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We show how the basic idea of parabolic Jacobi relaxation can be modified to obtain a new class of
hyperbolic relaxation schemes that are suitable for the solution of elliptic equations. Some of the analytic
and numerical properties of hyperbolic relaxation are examined. We describe its implementation as a first
order system in a pseudospectral evolution code, demonstrating that certain elliptic equations can be solved
within a framework for hyperbolic evolution systems. Applications include various initial data problems in
numerical general relativity. In particular we generate initial data for the evolution of a massless scalar field,
a single neutron star, and binary neutron star systems.
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I. INTRODUCTION

The solution of elliptic partial differential equations
(elliptic PDEs) is an important problem in many areas of
physics. Correspondingly large is the variety of analytic
and numerical methods dealing with the solution of elliptic
PDEs. The starting point for many methods is a discretiza-
tion and (if required) a linearization, which for typical
problems arising in physics leads to a sparse system of
linear equations for a large but finite number of degrees of
freedom. A key role in the solution of linear systems is
played by iterative methods, e.g., [1,2]. Among the basic
iterative methods are relaxation methods, in particular
Gauss-Seidel and Jacobi relaxation methods, and the family
of Krylov subspace methods. Closely connected are strat-
egies to accelerate these methods, such as preconditioners
and multigrid methods.

Motivated by the need to solve elliptic systems as initial
data within our time evolution code, we study a modifi-
cation of the classic Jacobi method, which is closely linked
to physical relaxation problems. For concreteness, consider
as a minimal example the Laplace equation,

Agp =0, (1)
for a function ¢(x, y, z) on a regular subset of R* together
with appropriate boundary conditions. The Jacobi relaxa-
tion scheme can be obtained by introducing a time

parameter ¢ and considering instead of (1) the parabolic
diffusion equation [3]

0 = Ag. 2)

As time approaches infinity, any initial data for ¢ “relaxes”
to a stationary state, where d,¢p = 0 and hence Eq. (1) is
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satisfied as well. The Jacobi iteration method is obtained by
discretizing the diffusion equation (2). In essence, we
introduce an “unphysical” time dependence, which is not
part of the original problem, and obtain the solution to
the time-independent problem by means of a fixed point
iteration.

Here we investigate a similar strategy, which however
relies on a different type of evolution equation. Instead of
embedding the elliptic equation (1) in a parabolic equa-
tion (2), we consider a hyperbolic wave equation with
damping,

R+ 0, = Ad. (3)

The relationship between hyperbolic equations and para-
bolic diffusion equations has already been investigated in
some special cases [4-6]. In particular it can be shown that
for large times ¢ the solution of the hyperbolic equation (3)
will tend toward the solution of the parabolic PDE, (2).
The hyperbolic equation can be cast in first order form
by introducing the reduction variables w = 9,¢ + ¢ and
r; = 0;¢, yielding the system

8t¢ =y - ¢7 (4)
a,l,l/ - 5ijal'rj, (5)
Ori = Oy —ry. (6)

The first of these equations is an ordinary differential
equation, and it is directly evident that ¢ will tend toward y
exponentially. Thus we can eliminate (4) and obtain the
solution directly from .

Combining time derivatives as in (3) adds strong damp-
ing to the pure wave equation while maintaining the
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hyperbolic character of the PDE. The idea is that deviations
from the stationary state satisfying A¢ = 0 are damped to
zero or are propagated away, and furthermore it can be
advantageous to perform hyperbolic as opposed to para-
bolic evolutions.

In the limit of vanishing damping we obtain the plain
wave equation. If a stationary state is reached, we again
have solved (1). This undamped approach has, e.g., been
used to solve the Poisson equation in the context of
self-gravity [7]. Experimenting with (3) however, we found
that the damping is the main desirable feature, while
propagating waves off the grid is far less relevant for the
reduction of the residual.

In [8] the authors analyzed a specific hyperbolized
version of the Navier-Stokes equations, that exhibits hyper-
bolic relaxation. Although the type of equations that are
considered are similar, our perspective is different. The
elliptic equation is for us the fundamental problem, and we
add a hyperbolic, damped time-dependence to obtain an
iterative scheme for the solution of the elliptic equation.
Since there does not seem to be an established name for this
idea, we refer to the method as hyperbolic relaxation for
elliptic equations (HypRelax), as opposed to parabolic
relaxation that is at the heart of the Jacobi method.

With regard to previous literature on hyperbolic relax-
ation for elliptic equations, some aspects have been
explored in [9] in the context of “gauge drivers” for
numerical relativity. In particular, [9] introduced one of
the most used gauge conditions for certain black hole
evolutions, the Gamma-driver for the shift vector, which
employs a hyperbolic equation related to the elliptic
equation for a minimal distortion shift. They likewise
discussed a similar approach to the lapse in which the
associated elliptic equation corresponds to maximal slicing.
Also see [10] on gauge drivers, where however only
parabolic relaxation is considered.

The goal of the present paper is to develop hyperbolic
relaxation given by the prototype in (3) into a method to
solve a general class of systems of second order, nonlinear
elliptic equations. The problem of immediate interest to us
is defined by the constraint equations of general relativity,
which we solve as a system of nonlinear elliptic equations
to obtain initial data for evolution in numerical relativity.
However, the formalism is quite independent of this par-
ticular problem.

The main result of this paper is that hyperbolic relaxation
can be formulated for nontrivial equations, and numerical
experiments for some specific test problems were indeed
successful. Specific examples include the Poisson equation,
the conformal-thin-sandwich equations, scalar field initial
data, and some simple configurations of single and binary
neutron stars.

