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The paper discusses backreaction effects in cosmology, (á la Buchert et al.), induced by non-
commutative geometry effects in fluid. We have used generalizations of an action formulation of a
noncommutative fluid model proposed earlier by us. We show that the noncommutative effects, depending
on their nature, can play either roles of (kinematical) dark matter or cosmological constant.
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I. INTRODUCTION

Fluid dynamics is currently playing a central role in
diverse aspects of modern physics such as fluid-gravity
correspondence, cosmology, among others. This wide
acceptance of fluid dynamics stems from the fact that it
provides a universal description of long-wavelength phys-
ics that deals with low-energy effective degrees of freedom
(d.o.f.) of a field theory, classical or quantum and applies
equally well at macroscopic and microscopic scales. Even
though the two mathematical frameworks, i.e., discrete
Lagrangian and continuum Hamiltonian (or Euler) formu-
lations, are extremely robust and have survived to date, in
recent times ways to tweaking these structures nontrivially
at a fundamental level in a consistent way have been
suggested. One such proposal put forward by us [1,2] is to
introduce a noncommutative (NC) (or noncanonical, which
might be more appropriate considering our classical sce-
nario) phase space at the fundamental Lagrangian level and
study how it modifies the field theoretic Euler fluid
dynamics. (Fluid dynamics from the perspective of high-
energy physics has been discussed in detail in the lucid
review [3].)1 We have termed our generalized system “NC
fluid” which consists of an extended fluid variable algebra
along with a Hamiltonian that generates a modified form of
fluid dynamics, the continuity and Euler (or force) equa-
tion. The new system involves a constant antisymmetric
NC parameter θij ¼ −θji and reduces smoothly to the

conventional fluid model for θij → 0. Several novel and
interesting properties of the NC model were revealed in [2]
(see also [5]). In the present paper, we have extended the
previous work [2] to include fluid vorticity but more
importantly we have studied implications of the NC fluid
model in cosmology. In particular, we show that NC
contributions can induce inhomogeneity in standard
Friedmann-Robertson-Walker (FRW) cosmology that can
impact the vital theme of structure formation.
Let us spend a few words on the other (comparatively)

recent development in quantum and classical physics: intro-
duction of extended forms of phase space Heisenberg
commutators or its classical counterpart, noncanonical
extensions of Poisson brackets. Generically these new
structures are referred to as NC algebra. NC generalizations
of conventional theories became very popular after the
work of Seiberg and Witten [6] who showed that in certain
low-energy regime String theory mimics an NC version of
quantum field theory. Subsequently there have appeared
numerous studies regarding effects of NC extensions in
quantum and classical physics (for reviews see [7]).
Broadly there are two inequivalent ways to incorporate

NC effects in a theory. In one formulation in a field
theory action, the products of fields are replaced by �
(star) products that introduce NC contributions perturba-
tively in the action. This approach has been utilized in some
previous works of NC fluid models [8] where �-products
are used in directly Euler fluid Hamiltonian (or equivalently
in the action that generates Eulerian dynamics).
We, on the other hand, follow another route which (at

least to our mind) is more direct with clear interpretations.
We exploit the conventional map between Lagrangian
(discrete fluid particle coordinates) d.o.f. and Euler (con-
tinuous field theoretic) variables consisting of density and
velocity fields [3]. We introduce NC in Lagrangian coor-
dinates and rederive the extended Euler algebra that
involves NC effects. Finally we use this NC Eulerian
structure to obtain fluid equations of motion in a
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Hamiltonian framework [1,2]. Another variation of our
formalism has been pursued in [9] with results a little
different from ours.
The main focus of the present work is the following. We

convert the NC fluid equations to the co-moving frame and,
utilizing conventional techniques, generate the NC exten-
sion of FRW-like equations in Newtonian cosmology. The
results clearly show that NC effects can lead to inhomo-
geneities and anisotropy. Here we encounter a serious
technical issue, that of spatial averaging in the context
of cosmology. Buchert and Ehlers [10,11] and Buchert [12]
have developed a rigorous technique of averaging in
cosmology and have steered the interest towards analysis
of fluctuations (see also [13]) that can have significant
impact “locally” that is in a small domain compared to the
horizon (whereas global averages will generically reduce to
surface terms that vanish for boundaryless (three torus)
Newtonian cosmology). We have followed the above
formalism and have computed explicit forms for the
NC-induced fluctuations.
Finally, we come to the most important part, i,e, the

perspective and motivation of the present work.
Cosmology is confronted with the following deep ques-
tion: is the apparent homogeneity and isotropy of matter
in the Universe as well as the observed isotropy of the
cosmic microwave background (CMB) enough to guar-
antee the cosmological principle, which in turn ensures
the validity of the Friedmann-Robertson-Walker (FRW)
framework. Obviously, the FRW approach makes the
problem tractable since it involves only a single scalar
dynamical variable, the scale factor aðtÞ, that depends
only on time. Clearly, the presence of shear and vorticity
can lead to anisotropy via the celebrated Sachs-Wolfe
effect. But more interestingly and relevant to our context,
is the possibility that a shearless homogeneous back-
ground may also exhibit anisotropic curvature via the
introduction of a canonical, massless 2-form field
[14–17]. Furthermore, it has been shown [18] that a
canonical massless Kalb-Ramond field is a viable candi-
date for such a field. This class of spacetimes is endowed
with a preferred direction in the sky along with a CMB
that is isotropic at the background level. Hence, the
anisotropy emerges at the level of the curvature of the
homogeneous spatial sections, whereas the expansion is
dictated by a single scale factor. Such partially homo-
geneous but anisotropic solutions of Einstein equations
having an isotropic expansion (describable by a single
scale factor). The anisotropy of these solutions are
induced by the spatial curvature of the sections of
constant comoving time where the curvature is direction
dependent. For a three-dimensional manifold this can be
performed by considering spatial sections which are
Cartesian product of curved subspaces that are generically
taken as homogeneous locally rotationally symmetric
class of metrics (e.g., Bianchi type III (B III) and

