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The Blandford-Znajek monopole is a conjectured solution of force-free electrodynamics in the vicinity
of a slowly rotating Kerr black hole, supposedly defined as a perturbation in small angular momentum. It is
used to argue for the extraction of energy from rotating black holes by the Blandford-Znajek process.
We set up a careful analysis of the perturbative definition of the Blandford-Znajek monopole, showing in
particular that the regime in which it is defined allows us to use the technique of matched asymptotic
expansions. Our conclusion is that the Blandford-Znajek monopole, as it is defined, is not consistent with
demanding physically reasonable boundary conditions far away from the event horizon. This puts into
question the existence of the Blandford-Znajek monopole, at least in the limit of slow rotation of a Kerr
black hole.
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I. INTRODUCTION

In their seminal paper [1], Blandford and Znajek
proposed a mechanism that can drive the jets and
gamma-ray bursts observed from active galactic nuclei
and stellar black holes. They showed that, in the vicinity of
a black hole, the electromagnetic field is force free, in the
sense that it decouples from other degrees of freedom. The
equations for force-free electrodynamics (FFE) are

Fμν ¼ ∂μAν − ∂νAμ; DμFμν ¼ −Jν;

FμνJν ¼ 0; Jμ ≠ 0; ð1Þ

where Aμ is the gauge potential, Fμν the electromagnetic
field strength, and Jμ the current. These are basically the
ordinary Maxwell’s equations with the additional require-
ments that the electromagnetic energy-momentum tensor is
conserved and that the current is nonzero. The accretion
disc surrounding the black hole acts as a magnetic source.
For a rotating black hole, the frame dragging of the event
horizon provides a type of magnetic Penrose process—
known as the Blandford-Znajek process—that allows the
extraction of rotational energy from the black hole [1–3].
Blandford and Znajek developed an analytic description

of this process by finding a perturbative solution of the FFE
equations (1) around a Kerr black hole. The simplest
of these solutions is the so-called Blandford-Znajek

monopole, which easily can be turned into a split-monopole
solution with a magnetic source at a disc modeling an
accretion disc around the black hole. The Blandford-
Znajek monopole is defined as a perturbation in the rotation
parameter α ¼ J=ðGM2Þ of a Kerr black hole. For α ¼ 0,
it is a static magnetic monopole. At order α, the monopole
is rotating with the event horizon, and the solution
resembles theMichelmonopole [4] with the angular velocity
being half that of a Kerr black hole. At order α2, one finds
then a nontrivial correction to the magnetic monopole
configuration.
An issue that already was pointed out in the original

paper [1] is what boundary conditions one should demand
in the asymptotic region, i.e., far away from the black hole.
Writing r as the radial coordinate in the black hole space-
time with r ¼ rþ being the location of the event horizon,
the asymptotic region is r ≫ rþ. Only recently has this
issue been studied in more detail [5,6]. In particular, one of
the goals of this work is to understand better the apparent
divergency for r → ∞ in the perturbative solution for Fμν at
order α4 as compared to the zeroth order solution [5].
We argue that the correct way to address the issue of

boundary conditions in the asymptotic region r ≫ rþ is in
terms of the technique ofmatched asymptotic expansions [7].
This technique gives a framework for finding perturbative
solutions in a black hole space-time where one has to satisfy
boundary conditions both at the event horizon as well as in
the asymptotic region. It illuminates that the expansion of the
FFE equations (1) for smallα onlyworks sufficiently near the
event horizon. In the asymptotic region, one has to expand
the FFE equations in 1=r instead [8].
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Since the Blandford-Znajek monopole is defined as a
perturbation in α, we demand that the solution can be made
arbitrarily small at order αn compared to the previous order
αn−1 by choosing a sufficiently small α. From this we can
infer our boundary condition for Fμν in the asymptotic
region.
Using the framework of matched asymptotic expansions,

we show that imposing regularity of Fμν at the event
horizon along with our boundary condition in the asymp-
totic region leads to inconsistencies at as early as order α2,
i.e., the first order in which one has a correction to the
Michel monopole. Since we have imposed only the
boundary conditions in the asymptotic region that follow
from demanding that the perturbation in α does not blow up
in the asymptotic region, we are forced to conclude that the
Blandford-Znajek monopole, as defined perturbatively in α,
does not exist.
Note that our analysis could potentially have resolved the