Considering (3), let us collect some basic observations
here in order to introduce the main questions we want to
address. First of all, we have to address the well-posedness

of the hyperbolic PDEs. Given a self-adjoint, elliptic
operator, the hyperbolicity of equations of type (3) should
be clear. We demonstrate this below for a general class
of equations. There exists a rich theoretical background
regarding well-posedness and numerical stability for hyper-
bolic PDEs [11-13], which helps to find relaxation
schemes that are well suited for numerical applications.

Second, in addition to the boundary conditions of the
original elliptic equation we have to choose boundary
conditions for the hyperbolic equations that are compatible
with the asymptotic elliptic problem. This choice is not
unique, but of great importance to obtain successful
evolutions. In particular, we consider maximally dissipative
boundary conditions.

Third, assuming feasibility and stability of hyperbolic
relaxation, a key question concerns the efficiency of the
method. In both parabolic and hyperbolic relaxation meth-
ods the time parameter is unrelated to the elliptic equation,
i.e., the time evolution is of no interest as long as the
stationary state is reached efficiently. This is the basis for
different acceleration strategies. For hyperbolic relaxation,
there is a finite propagation speed, and in contrast to the
diffusion equation it is not clear how to bypass that speed to
accelerate the method.

Beyond the intrinsic interest in a new method, we have to
ask whether hyperbolic relaxation, after some significant
further development that is beyond the scope of this paper,
might become an interesting alternative to the highly
developed standard methods. For example, Jacobi relaxa-
tion is a fundamental building block of many advanced
methods, but it is essentially never used on its own because
of its slow convergence (for long wavelengths). However,
multigrid methods with parabolic relaxation as smoother
(for short wave lengths) are highly efficient, reducing the
computational complexity from O(n?) to O(nlog(n)). It
remains to be seen how efficient hyperbolic relaxation can
be, with and without acceleration methods.

As it stands, there are pragmatic considerations that can
make hyperbolic relaxation methods interesting, in par-
ticular when solving elliptic equations as part of a larger
project. For example, elliptic PDEs are often solved to
provide initial data for evolution systems that are subject to
certain constraint equations, e.g., the Maxwell equations or
the Einstein equations. However, the main work load is
the actual evolution of the data by integrating a hyperbolic
PDE. In such a case the hyperbolic relaxation method does
not have to compete with optimized standard methods in
terms of efficiency as long as solving the elliptic equation is
only a small part of the entire work load. On the other hand,
a hyperbolic relaxation method may be easy to implement
using the existing infrastructure of a numerical evolution
code, avoiding the need for and the complications of an
external elliptic solver. Using the same infrastructure also
has the advantage that interpolation errors can be avoided
by using the same grid discretization. Considering our
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research in numerical relativity, a sophisticated infrastruc-
ture for evolutions is indeed available, but we were looking
for alternative elliptic solvers. Hence we implemented
hyperbolic relaxation in the pseudospectral hyperbolic
evolution code BAMPS [14,15], which only required minor
modifications once the formalism itself was established.

The paper is structured as follows. In Sec. II we derive
and motivate the evolution equations on which our relax-
ation method is based and discuss some of its properties. In
Sec. III we give details on the numerical implementation
and state the methods used in the BAMPS code. In Secs. IV
and V we apply our hyperbolic relaxation method to some
test cases and to the construction of initial data for
numerical relativity. We conclude in Sec. VI.

Throughout the paper we use the Einstein summation
convention, i.e., we sum over indices that occur once as an
upper index and once as a lower index, e.g., s't; = > _.s't;.
Latin letters i, j, k, ... denote coordinate components and
they are lowered and raised by an arbitrary metric with
positive signature. An index s denotes a contraction with a
vector s;, in particular d; = 5'9; = s' 2. Greek letter
indices a, 5, y denote components of a field and they
are lowered and raised by the Euclidean metric d,4.

II. THE HYPERBOLIC RELAXATION EQUATIONS

A. Evolution system

In the following we present the principal ideas of the
hyperbolic relaxation method and derive the equations that
follow for the iteration scheme. Although it is possible to
write down hyperbolic relaxation schemes in second order
form like Eq. (3), we will focus on a first order formulation.
This is primarily done because our evolution code BAMPS
only handles first derivatives, but we will see that the
reduction does allow considerable freedom in the prob-
lem setup.

In this paper we consider only systems of elliptic
equations given in second order form, i.e.,

(Ly), = a(x*)7 0,05 + Fo(x*, ws. 0ip5) =0, (7)

where the y, are the N unknown solution variables and F is
a continuous function of the solution variables, their
derivatives and the D coordinates x*. We take a'/’, to
be a smooth function of the coordinates and suppress this
dependence in the notation. Every elliptic system will be
accompanied by a set of boundary conditions on the
variables y, and we discuss their treatment in Sec. ITE.
In the following we consider classically elliptic systems
[16] only, i.e., systems with

det(af 5;5;) #0 Vs € RP\{0}, (8)

where the determinant is understood to be taken on the
indices a and f.

To solve the second order equation (7) one could employ
the Jacobi method, which can be motivated by evolving the
parabolic partial differential equation:

O = (L), ©)

where ¢ is some parameter that plays the role of time.

For a classically elliptic system with constant coeffi-
cients the Jacobi method can only converge if a'#, is
positive definite on the whole domain, i.e., there exists an
e>0

a¥lti5t* > erty, V1€ RPV\{0},  (10)

which we assume in the rest of this paper. This condition
corresponds to the notion of strong ellipticity, which
defines an important subclass of classically elliptic systems
[16]. Note that we have the freedom to multiply the
elliptic equation with an invertible matrix d”,, yielding
(Ly), = d’,(Ly) s = 0, which has the same solutions as
the original equation. This freedom allows the transforma-
tion of some systems that are classically but not strongly
elliptic into strongly elliptic form.

