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This paper introduces a new effort to study the collision of plane-fronted gravitational waves in four-
dimensional, asymptotically flat spacetime, using numerical solutions of the Einstein equations. The pure
vacuum problem requires singular, Aichelburg-Sexl-type sources to achieve finite energy solutions, which
are problematic to treat both mathematically and numerically. Instead then, we use null (massless) particles
to source nontrivial geometry within the initial wave fronts. The main purposes of this paper are to
(a) motivate the problem, (b) introduce methods for numerically solving the Einstein equations coupled to
distributions of collisionless massless or massive particles, and (c) present a first result on the formation of
black holes in the head-on collision of axisymmetric distributions of null particles. Regarding the last-
named, initial conditions are chosen so that a black hole forms promptly, with essentially no matter
escaping the collision. This can be interpreted as approaching the ultrarelativistic collision problem from
within an infinite boost limit, but where the matter distribution is spread out, and thus nonsingular. We find
results that are consistent with earlier perturbative calculations of the collision of Aichelburg-Sexl
singularities, as well as numerical studies of the high-speed collision of boson stars, black holes, and fluid
stars: a black hole is formed containing most of the energy of the spacetime, with the remaining 15� 1% of
the initial energy radiated away as gravitational waves. The methods developed here could be relevant for
other problems in strong-field gravity and cosmology that involve particle distributions of matter.
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I. INTRODUCTION

As a theory of gravity, one aspect of general relativity
that bares stark contrast to Newton’s theory is the nonlinear
nature of the Einstein field equations. This imbues general
relativity with a strong-field regime, loosely defined as the
class of solutions where the nonlinearities of the theory are
manifest, exhibiting qualitatively different properties and
phenomena than weak-field solutions. These include black
holes, cosmological solutions describing the global struc-
ture and evolution of the Universe, and gravitational
collapse. The last-named refers to situations where, begin-
ning from nonsingular initial data (even weak-field data
where linearity is satisfied to good approximation early on),
evolution eventually leads to the formation of some kind of
singularity in the structure of spacetime.
Barring questions about the very early universe (the

pre-inflationary epoch, or bounce in cyclic models), and
whether dark energy or dark matter might be due to a failure
of general relativity describing gravity on these scales,
knowledge of strong-field gravity relevant to the observable
universe has become quite thorough over the past several
decades. This includes the geometries of neutron stars and
black hole exteriors, the spacetime dynamics in mergers of
such compact objects, and knowledge of how the exterior
geometry settles to a stationary Kerr solution when

gravitational collapse occurs (see, e.g., [1–6] for some
review articles). Of course, many details of these processes
remain to be understood, and fundamental open questions
remain where matter plays an important or dominant role—
core-collapse supernova, self-consistent models connecting
binary neutron star mergers to the host of observed/
hypothesized electromagnetic counter parts, how accreting
black holes power observed jets, etc.
However, many other aspects of strong-field general

relativity (of arguably less astrophysical importance, but
still of significant physical andmathematical interest) remain
poorly understood, despite the relevant open questions
having been identified decades ago. These include the
interior structure of black holes and the generic nature of
singularities formed in gravitational collapse, critical phe-
nomena at the threshold of black hole formation (in particular
in situations lacking symmetries), the classification and
properties of solutions with event horizons in higher dimen-
sional spacetimes, gravity in asymptotically anti–de Sitter
(AdS) spacetimes, and the ultrarelativistic scattering problem
(see, e.g., [7–16]). The goal of this paper is to introduce a new
research effort to tackle aspects of this last-named problem.
As part of this effort, we develop methods for evolving

distributions of collisionless particles coupled to Einstein
gravity. Though the main focus of this work is the
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null-particle case, these same methods can be used for
massive particles, as we demonstrate in passing in this
work. This could be relevant for tackling a number of
other problems in strong-field gravity, such as studies of
cosmic censorship [17] or inhomogeneous cosmologies.
Recently, there has been interest in performing fully general-
relativistic calculations of structure formation scenarios
[18–23] to study effects not captured by standard Newtonian
N-body calculations. However, current approaches rely on
fluid descriptions that break down in the presence of multi-
stream regions that arise, e.g., during halo formation, or use
weak-field approximations to the Einstein equations [24].
Before outlining the main content of the remainder of the

paper, we describe the ultrarelativistic scattering problem in
more detail, giving some background, and a list of open
questions we would eventually like to address.

A. The ultrarelativistic scattering problem

In the context of strong-field gravity, the ultrarelativistic
scattering problem refers to understanding the dynamics of
spacetime following the interaction of two distributions of
energy, initially approaching each other from opposite
directions near or at the speed of light as measured in
the center-of-momentum frame. The source of energy could
be pure spacetime itself, i.e., plane-fronted gravitational
waves or black holes [including Aichelburg-Sexl (AS)
singularities in the infinite boost limit], or some classical
model of a particle, such as boson stars, fluid stars, or even
black holes. Two seminal works in this area were initiated
byKhan and Penrose [25], and Penrose [26] almost 50 years
ago, essentially addressing two opposite extremes in the
landscape of the scattering problem: the collision of waves
of infinite transverse extent and the collision of point
particles.

1. Collision of planar gravitational waves

Khan and Penrose [25] studied the collision of two
infinite, plane-fronted gravitational waves, and found the
interaction always resulted in a naked curvature singularity,
regardless of how weak (in terms of curvature) each
individual wave was. The formation of the singularity
can be understood as the result of the focusing of the
geometry of one wave front by the other, and vice versa.
The weaker the initial curvature is, the longer it takes to
focus to a singularity, though it always does. One can argue
that formation of a singularity in this scenario is an artifact
of both the perfect focusing caused by the planar geometry
of the wave front, as well as its infinite transverse extent
(hence the spacetime has infinite energy and is not
asymptotically flat). Moreover, even in the absence of
any dynamics resulting from the collision of two such wave
fronts, a single wave, that is locally exactly Minkowski
spacetime on either side of the front, is not globally
hyperbolic: any spacelike hypersurface of the single wave
geometry evolved forward in time using the Einstein

equations will encounter a Cauchy horizon [27]. In a sense,
uniform plane-fronted gravitational waves are infinitely
powerful lenses, capable of focusing all of Minkowski
spacetime down to a point. We illustrate this more explicitly
in Sec. II B.
The open questions pertaining to this limit of the

ultrarelativistic scattering problem then relate to how these
“pathological” outcomes might change if the apparent
sources of the pathology—a uniform distribution and
infinite total energy—are removed. If the energy density
in each wave has finite transverse extent, one would expect
the focusing to end within a transverse light-crossing time.
If this is longer than the time for the singularity to form,
will a black hole eventually form to censor the singularity?
How do inhomogeneities in the energy density affect the
evolution of the wave front post collision?1

2. Collision of point particles

At the other end of the spectrum, Penrose [26] initiated
the study of the collision of plane-fronted waves sourced
by singular, pointlike distributions of energy. Such a
plane-wave geometry can be obtained by taking the
Schwarzschild solution with rest mass m, boosting it with
Lorentz factor γ, and considering the limit that γ → ∞ and
m → 0 while the energy E ¼ mγ remains fixed. This yields
the AS solution, which can be considered to describe the
geometry of a null particle [36]. The AS geometry is
Minkowski on either side of the shock front, with all the
curvature confined to the transverse plane. The magnitude
of the gravitational wave as measured by a Newman-
Penrose scalar drops like 1=ρ4 with transverse distance ρ
from the origin, and though not asymptotically flat in the
strictest sense of the definition [37], the spacetime still
approaches Minkowski at large ρ, and does not suffer the
infinite energy/focusing pathologies of the previously

1These questions could be of relevance to certain bubble
formation/collision scenarios in the early universe [28]. A bubble
of true vacuum nucleated in a false vacuum will expand, with the
bubble wall gaining all the energy of the false vacuum swept up.
The wall quickly becomes relativistic, and eventually strongly
self-gravitating. The wall will therefore begin acting as a strong
lens focusing matter it encounters, and conversely inhomogeneity
in the matter will backreact to create inhomogeneity in the bubble
wall. If two such bubbles collide, in a region about the initial
point of contact much smaller than the radius of curvature of each
bubble, to good approximation the collision could be treated as
the collision of two plane-fronted waves. The curvature in the
walls around the collision is not expected to be strong enough to
focus to singularities before the nonplanar nature of the walls
influence the dynamics [if that were the case, the bubbles would
have individually collapsed to black holes prior to the collision
(see, e.g., [29])]. Though self-gravitating bubble collisions have
been studied extensively before (see, e.g., [30–32] and the
references therein), these studies have not included the effect
of inhomogeneities, which would be interesting to explore. See
[33–35] for related work suggesting that domain walls (neglect-
ing self-gravity) are unstable to perturbations.
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discussed uniform plane-wave solutions. This, however,
comes at the expense of the origin now being a naked,
curvature singularity. Nevertheless, Penrose was able to
show that an apparent horizon exists in the spacetime
formed by the superposition of two colliding AS shocks;
the exact solution to the causal future of the collision is
unknown, but this implies a black hole forms. Though an
extreme example of relaxing the infinite-extent problems of
uniform plane-wave collisions, this is suggestive that the
pathologies with the latter scenario are indeed due to
infinite extent, and not properties of the nonlinear inter-
action in gravitational wave scattering.
The study of the point-particle limit was reinvigorated a

couple of decades ago following the realization that if extra
dimensions exist, the true Planck scale could be orders of
magnitude lower than the scale naively inferred from 4D
analysis [38–40]. It was argued that one “natural” magni-
tude for the Planck energy is OðTeVÞ. This renewed
interest in the gravitational scattering problem results
because particle collisions above the Planck energy are
generically expected to form black holes [41–43], so if the
low-TeV Planck-scale scenario is true, the Large Hadron
Collider, as well as high energy cosmic ray collisions
with the Earth’s atmosphere, could then form black holes
[44–46]. No evidence for this has been found to date; see,
e.g., [47].
At sufficiently high energies in particle collisions, the

black holes that form would be large enough to censor any
details of the collisions, and hence it is conjectured that in
the ultrarelativistic limit “matter does not matter;” i.e.,
gravity dominates the interaction, and moreover, the
geometry of each boosted particle is dominated by its
kinetic energy, hence the ultrarelativistic limit is uniquely
captured by the collision of two AS shock waves. This
argument certainly makes intuitive sense, though from a
geometric perspective, given the rather stark differences
between the geometries of large-but-finite boost timelike
compact objects and the singular, plane-fronted AS shock-
wave solution,2 it would be rather remarkable if this
conjecture were true. Nevertheless, evidence has been
gathered in its favor from simulations of ultrarelativistic
boson star [49], fluid star [50], and black hole collisions
[51]: for collisions between material objects, black holes
do form above a threshold roughly in line with hoop-
conjecture arguments [52], and in all cases the gravitational
wave energy emission in head-on collisions, extrapolated
to infinite boosts, agrees with perturbative calculations of
that produced in the collision of two AS waves [53] (the
last-named finding ∼16% of the initial mass of the
spacetime being radiated).