divergency found at order α4 in [5] since their result in any
case breaks down for r → ∞ because, as already remarked,
one cannot use the FFE equations expanded in α for
r → ∞. Instead, our analysis points to a problem in the
asymptotic region already at order α2.
There are several papers studying the Blandford-Znajek

monopole numerically [10–18]. These papers claim to find
the Blandford-Znajek monopole for finite values of α. It
would be highly interesting to understand better how to
reconcile these numerical studies with the conclusions of
this paper. We comment further on this in the conclusions.

II. FORCE-FREE ELECTRODYNAMICS
AROUND KERR BLACK HOLE

We begin by reviewing the equations for FFE in the
background of a Kerr black hole following the expositions
in [5,6,12]. The metric for a Kerr black hole in Kerr-Schild
coordinates is

ds2 ¼−
�
1−

r0r
Σ

�
dt2þ

�
2r0r
Σ

�
drdtþ

�
1þ r0r

Σ

�
dr2

þΣdθ2−
2ar0rsin2θ

Σ
dϕdt− 2a

�
1þ r0r

Σ

�
sin2θdϕdr

þ
�
Δþ r0rðr2þa2Þ

Σ

�
sin2θdϕ2; ð2Þ

where we defined

Σ ¼ r2 þ a2cos2θ; Δ ¼ ðr − rþÞðr − r−Þ

r� ¼ 1

2
r0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20
4
− a2

r
; r0 ¼ 2GM; a ¼ J

M
: ð3Þ

The Kerr black hole is stationary and axisymmetric
corresponding to the commuting Killing vector fields ∂t
and ∂ϕ. We consider here FFE configurations that are

stationary and axisymmetric around the same rotation axis
as the Kerr black hole. The FFE equations are (1). By
demanding stationarity and axisymmetry we can choose a
gauge in which ∂tAμ ¼ ∂ϕAμ ¼ 0. We define the magnetic
flux function

ψðr; θÞ ¼ Aϕðr; θÞ: ð4Þ

This is the magnetic flux flowing upwards through a
circular loop centered around the rotation axis and going
through the point ðr; θÞ. Note that we impose the condition
ψ ¼ 0 at θ ¼ 0 as there are no sources at the rotation axis.
From (1), we see that FμνDρFνρ ¼ 0. Combining

the μ ¼ t, ϕ components of this equation, we get
∂rAt∂θψ ¼ ∂θAt∂rψ , which means one can regard At as
a function of ψ . Using this, we define Ωðr; θÞ by

∂rAt ¼ −Ω∂rψ ; ∂θAt ¼ −Ω∂θψ : ð5Þ

Ω is the angular velocity of the magnetic field line. From
Eq. (5), one can infer

∂rΩ∂θψ ¼ ∂θΩ∂rψ ; ð6Þ

which means that Ω can be regarded as a function
of ψ . Thus, Eq. (6) is an integrability condition for Ω.
Furthermore, define

I ¼ ffiffiffiffiffiffi
−g

p
Fθr; Bϕ ¼ 1ffiffiffiffiffiffi−gp Frθ: ð7Þ

Here, I is the total electric current flowing upward through
the ðr; θÞ loop and Bϕ is the toroidal magnetic field. From
the μ ¼ t, ϕ components of FμνDρFνρ ¼ 0, one also finds

∂rI∂θψ ¼ ∂rψ∂θI; ð8Þ

which is the integrability condition for I ensuring that it can
be regarded as a function of ψ . From the μ ¼ r, θ
components of FμνDρFνρ ¼ 0 one finds instead the “stream
equation”

−Ω∂μð
ffiffiffiffiffiffi
−g

p
FtμÞ þ ∂μð

ffiffiffiffiffiffi
−g

p
FϕμÞ þ Frθ

dI
dψ

¼ 0: ð9Þ

This is a nonlinear equation that relates the three functions
ψ ,Ω, and I. Finally, we find that the toroidal magnetic field
is given by