To construct the hyperbolic relaxation equations we can
reduce the second order elliptic system to first order by
introducing the reduction variables r;,:

0= aij/}aairjﬁ + F{I(l/]ﬁ? ri/f)’ (11)
0= ail//a — Fig- (12)

In analogy to the Jacobi method (9) we evolve v, by taking
Eq. (11) as the right-hand side, yielding

atl//a = aijﬂaairj/)’ + Fa(xiv l///,v, riﬂ) (13)

and we proceed similarly with the equations for the
reduction variables r;:

Oiliqg = bjiﬂa(aiW/} - rj/i)’ (14)

where b7/, is arbitrary under the requirement of positive
definiteness, meaning in analogy to Eq. (10)

bif st > etipf™ VY 1€ RPV\{0}.  (15)
The system of Egs. (13) and (14) forms a first order
hyperbolic differential equation which we refer to as the
hyperbolic relaxation system. Clearly the reduction con-
straint Eq. (12) is not enforced at all times and will indeed
be violated during the relaxation process, however we are
only interested in the steady state, which fulfills the

reduction constraint, because Eq. (14) drives the reduction
variable r; towards O;y. To see this, let us assume for
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arguments sake that 9,0;y, = 0, which is reasonable close
to the steady state. The solution for r;, then has the form

n my
= Z e_ﬂ][ Z xk]hk,ia + ail//a’ (16)
= =0

where £ is constant and the 4, are the n eigenvalues defined
by the eigenvalue equation b//7,t* = At/ and m,;
depends on the geometric multiplicity of 4;. From the
positive definiteness of » we know that all the eigenvalues
have positive real part and it follows immediately that r;,
approaches 0y, exponentially. Indeed in Sec. II C it will
be shown for a simple case that the modes of the system are
always damped even for 0,0;y, # 0. We emphasize how-
ever that in some cases, e.g., if the elliptic system has no
solution, 0;y, can grow faster than r;, and thus the
reduction constraints cannot be satisfied asymptotically
in time.

It is obvious that if the hyperbolic relaxation system
reaches a steady state we must have obtained a solution to
the first order elliptic system Eqs. (11) and (12), and hence
also of the original elliptic equation (7).

It is natural to ask here why we restrict to second order
elliptic systems rather than including also first order
systems. The reason is that only for this class of operators
have we identified a hyperbolic relaxation scheme which
we expect to efficiently settle down to a steady state. The
next natural query is what, if anything, is gained by
insisting on taking the relaxation scheme in first order
form, beyond the practical requirement that we can imple-
ment the scheme within our code. As we have seen, the
reduction allows a variety of choices for b/ /7, which is not
directly evident in the second order form. In fact it is not
clear whether a similar second order form relaxation
equation like Eq. (3) can be found for generic b//2,. As
will be seen in Sec. III D the first order formulation also
provides a method to define a refinement criterion.

B. Residual evolution

The residuals of the first order system, Egs. (11)
and (12), are given by

R, = d'’ 0irjs + Fo(x' yy. rig), (17)

Ria = b]l a(ajl//ﬁ / ) (18)

A simple calculation shows that the residuals will evolve
according to

y OF, OF,
= adil O.R. .
3,Ra a aaleﬂ 8[//ﬂ arlﬂ Rlﬂ’ (19)
3tR,-a - b],ﬁa(ajRﬂ - Rj/}) (20)

For a working relaxation scheme, we want the residual
evolution system to be stable, i.e., the first order residuals
should converge to zero for t — oo, for residuals that are
sufficiently close to zero. Systems of this type and stability
conditions are discussed in detail in [17,18]. It is not
possible for us to give general results on the stability of the
hyperbolic relaxation scheme, as the multitude of possible
systems is too large to be covered in a closed form,
especially for elliptic systems with more than one variable.
A stability analysis must therefore be done individually for
the concrete problem.

C. Mode analysis

To shed some light on the behavior of solutions to the
hyperbolic relaxation, we perform a simple mode analysis
ignoring the issue of boundary conditions of a generaliza-
tion of Eq. (3)

€dip +noip = Ag, (21)

where € and 5 are real, non-negative constants. A third
constant in front of A¢ has been rescaled to one without
loss of generality. With ¢ = # = 1 as in (3) we fix the unit
of time to be dimensionless (unity since [T?%] = [T)).

We introduce the plane-wave ansatz

¢pw(t’ X) _ ei(kx—wt)’ (22)

where k and w are constants. The wave number k is a real
number related to the wave length, k = 27/4, while @ may
be a complex number. Inserted into the hyperbolic relax-
ation equation (3), we obtain

ew’® + inw = k2, (23)

. (k) = —%mi 1\ J4el® — ). (24)

Recall that for the wave equation w. (k) = +k, while for
the heat equation w(k) = —ik?. For hyperbolic relaxation,
there is a further case distinction for the sign under the

square root \/4ek®> — n*. The existence of a transition at a
2 _ 4Amy/e

kcril - n

choice of hyperbolic relaxation equation has fixed a scale,

that can be adjusted by changing the parameters 7 and e.

For sufficiently large wave number,

¢pw = e_ﬂte’(kXif\/Zﬁﬂ

specific length scale A, = signals that our

; k>—— 25
which is a damped wave with phase velocity v(k) =

1
€

to the heat equation with e™*'). The phase velocity
approaches v = 1/4/e for large k, but for k approaching

€— W The damping is independent of k (as opposed
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the critical value # from above the phase velocity tends
€

towards v = 0. This has the consequence that the maximal

possible time step scales like Az ~ \/eAx for large k (high

resolution), but has a finite upper bound for small k.