Many open questions remain here. Regarding the ap-
parent limiting behavior of large boosts, one challenge to
establish the connection with AS is that detailed compar-
isons will require explicit solutions, and it is unclear how to
deal with the AS naked singularity, in particular, in a
numerical solution scheme. The approach we propose here
is to begin at the infinite boost limit, i.e., with null plane-
fronted waves, and replace the singularity with a smooth
null matter source (such solutions are sometimes called
gyratons, the first examples of which were discovered by
Bonnor [54] and Peres [55,56]). This would also allow one
to address how “stable” theAS singularity is in the first place,
by studying the stability of any family of regular spacetimes
that approach the AS spacetime in some continuous limit.
One conceivable outcome of instability is that perturbations
generically lead to black hole formation.
Not much is known about the dynamics of off-axis

collisions. Perturbative calculations of large impact param-
eter scattering suggests theultrarelativistic twobodyproblem
is significantly simpler than the more astrophysical, rest-
mass dominated regime [57,58]. This is consistent with
studies that indicate some of the leading order physics in
these interactions, evenblackhole formation, canbe captured
by appealing to geodesic motion on a single, relevant
background geometry [50,59]. Another result from pertur-
bative calculations of large impact parameter deflections is
the radiation produced is highly beamed [57]. This, together
with geodesic focusing of the emitted radiation, could
explain the rather striking growth in the black hole mass
noted during a moderate-boost (γ ∼ 1.5) grazing encounter
simulation of two black holes [60]. It would be interesting to
explore these grazing encounters at much higher boosts.
A further set of questions relates to the threshold of black

hole formation. In particular, if critical phenomena [61] is
present, and if so, when tuning to threshold, which critical
solution is revealed: that of the underlying matter source, or
of vacuum gravity?
Of course, not all questions pertaining to the ultrarelativ-

istic scattering problemneed to try tomake a connectionwith
one of the two extreme limits: point-particle scattering or
infinite uniform plane-wave scattering. There is potentially a
vast landscape of interesting phenomenology in between,
worthy of study in its own right.

B. Outline of the remainder of the paper

In Sec. II we describe the formalism in more detail: the
Einstein equations coupled to null matter, certain properties
of plane-fronted wave solutions, and the similarities/
differences between the pure vacuum versus matter sourced
cases. In Sec. III we describe a new code designed to solve
the Einstein-collisionless particle system, in particular,
highlighting the issues required to self-consistently and
efficiently compute the stress-energy tensor summed over
the contributions from the discrete collection of particles. In
Sec. IV we present results from simulations of the head-on

2For example, all polynomial invariant scalars of the Riemann
tensor, such as the Kretschmann scalar, vanish for null, plane-
fronted gravitational wave spacetimes [48], including the AS
spacetime.
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collision of two axisymmetric null-particle distributions,
including convergence tests. The main result is that we find
a spacetime consistent with prior approaches to studying
the AS collision limit: a black hole forms containing
85.1� 0.8% of the initial energy of the spacetime, with
the rest escaping as gravitational radiation (modulo< 0.1%
in energy of the tail end of the null-particle distribution that
did not fall into the black hole). Regarding the structure of
the waves, we find it is highly beamed about the collision
axis. Also, the plane-fronted shocklike features of the initial
geometries are trapped by the black hole and continually
propagate about it, albeit with an amplitude that exponen-
tially decreases with time. We conclude in Sec. V by
mentioning some improvements to the code that would
be needed before all the topics discussed above can be
addressed. In the Appendix we further validate the particle
code, showing how it can be applied to the massive particle
case, by applying it to a simple inhomogeneous cosmol-
ogy setup.
We use geometric units where Newton’s constant G and

the speed of light c are set to unity.

II. FORMALISM

In this section we discussion the Einstein equations
coupled to a null fluid (Sec. II A), the problems with
homogeneous, plane-fronted gravitational wave spacetimes
(Sec. II B), how these problems can be resolved when using
a null fluid as the source of the plane-wave geometry
(Sec. II C), and the issues of using a null fluid to study
colliding, regular plane-wave geometries, and how null-
particle distributions can alleviate them (Sec. II D).

A. The Einstein field equations with a null fluid source

We first consider the Einstein equations with a pressure-
less fluid as a source:

Rab −
1

2
Rgab ¼ 8πTab

≡ 8πρelalb; ð1Þ

where Rab is the Ricci tensor, R the Ricci scalar, gab the
metric tensor, Tab the stress-energy tensor, and ρe is the
energy density flowing along the direction la. For a
timelike pressureless fluid la is the four velocity of the
fluid (with lala ¼ −1) and ρe has an unambiguous
interpretation as the rest-frame density of the fluid.
However, for a null fluid (lala ¼ 0), as we consider
below, ρe is the energy density in some chosen frame.
This frame then determines the normalization of la, which
is equivalent to fixing the affine parameter λ in the para-
metric representation of the null vector, la ¼ dxaðλÞ=dλ
(or vice versa: a frame where the normalization of la has
been chosen can be thought of as the frame defining the
interpretation of ρe).

Later we will generalize this to a distribution of non-
interacting null particles, though for now the null fluid is
more convenient to illustrate plane-fronted wave solutions
sourced by matter. Moreover, prior to the collision of two
such fronts, there is a simple one-to-one correspondence
between the fluid and particle solutions, and the former is
more convenient to use to provide initial data for the
collision.

B. Plane-fronted waves

Consider a plane-fronted wave (sometimes also referred
to as a plane-parallel, or pp wave) traveling in the þx
direction—see Fig. 1. The metric, in Brinkmann-like
form, is

ds2 ¼ −dudvþ B2ðuÞ½dy2 þ dz2� þHðu; y; zÞdu2; ð2Þ
where v ¼ tþ x is a null coordinate, u ¼ t − x is a null
coordinate when H ¼ 0, and y, z are the Cartesian-like
coordinates transverse to the wave. There are several
different coordinate systems often used to represent
plane-fronted metrics, all relatable to each other through
coordinate transformations (see, e.g., [48]). Perhaps the
most common one sets BðuÞ ¼ 1, though we find it
convenient to include this term here for our discussion
related to null-sourced waves, and to motivate the eventual
form of the metric we use to set initial conditions for
numerical evolution (in Sec. IVA below). The only non-
trivial Einstein equation (1) for this metric ansatz is

∇2H
B2

þ 4B̈
B

þ 8πρe ¼ 0; ð3Þ

where ∇2 ≡ ∂yy þ ∂zz is the two-dimensional flat space
Laplacian, and the overdot ( :) denotes ∂u. With respect to

u v

x

t

FIG. 1. A spacetime diagram depicting a null-fronted plane
wave (shaded region) traveling in theþx direction. u ¼ t − x and
v ¼ tþ x are null coordinates; the two coordinates y, z transverse
to the wave are not shown. On either side of the pulse u < 0 and
u > Δu, the geometry is that of Minkowski spacetime.
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orthonormal basis vectors aligned with the coordinate
directions, the only nonzero Newman-Penrose scalar for
this metric is ðxÞΨ4, defined to measure gravitational waves
propagating in the þx direction3:

ðxÞΨ4 ¼
H;zz −H;yy

2B2
− i

H;yz

B2
; ð4Þ

where here and below we use a comma to denote the
ordinary (partial) derivative operator.
To study pure gravitational wave spacetimes (ρe ¼ 0) it is

most convenient to set B ¼ 1 and Hðu; y; zÞ≡ fðuÞhðy; zÞ;
then the field equations allow an arbitrary amplitude profile
fðuÞ, with the transverse structure constrained by ∇2h ¼ 0,
and it is manifest that the spacetime is a Minkowski form
away from the wave front (when f ¼ 0). This form of the
metric is adequate to capture the entire class of vacuum,
plane-fronted gravitational wave solutions [48], and also
highlights why these spacetimes are problematic to address
some of the questions identified in the Introduction: unique-
ness properties of ∇2h ¼ 0 dictate the only way to obtain
finite transverse extent, or inhomogeneity in the transverse
plane, is via AS-like singularities, or boundary conditions at
infinity. The latter is essentially how inhomogeneities are
introduced in asymptotically AdS spacetimes, where gravi-
tational wave scattering is used tomodel heavy ion collisions
using gauge-gravity dualities (see, e.g., [62]), though this
option is not available in asymptotically flat spacetime.
Before describing how null dust can circumvent these
problems, it is useful to consider the homogeneous dust-
sourced spacetimes, with ρe ¼ ρeðuÞ.
The simplest homogeneous dust solutions are those

without any “pure” gravitational waves (i.e., all nontrivial
curvature is in the trace-full part of the Riemann tensor
constrained by the Einstein equations, with the Weyl tensor
identically zero): H ¼ 0, with BðuÞ satisfying

B̈þ 2πρeB ¼ 0: ð5Þ

Suppose we have a matter pulse with support in u ∈ ½0;Δu�
(Fig. 1), and we choose initial conditions to (5) such that
Bðu < 0Þ ¼ 1; i.e., the metric [(2) with H ¼ 0] is in
standard Minkowski form prior to the passage of the wave.
If ρe is positive, Bðu > 0Þ will begin to decrease as u
increases, and always reach zero, either within the pulse for
sufficiently high amplitude and/or wide pulses, or some-
time after the passage of the pulse. For example, for a
constant density pulse with ρe ¼ ρe0 within 0 ≤ u ≤ Δu,
ρe ¼ 0 otherwise, the solution to (5) is

BðuÞ ¼ 1; u < 0

¼ cosðω0uÞ; 0 ≤ u ≤ Δu

¼ cosðω0ΔuÞ
− ðu − ΔuÞðω0 sinðω0ΔuÞÞ; u > Δu; ð6Þ

with ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2πρe0

p
. For the coordinate singularity B ¼ 0 to

occur behind the pulse, we must have ρe0 < π=ð8Δu2Þ.
To see that this is a coordinate singularity, consider the
following coordinate transformation (u is unchanged):

y ¼ ȳ=BðuÞ;
z ¼ z̄=BðuÞ;
v ¼ v̄þ LðuÞ½ȳ2 þ z̄2�: ð7Þ

If we choose LðuÞ ¼ − _B=B, then away from the matter
where B̈ ¼ 0, the above transforms (2) with H ¼ 0

to ds2 ¼ −dudv̄þ dȳ2 þ dz̄2.
On the other hand, B ¼ 0 is more than a coordinate

singularity. Consider the focusing caused by the passage of
the wave on a set of timelike geodesics, initially at rest. In
particular, looking at the transverse coordinates of any such
geodesic, if yðu < 0Þ ¼ y0, zðu < 0Þ ¼ z0, then the geo-
desic equation says yðuÞ ¼ y0, zðuÞ ¼ z0; i.e., in these
coordinates such geodesics remain at fixed transverse
coordinate locations. However, from (2) the proper trans-
verse (geodesic) distance between any pair of geodesics
with coordinate separation (Δy, Δz) at some u ¼ v ¼
constant is lp ¼ jBj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δy2 þ Δz2

p
. In other words, the

proper distance between all these timelike geodesics goes
to zero at B ¼ 0, when u ¼ us ≡ Δuþ cotðω0ΔuÞ=ω0. In
that sense the plane-wave front is an infinitely powerful
lens. Moreover, given that ðy; zÞ ¼ constant curves are
geodesics, and ð∂=∂yÞa and ð∂=∂zÞa are Killing vectors of
the spacetime, we can toroidally compactify the space by
identifying y with yþ yL, and z with zþ zL for some
constants yL, zL. The geodesic focusing then tells us that
the entire compactified transverse space is focused to a
point at B ¼ 0. This illustrates that it is more appropriate to
think of the plane-wave front as focusing all of spacetime,
and not merely a class of geodesics. Similarly, considering
the regular ðu; v̄; ȳ; z̄Þ coordinate chart, except for where
(ȳ ¼ 0, z̄ ¼ 0), the entire range v̄ ∈ ½−∞;∞� is mapped to
v ¼ ∞ when u ¼ us. This demonstrates that these regular
coordinates cannot be used to specify complete, Cauchy
data for the region u > us.