Kantowski-Sachs (KS) solutions). The above-mentioned
imperfect fluid generates an anisotropic stress that yields
a shear-free anisotropic model where the scale factor
evolves exactly like that in a curved FRW model.
Subsequently, both redshift and the Hubble parameter
become. Even with an isotropic comoving distance it was
shown that both the angular diameter and luminosity
distances reveal anisotropy. Hence, the anisotropy
effects generated by curvature can possibly be detected
by such distance relations using, say, supernovae
(SNe) [18,19].
In this background, let us finally discuss possible

observational consequences of the results presented in
our model. To compare and contrast with the above-
mentioned scenario, we note that the tensorial constant
NC parameter θij can be identified with the two-form field
introduced above but instead of exploiting the locally
rotationally symmetric class of metrics, as above, we have
considered NC-extended FRW metric. As we discuss later
in the paper, there are essentially two aspects where
noncommutativity in the fluid can have effects, NC-
corrected effective curvature and NC-corrected effective
energy budget. Furthermore, NC-effect can contribute
additionally as either Dark Matter or Dark Energy.
The paper is organized as follows: In Sec. II, we have

computed the NC fluid algebra and the equations of
motion. This is an extension of our earlier work [2] since
now we consider fluid vorticity as well. Section III deals
with the construction of NC FRW equations. Section IV is
devoted to the study of averaging hypothesis in cosmology
and derivation of NC induced fluctuation terms. Section V
consists of noncommutative corrections to cosmological
parameters. We conclude and suggest future directions of
work in Section VI. An Appendix contains details of Dirac
Bracket computations.

II. NONCOMMUTATIVE FLUID ALGEBRA
AND DARBOUX MAP

There are two ways of introducing noncommutativity in
continuum fluid model:
(a) Treat the fluid field theoretic Hamiltoninan H ¼R
d3xð1

2
ρv2 þ UðρÞÞ as the starting point, where ρðxÞ, viðxÞ

are density and velocity fields respectively and UðρÞ is the
barotropic potential that depends only on the density, in
Eulerian framework. Now replace the local product of
fields, e.g., by star (�) product e.g., ρvivi → ρ � vi � vi
where a generic �-product is formally defined as
AðxÞ � BðxÞ ¼ AðxÞ expði 1

2
θij∂←

i ∂→
j ÞBðxÞ, where θij is

the NC parameter. Upon expanding the exponential oper-
ator in powers of θij the NC contribution will appear as
additional higher (spatial) derivative terms in the
Hamiltonian. Incidentally, the NC algebra follows from
the �-commutator ½xi; xj�� ¼ xi � xj − xj � xi ¼ iθij. From
the above NC-extended Hamiltonian one can generate
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NC-modified continuity and Euler equation for NC
fluid in the conventional way. This approach has been
adapted in [8].
(b) We, on the other hand, follow a new approach,

initiated by us for the first time in [1,2,5] exploiting ideas
provided in [3]. Indeed, this is possible due to the unique
feature of fluid where, on one hand in the Lagrangian
framework it can be interpreted as a collection of discrete
particles whereas on the other hand in the Hamiltonian (or
Eulerian) framework it is considered as a continuum field
theory comprising of ρðxÞ, viðxÞ, the Eulerian field d.o.f.
There is an explicit map that connects the Lagrangian
(discrete variables, particle coordinate and velocity XiðxÞ,
_XiðxÞ in the continuum limit) and Hamiltonian (continu-
ous variables, density and velocity ρðxÞ; viðxÞÞ) d.o.f.
given by

ρðrÞ ¼ ρ0

Z
δðXðxÞ − rÞdx; ð1Þ

viðrÞ ¼
R
dx _XiðxÞδðXðxÞ − rÞR

dxδðXðxÞ − rÞ : ð2Þ

Generalizing the canonical Poisson brackets between
discrete variables

½ _Xi;Xj� ¼ ði=mÞδij; ½Xi;Xj� ¼ 0; ½ _Xi; _Xj� ¼ 0: ð3Þ

to the Lagrangian fluid variables,

fXiðxÞ; _Xjðx0Þg ¼ 1

ρ0
δijδðx − x0Þ;

fXiðxÞ; Xjðx0Þg ¼ f _XiðxÞ; _Xjðx0Þg ¼ 0; ð4Þ

with ρ0 a constant background density, it is straightfor-
ward to derive the canonical (Hamiltonian) algebra
between the fluid variables

fρðxÞ; ρðx0Þg ¼ 0; fviðxÞ; ρðx0Þg ¼ ∂iδðx − x0Þ; ð5Þ

fviðxÞ; vjðx0Þg ¼ −
ωijðxÞ
ρðrÞ δðx − x0Þ; ð6Þ

where

ωijðxÞ ¼ ∂ivjðxÞ − ∂jviðxÞ ð7Þ

is called the fluid vorticity.
We find this approach more appealing since it is

natural to introduce NC-algebra at the discrete coordinate
level via

½ _Xi;Xj� ¼ ði=mÞδij; ½Xi;Xj� ¼ iθij; ½ _Xi; _Xj� ¼ 0: ð8Þ

with the generalization to NC Lagrangian fluid variable
algebra,

f _XiðxÞ; Xjðx0Þg ¼ 1

ρ0
δijδðx − x0Þ;

fXiðxÞ; Xjðx0Þg ¼ 1

ρ0
θijδðx − x0Þ;

f _XiðxÞ; _Xjðx0Þg ¼ 0: ð9Þ
In an identical fashion, this yields the NC fluid algebra,

fρðxÞ; ρðx0Þg ¼ −θij∂iρðxÞ∂jδðx − x0Þ; ð10Þ
fviðxÞ;ρðx0Þg¼∂iδðx−x0Þ−θjk∂jviðxÞ∂kδðx−x0Þ; ð11Þ

fviðxÞ;vjðx0Þg¼ð∂jvi−∂ivjÞ
ρ

δðx−x0Þ

þθkl
�
∂lδðx−x0Þ

�∂kðvivjÞ
ρ

−vivj∂k

�
1

ρ

��

×δðx−x0Þþ���:: ð12Þ

But in [2] we have made further progress by proposing an
action that can generate the NC fluid algebra through the
identification of Dirac brackets obtained from the NC
action.2