Increasing the parameter € might appear to be a good idea

at first, since it allows one to use larger time steps, but at the

same time it reduces the damping by the same factor.
For sufficiently small wave number,

¢pw _ e—zié_(ni\/rlz—%kz)teikx, 0<k< (26)

e
N

which is a nonmoving wave profile e** times a k-
dependent damping factor. For k = ﬁ? the damping is

0 1t

e , while for k equal to zero there are two cases, ¢’ or e™<.
For small k, the worse (more weakly) damped case is

exp(— 5z (11— \/11* — 4ek?)1) ~ exp(— k*1), which is the
same damping as for the basic heat equation, when we
choose n = 1.

Summarizing, the plane-wave mode analysis suggests
that solutions to the hyperbolic relaxation equation exhibit
a mixture of relaxation and wave propagation phenomena,
see Fig. 1. For wave numbers larger than a critical value,
k > ke with ke = ﬁz, there is wave propagation with
simultaneous damping. Noteworthy is that the damping is
independent of k, e™*'. This is a promising feature
compared to parabolic relaxation with e 1 for intermedi-
ate values of k. For large values of k parabolic relaxation
has much stronger damping, but the overall convergence
rate is dominated by small k. For hyperbolic relaxation,
there is no wave propagation for k < k., but the damping
persists. Interestingly, the damping factor asymptotes

toward e " for k — 0, and is never worse than parabolic
relaxation for small k, when we choose n = 1.

If we mimic the first order relaxation equations (13)
and (14) by

12 .
= T~
~e
= 08
"t \
= 06 \
7 |
g 04k —— HypRelax -Im(w)
= 02'_ —>¢— Jacobi -Im(w)
L —®— HypRelax v
L o L 1 L 1 L
% 05 1 15 2
wavenumber k
FIG. 1. Damping and propagation speed of basic hyperbolic

relaxation with parameters € = 1 and # = 1 compared to para-
bolic relaxation. There is a transition at k. = %, which can be
moved to lower values by adjusting 7. The overall damping is
determined by the slowest damping rate.

1 ,
(9,1// = —a]-rj,
n

Or; =

a3

O —r),  (27)

we recover the modes in (23) and D — 1 transverse modes
Fhat have w =0 and for which w(k) = —i? is purely
imaginary.

For the choice of 1 and ¢ we can take our motivation
from the gauge driver construction [9] and set ¢ = 1, 77 an
arbitrary non-negative constant, and obtain

w0, (k) = —%(ini a2 — ), (28)

We also considered € = #* and arbitrary » for uniform
scaling of time.

To avoid small k that drop below (or too far below) k.,
we can adjust € or n such that the length scale of k
corresponds to the physical size L of the domain, say
Aaie = 2L. This will decrease the damping for large &, but
will also avoid the severe slow down when the damping
approaches that of parabolic relaxation.

D. Hyperbolicity analysis

In this section we introduce a notation for inverse
tensors. These have to be understood as the inverse of
matrices with respect to the field indices. For example the
inverse of the tensor ¢/, is (¢7')?, and we have

Loy, =8, (29)

For the hyperbolicity analysis we start with writing the
hyperbolic relaxation system in matrix form

O = Pkou + h(x',u) (30)

0 aki/)’ v,
k_ a _ a
r= (bk-/" 0 ) ‘- <rm>' G

The principal symbol of this system is then given by

0 asi/}a
b B 0 > ’ (32)

with

PS:PkSk: <

where s, is an arbitrary unit vector, s’s; = 1. Suppose ¢, =
a’®,b*//. has a complete set of eigenvectors w,* with
o, = 64w, where 6% is diagonal. If furthermore all
the eigenvalues, i.e., the diagonal elements of o}, are

positive then P* has the following left eigenvectors

v, = (0,808, = b° ;< (b°51)%s"), (33)
Vi = (w7 owsta), (34)
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where pf is the root of O'f, i.e., it is a positive diagonal

tensor with p?pﬂ = a!; . Note that of the eigenvectors V%,

only (D — 1)N are linearly independent, while the v; are
2N independent vectors. If there exists a constant K,
independent of s%, such that ||V||, + |[|[V~!||, < K, where
V is an, in general s'-dependent, square matrix constructed
from a linearly independent set of the eigenvectors v, then
the system is strongly hyperbolic [11-13]. The character-
istic variables # and their characteristic speeds A are thus

P\ s € s —1\a i
ujy_rj}'_bjy(b s )esrim

2 =0, (35)

i’\‘}:/t = WyaWa + (p_l)?wéeasmeriw )“)é: = :tp}o/cea’ (36)
where ¢, denote the Cartesian basis vectors. From this
we can recover the evolved variables in terms of the
characteristics:

1 A A
Va =5 W)/ (8 + i), (37)
~0 se (—1\f -1\ 6 ri‘;_i‘r_ sjy 40
ria:uia+bi(1(c )e' (W )/i/)(s —aipl, ).
(38)

We can use the freedom in the choice of b7/, to impose
certain properties on the hyperbolic relaxation system. In
the following we briefly discuss three interesting choices,
that fulfill the restrictions we have set for b.

(1) b is the identity. A very easy and natural choice is
bif, = 8/8). With this choice we have ¢/, = a*%,,
which has only eigenvalues with positive real part
due to (10). The imaginary part however can be
nonvanishing. If however a***, = a*,% then c is
guaranteed to have a complete set of eigenvectors
with purely real eigenvalues and thus system is
strongly hyperbolic. If we have a"*, =a"“,
then the system is even symmetric hyperbolic with

symmetrizer:
oy 0
H = < ija > (39)
0 a- yéjl

(2) b is the transpose of a. We can also make the
system trivially symmetric hyperbolic by choosing
bF, = al,l. The principal symbol of this system
is symmetric and thus the system is symmetric
hyperbolic.