C. Regular, plane-fronted waves

As mentioned above, to obtain vacuum plane-fronted
gravitational waves that have finite total energy and are
asymptotically flat transverse to the wave front requires
singular sources. Using a null fluid instead can remedy the
problem. The form of the metric ansatz (2) used above is

3Hence the ðxÞ superscript, to differentiate it from ðrÞΨ4 shown
in the results section, which is calculated with a tetrad to measure
radiation propagating in the radial direction.
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not ideal for numerical evolution, in that for a localized
source asymptotically H ∝ lnðρÞ, with ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p

.
Moreover, the focusing can still lead to B ¼ 0 coordinate
singularities near the wake of the fluid. A better suited
coordinate system can be found appealing to the coordinate
transformation (7), which essentially “unfocuses” the
metric following the wave [however, unlike (7) for a
homogeneous wave, the finite wave has no Cauchy horizon
problems]. For the axisymmetric collisions explored later, it
will also be more convenient to use cylindrical coordinates.
We therefore use the following ansatz for the metric and
fluid source propagating along u ¼ constant character-
istics, with the specific form of the functions chosen to
simplify the resulting field equations:

ds2 ¼ −dudv − 8πfðuÞhðρ; θÞdu2
þ 2βðuÞqðρÞdudρþ dρ2 þ ρ2dθ2; ð8Þ

Tab ¼ ρeðu; ρ; θÞlalb; ð9Þ

with

βðuÞ ¼ 4π

Z
u

−∞
fðũÞdũ; ð10Þ

ρeðu; ρ; θÞ ¼ fðuÞgðρ; θÞ; ð11Þ

and null vector normalized to la ¼ ffiffiffi
2

p ð∂=∂vÞa. With this
ansatz, the one nontrivial Einstein equation is

∇2h≡ h;ρρ þ
h;ρ
ρ

þ h;θθ
ρ2

¼ g − q;ρ −
q
ρ
: ð12Þ

If we further decompose the transverse dependence of the
energy density into cylindrical harmonics

gðρ; θÞ≡ g0ðρÞ þ
X∞
m¼1

gmðρÞ cosðmθÞ; ð13Þ

then we can use qðρÞ to solve for the monopole contribu-
tion to (12):

q0 þ q
ρ
¼ g0; ð14Þ

where 0 denotes differentiation with respect to ρ. hðρ; θÞ
then captures the metric response to a nonaxisymmetric
source, which can readily be solved via a similar decom-
position

hðρ; θÞ≡X∞
m¼1

hmðρÞ cosðmθÞ; ð15Þ

where for each m the remaining portion of the field
equation (12) reduces to the following ordinary differential
equation (ODE):

h00m þ h0m
ρ

−m2
hm
ρ2

¼ gm: ð16Þ

When solving the above equations, we are free to choose
the energy density via the functions fðuÞ, g0ðρÞ and gmðρÞ,
and then solve for the remaining metric functions βðuÞ,
qðuÞ, hðρ; θÞ using (10), (14), (15), and (16). We will
restrict the class of free initial data to that which is regular
in the limit ρ → 0, as well as an asymptotically flat
spacetime in the limit ρ → ∞. In the limit ρ → 0, regular
solutions require

g0ðρÞ ¼ α0 þOðρ2Þ ð17Þ

gmðρÞ ¼ γ0ρ
m þOðρmþ2Þ; ð18Þ

where α0 and γ0 are constants. In the limit ρ → ∞ we
require ρe → 0 sufficiently rapidly to give the spacetime
finite total mass. For the energy density profiles, we either
use compactly supported pulses (ρe ¼ 0 for ρ > ρmax), or a
Gaussian (ρe ∝ e−ðρ=δρÞ2), the latter which we use in the
numerical evolution. Then, the metric (8) asymptotes to
the Minkowski form as q ∝ 1=ρ, h ∝ 1=ρm (though we
have h ¼ 0 for the axisymmetric numerical solutions
discussed later).
We will use the Arnowitt-Deser-Misner (ADM) mass

[63] as a measure of the spacetime energy, integrated on a
cylinder at (arbitrarily) t ¼ 0, with u ¼ t − x, v ¼ tþ x,
centered about the pulse, and taking the size of the cylinder
to ∞:

MADM ¼ βð∞Þ
8

�Z
∞

0

�
dqðρ̃Þ
dρ̃

ρ̃þ qðρ̃Þ
�
dρ̃þ lim

ρ→∞
ρqðρÞ

�
:

ð19Þ

In reaching the above form forMADM, we have assumed the
pulse has finite extent in u, and that h → 0 at least as fast as
1=ρ; thus, the asymmetric piece of the metric does not
contribute to the ADM mass. We can simplify the expres-
sion using (14), giving

MADM ¼ βð∞Þ
8

�Z
∞

0

ρ̃g0ðρ̃Þdρ̃þ lim
ρ→∞

ρqðρÞ
�
: ð20Þ

We are not aware of studies that have explored the validity
of the ADM mass measure for this class of spacetime in
these coordinates, with the exception of the AS solution
itself [64,65]. In Sec. IVAwe show that with the family of
initial data we use, taking the AS limit with fixed MADM
as defined above does give the AS solution with mass
parameter M equal to MADM. Interestingly though, if we
directly evaluate (20) with the exact AS solution, we obtain
M=2. For the regular, limiting sequence of solutions there is
equal contribution of M=2 from the integral along the end
cap of the cylinder [first term in (20)] and the integral over
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the barrel of the cylinder [second term in (20)]. However,
the former piece identically vanishes in vacuum. The AS
solution is singular on the axis (when u ≥ 0) in these
coordinates, which is likely the source of the discrepancy,
and implying a well-behaved limit procedure is needed to
compute the correct ADM quantities (as indeed was the
case for the studies [64,65] mentioned above, where a limit
sequence based on a family of boosted Schwarzschild black
hole spacetimes was used).
The equivalent expression for ðxÞΨ4 (4) is more compli-

cated in the coordinates (8). We will not reproduce the full
expression here, though it is illuminating to consider the
simpler case of an axisymmetric wave, namely, h ¼ 0 (12)
and gm ¼ 0 (13):

ðxÞΨ4;m¼0 ¼ 2πfðuÞ
�
2qðρÞ
ρ

− g0ðρÞ
�
½cosð2θÞ þ i sinð2θÞ�

ð21Þ

where we have substituted in (14). Note that the spatial
tetrad with respect to which we have defined ðxÞΨ4 is still
aligned with the ðx; y; zÞ coordinates, as with (4); hence, the
θ dependence in (21) is due to the rotation of this tetrad
relative to the ðρ; θÞ coordinate basis [i.e., the metric
distortion induced by this gravitational wave is axisym-
metric by construction, and would be manifestly so as
measured by Ψ4 built out of a tetrad aligned with the
ðx; ρ; θÞ coordinates]. For an infinite, homogeneous matter
source with g0 a constant α0, q ¼ ρα0=2 and, as before,
ðxÞΨ4;m¼0 vanishes and the spacetime has no Weyl curva-
ture. However, for a source with finite transverse extent,
outside the region of matter where g0 ¼ 0, q ∝ 1=ρ and so
ðxÞΨ4;m¼0 ≠ 0. Thus, a localized, plane-fronted null fluid
wave does act as a source of “pure” plane-fronted gravi-
tational waves; it is just that the Weyl curvature happens to
vanish within an inner core about the axis if that core has
constant matter density, and the matter distribution remains
axisymmetric throughout the spacetime.

D. Fluid to particle distributions

Though a null fluid is useful to understand plane-fronted
gravitational wave spacetimes propagating in a single
direction, this matter model is not ideal to explore collisions
of such waves. The reason is such matter easily forms
caustics, where the assumption that a single, unique
velocity vector field describing the fluid flow exists, breaks
down. Correspondingly, the Euler equations governing the
flow break down at the caustic, and the solution cannot be
uniquely extended beyond the caustic. This problem of the
lack of a unique velocity vector is actually more pro-
nounced than merely being associated with caustics, as can
be seen imagining the case where we collide two identical
distributions head on, as follows. A pressureless fluid does
not self-interact, and in the limit of weak gravity where the

fluid is propagating in flat space, we thus expect the two
opposing streams to simply pass through each other. This
implies that, in the lab frame where both streams are
observed to have identical energy profiles, there will be a
moment of time symmetry as they pass through each other
where instantaneously the superposed profiles have zero
velocity. This is impossible to realize using a single null
fluid with stress-energy tensor of the form (1) (i.e., a null
vector is incapable of describing a moment of time
symmetry). The problem can be remedied for this particular
scenario by considering two independent, noninteracting
fluids, one describing the right propagating pulse, the other
the left. The stress-energy tensor is a sum of the two
individual fluid stress-energy tensors, and this sum will
accurately reflect the moment of time symmetry. In
particular, there will be no momentum density, but there
will be anisotropic pressure (pressure along the collision
axis, none transverse to it).4 However, when including
gravity, a two-fluid model would only be a temporary fix,
as the gravitational interaction between the streams will
cause focusing, eventually leading to caustics in each flow.
We therefore decide to treat the matter as a distribution of

collisionless particles instead, i.e., as governed by the
collisionless Boltzmann (or Vlasov) equation. We approxi-
mate this using a particle treatment, where the energy
distribution is given by the sum of a large number of
particles, each locally traveling along a geodesic. This
easily resolves the uniqueness issues associated with a
single, global fluid vector field. However, this introduces a
new problem of what exactly we mean by a “particle.” In
Newtonian gravity, the treatment of a pointlike distribution
of energy is straightforward. In contrast, in general rela-
tivity, there is no simple analogue: putting all the matter at a
point, however small the rest mass, produces a black hole.
That suggests one viable particle model is a collection
of black holes for timelike particles, and presumably this
could be extended to null particles by locally taking
AS limits for each black hole. However, a rigorous
(without approximation) implementation of this idea shifts
all “matter” to “geometry” on the left-hand side of the