We start with a Lin [22] (see also [23]) form of first order
fluid action endowed by NC correction terms,

L ¼ −∂tθ

�
ρ −

1

2
θij∂iρ∂jθ

�
−
�
1

2
ρv2 þ UðρÞ

�
− ρα∂tβ;

ð13Þ
where vi ¼ ∂iθ þ α∂iβ is the velocity field in Clebsch
parametrization [24]. (For an authoritative monograph on
fluid dynamics see [25]. Note that in [2] we had
vi ¼ ∂iθðxÞ, which amounts to the no vorticity condition.
Conventional fluid dynamics is recovered for θij ¼ 0.
Let us first derive the equations of motion by varying ρ

and v in the action:

∂tρ ¼ −∂i

�
ðρviÞ þ θij

�
ρ∂j

�
v2

2

�
þ 1

2
∂jθ∂kðρvkÞ

− ρ∂jðαvk∂kβÞ þ ρ∂jU0
��

ð14Þ

2In this context, we note that similar to current algebra in other
models such as the Schwinger condition in a generic relativistic
quantum field theory [20], anomalous chiral current algebra in
fermionic models [21] among others, the bracket between 0’th
component has a special status since it can be reproduced
uniquely using different schemes. On the other hand rest of
the current algebra are, in general, scheme dependent and does
not enjoy such importance. The action posited by us induces
correctly the zeroth component charge density algebra but does
not completely reproduce rest of the algebra.
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∂tvl ¼ −∂l

�
v2

2
þU0

�
þ θij

�
1

2
∂l∂jθ∂i

�
v2

2
þU0

�
þ 1

2
∂jθ∂i

�
∂l

�
v2

2
þU0

��
−
1

2
∂l∂jθ∂iðαvk∂kβÞ

�

þ θij
�
−
1

2
∂jθ∂ið∂lðαvk∂kβÞÞ þ

α

ρ
∂iρ∂lβ∂j

�
v2

2
þ U0

��

þ θij
�
1

2

α

ρ
∂jθ∂ið∂kðρvk∂lβÞÞ − ∂iρ∂j

�
α

ρ

�
αvk∂lβ∂kβ −

α2

ρ2
∂iρ∂jðρvk∂lβ∂kβÞ

�
: ð15Þ

A few comments are in order.
(i) This is a nontrivial extension to our earlier work [2]

as α, β variables are included indicating that the
canonical fluid possesses a vorticity.

(ii) Notice the U0-dependent term in (14). Its contribu-
tion vanishes due to antisymmetry of θij which we
have followed in earlier works [1,2] and are pres-
ently adhering to. However, in an alternative for-
mulation suggested in [9] it can yield a nonzero
contribution.

Let us exploit the Dirac bracket formalism [26] to obtain,
to first nontrivial order in θij, the NC fluid algebra. (The
detailed constraint analysis is provided in the Appendix)
The complete NC fluid algebra is given by

fρðxÞ;ρðyÞg ¼ −θij∂iρðxÞ∂x
jδðx− yÞ;fρðxÞ;θðyÞg

¼ δðx− yÞ þ 1

2
θij∂jθðxÞ∂x

i δðx− yÞ;

fαðxÞ;ρðyÞg ¼ θij
αðxÞ
ρðxÞ∂iρðxÞ∂jδðx− yÞ;fαðxÞ;θðyÞg

¼ −
αðxÞ
ρðxÞ δðx− yÞ− θij

2

αðxÞ
ρðxÞ ∂jθðxÞ∂iδðx− yÞ;

fαðxÞ;αðyÞg ¼ −θij
αðxÞ
ρðxÞ ∂iρðxÞ

�
α

ρ
∂jδðx− yÞ

þ ∂j

�
α

ρ

�
δðx− yÞ

�
;

fαðxÞ;βðyÞg ¼ δðx− yÞ
ρðxÞ ;

fρðxÞ;βðyÞg ¼ fθðxÞ;βðyÞg ¼ fθðxÞ;θðyÞg
¼ fβðxÞ;βðyÞg ¼ 0: ð16Þ

A nonvanishing charge density fρðxÞ; ρðyÞg bracket of a
similar structure first appeared in [3,27] which, however,
was derived in a somewhat heuristic way in a completely
different system, lowest Landau level in magnetohydrody-
namics. The complete NC bracket structure provided here
is new. Quite obviously this algebra is more involved that
our earlier results [2] due to the presence of α, β.
We consider the conventional form of Eulerian fluid

Hamiltonian,

H ¼ 1

2
ρv2 þ UðρÞ: ð17Þ

It is straightforward to check that, using the above Dirac
bracket algebra (16), the Hamiltonian equations of motion,

_ρ ¼ fρ; Hg; _vl ¼ fvl; Hg; ð18Þ

agree with the previously computed dynamical equa-
tions (14), (15) obtained from action principle. This cross
checking ensures overall consistency of the procedure.
These modified equations of motion constitute our primary
major results and the starting point of the present analysis.
In a Hamiltonian structure, there is a very well-known

and convenient transformation known as the Darboux
transformation [28] that allows (at least locally) a con-
struction of the noncanonical variables in terms of canoni-
cal variables. In our case, operationally this simply means
that using Darboux map, the NC variables ρ, θ, α, β can be
expressed (at least locally) in terms of a canonical set ρc, θc,
αc, βc obeying canonical algebra,

fρcðxÞ; ρcðyÞg ¼ fθcðxÞ; θcðyÞg ¼ fαcðxÞ; αcðyÞg
¼ fβcðxÞ; βcðyÞg ¼ 0

fρcðxÞ; θcðyÞg ¼ δðx − yÞ;
fαcðxÞ; θcðyÞg ¼ −

αc
θc

δðx − yÞ;

fαcðxÞ; βcðyÞg ¼ δ

ρc
: ð19Þ

The explicit form of Darboux map to OðθÞ, is given by

ρ ¼ ρc þ
1

2
θij∂iρc∂jθc; θ ¼ θc;