(3) bisthe inverse of a. We can choose b to be the inverse
of a in the sense that b fulfills a; ™, b7/, = 5180 This
choice is particularly interesting because we then have
= 8 and thus all the nonzero characteristic
speeds have values +-1. Furthermore the eigenvectors

of ¢ become trivial: w,* = &7. A symmetrizer for this

system is
H < o 0 ) 40
- 0 ia om w | ( )

A 0l 1y

Since all traveling characteristic variables have the
same speeds, we consider this the best choice for
bl . A straightforward generalization of this choice
allows b/ # , to be scaled by a constant factor, which
will also uniformly scale the characteristic speeds.

E. Boundary conditions

The basic idea to impose boundary conditions in our
method is to modify the right-hand side of the hyperbolic
relaxation system. The outward pointing unit normal
covector s; to the boundary surface is naturally defined
by taking the gradient of a scalar field which is increasing
across, but constant in the boundary, and then normalizing
this gradient to unit magnitude using our arbitrary but fixed
metric. This metric is subsequently used to raise the index
and form the outward pointing vector s’. We restrict our
attention to strongly hyperbolic systems, for which a
regular (s’-dependent) similarity transformation matrix
T, exists which transforms between our evolved variables
u and a linearly independent set of the characteristic
variables @ given in Eqgs. (35) and (36)

u = T,a. (41)
We can then decompose our evolution equations (30) as
o =Pou+ Pgiou + h(x', u), (42)

where g = &, — s;s" is the projector onto the boundary
surface. We now multiply by T5! and obtain

dji = T7'PO,u + T (Prgiou + h(x, u))
=T;'PT,T;'0u + T3 (PXgiou + h(xi, u))
= A*d, i + T (Prgiou + h(x, u)). (43)

Here the straight derivative symbol d denotes that the
transformation matrix stands outside of the derivative, i.e.,
d, i = T;'0,u, and A* is a diagonal matrix containing the
characteristic speeds. We can now impose boundary con-
ditions on the incoming variables, i.e., those with positive
characteristic speeds, by modifying their right hand sides.
After the right-hand sides have been modified we transform
the system back by multiplying with T;.

1. Penalty method

In the penalty method [19-21] the boundary conditions
are weakly imposed by modifying the right-hand sides of
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the incoming characteristic variables i, in the following
way

d,if = DS + p(i8C¢ — i), (44)

. BC . .
where p is the penalty parameter, u, " is some given

boundary data that we want i, to approach, D,ii/ is the
unmodified right-hand side and = denotes equality at the
boundary. The penalty parameter can not be chosen
arbitrarily and we refer the reader to [15] for a detailed
derivation of the penalty parameters used in BAMPS.

2. Maximally dissipative boundary conditions

Maximally dissipative boundary conditions [11-13,22]
will allow us to set boundary conditions of the form

$' O aloa = Da(Wp, Oiwp, 450:00yp), (45)

where ¢ is a function that is allowed to depend on the
coordinates x’, the fields y,, their derivatives and the
transverse projections (g} = &, — s's;) of their second
derivatives. For brevity we suppress dependence on all
the arguments in the following.

Enforcing the boundary conditions (45) would cause
reflections which we wish to avoid from the outer boundary
during the relaxation process. We can however construct
maximally dissipative boundary conditions such that (45) is
fulfilled in the steady state. Maximally dissipative boun-
dary conditions are imposed by requiring

(p_l)gwﬁaatl//a + wy{lasl//a = wy{l¢a' (46)

This boundary condition is actually different from Eq. (45)
during the relaxation process. However, again we are only
interested in the steady state at the end of the evolution,
where we have 0,, = 0 and thus the correct boundary
condition will be imposed. For numerical stability the
functions ¢, must not depend on normal derivatives of the
evolved variables. Therefore in (45) in the arguments of
¢, we have to make the replacements O,y — r;3 and
q450:0wp — qi0;rys. For the normal derivatives of the
incoming characteristic we obtain the relation

dsﬁ}J’r = W}’aasl//a + (p_l)}éwﬁeasmeasria (47)

= Wya¢(z - (p_l )ﬁwﬁa(atl//a - alfjerlasrje)v (48)

where in the actual implementation d,y,, is to be replaced by
Eq. (13). This equation is now used to impose the boundary
condition by replacing the d, i, terms in Eq. (43), yielding
the modified right-hand side

dta;r = Dti’\t;r - pé’l(w[)’aasl//a + (p_l )Z’wﬁaatl//a - w/}(l¢(1)-
(49)

With the general expression at hand, we now discuss choices
for ¢, that lead in the steady state to standard boundary
conditions for elliptic equations.

(1) Dirichlet conditions. Dirichlet conditions are of the
form y,|sq = g, Where the g, are some function
defined on the domain boundary 9Q. To achieve
such a boundary condition in the steady state, ¢, has
to take the form

¢a = siria+eﬂa<g/3_u/ﬂ)’ (50)

where e is positive definite, i.e., eﬂatﬂt"‘ > 0. In the
steady state we have 0w, = r;, and thus Eq. (46)
becomes 0 = ¢”,(gs — y;), which is only fulfilled
for the requested boundary condition. The positive
definiteness of e is important to guarantee stability at
the boundary. Suppose we have 0y, = ry, fixed,
then Eq. (46) has the form

(p_l )5W/3{latWa = Wyaeﬂa(g/} - l//[i)9 (51)

which would have solutions not asymptoting to g,, if
e was not positive definite. Besides positive defi-
niteness there are no further restrictions apparent on
e and therefore, it can be chosen to be the identity

e, = 80, which we use in our applications.

(2) Neumann conditions. Neumann boundary condi-
tions are of the form s'O;y,|50 = g, Their imple-
mentation in our method is straightforward; one just
has to take ¢, = g,.

(3) Robin conditions. Robin boundary conditions are a
mixture of Dirichlet and Neumann boundary con-
ditions and can be written as s'9;y, |90 = g4 + fgl///;,

where the fg are functions defined on the domain
boundary. Their implementation is also straight for-

ward choosing ¢, = g, + fﬁwﬁ.