4The situation is somewhat different if a finite-γ collision is
considered with timelike fluid stars. If the two stars are modeled
with separate ideal fluids that only interact gravitationally, at the
moment of time symmetry in a collision the net pressure tensor
will also be anisotropic. However, here, a single fluid model can
still be adequate to model the collision (as used in [50]), since at
the moment of time symmetry the timelike vector describing the
fluid flow will simply coincide with the lab frame’s velocity four-
vector. Though in this latter case the pressure tensor must still be
isotropic. In the high speed limit there will be a much steeper
pressure gradient along the collision axis (due to the length
contraction of each star in the lab frame) than transverse to it,
which, postcollision, will cause evolution of the fluid to proceed
in a manner at least qualitatively consistent with the case of two
noninteracting fluids (though of course the two models will give
very different outcomes in the low velocity limit).
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Einstein equations, and certainly is not something practical
to implement numerically, even for one AS particle as
discussed above, let alone a large enough number to
approximate a continuum energy distribution.
The second, more practical option, is to treat each

particle as if it were some form of solitonic matter, and
then define some kind of averaging operation that con-
sistently adds the contribution of each particle to the
discrete representation of the stress-energy tensor used in
the Einstein field equations. (Or, alternatively, we can think
of our particles as a discrete sampling of the underlying
continuum distribution described by the Boltzmann equa-
tion, and the problem is how to reconstruct the stress-
energy tensor from this sampling.) The easiest way to do
this would be to assume the particle’s characteristic radius
is much smaller than any mesh cell we will use in a
numerical scheme, and the particle’s energy is sufficiently
small that any self-force effects are negligible compared to
the numerical truncation error. In principle, one could
consider larger particles, as in Newtonian smooth particle
hydrodynamic codes. However, finite size effects might
then need to be considered. Moreover, for particles moving
relativistically, length contraction must be taken into
account, which complicates the averaging operation for
particles that span multiple cells.
We finish this section by writing the relevant definitions

and equations for the particle model, with the averaging
for the stress tensor implied, but not explicitly stated; in
Sec. III E we describe the particular averaging procedure
we use in the code. The stress-energy tensor for a collection
of N particles schematically takes the form

Tab ¼
XN
i¼1

ϵila
i l

b
i ; ð22Þ

where i labels the ith particle, traveling along a geodesic
curve xai ðλÞwith λ the affine parameter along the curve, and
la
i the tangent to the curve:

la
i ≡ dxai ðλÞ

dλ
; la

i lia ¼ −m2
i ; ð23Þ

(no summation over particle label i). Here ϵi is a function
that is related to the energy density of the particle, the
choice of affine parameter, and also the averaging process.
For null particles, the rest mass mi is zero, while for the
massive case, the affine parameter is chosen such that the
proper time τ ¼ miλ. Each particle follows a geodesic of
the spacetime

lb
i∇bla

i ¼ 0: ð24Þ
In an appropriate limit of an infinite number of particles,
this model should reduce to a collisionless Boltzmann
model. Of course, directly discretizing the position-
momentum phase space and evolving the density function

would also be a viable approach to study the ultrarelativ-
istic scattering problem. The computational difficulty to
solving the Boltzmann equation is the additional dimen-
sions required to represent the distribution in phase space.
On the flip side, the computational shortcoming of a
particle model is the slow

ffiffiffiffi
N

p
convergence to the desired

continuum limit.
For distributions that can be described by a single-valued

velocity vector field, the particle model is equivalent to the
fluid model discussed above for single wave fronts. In the
code, as described in the following section, we use the fluid
model to provide initial data, then evolve using the particle
model. We always use a sufficient number of particles in
the latter so that the large N approximation to the con-
tinuum limit is smaller than the numerical truncation error
from the discretization of spacetime, as judged by the
convergence of the constraint equations.

III. NUMERICAL CODE

In this section we describe the numerical code, reviewing
the generalized harmonic formalism we use for represent-
ing the Einstein equations (Sec. III A); some aspects of
initial data (Sec. III B) and gauge choice (Sec. III C),
leaving details to Sec. IV; how we integrate geodesics
(Sec. III D); and how we compute the stress-energy tensor
from a distribution of geodesics (Sec. III E). We focus on
the case of colliding null waves, but besides the discussion
of initial data and gauge conditions, the code is generally
applicable to both null and timelike (massive) particles,
and we demonstrate an application to an inhomogeneous
matter-filled universe in the Appendix.

A. Metric evolution

For the metric tensor, we solve the Einstein equations
using the generalized harmonic formalism:

gcdgab;cd þ gcd;ðagbÞc;d þ 2Hða;bÞ − 2HdΓd
ab þ 2Γc

dbΓd
ca

¼ −8πð2Tab − gabTÞ; ð25Þ

where Γa
bc is the metric connection, T the trace of the stress-

energy tensor, and Ha are the so-called source functions,
defined by

Ha ≡□xa: ð26Þ

Here round brackets denote symmetrization and
□≡∇a∇a. During evolution, the source functions are
treated as independent functions, and can be thought of as
encoding the coordinate freedom of the spacetime.
Therefore, additional conditions/evolution equations need
to be supplied for them, with the definition (26) then
becoming a constraint

Ca ≡Ha −□xa ¼ 0: ð27Þ

FRANS PRETORIUS and WILLIAM E. EAST PHYS. REV. D 98, 084053 (2018)

084053-8



In fact, the time derivative of this constraint essentially
gives the usual Hamiltonian and momentum constraints
(see, e.g., [66]). We numerically solve (25) with constraint
damping terms [67] (together with the gauge evolution
equations discussed later) utilizing a fourth order accurate
finite difference code with adaptive mesh refinement
(AMR), using the methods and techniques described in
[68–70]. (Though since we presently only employ a second
order accurate calculation of the stress-energy tensor from
the particle distribution, as described below, the overall
accuracy of the code is second order in the continuum limit.)
We use Cartesian-like coordinates where xa ¼ ðt; x; y; zÞ,
and for the axisymmetric evolutions presented here use the
modified Cartoon method [71] introduced in [68]. The
modified Cartoon approach still uses the Cartesian form
of themetric, though only evolves a single θ ¼ constant slice
of the spacetime.
One difference for these simulations compared to earlier

studies performed with this code is here we do not spatially
compactify the coordinates. The reason is that with our
initial data (see Sec. IVA for the explicit solutions) the
asymptotic form of the metric, though asymptotically
Minkowski, is not in the usual trivial Cartesian form of
ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2. Compactification trans-
forms the metric into a representation that is singular at
infinity, but beginning from this form of the metric, the
singular portion is easy to factor out analytically, with the
code then only storing the regular part. Though this would,
in principle, be possible to do with the null wave initial
data as well, given the nontrivial, initial-data-dependent
structure of the metric at infinity, it would have required
significant updates to the code. The disadvantage to not
compactifying is then specifying consistent, physically
correct outer boundary conditions becomes challenging.
We bypass this issue by placing the outer boundaries in the
uncompactified code sufficiently far away that they are out
of causal contact with the inner region of the domain where
we will measure properties of the solution.

B. Initial data

For initial data, we superpose two null plane-fronted
waves, one propagating to the right (the þx direction), the
other to the left (the −x direction); see Fig. 2. The right
(left) moving wave has compact support in x < 0 (x > 0) at
t ¼ 0 (i.e., they do not overlap), and each is Minkowski
spacetime on either side of the pulse. For the pulse moving
to the right we use the form of the metric and stress tensor
discussed in Sec. II C, transforming to Cartesian coordi-
nates using5

u ¼ t− x; v ¼ tþ x; y ¼ ρ sin θ; z ¼ ρ cos θ:

ð28Þ

The boundary conditions for the integral defining βðuÞ (10)
are chosen so that the metric to the right of the pulse is in
standard Minkowski form ds2 ¼ ηabdxadxb ≡ −dt2 þ
dx2 þ dy2 þ dz2 (as discussed in Sec. II C, the form of
the metric which is ηab on both sides of the pulse has a ln ρ
divergence within the plane of the pulse). For the pulse
moving to the left, an analogous solution is used, but with
the nontrivial metric and matter functions depending on v
instead of u, and boundary conditions for the analogous
βðvÞ flipped so that the metric is ηab to the left of the pulse.
Then, consistent initial data for the Cauchy evolution
performed by the code is trivial: at t ¼ 0 the solution for
x ≤ 0 is exactly that of the right moving pulse, and for
x ≥ 0 is exactly that of the left moving pulse.

C. Gauge conditions

For the source functions that define the gauge in the
generalized harmonic formalism, we begin with the gauge
of the initial, superposed exact plane-fronted wave sol-
utions. This superposed gauge is not adequate to use after
the interaction of the waves, and so, within an inner volume
of the domain where the interaction takes place, we
smoothly transition to a variant of the damped harmonic
gauge used in earlier high speed soliton collision simu-
lations [49,50]. The explicit form of the initial gauge source
functions and source function evolution equations are given
in Sec. IV B.

u v

x

t

FIG. 2. A spacetime diagram depicting the collision of left and
right moving null-fronted plane waves. The nonlinear interaction
occurs in the region ðu > 0; v > 0Þ, depicted by the darker
shaded region. To the past of this, the spacetime geometry is
either that of one of the null waves (lighter shaded regions), or
Minkowski spacetime.