β ¼ βc; α ¼ αc −
θij

2
α
∂iρ∂jθ

ρ
ð20Þ

such that the NC algebra in (16) is reproduced. For
simplicity we will just keep the notation ρ, θ, α, β instead
of ρc, θc, αc, βc. The Hamiltonian (17) is now written in
terms of canonical variables, (to order of θij),
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H ¼
Z

dr

�
T −

1

2
θij

∂jρ∂iθ

ρ

�
1

2
ρð∂iθÞ2

−
1

2
α2ð∂iβÞ2 þ U þ Pc

��
; ð21Þ

where vi ¼ ∂iθ þ α∂iβ, T ¼ 1
2
ρv2 þUðρÞ is the canonical

energy density and P ¼ ρU0 −U is the pressure. The
continuity equation is obtained as

_ρ ¼ fρ; Hg

¼ −∂l

�
ρ

�
vl −

1

2
θlj∂jρ

1

ρ2

�
1

2
ρð∂iθÞ2 −

1

2
α2ð∂iβÞ2

þU þ Pc

�
−
1

2
θij

ð∂jρÞ
ρ

∂iθ∂lθ

��
ð22Þ

and is written in a suggestive form _ρ ¼ −∂lðρv̄lÞ, where
v̄l ¼ ðvl − 1

2
θlj∂jρ

1
ρ2
ð1
2
ρð∂iθÞ2 − 1

2
α2ð∂iβÞ2 þ U þ PcÞ −

1
2
θij

ð∂jρÞ
ρ ∂iθ∂lθÞ is identified as the NC corrected gener-

alized velocity. The Euler equation can also be computed in
a similar way.
Several features of the NC fluid system need to be

stressed:
(i) The NC Hamiltonian and NC Eulerian equations

are expressed entirely in terms of canonical fluid
variables.

(ii) There exists a modified local conservation law of
matter.

(iii) In our formulation, since the matter density ρ is
unchanged the total mass is same as in conventional
case although the momentum flux receives NC
corrections.

III. MODIFICATION IN
FRIEDMANN EQUATION

Let us now move on to our present area of interest, NC
modified cosmology. The standard model of cosmology
consists of the continuity equation and Friedmann equa-
tion, (without cosmological constant),

_ρ ¼ −3Hðρþ PÞ ¼ −3
_a
a
ðρþ PÞ; ð23Þ

ä
a
¼ −

ρþ 3P
6M2

: ð24Þ

where P denotes the pressure and aðtÞ is the scale factor.
M ¼ ð8πGÞ−1=2 refers to Newton’s constantG. Introducing
the Hubble parameter HðtÞ ¼ _a=a, an equivalent equation
follows,

_a2

a2
¼ H2 ¼ ρ

3M2
−

k
a2

; ð25Þ

with a scaled k ¼ 0;�1 indicating flat, closed or open
universe, respectively. Clearly, inhomogeneity or anisotropy
are not supported (see, e.g., [29]).
It is well known that one can rewrite the conventional

fluid dynamical equations in the comoving frame such that
they agree with the FRWequations. This will be our starting
point. Since we have developed a NC-extended set of
generalized fluid equations, its mapping to comoving
coordinates will give rise to NC extended FRW dynamics.
Since from now on, in this paper, we are primarily
interested in the cosmological scenario, we will consider
the fluid without vorticity as canonical vorticity does not
play any major role in cosmology.
The comoving coordinates are defined as

r ¼ aðtÞxðtÞ; ð26Þ

where rðtÞ, xðtÞ and aðtÞ denote the proper coordinates,
comoving coordinates and the scale factor respectively. The
laboratory velocity v is written as

_r ¼ HðtÞrþ a _xðtÞ → v ¼ HðtÞrþ u; ð27Þ

with u defined as the peculiar velocity. In standard FRW, u
is taken as zero and it is considered as a perturbation.
We start from the simplified form of NC continuity and

Euler equation, (14) and (15), with vorticity free vi ¼ ∂iθ
only (ignoring the α and β):

∂ρ
∂t
����
r
þ ∂
∂ri

�
ρvi þ 1

2
θijρ∂jv2 þ

1

2
θij∂kðρvkÞ∂jθ

þ θijρ∂jU0
�

¼ 0; ð28Þ

∂vi
∂t

����
r
þ vj∂jvi

¼ −
∂iP
ρ

− ∂iΦþ θmj

�
1

2
∂i∂jθ∂m

�
v2

2
þ U0

�

þ 1

2
∂jθ∂m

�
∂i

�
v2

2
þ U0

���
: ð29Þ

We have introduced Φ as a generic potential. We need to
recast the dynamics in the comoving coordinates x, t. The
space derivatives are easily related by

∂=∂r ¼ ð1=aÞ∂=∂x:
On the other hand, the time derivatives at constant r and
constant x are related by

∂
∂t
����
r
¼ ∂

∂t
����
x
−

_a
a
ðx:∂xÞ:
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Using the above identities, we derive the cherished
expressions for the NC fluid dynamics in comoving
frames:

∂ρ
∂t
����
x
þ1

a
∂
∂xi ðρuiÞþ

3ρ _a
a

þθij

a2
∂ρ
∂xi

�
_a2xjþ _aujþð _axkþukÞ

∂uk
∂xj

�

þθij
1

2a3
∂
∂xi

� ∂
∂xk ðρ _axkþukρÞ

� ∂θ
∂xjþθij

1

a2
∂ρ
∂xi

∂U0

∂xj ¼ 0;