Bϕ ¼ −
IΣþ ðΩr0r − aÞ sin θ∂θψ

ΔΣsin2θ
: ð10Þ

Finding a solution of the FFE equations corresponds to
finding ψ , Ω, and I that solve the integrability conditions
(6) and (8) as well as the stream equation (9). At the event
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horizon r ¼ rþ of the Kerr black hole, we demand
regularity of ψ and Bϕ. That Bϕ is regular at the horizon
is equivalent to the Znajek condition in Boyer-Lindquist
coordinates [19]. The conditions in the asymptotic region
r → ∞ are discussed later in the paper.

III. BLANDFORD-ZNAJEK MONOPOLE FROM
PERTURBATIVE EXPANSION IN α

The Blandford-Znajek (split) monopole is defined per-
turbatively as follows [1,5,6,12]. One starts with a static
(split) monopole solution of the FFE equations (1) with
Ω ¼ I ¼ 0 in the background of a Schwarzschild black
hole. Thus, neither the background geometry nor the FFE
fields are rotating. Then one considers turning on a small
rotation both for the black hole background, as well as for
the FFE fields at the same time. One makes this expansion
in the dimensionless parameter α ¼ J=ðGM2Þ ¼ 2a=r0
proportional to the angular momentum of a Kerr black hole.
We note that this method to find solutions to the FFE

equations for a slowly rotating Kerr black hole has been
employed in several other cases, all starting with a static
FFE solution in the background of a Schwarzschild black
hole. This includes the parabolic solution [1], the vertical
uniform solution [20], and the hyperbolic solution [21].
One can argue that since ψðr; θÞ is related to the shape of

the magnetic field lines, the perturbative expansion of
ψðr; θÞ is naturally in even powers of α so that changing the
sign of the angular momentum does not alter the shape of
the field lines [1]. Since one wants the expansion of ΩðψÞ
and IðψÞ to start at order α, one gets that these expansions
are in odd powers of α. This in turn means that Bϕ is
expanded in odd powers of α as well.
Hence, we expand the four fields ψ , Ω, I and Bϕ in

powers of α as follows:

ψðr; θÞ ¼ ψ ð0;·Þ þ α2ψ ð2;·Þ þ α4ψ ð4;·Þ þOðα6Þ;
r0Ωðr; θÞ ¼ αΩð1;·Þ þ α3Ωð3;·Þ þOðα5Þ;
r0Iðr; θÞ ¼ αIð1;·Þ þ α3Ið3;·Þ þOðα5Þ;
Bϕðr; θÞ ¼ αBð1;·Þ þ α3Bð3;·Þ þOðα5Þ; ð11Þ

where ψ ðm;·Þ, Ωðm;·Þ, and Iðm;·Þ are functions of r and θ. One
should impose (6) and (8) order by order in α to ensure that
Ω ¼ ΩðψÞ and I ¼ IðψÞ. The reason for our notation ðm; ·Þ
will be clear below.
One can now expand the stream equation (9) in terms of

the expansions (11). More specifically, we expand the field
ψ in even powers of α and the fields Ω, I, and Bϕ in odd
powers in α and put this into the stream equation (9) along
with the metric (2), and subsequently expand the stream
equation in powers of α. Schematically, this gives the
equations [1,5,6,12]

Lψ ð2m;·Þðr; θÞ ¼ S2mðr; θÞ; ð12Þ

for m ¼ 0; 1;…, where L is the differential operator

L≡ 1

sin θ
∂r

�
1 −

r0
r

�
∂r þ

1

r2
∂θ

1

sin θ
∂θ; ð13Þ

and S2m are source terms with S0 ¼ 0. To zeroth order in α
the stream equation (9) is thus simply Lψ0ðr; θÞ ¼ 0. This
is the above-mentioned starting point where one is solving
the FFE equations (1) withΩ ¼ I ¼ 0 in the background of
a Schwarzschild black hole. The solution that we are
interested in is the static monopole [1]