III. NUMERICAL SETUP
A. Grid setup

We employ the pseudospectral hyperbolic evolution
code BAMPS and refer the reader to [15], where the grid
setup is explained in detail. Here we only give a short
summary of the basic grid setup and numerical method.
Our grid consists of different coordinate patches, a cube
patch in the center, transition shell patches and outer shell
patches. On each patch we have a mapping between local
Cartesian coordinates to global Cartesian coordinates,
where on shell patches we employ the “cubed sphere”
construction [23]. The patches themselves can consist of
smaller subpatches, which are the smallest units we use for
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our parallelization scheme. On each subpatch we approxi-
mate the fields by a Chebyshev pseudospectral method,
i.e., the subpatches are discretized in every direction by the
Gauss-Lobatto collocation points. It is then possible to
reconstruct the Chebyshev coefficients from the fields
values at the collocation points.

The BAMPS code is adapted to evolutions in three
dimensions. For axisymmetric and spherically symmetric
problems we use the cartoon method to reduce the computa-
tional domain to two or one dimensions respectively [15].

B. Integration method

The time integration for relaxation methods does not
require a high order of error convergence, since we are only
interested in the steady state at the end of the evolution.
More important are the efficiency and stability of the
integration algorithm. For the time integration we use
the method of lines. It is known that for linear hyperbolic
equations the simple forward Euler-method and also
explicit second-order Runge-Kutta methods are, at least
without artificial dissipation, unstable (see e.g., Chapter 6.7
of [11]) and thus are not suited for the integration of the
hyperbolic relaxation equations.

In the applications presented in this paper we employ the
popular fourth-order Runge-Kutta scheme (RK4), which is
stable for hyperbolic equations. This method needs four
evaluations of the right-hand side per time step, which
appears to be not very efficient. After all, we do not need a
very accurate integrator, since we are only interested in
approaching the stationary state. Therefore it is worthwhile
to investigate other classes of integrators, e.g., multistep
methods like the third- or fourth-order Adams schemes
[24], which effectively only require one or two evaluations
per time step and are usually also stable for hyperbolic
PDEs. Some simple experiments with the Poisson equation
indicated, however, that RK4 is more efficient than RK3 or
a fourth order Adams scheme since RK4 allows compa-
ratively large time steps.

Contrary to what is described in [15], we neither use nor
need filtering to assure stability in the hyperbolic relaxation
method, since the system usually tends towards a stable
static or stationary solution automatically.

In our code we have two types of boundaries. On the
one hand we have boundaries between different sub-
patches, and on the other hand the boundaries of our
computational domain, in particular the outer boundaries.
To treat boundaries between subpatches we employ
the penalty method described in Sec. IIE 1 setting the
boundary data to be the outgoing characteristic of the
neighboring subpatch.

Treating the outer boundary with this method we have to
provide a function g, equaling u; BC at the boundary, i.e.,

+BC _

i, w, W, + (p~! )?Wégamleria =Y (52)

Here the given data could be generalized to include
combinations of the outgoing characteristic variables at
outer boundary. This strategy could be used to implement a
desired boundary condition from the original elliptic PDE,
but has the undesirable side-effect of reflection from the
boundary, which may serve as an obstruction to decay of
the residual. On the other hand, a boundary condition of the
direct form (52) would be unusual in practice for elliptic
equations, as the characteristic fields of the relaxation
scheme have no special meaning in the original system.
Therefore the penalty method is not best suited for the
treatment of our outer boundaries. Instead, as described in
Sec. IE 2, we embed the desired boundary conditions for
the elliptic system inside boundary conditions for the
relaxation scheme that are more likely to absorb outgoing
waves.

C. Initial guesses

To start the hyperbolic relaxation one has to provide an
initial guess to the solution. A suitable initial guess will
always depend on the specific form of the problem, in
particular it should be chosen such that in the course of the
relaxation the variables do not have to cross any points
where the equations (e.g., terms in the nonprincipal part)
become singular. In our tests we found the solver to be
particularly well behaved when starting with a guess that is
stationary in the interior, but not at the boundary. The whole
solution then starts to relax from the boundary to the inside.
For example in our applications to numerical relativity
initial data, taking the flat metric everywhere lead to stable
relaxations, which demonstrates a remarkably high robust-
ness that can be achieved by the method. For the reduction
variables we simply take the numerical derivative of the
initial guess, i.e., (™7, = 9,y

D. Refinement strategy

To speed up the relaxation process we employ a simple
scheme of successive refinement. It can be assumed that the
right-hand side of the solution variables 0,y ,, Eq. (13), is a
good approximation to the residual of the elliptic equation
(Ly),» Eq. (7). This however is only true until a discre-
tization limit is reached below which the norm of the
residual is no longer decreasing. The norm of the d,y,, will
typically continue decreasing until machine precision is
reached. We note that this continuing decrease will only be
present if no spectral filter is applied. This obersavation
makes it possible to construct an indicator signaling when
the discretization limit is reached and thus relaxation
should be continued on a higher resolution grid. In
particular we choose the following criterion,

N N
[ 1owdav<e [ S iwav.  53)
a=1 a=1
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where ¢ is some constant smaller than one. For our
applications we found ¢ = 0.1 to be a choice working
reasonably well. We note however that depending on the
specific problem also smaller values might be beneficial.
Additionally we increase the resolution when the error of
the elliptic equation reaches machine precision, i.e., when
the norm of (Ly), is smaller than 10~'3 times the number
of grid points.

