞ=2.

We denote the energy and the energy flux of the binary
without horizon effects by E and F, respectively. The first
two leading PN energy terms E0, E1; the leading spin-orbit
coupling energy ESO

0 ; the first two leading PN energy flux
terms F0, F1; and the leading spin-orbit coupling flux term
FSO
0 are summarized below [18,38]:

E0 ¼ −
Mν

2
x2; ðB10Þ

E1 ¼ −
Mν

2

�
−
3

4
−

1

12
ν

�
x4; ðB11Þ

ESO
0 ¼ −

ν

2M

�
14

3
Sl þ 2ΔΣl

�
x5; ðB12Þ

F0 ¼
32

5
ν2x10; ðB13Þ

F1 ¼
32

5
ν2
�
−
1247

336
−
35

12
ν

�
x12; ðB14Þ

FSO
0 ¼ 32

5

ν2

M2

�
−4Sl −

5

4
ΔΣl

�
x13: ðB15Þ

By substituting M=ν=Sl=Σl → M=ν=Sl=Σl þ δM=δν=δSl=
δΣl, the mass and spin variations induce an energy variation
δE from Eqs. (B10) and (B12) and an energy flux variation
δF from (B13) and (B15) at 3.5PN order:

δE ¼ −
1

2

�
Mδνþ νδM þ 2Mν

δx
x

�
x2

−
1

2

ν

M

�
14

3
δSl þ 2ΔδΣl

�
x5; ðB16Þ

δF ¼ 32

5

�
2νδνþ 10ν2

δx
x

�
x10

þ 32

5

ν2

M2

�
−4δSl −

5

4
ΔδΣl

�
x13: ðB17Þ

Since the masses of the black holes are varying, it is
natural to add masses m1 and m2 together with Eþ δE to
be the total energy of the system Etotal:

Etotal ¼ Eþ δEþm1 þm2: ðB18Þ

Effectively, the energy balance equation dEtotal=dt ¼
−F − δF can be written as

�∂ðEþ δEÞ
∂t

�
m1;m2;J1;J2

¼ −FeffðxÞ; ðB19Þ

Feff ¼ F þ δF þ ð1þ Γ1ÞFH1 þ ð1þ Γ2ÞFH2; ðB20Þ
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FH1=2 ¼ ð1þ α1=2Þ
�
dm1=2

dt

�
; ðB21Þ

where dm1=2=dt can be calculated by Eq. (43) in [33]. The
factors Γ1 and Γ2 are introduced (to the leading order) to
describe the energy change with respect to the mass and
spin absorption,

Γ1=2 ¼
� ∂E0

∂m1=2

�
m2=1;χ1;χ2

þ 1

Ωm2
1=2

�∂ESO
0

∂χ1=2
�

χ2=1;m1;m2

;

ðB22Þ

Γ1 ¼
�
−
3

4
þ 3Δ

4
þ ν

6

�
x2; ðB23Þ

Γ2 ¼
�
−
3

4
−
3Δ
4

þ ν

6

�
x2: ðB24Þ

The TaylorF2 waveform phase without horizon effects
can be described by two master equations,

dΨ
df

− 2πt ¼ 0; ðB25Þ

dt
df

þ πM
3x2

dE=dx
F

¼ 0: ðB26Þ

Horizon effects are integrated into the formalism by
substituting E → Eþ δE and F → Feff . FH1=2 contributes
to the 2.5PN phase, while δE, δF, Γ1=2FH1=2, E1FH1=2, and
F1FH1=2 contribute to the 3.5PN phase. The TaylorF2
phase of the parametrized horizon effect ΨF2

H is

ΨF2
H ¼

�
1þ 3 ln

�
x
xreg

��
ΨF2

H;5ðα1; α2Þ

þ x2ΨF2
H;7ðα1; α2; β1; β2Þ; ðB27Þ

where xreg can be substituted as the innermost stable orbit

1=
ffiffiffi
6

p
:

ΨF2
H;5 ¼ ð1þ α1ÞC5α1 þ ð1þ α2ÞC5α2;

ΨF2
H;7 ¼ ð1þ α1ÞC7α1 þ ð1þ α2ÞC7α2 þ ð1þ β1ÞC7β1

þ ð1þ β2ÞC7β2; ðB28Þ

C5α1 ¼
5

128ν
χ1ð3χ21 þ 1ÞðΔν − Δþ 3ν − 1Þ;

C5α2 ¼ −
5

128ν
χ2ð3χ22 þ 1ÞðΔν − Δ − 3νþ 1Þ;

C7α1 ¼
5

14336ν
χ1ð1740χ21Δν2 þ 4827χ21Δνþ 580Δν2 þ 1819Δν − 4371χ21Δ − 1667Δþ 828χ21ν

2

þ 13569χ21νþ 276ν2 þ 5153ν − 4371χ21 − 1667Þ;

C7α2 ¼ −
5

14336ν
χ2ð1740χ22Δν2 þ 4827χ22Δνþ 580Δν2 þ 1819Δν − 4371χ22Δ − 1667Δ − 828χ22ν

2

− 13569χ22ν − 276ν2 − 5153νþ 4371χ22 þ 1667Þ;

C7β1 ¼ −
15

4096
χ1ð3χ21 þ 1Þð18Δν − 59Δþ 136ν − 59Þ;

C7β2 ¼
15

4096
χ2ð3χ22 þ 1Þð18Δν − 59Δ − 136νþ 59Þ: ðB29Þ

Note that if no modification is made towards general
relativity, α1¼α2¼β1¼β2¼0. Equation (15) reduces to