ψ ð0;·Þ ¼ 1 − cos θ: ð14Þ
One can instead use the static split monopole as the starting
point. This is obtained by using the monopole of opposite
charge ψ ð0;·Þ ¼ −ð1 − cos θÞ for π=2 < θ ≤ π which is
below the plane at θ ¼ π=2. The static split monopole is
an exact solution of Maxwell’s equations except on a
current sheet located at the plane θ ¼ π=2 [1,22]. In the rest
of the paper we will restrict ourselves to the northern
hemisphere. One can trivially extend all of the computa-
tions of the monopole case below to the case of the split
monopole by changing signs for π=2 < θ ≤ π. For sim-
plicity, we consider only the monopole below.
To first order in α one gets from (6) and (8) thatΩð1;·Þ and

Ið1;·Þ are functions only of θ. Inserting this into (10), we get

Bϕ
ð1;·Þ ¼

r0 − 2rΩð1;·ÞðθÞ − 2r2Ið1;·ÞðθÞ
r0sin2θ

2r3ðr − r0Þ
: ð15Þ

Demanding that Bϕ should be regular at the event horizon,
one finds

Ið1;·ÞðθÞ ¼
1 − 2Ωð1;·ÞðθÞ

2
sin2θ: ð16Þ

This gives

Bϕ
ð1;·Þ ¼ −

1 − 2Ωð1;·ÞðθÞ
2r0r2

−
1

2r3
: ð17Þ

To second order in α one gets a nonzero source term S2
that depends on Ωð1;·ÞðθÞ. The dominant terms for r → ∞
are

S2¼
4Ωð1;·Þ−1

2r20
sinθcosθþ

d
dθΩð1;·Þ
2r20

sin2θþOðr−2Þ: ð18Þ

If S2 goes like r0 for r → ∞, it is straightforward to show
from (12) that ψ ð2;·Þðr; θÞ goes like r2. A necessary
condition for the perturbative solution to be valid is that
it remains a small perturbation for small α everywhere. This
means one cannot have that ψðr; θÞ diverges for r → ∞.
Demanding S2 → 0 for r → ∞ fixes uniquely
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Ωð1;·Þ ¼
1

4
; Ið1;·Þ ¼

1

4
sin2θ: ð19Þ

One finds then

Lψ ð2;·Þ ¼ −
r0
2r3

�
1þ r0

r

�
sin θ cos θ: ð20Þ

This is solved by [1]

ψ ð2;·Þ ¼ RðrÞ sin2 θ cos θ; ð21Þ

with

RðrÞ ¼ r20þ 6r0r− 24r2

12r20
log

�
r
r0

�
þ 11

72
þ r0
6r

þ r
r0
−
2r2

r20

þ
�
Li2

�
r0
r

�
− log

�
r
r0

�
log

�
1−

r0
r

��
r2ð4r− 3r0Þ

2r30
:

ð22Þ

This solution is finite at the horizon for r ¼ rþ.
Asymptotically for r → ∞, we have

ψ ð2;·Þ ¼
r0
8r

sin2θ cos θ þO
�
r20
r2
log

r
r0

�
: ð23Þ

With this result it was concluded in [1] that the rotating
Michel monopole is an approximate solution of the FFE
equations for the Kerr magnetosphere up to second order in
the spin parameter α. However, as we shall see below, this is
not consistent. Indeed, we shall show that demanding that
the perturbative solution is consistent for r → ∞ leads to a
contradiction at order α2.
One can continue to higher orders in α, as was done in

[5,23]. At order α3 one gets Ωð3;·Þ and Ið3;·Þ up to an
undetermined function of θ which can be fixed at order α4

requiring that the source term S4 → 0 for r → ∞. This
gives

Ωð3;·Þ ¼
1

16
þð67−6π2Þ

576
sin2θ; Ið3;·Þ ¼Ωð3;·Þsin2θ; ð24Þ

where we also assumed regularity at the rotation axis.
Using these results, one finds a source term S4 that, for
r → ∞, goes like

S4 ¼ −
3

64r0r
cos θsin3θ þOðr−2Þ: ð25Þ

With a source term that goes like 1=r for r → ∞, it is easy
to show that ψ ð4;·Þðr; θÞ goes like r and this invalidates the
perturbative scheme.