ð30Þ

∂ui
∂t þ

_a
a
uiþ

uj
a
∂ui
∂xjþ

1

aρ
∂P
∂xiþ

1

a

∂ϕpec

∂xi þ
�
äþ 4π

3
aGρ

�
xi

−
θmj

a3

�
1

2
∂i∂jθ∂mðð _axlþulÞ2þU0Þ

þ 1

2
∂jθ∂mð∂iðð _axlþulÞ2þU0ÞÞ

�
¼ 0: ð31Þ

We can make a further simplification by dropping the
peculiar velocity u-dependent terms, thus reducing the NC
continuity equation (30) to

_ρþ 3ρ _a
a

þ Ψ ¼ 0;

Ψ ¼ θij
�
1

a2
∂ρ
∂xi _a

2xj þ
1

2a3
∂
∂xi

� ∂
∂xk ðρ _axkÞ

� ∂θ
∂xj

þ 1

a2
∂ρ
∂xi

∂U0

∂xj
�
; ð32Þ

where Ψ is the NC correction. Notice that the NC
corrections usher in a form of inhomogeneity due to the
nontrivial x dependence.
On the other hand, isolating the x-dependent terms in

(31) yields

�
äþ 4π

3
aGρ

�
xi −

1

2a3
θmj ∂

∂xi
� ∂θ
∂xj

�
_a2xm ¼ 0; ð33Þ

From (32) and (33), it is clear that even the so-called
“unperturbed” universe with u ¼ 0 receives NC contribu-
tions. From (32) and (33), we recover

1

2

d
dt

ð _a2Þ ¼ 4πG
3

d
dt

ðρa2Þ þ 4πG
3

Ψa2

þ 1

2a3
θmj ∂

∂xi
� ∂θ
∂xj

�
_a3
xmxi

x2
; ð34Þ

leading to a modified Friedmann equation,

_a2

a2
¼ 8πGρ

3
−

k
a2

þ 8πG
3

1

a2

Z
a2Ψdt

þ θmj

a2
xmxi

x2

Z ∂
∂xi

� ∂θ
∂xj

�
_a3

a3
dt; ð35Þ

where k is a constant. In fact, k appears as an integration
constant and can be identified with (the scaled) curvature in
FRW. It will be more appealing to rewrite (35) as

_a2

a2
¼ 8πGρ

3
−
keff
a2

; ð36Þ

where

keff ¼k−
8πG
3

θij
Z

∂i

�
ρ _a2xjþ

1

2a
∂kðρ _axkÞ∂jθþρ∂jU0

�
dt

−θmjxmx
i

x2

Z
∂i∂jθ

_a3

a3
dt: ð37Þ

The above is one of our principal results. We show that the
NC-contribution can affect the flatness (or openness or
closedness for that matter), although numerical estimates
for the NC parameter θij are needed to explicitly evalu-
ate keff .
Again, rewriting (33) as below,

ä
a
¼ −

4πG
3

ρþ 1

2
θmj ∂

∂xi
� ∂θ
∂xj

�
xmxi

x2
_a2

a4
; ð38Þ

it is clear that the NC term acts as an effective pressure
since this equation summarizes the physics which deter-
mines the expansion of the universe. Hence, even for
vanishing conventional form of pressure the NC contribu-
tion can control the acceleration or deceleration of the
universe.
The remaining theoretical issue we pick up now is the

following: how to define averages in Newtonian cosmology
since to fit in the FRW framework we need to integrate out
x consistently. This has been developed by Buchert and
coworkers in a series of papers [10–12] and is interpreted
by them as an additional source in the form of backreaction.
This induced anisotropy and inhomogeneity can play
important roles in structure formation. We will outline this
in the next section.
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IV. AVERAGING PRESCRIPTION
IN COSMOLOGY

A few crucial points have emerged from the works
[10–12]:

(i) the Friedmann equations are to be expressed in terms
of spatially averaged variables such as the averaged
scale factor.

(ii) The averaged variables are required to be scalars to
get unambiguous results in general relativity since in
general the procedure of averaging an inhomo-
geneous metric is not available. However for scalars
spatial averaging can be properly defined for a
foliated spacetime.

(iii) In standard Newtonian cosmology, there is no non-
vanishing global averages since the space is con-
sidered as boundaryless (3-torus) and the so called
inhomogeneous backreaction terms reduce to sur-
face contributions and, hence, vanish.

(iv) As emphasized by [10,11,13], globally vanishing
(averaged out) inhomogeneities can contribute as
regional fluctuations. This is known as “cosmic
variance.” In this section, we will be looking at
NC-induced fluctuations.

As discussed earlier (13), see also [2]) we will be
working with the canonical variables by exploiting the
Darboux map with no vorticity constraint vi ¼ ∂iθ. From
the NC fluid Lagrangian [2]

L¼−∂tθ

�
ρ−

1

2
θij∂iρ∂jθ

�
−
�
1

2
ρð∂iθÞ2þUðρÞ

�
ð39Þ

the continuity and Euler equations follow:

∂tρ ¼ ∂l

�
−ρ

�
∂lθ −

1

2
θlj∂jρ

1

ρ

�
1

2
ð∂iθÞ2 þ U0

�

−
1

2
θij

ð∂jρÞ
ρ

∂iθ∂lθ

��
þOðθ3Þ

¼ −∂l½ρvl�; ð40Þ

where

vl ¼
�
∂lθ −

1

2
θlj∂jρ

1

ρ

�
1

2
ð∂iθÞ2 þ U0

�

−
1

2
θij

ð∂jρÞ
ρ

∂iθ∂lθ

�
þOðθ3Þ ¼ vlc þOðθijÞ; ð41Þ

and

∂tvl ¼ −∂l

�
v2

2

�
−
1

ρ
∂lPþ 1

2ρ
θij∂lðvi∂jUÞ

−
1

2
θijU0∂l

�
1

ρ
vi∂jρ

�

þ 1

2
θlj

�
U0∂j

�∂kðρvkÞ
ρ

�
þ vk∂jρ∂kU0

ρ

�
ð42Þ

with P ¼ ρU0 − U as pressure.
It is straightforward to express the tensor ∂jvijc in terms