5As described in Sec. IVA, for the runs presented here we
further transform the metric far to the left (right) of the right (left)
moving pulse to alleviate some of the resolution issues that might
otherwise arise, but that is immaterial to the discussion here.
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D. Geodesic evolution

We solve the geodesic equation (24) for each particle as
follows (dropping the particle label i here for clarity).
Instead of evolving the position xa as a function of affine
parameter λ, we directly integrate as a function of coor-
dinate time t, using dt=dλ ¼ lt. Then the geodesic equa-
tion can be reduced to the following system of seven first
order ODEs, where we use the overdot ð :Þ to denote ∂t:

_xj ¼ lj=lt

_la ¼ −Γa
bcl

blc=lt ð29Þ

where the metric connection Γa
bc is evaluated at the location

of the geodesic xa. In the code, we integrate these equations
using a fourth order Runge-Kutta scheme. We have the
option to enforce the normalization condition lala ¼ −m2

after each time step; there is no unique way to do this, and
we have chosen to solve the normalization constraint for lt.
If the constraint is not explicitly enforced during evolution,
then we can use it as a diagnostic to check that it does
converge to zero at the expected rate; similarly if we do
enforce it, we can use the correction induced to lt after
each time step as the diagnostic quantity that should
converge to zero. In tests we have conducted, both schemes
perform similarly over the relatively short time scale
geodesic evolutions presented here (which for most geo-
desics is much shorter than the net run time as they are
removed from the domain when they enter the excised
region inside the apparent horizon), though constrained
evolution seems to produce more accurate results at fixed
resolution for longer time evolutions.
Initial conditions xaðt ¼ 0Þ and laðt ¼ 0Þ are chosen so

that the initial distribution of particles produces a stress-
energy tensor (as discussed in the following section) giving
a consistent sampling of the desired fluid continuum
limit (9).

E. Calculating the stress-energy tensor

There are two issues that we need to address when
calculating the effective stress-energy tensor used in the
Einstein equations coming from the distribution of par-
ticles. First, how to add the contribution of a particle to the
stress-energy tensor of the cell containing it. Second, how
to efficiently incorporate this averaging process into the
Berger and Oliger (BO) AMR algorithm we use, specifi-
cally as it relates to time subcycling, which naively would
seem to require integrating the same geodesic multiple
times on all resolution levels it overlaps (as the BO
algorithm does for continuum evolution equations).

1. Averaging

The averaging procedure is how we convert the stress-
energy tensor of a single particle into an equivalent cell-
based representation such that we will obtain the same

solution to the Einstein equations in the continuum limit as
adding the contributions from a smooth distribution of
particles. This can be quite complicated if we need high
order accuracy, which nominally would entail distributing a
finite-sized model of the particle smoothly over a set of
cells, taking the variation in the spacetime geometry into
account. For these initial studies, we are not concerned with
high order convergence; second order will suffice, and so
we can avoid all these complications by simply smoothing
a particle to a single containing cell.
To implement this, we demand that the stress-energy

tensor at some moment of coordinate time t, integrated over
the proper volume ΔVp of the cell containing the geodesic,
gives the same energy/momentum that an observer in the
reference frame of the simulation would measure the
particle to have. Here, the relevant observer is that traveling
along the unit timelike vector na normal to t ¼ constant
surfaces, and the corresponding proper volume element is
ΔVp ¼ ffiffiffi

h
p

ΔV, where h is the determinant of the spatial
metric [not to be confused with the metric function hðρ; θÞ
used earlier in the discussion of plane-wave solutions],
and ΔV ¼ ΔxΔyΔz is the coordinate volume element.
A straightforward calculation shows that the contribution of
a single particle with four-momentum la to the effective
continuum stress-energy tensor ðcÞTab of the cell containing
it is

ðcÞTab ¼
1ffiffiffi
h

p
ΔV

lalb

ð−ldndÞ
: ð30Þ

To check this, recall that an observer with four-vector na

measures the energy density of the stress tensor to be
Tabnanb, and measures the total energy of the particle to be
−nala. The net continuum stress-energy tensor is then just
obtained by summing the contribution from all particles in
the cell. Referring back to the schematic form of the particle
stress tensor written in Eq. (22), the equation above defines
exactly what we mean by ϵi. Note that it is not a constant,
and its particular value is affected by our choice of affine
parameter, defined to let us interpret la

i as the physical,
four-momentum of the particle. For a set of timelike
particles, again, la

i ¼ miuai is the four-momentum of a
particle of rest mass mi and four-velocity uai .
In our code, we discretize the Einstein equations using a

vertex-centered mesh. To obtain a second order accurate
representation of the vertex-centered stress tensor, we take
the above computed ðcÞTab for each particle, and distribute
it to the surrounding vertices, linearly weighting the
contribution to each vertex based on the distance of the
geodesic from it.

2. An efficient evolution scheme within the Berger
and Oliger time subcycling algorithm

The BO AMR algorithm [72] uses a grid hierarchy
consisting of nested grids, where finer resolution (child)
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grids are entirely contained within coarser resolution
(parent) grids. A collection of grids at the same resolution
is called a level. Hyperbolic differential equations discre-
tized on such a hierarchy are evolved in time using the
following algorithm (for a more detailed description and
pseudocode see [73], for example). For simplicity, assume
the refinement ratio between successive levels is two, and
the same Courant-Fredrichs-Lewy (CFL) factor is used on
all levels (as used in our code). Beginning from the same
starting time, on any given level, one time step of size Δt is
taken on all the grids at that level before two times steps of
size Δt=2 are taken on the grids of the child level. This rule
is applied recursively.
The reason for this scheme is so that the solution from

the parent level can be used to set boundary conditions at
child level interior boundaries, via interpolation in time
from the parent solution. [At computational domain boun-
daries the relevant partial differential equation (PDE)
boundary conditions are always applied.] Also, this time
subcycling is optimally efficient for hyperbolic PDEs in the
sense that each level is evolved with the same CFL factor
(as opposed to schemes where all levels, or a single level
but with nonuniform grid cells, are evolved with the same
time step; the effective CFL factor for coarse levels/cells in
such an approach could be much smaller than necessary for
stable evolution). Note also that on parent levels the unigrid
evolution is applied everyone, even at regions where a
higher resolution child grid is available; the subsequent
solution from the child grid evolution is injected back into
the parent level after they both are in sync again, so the
discrete solution after each global time step is always
single-valued. This might seem like a waste of computa-
tional resources, though it is a relatively minor expense
(most of the computation happens on the finest levels
covering any region), and significantly simplifies the
development of AMR capable codes in that the underlying
PDE evolution scheme can be almost completely ignorant of
the mesh hierarchy (it only needs to know which boundaries
are physical vs interior, and for interior boundaries it simply
leaves the corresponding points untouched).
We would now like to include our geodesic integration

within the BO AMR algorithm and, following the spirit of
the algorithm, we want to solve the coupled Einstein-
particle equations on each grid in a manner which relies
minimally on knowledge of what mesh hierarchy the grid is
part of. However, the problem here is because the geodesics
are lines through the spacetime, and are integrated via
ODEs, they do not have the same natural multiscale
representation on a BO mesh hierarchy that continuum
functions, such as the metric or stress tensor, have. Yet, we
still want the solution to the geodesics to be computed
using metric values from the finest mesh containing the
geodesic. How then do we evolve geodesics, and use them
to define the stress-energy tensor, within the recursive, time
subcycling algorithm? One simple option is just restart each

geodesic for every finer level containing it, with the last then
giving the most accurate solution that is kept. The problem
with this is it will be very computationally inefficient for a
deep hierarchy, as we do not have amultiscale representation
of the set of geodesics; i.e., each geodesic is integrated L
times if the depth of the hierarchy is L at the location of
the geodesic. (This problem is mitigated for mesh-based
PDE evolution because of the multiscale representation—
effectively, the number of mesh points where the PDEs are
multiply integrated drops as 1=2d per level if the refinement
ratio is 2, and there are d spatial dimensions.)
One workaround would be to introduce a multiscale

sampling of the continuum matter distribution where, say,
the geodesic number density per cell is kept fixed going
from level to level, and a coarse-level geodesic is some
average of 2d fine-level geodesics. This would complicated
the structure of the AMR driver significantly.
The solution that we take instead is to adapt the scheme

proposed in [73] for evolving a system of elliptic-
hyperbolic PDEs within the BO time-stepping framework.
A similar problem to the above arises for the elliptic
equations, and without going into detail here, the solution
is to not solve the elliptic equations when descending the
recursive tree (going from course to fine), when the
hyperbolic equations are solved. Rather then, values for
the elliptic variables are extrapolated from prior time levels,
and instead the elliptics are solved when ascending the
recursive tree (when hyperbolic variables are injected from
fine to coarse levels). The way this algorithm is adapted to
particles is when descending the recursive tree and the
Einstein equations are solved, the stress-energy tensor used
on the right-hand side in each cell is either (a) extrapolated
from past time levels in regions where finer levels exists,
and in these cells no geodesics are integrated, or (b) the
geodesics within the cell are integrated (this is thus the
finest level containing them) and used to compute the stress-
energy tensor for the neighboring vertices as described
above. When ascending the tree, the most accurately
available stress-energy tensor values are injected back up
to coarser levels.
The reason this approach was simpler for us is the AMR

driver code we use (PAMR/AMRD code [74]) already has
infrastructure to handle the extrapolation: we simply define
the stress-energy tensor as if it were an elliptic variable in
the code, and all the unigrid geodesic integration code
needs to know is whether a given cell is the finest cell: if so,
the geodesics within it are integrated and the stress tensor
computed there. In the present code we save two past time
levels, which is adequate to allow second order accurate
extrapolation, and maintain overall second order accuracy
of the evolution (the metric and geodesics are still evolved
with fourth order accurate Runge-Kutta, but the stress-
energy energy calculation discussed above is only second
order accurate, independent of the way we evolve the
geodesics within the BO framework).
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In the remainder of the main text, we will focus on an
axisymmetric, null-particle case. However, we have also
tested this code for 3D (i.e., nonaxisymmetric) calculations,
as well as with massive (timelike) particles, as we dem-
onstrate in the Appendix with results from a simple
inhomogeneous cosmology setup.

IV. RESULTS: BLACK HOLE FORMATION IN
AXISYMMETRIC, HEAD-ON COLLISIONS

Here we present results from simulations of the head-on
collision of two axisymmetric null dust-sourced plane
gravitational waves. We select initial data to closely
link to the Aichelburg-Sexl limit. As discussed in the
Introduction, Penrose first looked at the AS case. Assuming
a mass based on the initial apparent horizon area is a lower
limit to the mass the black hole settles down to, and hence
the difference between the initial spacetime and apparent
horizon mass is an upper limit to the gravitational radiation
EGW emitted during the collision, Penrose’s computation
gives EGW < 29%. D’Eath [75] and D’Eath and Payne [53]
perturbatively explored the far-field region of the AS limit,
and were able to directly estimate the gravitational wave
emission, arriving at EGW ¼ 16.4%. Approaching the AS
collision from finite-γ timelike compact object collisions,
[51] first collided black holes up to γ ¼ 2.9, and extrapo-
lating the results to γ ¼ ∞, found EGW ¼ 14� 3%. This
scenario was extended to γ ≈ 7 in [76], where they
estimated EGW ¼ 13� 1%.6 In [50], compact fluid stars
with up to γ ¼ 12 were collided, and it was found that
EGW ¼ 16� 2%.
Similar to Penrose’s first investigation where he found an

apparent horizon at the moment of impact, earlier studies of
null-radiation (gyraton) interactions were able to show
apparent horizon formation [77]. (These authors considered
more general models of gyratons including rotation [78];
the null-particle case maps to nonrotating gyratons.) Here
we are able to follow the evolution of spacetime through the
formation of an apparent horizon which eventually settles
down toward a Schwarzschild black hole, together with
gravitational radiation streaming away from the collision.
Regarding the net gravitational wave energy emitted, as
explained below, we are not able to characterize the initial
decay of the waves close to the collision (where we can
measure them) in a manner that allows extrapolation to
infinity in order to accurately calculate the energy they
contain. Instead then, we assume EGW is the difference
between the initial spacetime mass and late-time apparent

horizon mass, the latter which we can compute accurately,
and using a conservative upper bound of 0.1% of energy in
particles that escaped entrapment by the black hole as an
additional source of uncertainty, obtain EGW¼14.9� 0.8%.
As discussed more below, we expect this scenario to give
EGW which is a little below the AS limit by ∼0.3%.
The structure of the remainder of this section is as

follows. In Sec. IVAwe describe the specific initial data we
use, in Sec. IV B we discuss our gauge source function
evolution equations, and in Sec. IV C we present the results
from the simulations, including convergence tests.