IV. CAN ONE SAVE THE BLANDFORD-ZNAJEK
MONOPOLE?

A. Why the perturbation in α fails

There are two possible reasons that one runs into
inconsistencies when considering the perturbation theory
in α for the Blandford-Znajek monopole solution:
(1) The Blandford-Znajek monopole solution does not

exist for small α. Thus, one runs into divergencies at
order α4 since one is trying to approach a solution
that does not exist.

(2) The Blandford-Znajek monopole solution exists for
small α. But one runs into divergencies at order α4

because one is not using the right approach to find
the solution for r → ∞.

In the following, we adopt the assumption that it is the
second option that is correct, i.e., that the Blandford-Znajek
monopole solution exists, which means that one needs to
take a closer look at what happens for r → ∞. We shall see
below that this assumption runs into inconsistencies that
eventually will force us to conclude that the first option is
the correct one. In a forthcoming paper [24] we will present
further evidence for this.
Assuming the Blandford-Znajek monopole solution

exists, it should obey the following conditions:

ψ ;Ω; I are finite for
r
r0

→ ∞;

ψ and Bϕ are regular at r ¼ rþ;

ψ and Bϕ are regular at lightsheets: ð26Þ

For ψðr; θÞ, the reason for the condition of finiteness for
r=r0 → ∞ is that ψ ð0;·Þðr; θÞ is finite for r=r0 → ∞. Hence,
the perturbations in α should be finite as well, as already
argued above. For Ω and I one finds that they are finite for
r=r0 → ∞ at order α, and hence the same reasoning
applies. Another argument for the condition of finiteness
for r=r0 → ∞ is that one imagines that the small α
Blandford-Znajek monopole has some resemblance to
the Michel monopole [4].
Obviously, the divergence of ψ ð4;·Þðr; θÞ is inconsistent

with the conditions (26). However, assuming the
Blandford-Znajek monopole solution exists for small α,
a reason for this could be that there is an order-of-limits
problem between taking α → 0 and r=r0 → ∞. We can see
this already in Eqs. (12)–(13). Acting with the operatorL of
Eq. (13) on αmψ ðm;·Þ should produce a term at order αm.
However, if r0=r ≪ αk a part of Lðαmψ ðm;·ÞÞwould become
of order αmþk and one would thus have a mixing between
terms of different orders in α. Thus, the perturbations in α
set up by Eqs. (12)–(13) are only consistent in the region

rþ ≤ r ≪
r0
α
: ð27Þ
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Nevertheless, one still needs to connect the solution to the
asymptotic region, to ensure that the conditions (26) are
obeyed. If the Blandford-Znajek monopole solution exists
for small α, this should be possible to do using the method
of matched asymptotic expansions [7].

B. Matched asymptotic expansions

The idea of the matched asymptotic expansions method
is that one can find perturbative solutions to given problems
in a black hole space-time by working in a regime in which
one can separately solve the equations in a near-horizon
region close to the black hole, and in the asymptotic region
far away from the black hole. This requires working in a
regime in which there is an overlap region where both the
near-horizon and asymptotic approximations are valid such
that one can match the solutions there [7].
The problem at hand, namely solving the equations for

force-free electrodynamics (1) in a small α regime, perfectly
fits into the framework of matched asymptotic expansions.
Firstly, we have the region (27) where the perturbations

in α make sense. This is the near-horizon region in our
problem. In this region one should impose the condition of
regularity of ψ and Bϕ at the event horizon r ¼ rþ.
Secondly, we have the asymptotic region defined by

r ≫ r0 ð28Þ

in which we are far away from the event horizon of a Kerr
black hole. In this region one should impose finiteness of ψ ,
Ω, and I for r=r0 → ∞. Hence, we expand the fields ψ , Ω,
and I as