We start with relaxing the system on the coarsest grid and
check every 1000 relaxation steps whether to proceed
relaxation on a finer grid based on whether one of the
two criteria mentioned above is fulfilled. The final reso-
lution can be determined by an error bound on the residual
of the elliptic equation, or by some predetermined reso-
lution, which may be required for the evolution of the data.
For the refinement we increase the resolution on every
subpatch by two collocation points in every direction,
which is equivalent to adding two Chebyshev modes in
every direction. We interpolate the coarse steady state
solution to the new subpatches and repeat the procedure
until we arrive at the desired resolution. We also find it
advisable to use the interpolated values for the reduction
variables instead of taking the numerical derivative of the
solution variables, since the latter introduces new errors,
which costs some extra effort to damp.

IV. APPLICATION TO TEST CASES

A. Poisson equation—Finite differencing

To provide a reference point independent of the specific
pseudospectral methods of BAMPS, we first discuss a
minimal implementation using a finite difference method
to solve the Poisson equation. We consider the hyperbolic
relaxation equation

02 +ndp = A — p, (54)

which we implement as a first order in time, second order in
space system,

at¢:”_77¢’ (55)
O = A — p. (56)

We consider the fully first order version of this system in
Sec. IV B. At the boundaries we use asymptotic Dirichlet
conditions analogous to (50), 0,¢p = g — ¢pand 0,7 = g — 7.

We choose centered, second order accurate finite
differences in space, and the default time integrator is
the classic fourth-order Runge-Kutta method. The numeri-
cal domain is an equidistant grid of points in [-% 4]
dimension d = 1, 2, or 3, with Cartesian coordinates. There
are N points in each of up to three directions with a total of

V = N¢ points.

2

HypRelax d=1 N=101
HypRelax d=1 N=401 X
HypRelax d=2 N=101
HypRelax d=2 N=401 o
HypRelax d=3 N=101

HypRelax d=3 N=201 o

log10(|res|)
N
T

time t

FIG. 2. Poisson equation, FD method. Convergence of the
residual with time for one, two, and three dimensions. Shown is a
solid line for N = 101 and markers for a higher resolution given
by N =201 or 401 points. On the scale of the plot, the
convergence rate is independent of resolution for any given
number of dimensions.

Let us discuss some results for vanishing source term,
p = 0, and vanishing Dirichlet boundary, g = 0, where the
method has to reduce an initial guess of ¢ = 1/(1 4 x;x/)
and 7=0 at r=0to the asymptotic, late-time value p = 7 = 0.

In Fig. 2, we show results for a box of size L = 20,
damping parameter 7 = 1, varying the number of points
and the number of dimensions. The norm is weighted by
the grid spacing Ax to represent the integral of the residual,
Ifl, = (O f2Ax4)'/2. Convergence is exponential in time,
with two distinct phases. Inspection of the evolution of ¢
and 7 shows that the initial phase corresponds to the
damping of short wavelengths (in this example until
t = 20), after which long wavelengths dominate and the
convergence is slower. The convergence of the (weighted)
norm of the residual with time is quite independent of the
resolution. In this example the time-step is At = 1Ax, so
the number of time steps is proportional to the number N of
grid points in one direction. For efficiency we chose
A=14, 1.0, 0.8 for 1d, 2d, and 3d, respectively, and
obtain stable time-stepping with RK4. The work per right-
hand-side evaluation is O(N?), so the total work to reach a
final time T is O(N4t).

A key question is how efficient hyperbolic relaxation is
compared to other methods. In Fig. 3, we show a com-
parison of different methods for a two-dimensional exam-
ple with N = 101 points. The methods considered are
hyperbolic relaxation as above, the standard Jacobi iter-
ation [25], and the BICGSTAB method as an example
for a Krylov subspace method [26]. Also included are two
additional variants of hyperbolic relaxation. In these
examples A7 = 1.0Ax for RK4 in 2d.

Referring to Fig. 3, the Jacobi method shows the slowest
convergence. Reducing the residuum of the 2d Poisson
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" BICGSTAB
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Jacobi
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FIG. 3. Poisson equation, FD method. Convergence of the

residual with the number of right-hand-side evaluations. Shown is
a comparison between different methods for N = 101 in two
dimensions.

equation by a factor 1077 requires n ~ % pN? iterations on a
N x N grid [25]. For a 2d grid with V = N? degrees of
freedom, the operation count is therefore O(V?) = O(N*),
compared to O(N?3) for optimal SOR and O(V log V) for
multigrid methods. Hyperbolic relaxation with O(V)x
O(N) = O(N?), as demonstrated in Fig. 2, is therefore a
reasonable candidate for further consideration. In the
concrete example, the Jacobi method is significantly slower
than hyperbolic relaxation, but the Jacobi method is usually
not considered as a stand-alone method.

For this simple comparison, the BICGSTAB method is
used without a preconditioner, but the Laplace operator
leads to a sufficiently well conditioned operator such that
convergence is fast nevertheless, compared to the other
methods considered here. There is an initial phase of
relatively slow convergence, but once the trial solution is
sufficiently close to the final answer, convergence becomes
much faster.

Remarkably, hyperbolic relaxation does about as well as
BiCGSTAB during the first phase. However, convergence
slows down after the shorter wavelengths have been
damped and errors due to larger wavelength remain. We
have considered three ideas to improve the convergence of
hyperbolic relaxation for long wavelengths. Not shown
here is the multi-level refinement strategy which we
employ in the BAMPS code, see Sec. III D.