A. Initial data

Here we give the particular form of a single, right (þx)
propagating null fluid wave front we use for initial data in
the numerical evolution (the left propagating front has
identical form, with x → −x, as discussed in Sec. III B).
For simplicity, here we show the pulse centered at x ¼ 0,
though it is trivial to shift it to any desired starting location
at t ¼ 0. We begin with the metric in the form (8) and, since
we are restricting to axisymmetric spacetimes here, h ¼ 0:

ds2 ¼ −dudvþ 2βðuÞqðρÞdudρþ dρ2 þ ρ2dθ2: ð31Þ

For the matter profile, we use a piecewise polynomial
function in u, and a Gaussian in ρ. Defining ū≡ u=Δu,
ρ̄≡ ρ=Δρ, with Δu and Δρ constant parameters that
define the scale of the profile,

ρeðu; ρÞ ¼ fðuÞg0ðρÞ; ð32Þ

fðuÞ ¼

8>><
>>:

0; ū < −1
ðū2 − 1Þ2; −1 ≤ ū ≤ 1

0; ū > 1

ð33Þ

g0ðρÞ ¼ Ae−ρ̄
2

; ð34Þ

where A is a parameter controlling the amplitude of the
wave (note here that the u extent of the pulse is 2Δu, a
factor of 2 different from the discussion in Sec. II B).
Equations (10) and (14) then give

βðuÞ
4πΔu

¼

8>>><
>>>:

0; ū < −1h
1
5
ū5 − 2

3
ū3 þ ūþ 8

15

i
; −1 ≤ ū ≤ 1

16
15
; ū > 1

ð35Þ

qðρÞ ¼ A
Δρ
2ρ̄

½1 − e−ρ̄
2 �: ð36Þ

The ADM mass for this spacetime evaluates to

6This might seem in mild tension with our quoted number,
though looking at Figs. 9 and 10 of [76] suggests there is an
effective systematic uncertainty associated with the different
classes of initial data and codes they use that might warrant a
slightly more conservative error estimate, and so we think there is
not yet any significant indication that the two different ap-
proaches will not reach the same AS collision spacetime in their
respective limits.
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M̄ ¼ A
8π

15
ΔuΔρ2: ð37Þ

If we take the point-particle limit Δu → 0, Δρ → 0, keep-
ing M̄ fixed, (31) becomes, for ρ > 0,

ds2 ¼ −dudvþ 8M̄
ρ

ΘðuÞdudρþ dρ2 þ ρ2dθ2; ð38Þ

where ΘðuÞ is the Heaviside step function. For ρ ¼ 0, the
metric in (31) always has guρ ¼ 0 by regularity, but if
instead we define (38) as the metric including ρ ¼ 0, then
this is the AS solution if we identify its total energy m with
M̄. Interestingly, as discussed in Sec. II C, if we were to
take (38) (with M̄ ¼ m) as a vacuum solution to the
Einstein equations and directly use it in the ADM for-
mula (19), the latter would give an ADMmass ofm=2.7 For
the matter sourced spacetimes with the above energy
profile, each line in the formula (19) contributes m=2,
but the first line is identically zero for vacuum spacetimes.
A further curious property of this solution is, trans-

forming to Cartesian coordinates via (28), the lapse
function is α ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2q2

p
. The lapse becomes singular

when βq ¼ 1, implying the t ¼ constant hypersurface fails
to be globally spacelike, and hence cannot be used as initial
data in a Cauchy evolution fixed to this time coordinate.
For the AS solution, this occurs to the left of the shock for
ρ ≤ 4m; for matter solutions this implies we cannot use
initial data in these coordinates if Δρ≲ 4M̄. Of course, this
is just a coordinate singularity, though what is curious
about it is it seems to “anticipate” black hole formation in a
collision: colliding two identical pulses each with mass M̄,
the total spacetime mass will be 2M̄, and the hoop
conjecture argues a black hole should form following
collision if all the matter is focused inward within a hoop
of radius 4M̄, the limiting estimate for Δρ for each pulse to
have a well defined lapse.
An issue with the above coordinate system that relates to

computational cost is that to the left of the pulse there is
nontrivial structure in the metric within a region of size Δρ
of the axis, all the way to x → −∞. Numerical experiments
show that for long-term stable evolution this region needs
to be resolved with essentially the same resolution as the
inner part of the domain where the collision occurs, even
though the x → −∞ part of the spacetime is simply
Minkowski, with no dynamics. This is somewhat wasteful,
and suggests we should transform back to the ηab repre-
sentation of Minkowski here. Though, as discussed in
Sec. II B, we suspect one cannot transform to exactly this

representation after the wave while also maintaining ηab as
the form of Minkowski ahead of the wave (which is desired
for the simplicity of initial data construction) and not
introducing a ln ρ divergence as ρ → ∞ within the plane of
the matter. However, we can partly transform back to ηab
postshock, in particular, in a region about the axis. In a
sense, this can spread the nontrivial structure over a larger
region in ρ that then needs much less resolution to resolve.
To do this, before transforming to the Cartesian form
from double null coordinates, we rescale v following a
generalization of (7):

v ¼ v̄þ GðρÞLðuÞ: ð39Þ

This transforms (31) to

ds2 ¼ −dudv̄þ ð2βq − G0LÞdudρ −GL0du2

þ dρ2 þ ρ2dθ2; ð40Þ

where, for simplicity, we do not show the functional
arguments, and prime ( 0) denotes a derivative with respect
to the function’s argument. To not affect the form of the
solution within the wave or ahead of it, we choose Lðu <
uL1Þ ¼ 0 for some uL1 > Δu, and let L smoothly increase
to one over the region uL1 < u < uL2 (in the numerical
calculation we use a piecewise fourth order polynomial
function for this). For G we choose G0ðρÞ ¼ 2β0qðρÞTðρÞ,
where Gð0Þ ¼ 0, β0 ≡ βðu ¼ ∞Þ, and TðρÞ is a transition
function that is one for ρ < ρm1, and smoothly (again via a
piecewise fourth order polynomial in the numerical calcu-
lation) goes to zero over the region ρm1 < ρ < ρm2. The
axis resolution issues arose from the dudρ term in the
metric; with this transformation we therefore eliminate this
term in the region ρ < ρm1, u > uL2, and slowly reintro-
duce it over a longer scale in ρ controlled by ρm2 − ρm1. The
transformation creates a new du2 piece of the metric within
u ¼ uL1…uL2, though its size can likewise be controlled
by uL2 − uL1.

B. Gauge evolution

At the initial time, and for a short time thereafter, the
gauge source functions Haðt; x; y; zÞ are simply set to the
superposition of those of the exact solutions; i.e., (26)
evaluated with the relevant version of (40), after each is
shifted in u or v to have the pulses at the desired starting
positions, and then transformed to Cartesian coordinates.
This simple gauge prescription actually works even through
collision for weak pulses that are not close to forming black
holes, but for strong pulses leads to a coordinate singularity
some time after the interaction. Therefore, at a specified
time before the collision we smoothly transition the gauge,
over a chosen time period, and within a chosen spatial
volume of the origin, to the damped harmonic gauge

7Note that for a pure vacuum case one could still use the metric
ansatz (8) with h ¼ 0 in axisymmetry, but would then not impose
the conditions (10) and (11) that otherwise seem to link β to ρe;
instead βðuÞ can then be considered the arbitrary function we
choose to specify the longitudinal extent of the pulse.
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described in [49] with amplitude parameter ξ (which is
equivalent to A15 in [79] with ξ ¼ μL ¼ μS and p ¼ 1=2).
The evolution is not particularly sensitive to exact

parameter values, with ξ ∼Oð1=MÞ (M is the total mass
of the spacetime), and as long as the transition in time takes
place within OðMÞ of the collision, and within a volume
that comfortably encloses the apparent horizon. For the
simulations presented below, we use ξ ¼ 2=M, transition to
damped harmonic within t ¼ M=2 (with a fourth order
piecewise polynomial in time), and within a coordinate
sphere of radius r ¼ 150M of the origin. From r ¼ 150M
to r ¼ 200M the gauge smoothly (again with a fourth order
polynomial) transitions to the superposed initial data gauge,
and remains that from r ¼ 200M to our outer boundary at
jxj ¼ y ¼ 250M. The simulations are run until t ¼ 175M,
and the two pulses are set apart so that the interaction
begins within t ∼M=2.