of rate of expansion ψ ¼ ∇:vjc, shear (σij) are defined via
the relation

∂jvijc ¼ σij þ
1

3
δijψ ; ð43Þ

where σij ¼ 1
2
ð∂jvi þ ∂ivjÞjc − 1

3
δijψ . Note that we have

not taken in to account the anti-symmetric vorticity term.
Rewriting (40) and (42) in terms of the scalars ρ, ψ ,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffi
σijσij

q
and using the convective time derivative

operator _A≡ dA
dt ¼ ∂tAþ _X:∇A on a generic variable A,

we find

_ρ ¼ −ρψ ; ð44Þ

_ψ ¼ −
1

3
ψ2 − 2σ2

þ ∂l

�
−
1

ρ
∂lPþ 1

2ρ
θij∂lð∂iθ∂jUÞ

−
1

2
θijU0∂l

�
1

ρ
∂iθ∂jρ

�

þ 1

2
θlj

�
U0∂j

�∂kðρ∂kθÞ
ρ

�
þ ∂kθ∂jρ∂kU0

ρ

��
: ð45Þ

Let us denote hAiD ¼ 1
V

R
D d3xA as the spatial average of

a tensor field A on the domainDðtÞ occupied by the amount
of fluid considered, and aðtÞ is the scale factor of that
domain. The subscript D in hAiD underlines the fact that it
is not simply the local A that is averaged, but a new domain-
dependent volume average of A. This is true for all
subsequent definitions.3

We use the commutation rule for averaging [11],

_hAiD − h _AiD ¼ hAψiD − hAiDhψiD: ð46Þ

After averaging (using the commutation rule), Eqs. (44)
and (45) become

_hρiD ¼ −hρiDhψiD; ð47Þ

3We thank Thomas Buchert for pointing this out to us.
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_hψiD ¼ 2

3
hψ2iD − hψi2D − 2hσ2iD

þ
�
∂l

�
−
1

ρ
∂lPþ 1

2ρ
θij∂lð∂iθ∂jUÞ − 1

2
θijU0∂l

�
1

ρ
∂iθ∂jρ

�
þ 1

2
θlj

�
U0∂j

�∂kðρ∂kθÞ
ρ

�
þ ∂kθ∂jρ∂kU0

ρ

��	
D

¼ 2

3
hψ2iD − hψi2D − 2hσ2iD þ

�
∂l

�
−
1

ρ
∂lP

�	
D

þ
�
1

2
ϵijrθr

��∂l∂jU

ρ
−U0∂l

�∂jρ

ρ

���
σil þ

1

3
δilψ

�
þ ∂i

�
U0 ∂kρ

ρ

�
σkj þ

1

3
δkjψ

�
þU0∂jψ

��	
D

þ
�
1

2
ϵijrθr

��
σki þ

1

3
δkiψ

��
U0∂j

�∂kρ

ρ

�
þ ∂jρ∂kU0

ρ

��	
D

þ
�
1

2
ϵijrθr

�
∂iθ∂l

�∂l∂jU

ρ
− U0∂l

�∂jρ

ρ

��
þ ∂lθ∂i

�
U0∂j

�∂lρ

ρ

�
þ ∂jρ∂lU0

ρ

��	
D
: ð48Þ

Now from (48), in terms of the volume scale factor aDðtÞ (where hψiD ¼ 3 _aD
aD
), the averaged Raychaudhuri equation can

be written as

3
äD
aD

¼ 2

3
ðhψ2iD − hψi2DÞ − 2hσ2iD þ

�
∂l

�
−
1

ρ
∂lP

�	
D

þ
�
1

2
ϵijrθr

��∂l∂jU

ρ
−U0∂l

�∂jρ

ρ

��
σil þ ∂i

�
U0 ∂kρ

ρ
σkj þ U0∂jψ

��	
D

þ
�
1

2
ϵijrθr

�
σki

�
U0∂j

�∂kρ

ρ

�
þ ∂jρ∂kU0

ρ

��	
D

þ
�
1

2
ϵijrθr

�
∂iθ∂l

�∂l∂jU

ρ
−U0∂l

�∂jρ

ρ

��
þ ∂lθ∂i

�
U0∂j

�∂lρ

ρ

�
þ ∂jρ∂lU0

ρ

��	
D
: ð49Þ

For θi ¼ 0, we recover earlier results of [10,11] and, hence,
our NC model provides additional contributions to inho-
mogeneity and anisotropy.
As a specific example, let us consider a simple canonical

dust form of barotropic potential UðρÞ ¼ νρ (with a
constant ν) that is pressureless, P ¼ ρU0 −U ¼ 0.
Further, we impose no vorticity condition on velocity
(a reasonable restriction valid at least until the epoch
of structure formation), leading ψ ¼ ∂ið∂iθÞ ¼ ∂2θ and
σij ¼ ∂i∂jθ − 1

3
δij∂2θ. The acceleration equation (49)

reduces to

3
äD
aD

¼ 2

3
ðhψ2iD − hψi2DÞ − 2hσ2iD

−
�
1

2
ϵijrθr

�
∂l

�
1

ρ

�
∂jρ∂i∂lθ þ ∂iθ∂l

�
∂jρ∂l

�
1

ρ

��

þ ∂jρ

3ρ
∂ið∂2θÞ

�	
D
: ð50Þ

In the next section, we try to quantify the NC effect on
cosmological parameters to bring out the implications of
the NC extension.