ΨF2
H;5 ¼ C5α1 þ C5α2;

ΨF2
H;7 ¼ C7α1 þ C7α2 þ C7β1 þ C7β2: ðB30Þ

Substituting α1 ¼ α2 ¼ β1 ¼ β2 ¼ 0, Eqs. (B1)–(B26)
reduce to the result in [40], and we also successfully
reproduce the 2.5PN phase term ΨF2

H;5 in [40]. However, the

numerical value of ΨF2
H;7 in Eq. (B30) is slightly different

from that in [40]. Comparing to [40], ΨF2
H;7 in Eq. (B30)

contains an extra term:

−
5

14366
½ð−1þ Δðν − 1Þ þ 3νÞχ1ð1þ 3χ21Þ

− ð1þ Δðν − 1Þ − 3νÞχ2ð1þ 3χ22Þ�; ðB31Þ

where we notice that this extra term can be written as
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−
�

5

256x7ν

��
δM
M

�
: ðB32Þ

We fail to resolve the origin of this difference.
Fortunately, for the parameter range considered in this
paper, the difference is negligible. For example, if we
substitute ν ¼ 0.25 and χ1 ¼ χ2 ¼ 0.5, the extra term is
only 0.02% of the numerical value of ΨF2

H;7. If we substitute
ν ¼ 0.1 and χ1 ¼ χ2 ¼ 0.5, the extra term reduces to
0.006% of the numerical value of ΨF2

H;7. The relatively
small value of the extra term assures that it has negligible
influence on both the qualitative and quantitative behavior
of the constraints analyzed in this paper.

APPENDIX C: EXAMPLES OF HORIZON
EFFECT PARAMETRIZATION

In the following, we demonstrate the relation between
some specific theories and the horizon effect parametrization.

1. Area theorem

It is well known that if the null energy condition is
satisfied, then the areas of black holes are nondecreasing
[43]. During the inspiral phase, the positivity of area growth
is shown by Eq. (6), where dA=dx is always positive. By
adopting α1 ¼ α2 ¼ β1 ¼ β2 ¼ α, and assuming that the
first law of black hole thermodynamics is unmodified, the
change of a black hole area can be interpreted as

�
dA
dx

�
→ ð1þ αÞ

�
dA
dx

�
: ðC1Þ

If α < −1 is observed in future gravitational-wave events,
the area theorem will be proven wrong. In Sec. III B, we
show that the stacking of gravitational-wave constraints of
α should be able to tell whether α < −1 from observations.

2. Scalar-tensor-vector gravity

Scalar-tensor-vector gravity introduces an extra scalar
field and a vector field with the standard Einstein-Hilbert
action, which predicts a corrected temperature and a
corrected entropy for a static black hole [44]:

TðγÞ ¼ 1

2πGNmi

1

ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p Þð1þ γ þ ffiffiffi
γ

p Þ ; ðC2Þ

SAðγÞ ¼ πGNm2
i

	
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p 

2

−
1

2
ln

�
1

4πGN

�
1

ð1þ γ þ ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p Þ2 ; ðC3Þ

where GN is the Newtonian gravitational constant, and γ is
a non-negative real number representing the modification.
Note that we use γ to denote the α in [44]. γ ¼ 0
corresponds to unmodified general relativity.

This correction is calculated for a nonrotating black hole,
so it is just an approximate correction towards the more
realistic rotating solution.
It is reasonable to assume black holes still follow the

first law of black hole thermodynamics with an modified
entropy,

Th _SAi ¼ h _mii −ΩHh _Ji; ðC4Þ

where T ¼ κ=2π and SA ¼ A=4 recover general relativity
(see Eq. (2)).
For simplicity, assuming that only corrections on the

first law contribute to the mass and spin flux correc-
tions, which is not a complete modification for a full
modified gravity theory since the perturbation may not
follow Teukolsky’s equation. The flux corrections can be
translated to α ¼ α1 ¼ α2 ¼ β1 ¼ β2:

α ¼ TðγÞdSAðγÞ
Tð0ÞdSAð0Þ

− 1 ¼ −
γ

1þ γ þ ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p : ðC5Þ

γ < 0 is not considered to be a physical case in [44]
since it refers to a complex gravitational charge. However,
γ > −1 is well defined for both the temperature and the
entropy, and only observations can tell whether it is
physical or not.
Also, note that Mureika et al. derive a zeroth-PN-order

correction in the theory [44], while Moffat suggests that the
correction is just phenomenological and it is not necessarily
true within the theory [63].

3. Quantum corrections to black hole entropy

Even though many quantum gravity theories predict
general relativity corrections at the Planck scale, it is
possible to observe some corrections at the black hole
thermodynamics level. Effective field theory of quantum
gravity predicts a logarithmic correction towards the
Schwarzschild black hole entropy [45,64]. Again, the
correction is just an approximate correction to the Kerr
black hole solution:

Sbh ¼ SBH þ 64π2Ξ ln

�
A

AQG

�
; ðC6Þ

where Sbh is the corrected entropy, SBH ¼ A=4 is the
ordinary black hole entropy, AQG is a quantum gravity
area scale, and Ξ represents a massless-particles contribu-
tion in the model (refer to [45] for the details).
Similar to Appendix C 2, the correction can be translated

to α:

α ¼ dSbh
dSBH

− 1 ¼ 256π2Ξ
A

: ðC7Þ

Note that α is mass dependent, because 1=A ¼ 1=16πm2
i .
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