C. Case study

Here we present the results from simulations of the head-
on collision of two plane-fronted gravitational waves,
sourced by null particles. We choose initial conditions to
connect to the shock-front AS collision limit, i.e., large
amplitude waves that promptly form a single encompassing
black hole, and whose characteristic width is smaller than
its transverse length, the latter corresponding roughly to the
size of the eventual black hole. Specifically, each initial
pulse is given a profile of the form (32)–(34), with
Δu=Δρ ¼ 1=8, and Δρ ¼ 3.125M̄. (This is close to the
maximum compaction in ρ we can choose in these coor-
dinates;Δρ is a bit less than the rough estimate of4M̄ given in
Sec. IVA, which would be exact for a constant density with
sharp ρ cutoff.) The total mass of the spacetime isM ¼ 2M̄.
The facing edges of each pulse are set∼1M apart, so that they
begin to interact within t ∼M=2, and an apparent horizon is
first detected at t ¼ 1.1M.
Choosing large amplitude data with Δu=Δρ ≪ 1 results

in essentially all the matter falling into the black hole (some
particles in the Gaussian tail do escape), and so the post-
collision spacetime closely connects to the vacuum AS
collision problem. The true limit would take both Δu
and Δρ to zero, with the matter distribution approaching a
delta function. As discussion above, we cannot make Δρ
arbitrarily small with this class of initial data; however, for
Δu=Δρ ≪ 1, a black hole forms promptly, and the gravi-
tational interaction that happens outside the black hole
transverse to the collision is then, by causality, going to be
independent of how small Δρ is within the black hole (the
asymptotic falloff in ρ outside the matter region is insensi-
tive to Δρ for a sequence with fixed MADM and Δu). So in
that sense, in terms of Δρ, we believe we are quite close to
the AS limit. Our initial data allows us to make Δu
arbitrarily small (for fixed MADM and Δρ). However, the
smaller Δu is, the more computationally expensive
the simulations become, as this length scale needs to be

resolved. In the limit Δu → 0, the geometry becomes
shocklike, and this feature will persist (at least along the
leading edge of the shock) postcollision. In terms of starting
to resolve a shocklike feature, we are quite far from the AS
limit. (In a relative sense, any finite Δu is always infinitely
far from Δu ¼ 0; a more physical measure might be the
width of each initial wave 2Δu divided by the final black
hole diameter ≈4M, which here equals ∼0.1.) Regarding
net gravitational wave emission, we ran a preliminary
survey decreasing Δu to as low as Δu=Δρ ¼ 1=32, and
extrapolating, this suggests the Δu=Δρ ¼ 1=8 case under-
estimates the AS limit net energy emission by ∼0.3%.
However, these runs were performed with the same h0
resolution (see below) as the Δu=Δρ ¼ 1=8 case presented
in detail here, which effectively means successively worse
resolution for smaller Δu. Hence, the ∼0.3% number
should be considered a rough estimate. Again, it would
take significant computational resources to explore the AS
limiting sequence in detail and accurately, and we leave that
for future work.
Another practical reason for studying this point in

parameter space for this first application of the null-particle
code, is the black hole that forms cleanly hides extreme
focusing onto the axis with these axisymmetric profiles.
The matter is pressureless (except for the effective aniso-
tropic pressure that arises in multistream regions), and the
initial data has no angular momentum about the symmetry
axis, so even if no singularities form, nothing prevents
the distribution from focusing to very small length scales,
and to maintain convergence when this happens requires
computationally expensive, deep mesh hierarchies.
Our base case resolution (which we label with h0) is such

that the coarsest level of the AMR hierarchy covers the
entire domain x ∈ ½−250M; 250M�, y ∈ ½0; 250M� with
cell widths of size 1.5625M, and has up to seven levels
of 2∶1 refinement, giving a minimum possible cell width of
ð1.5625=128ÞM. The hierarchy is dynamically generated
via truncation error estimates. We evolve until t ¼ 175M,
and when measuring some property of the solution restrict
the measurement domain to be out of causal contact with
the boundary (assuming unit light speed) to mitigate
inconsistencies that may arise due to our outer boundary
conditions (which are given by superposed exact null wave
solutions). We sample each matter distribution with n0 ¼
3.84 × 105 geodesics, which prior experimentation has
shown is adequate to have the

ffiffiffiffi
N

p
error be smaller than

the discrete mesh truncation error (and we also demonstrate
that in Fig. 3).
To check convergence—see Figs. 3 and 4 for norms

of the Einstein and geodesic equation constraints
respectively—and compute error estimates, we also ran
simulations with 1.6 and 2× finer (h0=1.6 and h0=2) base
level resolution, adjusting the truncation error threshold in
the AMR algorithm to generate finer levels according to the
expectation of overall second order convergence. We also
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in tandem change the number of particles by n0 × l4 when
the spatial resolution is scaled by h0=l. One factor of l2

keeps the particle density, hence, the
ffiffiffiffi
N

p
error the same in

each cell, and the additional factor of l2 is then to further
increase/decrease the resolution of the sampling within the
cell to match the scaling of the mesh-based truncation error.
This highlights how computationally expensive a particle-
based code is to achieve high accuracy, and it is not clear
in this respect that it offers any advantage over directly
discretizing the Boltzmann equation in phase space (our
main reason for going the former route is simplicity of
implementation).
See Fig. 5 for a plot illustrating the collision in terms of

the gravitational radiation produced, measured with ðrÞΨ4,
the Newman-Penrose scalar with tetrad adapted to measure
outgoing radiation propagating in the radial coordinate
direction r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Evident in the figure is that

the radiation, roughly speaking, appears to be composed of
two components. One is the longer wavelength feature

expected from the dominant quadrupolar quasinormal
mode (QNM) oscillation of the black hole created during
the collision. The other can be associated with the initial
wave front, the inner part of which is trapped by the black
hole, while the remainder propagates about the black hole
ad infinitum, forming the concentric, circularlike features
of characteristic wavelength close to 2Δu. In the AS limit
where Δu → 0, the leading edge of this feature presumably
remains shocklike.
The tetrad used to compute ðrÞΨ4 is completed with

vectors tangent to the sphere r ¼ constant; we define the
corresponding angles on the sphere so that θ measures the
angle from the z axis (so the simulation plane z ¼ 0, y ≥ 0
is θ ¼ π=2), ϕ ¼ 0 (ϕ ¼ π) coincides with the plane x > 0,
y ¼ 0 (x < 0, y ¼ 0), and ϕ ¼ π=2 (ϕ ¼ 3π=2) coincides
with the plane x ¼ 0, y > 0 (x ¼ 0, y < 0). Thus, on the
positive x axis, this tetrad will be exactly that used to define
ðxÞΨ4 (21), and similarly on the negative x axis but flipped
to measuring radiation propagating outward along the −x
direction. This then gives us one way to easily understand
the feature in Fig. 5 that ðrÞΨ4 vanishes on the collision (x)
axis. Even though the presence of the matter forces ðxÞΨ4 to
vanish on the axis in the initial data [see the discussion after
equation (21)], most of the matter region immediately falls
into the black hole, and essentially all the radiation that
reaches the axis can be traced back to vacuum regions along
the initial wave fronts. Here, the polarization relative to an x
direction propagation vector [indicated by the cosð2θÞ and
sinð2θÞ terms in (21)] required for the wave to be
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FIG. 4. Log of the L2 norm over all geodesics of the
normalization constraint lala ¼ 0 when performing a free
evolution of the geodesic equation (units/normalization arbitrary
up to a constant shift). The curves end once an apparent horizon is
first detected, after which we remove any geodesics (the vast
majority of them for this initial data) in the then excised region of
the domain. Constrained evolution gives lower norms for the
corresponding error calculated when adjusting the lt component
of each geodesic to enforce the constraint, though for these short
geodesic evolutions the difference in the affect on the spacetime
truncation error is negligible.
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FIG. 3. Log of the L2 norm of the constraints (27) over the
inner x ∈ ½−125M; 125M�, y ∈ ½0; 125M� portion of the compu-
tational domain (units/normalization arbitrary up to a constant
shift). Shown are three characteristic resolutions, with the number
of particles n0 scaled as explained in the text when changing the
base resolution h0. For the h0 case, data from two additional runs
are shown with different numbers of particles, demonstrating that
here we are essentially in the domain where the grid-based
truncation error is dominating the solution error. The trends with
resolution are broadly consistent with second order convergence;
some of the spikes in the higher resolution curves, particularly
noticeable for the highest resolution (solid black) curve at early
times, are due to the mesh-refinement algorithm temporarily
dropping a highest resolution grid, and so during that time in the
region about the black hole (which dominates the constraint error)
the grid resolutions of the h0 and h0=2 simulations are actually
the same. Of course, we could have required the hierarchies to be
identical amongst the runs to give cleaner looking convergence
plots, but as that is not typically how we do runs, the above is a
more representative example of the convergence behavior
of the code.
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axisymmetric about the collision axis is such that when a
ring of waves focuses to the axis, their sum must be zero.
Despite the fact that symmetry forces ðrÞΨ4 to be exactly

zero on the axis, an interesting property of the radiation is

how strongly beamed it is about the axis (this is consistent
with perturbative calculations of the scattering problem,
and also noted in high speed collisions of black holes
[51,76]). This is further illustrated in Fig. 6 showing

FIG. 5. Four snapshots of ðrÞΨ4 × rM from the collision described in the text. Times from top left to bottom right are t ¼ 0M, 5M,
20M, and 50M. The symmetry (x) axis is horizontal and passes through the center of each panel; we only simulate the top (y ≥ 0) half of
the plane, but for visualization purposes also show y ≤ 0. The size of each panel is 150M × 150M. The central black dots in the panels
after t ¼ 0 indicate the black hole that formed, and are specifically the excised regions, set to 60% of the size of the apparent horizon at
each time. By t ¼ 5M, >99.9% of the null particles sourcing the initial wave fronts have fallen into the black hole, and to excellent
approximation then and in subsequent panels the spacetime is vacuum exterior to the excised regions. (Note that the implied amplitude
of the initial wave fronts in the top left panel is misleading. At t ¼ 0, the two pulses are moving in the x direction, but are offset from
y ¼ 0, so that ð4ÞΨ4 measures some radiation is simply because the r tetrad direction has some overlap with the propagation direction.
However, that the magnitude appears not to decay with distance from origin at t ¼ 0 is entirely due to resolution effects [ðxÞΨ4 given by
(21) drops off like 1=ρ2]: the mesh-refinement algorithm successively lowers the resolution moving outward, and because of how thin in
x the initial waves are, far from the origin these features are significantly under-resolved. This is exacerbated in the calculation of ðrÞΨ4,
which requires second gradients of the metric. As evolution proceeds, the Kreiss-Oliger numerical dissipation we use smooths out these
under-resolved features.)
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ðrÞΨ4ðtÞ at three radii (r ¼ 50M, 75M, and 100M), and two
angles relative to the collision axis (at a right angle
ϕ ¼ π=2, and close to it with ϕ ¼ π=32). Figure 7 is the
same data plotted on a logarithmic scale, to highlight the
decay of the waves. Interestingly, the latter plot shows that,
transverse to the collision axis, the decay rate is broadly
consistent with the decay of the least damped QNMs, but
less so near the axis. Also, the time shifts required to align
the waves on the plots indicate different effective propa-
gation speeds along the axis versus transverse to it; how
much of this is simply due to gauge (time slicing, how the
coordinate r relates to some geometric radius, etc.) as
opposed to slightly different geometries the different parts
of the wave are propagating through is unclear.