V. COSMOLOGICAL PARAMETERS WITH
NONCOMMUTATIVE CORRECTIONS

It is clear from (49) that inhomogeneities will act as
sources that will control the average expansion rate of
universe. Already such fluctuations have appeared in
[10,11] and we have presented additional contributions
generated by noncommutativity. After integrating (49),
with kD entering as an integration constant the resulting
equation can be expressed in terms of cosmological
parameters,

ΩD
m þ ΩD

k þ ΩD
NQ ¼ 1; ð51Þ

where

ΩD
m ¼ 8πGhρiD

3H2
D

; ΩD
k ¼ −

kD
a2DH

2
D
;

ΩD
Q ¼ 2

3
ðhψ2iD − hψi2DÞ − 2hσ2iD

and
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ΩD
NQ ¼ ΩD

Q þ 8πG
3a2DH

2
D
θij

�Z
∂i½ _a2ρxj þ ρ∂jU0

þ 1

2a
∂kðρ _axkÞ∂jθ�dt

	
D

þ θmj

a2DH
2
D

�Z ��
_a
a

�
3 xmxi

x2
∂i∂jθ

�
dt
	

D
: ð52Þ

Note that ΩD
Q part was revealed in [10,11]. However, there

is an important distinction that all the parameters are
domain-dependent averages. In fact, the integration con-
stant or effective curvature kD can also vary depending on
the domain of averaging [10]. Note that in (52) we have not
considered the contribution coming from the cosmological
constant. Apart from the conventional ones, ΩD

m, ΩD
k there

appears ΩD
Q, a form of kinematical backreaction effect. In

standard FRW cosmology, backreaction is absent and a
critical universe, ΩD

m ¼ 1, would have resulted in a flat
universe with kD ¼ 0. Depending on the signature of the
NC contribution, for positive sign, it can act as a kinemati-
cal dark matter thereby enhancing structure formation. On
the other hand a negative contribution can play the role of
kinematical cosmological constant that will favor accel-
erated expansion.
Another way of writing the Friedmann equation involves

the present day expansion and density parameters. At
t ¼ t0, aD ¼ a0D, the Friedmann equation (35) takes the
form

kD
a20D

¼ 8πGhρ0iD
3

−H2
0D þ 8πG

3a20D
θij

�Z
∂i½ρðtÞxj _a2

þ ρðtÞ∂jU0 þ 1

2a
∂kðρðtÞ _axkÞ∂jθ�dtjt¼t0

	
D

þ θmj

a20D

�Z ��
_a
a

�
3 xmxi

x2
∂i∂jθ

�
dtjt¼t0iD ð53Þ

¼H2
0D

�
ΩD

m0−1þ 8πG
3a20DH

2
0D

θij
�Z

∂i

�
_a2ρðtÞxj

þρðtÞ∂jU0 þ 1

2a
∂kðρðtÞ _axkÞ∂jθ

�
dtjt¼t0

�	
D

þH2
0D

�
θmj

a20DH
2
0D

�Z ��
_a
a

�
3xmxi

x2
∂i∂jθ

�
dtjt¼t0iD

�
;

ð54Þ

where ΩD
m0 ¼ 8πGhρ0iD

3H2
0D

and H0D ¼ _aD
aD
jt¼t0 .

The curvature parameter kD can be eliminated from the
Friedmann equation, thereby yielding

�
_aD
aD

�
2

¼ H2
0D

�
8πG
3H2

0D

�
a30D
a3D

hρ0iD þ θij

a2D

�Z
∂i½ _a2ρxj

þ ρ∂jU0 þ 1

2a
∂kðρ _axkÞ∂jθ�dtiD

��

þH2
0D

�
θmj

a2DH
2
0D

�Z ��
_a
a

�
3 xmxi

x2
∂i∂jθ

�
dt

	
D

�

þH2
0D

�
a20D
a2D

ð1 −ΩD
NCÞ

�
ð55Þ

where

ΩD
NC¼ΩD

m0þ
8πG

3a20DH
2
0D

θij
�Z

∂i

�
_a2ρðtÞxjþρðtÞ∂jU0

þ 1

2a
∂kðρðtÞ _axkÞ∂jθ

�
dtjt¼t0

	
D

þ θmj

a20DH
2
0D

�Z ��
_a
a

�
3xmxi

x2
∂i∂jθ

�
dtjt¼t0

	
D
: ð56Þ

An interesting point to note is that, in (55), the NC
contribution affects both Friedmann equation as well as the
constant parameter ΩD

NC. This constitutes another of our
major result where we explicitly provide contribution of the
NC correction term in the energy budget of the Universe.
To further quantify the inhomogeneity effects, one needs

to assume specific forms of the velocity such as in spherical
collapse model (with a spherically symmetric and radial
velocity inside the averaging domain) or in Eulerian linear
approximation (where Eulerian coordinates are comoving
with the background Hubble flow) [10]. We plan to explore
these aspects in a separate publication.

VI. DISCUSSION AND SUMMARY

In this perspective, let us finally discuss possible
observational consequences of the results presented in
our model. To compare and contrast with the above
mentioned scenario we note that the tensorial constant
NC parameter θij can be identified with the two-form field
introduced above but instead of exploiting the locally
rotationally symmetric class of metrics as above we have
considered NC-extended FRW metric. As we have already
advertised in the Introduction, there are essentially two
aspects where noncommutativity in the fluid can have
effects as seen in (54) (NC-corrected effective curvature)
and (56) (NC-corrected effective energy budget). As we
have already noted (56) indicates that NC-effect can
contribute additionally as either dark matter or dark energy,
which, however, is more of theoretical interest. On the other
hand, (54) shows that noncommutativity can have a direct
impact on observational cosmology and hence we will
slightly elaborate on this issue of topical interest. Quite
obviously, NC effect induces anisotropy since the NC
parameter θij ¼ ϵijkθk being a constant tensor introduces a
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preferred spatial direction. As we have discussed briefly,
our model provides a form of anisotropy that is quite subtle
since it is (in some sense) concealed within an effective
FRW framework because the background expands isotropi-
cally and CMB is also isotropic at the background level.
There is quite a fair amount of work in the context of