ψðr; θÞ ¼ ψ ð·;0ÞðθÞ þ
r0
r
ψ ð·;1ÞðθÞ þO

�
r20
r2
log

r
r0

�
;

r0Ωðr; θÞ ¼ Ωð·;0ÞðθÞ þ
r0
r
Ωð·;1ÞðθÞ þO

�
r20
r2
log

r
r0

�
;

r0Iðr; θÞ ¼ Ið·;0ÞðθÞ þ
r0
r
Ið·;1ÞðθÞ þO

�
r20
r2

log
r
r0

�
; ð29Þ

as well as

Bϕðr; θÞ ¼
Bð·;0ÞðθÞ þ r0

r Bð·;1ÞðθÞ þOðr20r2 log r
r0
Þ

r0r2
: ð30Þ

One can have corrections that involve logarithms of r0=r.
However, such corrections do not show up in the analysis
below to the order in which we are working. In the above
expansion we are holding α fixed.
Thirdly, and finally, we have the overlap region. This is

defined by the intersection of the near-horizon and asymp-
totic regions

r0 ≪ r ≪
r0
α
: ð31Þ

We notice that this region is well defined thanks to being in
the regime of small α. In this region, one can both expand in
α and r0=r, which means we have the possibility of
connecting the solutions found in the near-horizon and
asymptotic regions. Thus, in particular for ψðr; θÞ, we have
a double expansion in both α and r0=r,

ψðr; θÞ ¼ ψ ð0;0ÞðθÞ þ α2ψ ð2;0ÞðθÞ þ
r0
r
ψ ð0;1ÞðθÞ

þ α2
r0
r
ψ ð2;1ÞðθÞ þOðα4Þ þO

�
r20
r2
log

r
r0

�
;

ð32Þ

and similarly for Ωðr; θÞ, Iðr; θÞ, and Bϕðr; θÞ. In detail,
ψ ðm;nÞðr; θÞ refers to the function multiplying αmðr0=rÞn.
The r dependence of ψ ðm;nÞðr; θÞ is because it can possibly
include a finite series in logðr=r0Þ. Thus, we require
ψ ðm;nÞ=r → 0 for r → ∞. For n ¼ 1, we assume that there
are no logarithmic terms since this is consistent with the
small α analysis above.
The idea of the matched asymptotic expansions is then to

first solve the stream equation in the near horizon region to
order α. The solution is also valid in the overlap region;
therefore, we use it as an input for the asymptotic region,
where we solve the stream equation to leading order in the
r0=r expansion. In this way we find a solution to order α
that is valid up to infinity. Then one repeats this procedure
to order α2 and so on.

C. Asymptotic expansion at zeroth and first order

Before turning to the matched asymptotic expansions of
the Blandford-Znajek monopole, we first examine the
leading order part of the asymptotic region (28) using
the expansions (29). At zeroth order in r0=r, the stream
equation (9) simplifies to

sin θΩð·;0Þ
d
dθ

�
sin θΩð·;0Þ

dψ ð·;0Þ
dθ

�
¼ Ið·;0Þ

dIð·;0Þ
dψ ð·;0Þ

; ð33Þ

where only the leading terms in (29) contribute. It is
convenient to define a new variable zðθÞ by

dz ¼ dθ
sin θΩð·;0ÞðθÞ

: ð34Þ

Then (33) becomes

�
dψ ð·;0Þ
dz

�
2

¼ I2ð·;0Þ þ const: ð35Þ

We impose that I ¼ 0 for θ ¼ 0 as a boundary condition
(can be derived from regularity of Bϕ at θ ¼ 0). Thus, the
constant is required to be zero, and we deduce
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dψ ð·;0Þ
dz

¼ sIð·;0Þ; s ¼ �1; ð36Þ

where we introduced the sign s. This is equivalent to

sin θΩð·;0Þ
dψ ð·;0Þ
dθ

¼ sIð·;0Þ: ð37Þ

Thus, given Ωð·;0ÞðθÞ and ψ ð·;0ÞðθÞ, one can find Ið·;0ÞðθÞ.
One finds furthermore

Bð·;0Þ ¼ −sΩð·;0Þ: ð38Þ

Consider now the first-order terms in r0=r in the
expansions (29) and (30). The integrability conditions
(6) and (8) are

Ωð·;1Þ
dψ ð·;0Þ
dθ

¼ ψ ð·;1Þ
dΩð·;0Þ
dθ

;