The above observations suggest at least part of the
outgoing radiation might be not be captured as a sum of
Schwarzschild QNMs (which do not form a complete
basis), as in a sense the initial wave fronts are part of
the initial data, and not “produced” by a perturbed black
hole. However, since the decay of such a wave front
propagating about the black hole will be controlled by
the unstable photon orbit, similar to QNMs, at least at late
times there may be no practical distinction between what is
a QNM versus what is a remnant of waves from the
initial data.
In Fig. 8 we show an estimate of the black hole mass that

forms as a function of time, calculated by computing the
area of the apparent horizon. In Fig. 9 we show the ratio
Ceq=Cp of proper equatorial to polar circumference of the
horizon, illustrating the early time dynamics and sub-
sequent decay to a Schwarzschild black hole. From the
area, we estimate the mass of the remnant black hole to be
Mah ¼ 0.851� 0.007M. Given that the particles that
escaped being trapped by the black hole collectively
contain less than 0.001M of energy, we can infer that

50 100 150
t/M

-15

-10

-5

0

ln
|(r

) Ψ
4

 . 
rM

| (
φ=

π/
2)

r=50M
r=75M (t=t-26.3M)
r=100M (t=t-52.3M)

50 100 150
t/M

-15

-10

-5

0

ln
|(r

) Ψ
4

 . 
rM

| (
φ=

π/
32

)

r=50M
r=75M (t=t-25.0M)
r=100M (t=t-50.0M)

FIG. 7. The natural logarithm of the magnitude of the same data
shown in Fig. 6. For reference, overlayed (orange double-dot
dash) is a straight line segment with slope −0.089, which is the
expected QNM decay rate of the least damped l ¼ 2 quadrupolar
mode (see, e.g., [80]); note that this line is not a fit to the data.
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FIG. 6. ðrÞΨ4ðtÞ × rM measured at three radii and two angles
relative to the origin (the top panel is at a right angle relative to the
collision axis, the bottom panel is at ϕ ¼ π=32 from the collision
axis); see Fig. 7 for the same data on a logarithmic vertical scale.
The r ¼ 75M and r ¼ 100M date were shifted in time by the
amounts shown in the legend to account for the different
propagation times (and note that these shifts are different for
the two panels). Though the simulation was run to t ¼ 175M, the
data for the r ¼ 100M point was truncated at t ¼ 150M to avoid
possible artifacts coming from the computational boundaries at
jxj ¼ y ¼ 250M, assuming a unit coordinate light speed. Note
that, particularly near the axis, we are not yet sufficiently far from
the collision that we see the expected 1=r decay of the wave. (In
the wave zone, given the scaling of Ψ4 by rM, the shifted waves
should have the same amplitudes.)
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the energy emitted in gravitational waves is EGW ¼ 14.9�
0.8% of the initial spacetime mass M.
Integration of ðrÞΨ4 measured on coordinate spheres

gives order-of-magnitude consistent values, specifically
20.3%, 18.0%, and 16.3% integrated on spheres of radius
r ¼ 50M, 75M, and 100M, respectively, from the h0=2 run.
However, this does not seem to be sufficiently far into the
wave zone, in that we do not yet see the expected 1=r decay
in the waveform, which would allow extrapolation to
r ¼ ∞ for an accurate estimate. This mostly seems to be
due to near-axis beaming of the radiation, illustrated in
Fig. 6. In addition, a couple of other effects, one gauge, the
other numerical, hinder trying to fit the energy to a more
complicated 1=r series expansion, and so for now we will
take the apparent horizon based estimate as the more
accurate measure of total energy radiated. The numerical
issue is related to the short wavelength component of the
radiation, proportional to the width 2Δu of the initial data,
and is responsible for the concentric rings evident in Fig. 5.
This is not well resolved by the grid in the wave extraction
zone, and numerical dissipation attenuates this feature more
rapidly than the longer wavelength components of the
wave. The gauge issue is related to the significant gauge
dynamics we have as we transition from the initial data
coordinates to the damped harmonic gauge post collision.
This is more pronounced closer to the origin, and is
exacerbated by our naive procedure of measuring radiation
on r ¼ constant coordinate spheres, and simply using 4πr2

as their geometric area (which is only correct asymptoti-
cally). Certainly a combination of improved resolution,
farther extraction, and a more geometrically sound con-
struction of extraction spheres could alleviate these issues,
though that will take considerable effort and computational
resources, and we leave it to future work.

V. CONCLUSIONS

We have described a formalism for studying the ultra-
relativistic scattering problem using plane-fronted distri-
butions of null particles as a matter source. We have
developed a numerical code based on this, and as a first
application presented a study of black hole formation in
head-on axisymmetric collisions, with parameters of the
particle sources chosen to give a postcollision spacetime
close to that expected to be produced by the collision of two
Aichelburg-Sexl shock waves. We find results broadly
consistent with prior studies of this limit, whether pertur-
batively, or via full numerical solution but using finite boost
compact object models of particles. Specifically, based on
the area of the resultant black hole that forms, we infer
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FIG. 8. The mass of the black hole estimated from the area of
the apparent horizon, for three different resolutions. The apparent
horizon is first detected around t ¼ 1.1M in all cases, though
between t ∼ 4–7M the apparent horizon finder fails to find it to
within a reasonable tolerance (we use a flow method, assuming a
“star shaped” surface, and though the horizon is quite deformed
here, it is not close to violating this assumption). We are not sure
why this happens, however, the temporary loss of this surface that
guides excision (the excision surface is set to the same shape as
the apparent horizon, but 60% its size, and is frozen in shape
when the finder fails) does not affect stability at the excision
surface, implying characteristics remain ingoing there.
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FIG. 9. The ratio of proper equatorial to proper polar circum-
ference Ceq=Cp of the apparent horizon from the h0 resolution
case, to illustrate the initial dynamics of the horizon and its
ringdown to a Schwarzschild black hole. For the default reso-
lution we use to resolve the horizon, namely uniformly dis-
cretized in ϕwithNah ¼ 33 points, Ceq=Cp is not calculated with
a similar accuracy as the area; see Fig. 8 (for which the estimated
fractional error in Mah is 0.8%, compared to 3.3% for Ceq=Cp).
However, this is not a reflection of the underlying accuracy of the
spacetime solution, as demonstrated by the higher resolution
apparent horizon finder curves, with the same h0 spacetime
resolution. Ceq=Cp is converging to the expected value of one at
first order [dominated by integration truncation error on the axis
(ϕ ¼ 0, π)]. We do not typically run with higher apparent horizon
resolutions, as the flow method’s computation time scales poorly
with Nah, and is also more challenging to robustly find a very
dynamical horizon to within low tolerance, as indicated by
additional times between t ∼ 18–22M when the higher resolution
cases fail to find the horizon.
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14.9� 0.8% of the initial mass of the spacetime is radiated
as gravitational waves during the collision. We leave it to
future work to explore in detail where this particular case
fits into a limiting sequence reaching the AS limit, though
we estimate in terms of net gravitational wave emission this
is slightly below the AS limit by ∼0.3% (hence the quoted
value of 15� 1% in the abstract as the implied value for the
AS limit).
In terms of other future directions, there are numerous

avenues that can be pursued, many of them outlined in the
Introduction, so we will not repeat that discussion here.
Rather, we will briefly mention a few outstanding issues in
the code that would need to be addressed before the full
breadth of applications could be tackled. First is simply the
computational expense of the simulations, in part due to the
scaling of particle number N required to achieve a desired
level of accuracy (which will be more severe for 3D
applications than the axisymmetric 2D case presented
here), and in part that the collisionless particle model
generically allows focusing to caustic regions. In principle,
the latter problem could be alleviated by including some
form of self-interaction between the particles that produces
an effective pressure; however, it is unclear to what extent
that kind of matter could be used as a consistent source for
plane-fronted gravitational wave spacetimes. A second
issue is that earlier studies (in particular [50]), and pre-
liminary investigations with this code, show the gauge
conditions (i.e., source function evolution equations) that
work well for prompt black hole formation are not adequate
for slightly weaker interactions where the spacetime is
highly dynamical but does not immediately (or will not
ever) form horizons. What typically happens with the
current gauges is a coordinate singularity forms. This is
also a problem that has plagued attempts to study vacuum
critical collapse (see, e.g., [81]), and if the critical solution
is universal it would not be surprising if a single class of
novel gauge conditions could solve the coordinate issues
for both these applications.
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APPENDIX: APPLICATION TO
INHOMOGENEOUS COLD
MATTER COSMOLOGY

In this Appendix, we briefly present some results of
applying the methods discussed in the main text for
evolving the Einstein equations, coupled to particle dis-
tributions, to the case of inhomogeneous cold matter in an
expanding universe. We do this both to demonstrate that
these same methods can be applied to massive (timelike)
particles, and in three spatial dimensions, as well as to
further validate the code by comparing it to known results.
In particular, we repeat a calculation from [22] where we
start with a (timelike) dust-filled, expanding universe (i.e.,
the Einstein-de Sitter model) and include some initially
small inhomogeneities that are all at a wavelength that is
4 times the initial Hubble radius, and with velocity given by
the Zel’dovich approximation. (In particular, this is the case
labeled δ̄ ¼ 10−3 in [22]; see that reference for details.)
To construct initial data, we begin with a solution to the

constraint equations obtained using the code of [82], as
described in [22], which uses a fluid description of the
matter. We then create a particle distribution that is
consistent with the density field in the following manner.
We begin with a uniformly spaced lattice of particles that
we then perturb from their positions according to the
Zel’dovich approximation, as is typically done in N-body
calculations. In particular, we apply the shift in position
given by Eq. (31) in [83]. We assign the velocity of the
particle by interpolating the fluid velocity field to the
particle position.
By default, the particles would have uniformmasses given

by mi ¼ ρ0L3=N, where ρ0 is the initial homogeneous
density,L3 is the volume of the domain, andN is the number
of particles. However, we then calculate a small, nonlinear
correction to the mass of each particle by first finding the
density given by ρ̄e ¼ −Ta

a, with Tab calculated from (30)
using uniform particle masses, and taking the ratio with the
desired density field from the fluid representation at each
particle position ρe=ρ̄. We then rescale the mass of each
particle by this factor mi → mi × ðρe=ρ̄Þ.
The evolution is performed as described in the main

text, except that our domain is three-dimensional and
periodic (particles that exit the domain at one boundary
are wrapped around to the opposite boundary), and the
particles have nonzero rest mass. In Fig. 10, we demon-
strate the convergence of the constraints (27) by perform-
ing the calculation at several resolutions ranging from 643

to 1283 grid points covering the domain. As in the main
text, the error from the finite particle number is subdomi-
nant to the grid discretization error for the parameters
considered here.
We can also compare the evolution of the density

contrast, which increases and becomes nonlinear (as
signaled by the divergence of the under and overdensities)
as the inhomogeneities enter the horizon, to the results from
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[22], which were obtained by evolving a pressureless fluid.
As long as we restrict to times before multistream regions
form, the two treatments should give the same answer. As
shown in Fig. 11, the density contrast from the two cases is
indeed a good match.

The advantage of the particle treatment is that it allows
one to evolve through the formation of multistream regions
that will arise during structure formation, and thus be more
directly comparable to Newtonian N-body simulations.
However, we leave a study of this to future work.
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