NC effects in cosmology. We have listed some of them in
[30–32]. It needs to be mentioned that different NC
structures are exploited in these works ranging from the
string theory motivated constant NC, (parametrized by a
constant θij, considered by us as well), to the more
complicated operatorial form of nonconstant NC structures
(stemming from the generalized uncertainty principle
framework). However, there is consensus among different
NC practitioners that NC effects should be directly relevant
at the ultraviolet, i.e., extremely high energy or short
distance (such as Planck energy or length scale maybe)
but interestingly its indirect signature can be present at the
infrared, i.e., in the low-energy or long-wavelength regime.
The prevalent idea is that close to the big bang era, the
energy density or dimension of the universe were (pre-
sumably) around Planck scale so that NC could have
impacted directly but its indirect impact can be felt at
present time in low-energy cosmology in the form of
anisotropies in CMB or (as pointed out here) in direc-
tion-dependent effective curvature or energy content. It is
worthwhile to emphasize that introduction of NC effects
from a noncommutative fluid perspective, as in the present
work, is complete since the NC extension of fluid has been
a recent development, initiated by us [1,2,5].
The existing bound on the NC parameter is jθijj≈ ≤

ð10 GEVÞ−2 [33]. In [31], Balachandran et al. have studied
quantum fluctuations of the inflaton scalar field on certain
NC spacetimes and NC effects in anisotropies in CMB
radiation, large scale structure (of matter also), as well as
NC-induced direction dependence in power spectrum. In
[32], the above authors have attempted to constrain the
(theoretical) NC length scale to around 10 TeV by matching
with the observational data from ACBAR, CBI and 5 year
WMAP that tentatively fixes the scale factor aðtÞ at the end
of inflation. It is interesting to note that we have also
derived similar NC effects in cosmological observables.
These values can be used in (13) for specific models to
come up with numerical estimates of NC effects although it
is expected that the NC corrections might be very small.
Let us conclude by summarizing the present work with a

mention of possible future directions. In the first part of the

paper, we have generalized our previously proposed non-
commutative fluid model by including fluid vorticity.
Detailed discussions on the extended Hamiltonian structure
(Dirac brackets) and dynamics have been provided. Major
part of the paper deals with cosmological implications of
the noncommutative extension, especially in terms of
generating inhomogeneity and anisotropy. Following the
formalism developed by Buchert and coworkers [10,11] we
show that the nocommutative effects induce additional
backreaction terms that can affect cosmological evolution.
As remaining open problems we plan to estimate the

noncommutative backreaction effect quantitatively by uti-
lizing specific models of fluid motion. A more ambitious
project is to extend the noncommutative fluid model in the
relativistic scenario. So far, our noncommutative extension
is essentially nonrelativistic that has forced us to consider
Newtonian cosmology. Indeed, a fully relativistic non-
commutative fluid model will open up many new questions
and challenges.
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APPENDIX

In a generic second class constraint system with n SCCs
χi, i ¼ 1; 2; ::n, and the modified symplectic structure (or
Dirac brackets) is defined in the following way,

fA; Bg� ¼ fA; Bg − fA; χigf χi; χjg−1f χj; Bg; ðA1Þ

where f χi; χjg is the invertible constraint matrix. Denoting
the canonically conjugate momentum of a generic variable
a by Πa, the second class constraints χi, i ¼ 1, 2, 3, 4 are
computed from the Lagrangian:

χ1 ¼ Πθ þ ρ −
1

2
θij∂iρ∂jθ χ2 ¼ Πα

χ3 ¼ Πβ þ ρα χ4 ¼ Πρ: ðA2Þ

The constraint matrix f χi; χjg (where i and j goes from
1 to 4) can be written as

f χi; χjg ¼

0
BBB@

−θij∂iρ∂jδðx − yÞ 0 0 δðx − yÞ − 1
2
θij∂jθ∂iδðx − yÞ

0 0 −ρδðx − yÞ 0

0 ρδðx − yÞ 0 αδðx − yÞ
−δ − 1

2
θij∂jθ∂iδðx − yÞ 0 −αδðx − yÞ 0

1
CCCA; ðA3Þ
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where all field arguments and derivatives on δðx − yÞ are on x. Due to the second class nature of the constraints, the
constraint matrix f χi; χjg is invertible and the inverse, to OðθijÞ, reads as,

f χi; χjg−1 ¼

0
BBBBB@

0 Cðx; yÞ 0 Dðx; yÞ
−Cðx⇌yÞ −θij αðxÞαðyÞρðxÞρðyÞ ∂iρðxÞ∂jδðx − yÞ δðx−yÞ

ρ Eðx; yÞ
0 − δðx−yÞ

ρ 0 0

−Dðx⇌yÞ −Eðx⇌yÞ 0 −θij∂iρðxÞ∂jδðx − yÞ

1
CCCCCA

ðA4Þ

where,

C ¼ α

ρ
δðx − yÞ − 1

2
θij

αðyÞ
ρðyÞ ∂jθðxÞ∂iδðx − yÞ; D ¼ −δðx − yÞ þ 1

2
θij∂jθðxÞ∂iδðx − yÞ;

E ¼ θij αρ ∂iρðxÞ∂jδðx − yÞ and (x⇋y) means the argument at x goes to y.

The Dirac brackets follow from using (A1):

fρðxÞ; viðyÞg ¼ −∂iδðx − yÞ − 1

2
θkl∂lθðxÞ∂i∂kδðx − yÞ þ θkl∂kρ

�
∂l

�
α

ρ
∂iβ

�
δðx − yÞ þ α

ρ
∂iβ∂lδðx − yÞ

�
; ðA5Þ

fviðxÞ; vjðyÞg ¼ δðx − yÞ
ρ

½∂jvi − ∂ivj�

þ 1

2
θkl

�
α

ρ
∂lθ∂iβ∂j∂kδðx − yÞ − ∂i

�
∂lθ

�
∂k

�
α

ρ
∂jβ

�
δðx − yÞ þ α

ρ
∂jβ∂kδðx − yÞ

���

− θkl
�
α

ρ
∂iβ∂kρ

�
∂jβ∂l

�
α

ρ

�
δðx − yÞ þ α

ρ
∂jβ∂lδðx − yÞ þ α

ρ
∂l∂jβδðx − yÞ

��
ðA6Þ
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