Ið·;1Þ
dψ ð·;0Þ
dθ

¼ ψ ð·;1Þ
dIð·;0Þ
dθ

; ð39Þ

which gives Ωð·;1Þ and Ið·;1Þ in terms of ψ ð·;1Þ. Using this
with the stream equation (9), one gets the following
equation for ψ ð·;1ÞðθÞ:

2ψ ð·;1Þ
sin2θ

d
dθ

ðsin2θ cos θΩ2
ð·;0ÞÞ ¼

d
dθ

�
sin θΩ2

ð·;0Þ
dψ ð·;1Þ
dθ

�
:

ð40Þ

Finally, one finds the following general expression for
Bð·;1Þ:

Bð·;1Þ ¼ −ð1þ sÞΩð·;0Þ − sψ ð·;1Þ
d
dθ ðsin2θΩð·;0ÞÞ

sin3θ
: ð41Þ

V. FAILURE OF MATCHED
ASYMPTOTIC EXPANSIONS

Our starting point in the near-horizon region (27) is the
expansions (11) of ψ , Ω, and I in powers of α. At order α0

we have the static monopole solution in the background of
a Schwarzschild black hole (14). At first order in α we have
the condition (16) that fixes Bϕ at this order to (17). Going
to the overlap region (31) with expansions of the type (32),
this fixes

ψ ð0;0Þ ¼ 1 − cos θ; ψ ð0;1Þ ¼ 0;

Ið1;0Þ ¼
1 − 2Ωð1;0Þ

2
sin2θ; Ið1;1Þ ¼ Ωð1;1Þ ¼ 0;

Bð1;0Þ ¼ −
1 − 2Ωð1;0Þ

2
; Bð1;1Þ ¼ −

1

2
; ð42Þ

For the asymptotic region (28), this means that at leading
order in the r0=r expansion we have

ψ ð·;0Þ ¼ 1 − cos θ þOðα2Þ;

Ið·;0Þ ¼
�
α

2
−Ωð·;0Þ

�
sin2θ þOðα3Þ;

Bð·;0Þ ¼ −
�
α

2
−Ωð·;0Þ

�
þOðα3Þ; ð43Þ

and at first order in r0=r we have

ψ ð·;1Þ ¼ Oðα2Þ; Ωð·;1Þ ¼ Oðα3Þ;
Ið·;1Þ ¼ Oðα3Þ; Bð·;1Þ ¼ −

α

2
þOðα3Þ: ð44Þ

Considering the leading asymptotic part (43), we see that
Eq. (37) is satisfied provided

Ωð·;0Þð1þ sÞ ¼ s
α

2
þOðα3Þ: ð45Þ

This requires

s ¼ 1; Ωð·;0Þ ¼
α

4
þOðα3Þ: ð46Þ

From this we get

Bð·;0Þ ¼ −
α

4
þOðα3Þ; ð47Þ

which is consistent with Eq. (38). Note also that (39), (40),
and (41) are consistent with (44) provided Ωð·;1Þ ¼ Oðα5Þ.
In the overlap region, we get from (46) and (47) that

Ωð1;0Þ ¼
1

4
; Ið1;0Þ ¼

1

4
sin2θ; Bð1;0Þ ¼ −

1

4
: ð48Þ

In the near-horizon region (27), this reproduces what we
already found in (19) at second order in α. However, notice
that we did this without invoking the second order in α.
Thus, even if we found the same result, the method is
completely different.
We conclude from the above that up to first order in α

and first order in r0=r, the Blandford-Znajek monopole
solution is consistent with the matched asymptotic expan-
sions analysis.

A. Inconsistency at order α2r0=r

There are no further terms at zeroth and first order in α
than what we have already discussed. Thus, the first new
term that we encounter is at order α2r0=r. We now study
first what we can infer from the near-horizon region (27)
about a term of this order, and subsequently what we can
infer from the asymptotic region (28).
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For the near-horizon region we can use the analysis
already reviewed above. This corresponds to the analysis of
α2 corrections of the original paper of Blandford and
Znajek [1], which is reproduced in subsequent papers
[5,6,12]. Since we concluded that (19) holds, we can use
this in (18) to get (20). The solution to this obeying that ψ
and Bϕ are regular at the event horizon is Eqs. (21)–(22),
which gives ψ ð2;·Þ. At large r=r0, this gives (23). From this
we get the following prediction in the overlap region for the
term in ψ at order α2r0=r:

ψ ð2;1Þ ¼
1

8
sin2 θ cos θ: ð49Þ

For the asymptotic region, we can use Eq. (40) for ψ ð·;1Þ.
Write

ψ ð·;1Þ ¼ α2ψ ð2;1Þ þOðα4Þ: ð50Þ

Then Eq. (40) gives

�
d2

dθ2
þ cot θ

d
dθ

− 4cot2θ þ 2

�
ψ ð2;1Þ ¼ 0: ð51Þ

One can easily check that the prediction (49) does not obey
this equation. In fact, the general solution to Eq. (51) is a
linear combination of sin2 θ and a function of θ that
diverges at θ → 0 (see also [25]). Therefore, the near-
horizon region and the asymptotic region are not consistent
with each other in the overlap region (31). Thus, we have
found that the Blandford-Znajek monopole leads to incon-
sistencies at order α2r0=r.
In conclusion, we have shown that the Blandford-Znajek

monopole does not exist for small α since assuming its
existence leads to inconsistencies.

VI. CONCLUSION AND OUTLOOK

In this paper, we have considered the Blandford-Znajek
(split) monopole solution originally defined in [1] in terms
of a perturbative expansion in α, the rotation parameter of a
Kerr black hole. We have formulated the criterion that since
one defines the Blandford-Znajek monopole as a perturba-
tion in α of a monopole solution around a Schwarzschild
black hole, then the perturbations should be small every-
where outside the event horizon. Imposing this criterion
we have found that the perturbative construction of the
Blandford-Znajek monopole is inconsistent. This is
revealed at as early as order α2.
The results of this paper are supported by our forth-

coming paper [24] where we perform a general analysis of
the FFE equations in the background of a Kerr black hole.
The main idea of [24] is to consider these equations close to
the rotation axis and demand that solutions are regular at
the rotation axis. This is seen to provide an alternative
argument for the result of this paper.

As mentioned in the introduction, there are several
papers studying the Blandford-Znajek monopole numeri-
cally [10–18]. It would be highly interesting to consider
how the result of this paper can be in accordance with these
studies. One way to pursue this would be to have a closer
comparison between the numerical solutions for small α
and the analytical results of this paper and our forthcoming
paper [24]. One option could be that the numerical
solutions do not obey the correct boundary conditions,
corresponding to the ones outlined in this paper. Another
option, which we find more likely, is that the numerical
solutions correspond to a physically different branch of
solutions, and are thus not connected to the static monopole
solution at α ¼ 0. Potentially, this means that if we start
with a different solution to the FFE equations in the
background of a Schwarzschild black hole—but a solution
that still asymptotes to the static monopole solution far
away from the black hole—one could find a well-defined
solution for small α using matched asymptotic expansions
[24]. Presumably, it would then follow that this is the
solution that has been found numerically, and not the
original Blandford-Znajek monopole. To verify this state-
ment, one needs further work, both on the numerical and
analytical side.
We note that a comparison between analytical and

numerical solutions at small α is potentially challenging.
The numerical studies need to impose regularity across the
light-sheet surfaces, and if α is small, then the first light-
sheet surface is very close to the event horizon of a Kerr
black hole. This means that one needs a high resolution in
the numerics to obtain a sufficiently accurate description of
the electromagnetic configuration between these two sur-
faces [16,17].
In light of the findings of this paper, as well as our

forthcoming publication [24], it would be interesting to
consider also other perturbative constructions of solutions of
the FFE equations in the background of slowly rotating Kerr
black holes. This includes the parabolic, vertical uniform,
and hyperbolic solutions in the Schwarzschild background
[1,20,21] as well as the Blandford-Znajek monopole for
Schwarzschild with a cosmological constant [26].
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