As an immediate application of the mode analysis of
Sec. I C, we introduced the damping parameter #, which
for the basic experiments so far was set to 7 = 1. Also
shown in Fig. 3 is the result for # = 0.4, which exhibits a
constant decay rate that is slower than # = 1 initially, but
faster for later iterations. This effect depends on # and the
size L =20 of the box. With ¢ =1, for = 1 we have
Agit = 4n < L, and for n = 0.4 we have A5 = 107 > L.
This indicates that for = 0.4 all wavelengths fitting into

the box fall into the range 1 < Ay, and we expect the
constant damping rate e~# for all wavelengths. On the other
hand, for 7 = 1 wavelengths both smaller and larger than
A are present initially, but damping for 4 < A, is faster
than for 1 > A, so after an initial transient the damping
rate slows down when 4 > A is the dominant contribu-
tion. There is a trade-off between reducing # in order to
suppress 4 < A for a given domain size, and increasing #
for a stronger damping factor ¢~2". In the example of Fig. 3
HypRelax with # = 0.4 overtakes HypRelax with n = 1 at
about 900 RHS evaluations. It seems possible to construct a
dynamically adjusted damping #(7).

Similar results hold for the parameter ¢ in (21) as
discussed in Sec. [T C. At large k the velocity of the modes
scales with 1/4/€ but is independent of 7, so for optimal
performance the Courant factor has to be adjusted together
with e but can be kept constant when # is varied.

We also experimented with a “one-step overrelaxation”
method (as opposed to successive overrelaxation). This is
based on the observation that after the initial propagation/
damping phase of hyperbolic relaxation, the second time
derivative of ¢ becomes significantly smaller than the first
time derivative, 9?¢p < 9,¢p. Hence it seems promising to
attempt a linear extrapolation in time. The curve labeled
“overstep” in Fig. 3 is obtained by searching every few
iterations for the time step AT = AAt that minimizes the
global residual of ¢,e, = ¢ + ATF(¢), where F is the
update suggested by the time stepping algorithm (e.g.,
RK4). This is similar to various other 1d step-size opti-
mizations. For the example considered here (but also for
p #0 as below), the late time solution of hyperbolic
relaxation is sufficiently regular that indeed an appropriate
global AT can be found. The overstep algorithm only
accepts the large step AT if it decreases the residual by at
least a factor f, say f = 10 (we tried f = 2 to f = 1000).
The optimal choice of f depends on different features of the
problem, in particular choosing f too small can make the
method less efficient. Each overstep introduces new local
error modes (since AT is a global parameter). As can be
seen in Fig. 3, the approximate solution is disturbed, but
converges again with the typical speed for shorter wave-
lengths to a new regular state. In the optimal case the
overall convergence rate seems to approach that of the fast
phase of hyperbolic relaxation. It may be possible to derive
a continuous variant of this method analogous to successive
overrelaxation, which we leave to future research. With the
scheduled Jacobi method [27,28] there has been a similar
idea for a parabolic solver, accelerating the Jacobi method
considerably by a clever schedule of over- and under-
relaxation steps.

The main points regarding the convergence rate of
hyperbolic relaxation as shown in Fig. 3 are that the
method works out-of-the-box and that its performance
falls somewhere between Jacobi and BiCGSTAB. There
seems to be quite some potential for accelerating the
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convergence rate of hyperbolic relaxation. From the point
of view of solving elliptic equations with a code designed
for hyperbolic equations, note that hyperbolic relaxation is
“only” slower by a factor of about 5 (to reach a residual of
10~ in this example) than a standard method like
BiCGSTAB, which however may not be readily available.

B. Poisson equation—Pseudospectral method
To test the hyperbolic relaxation elliptic solver as
implemented in BAMPS we start by solving Poisson’s
equation,
Ay —p =0, (57)
in spherical symmetry, i.e., p = p(r), r = \/x'x;. To solve
this equation we choose the hyperbolic relaxation system

atw = 5ijairj =P (58)

atr,- = 611//_ r;. (59)
For our first test we take p to be smooth, i.e., it is infinitely
often continuously differentiable,

-6 4r2\ e
p=ro(z+ ) %0
where R and p, are nonzero parameters. For this p
Poisson’s equation has the solution
Wanalytic = pOe_rz/Rz- (61)
At the boundary a falloff in y compatible with this solution
is obtained by imposing the Robin boundary condition
Oy = s'0w = —2ry/R%.
For our second test we take a nonsmooth p that
corresponds to a homogeneously charged sphere, which
is like a toy model for stars. The density p is then given by

po ifr<R
= 62
’ {o if >R, (62)
for which the Poisson equation has the solution
2R ifr<R
Yanalytic = P0 . (63)
-5 if r>R.

3r

Again we impose Robin boundary conditions according to
the falloff of this solution, i.e., 0, = s'0;y = —y/r.

In our tests we place the outer boundary at radius of 10
and we divide the grid into a total of eight subpatches,
where the inner five extend over the interval [0, 5] and the
outer three, having a coarser resolution, extend over [5, 10].
The parameters determining p are chosen to be R = 5 and

po = 1. For the nonsmooth case special care has to be taken
to ensure convergence. In particular we chose the grid such
that the discontinuity lies at a boundary of subpatch,
ensuring second order convergence. In both test cases
the relaxed solution converges with the number of grid
points to the analytical solution. To investigate the con-
vergence we have to make sure that the solution is
completely relaxed on every resolution. This is achieved
by choosing in Eq. (53) ¢ = 0.0001. In Fig. 4 we report the
absolute difference between the analytical and numerical
solution integrated over the outermost subpatch. We note
however that the convergence behavior is the same on all
other subpatches. As expected we find the error of the
numerical solution to decrease exponentially with the
number of points for the smooth p from Eq. (60). For
the nonsmooth p of Eq. (62) it is well known that
convergence can only be polynomial and indeed we only
get a convergence order of approximately two, which is the
expected convergence order for discontinuous p. Of course
this is not very efficient for a spectral method. In non-
smooth regions it is therefore often preferable to increase
the number of subpatches (h-refinement) instead of the
number of collocation points per subpatch. In numerical
applications one often uses spectral methods even for non-
smooth problems, i.e., in (general relativistic) hydrodynam-
ics, and thus it is still interesting to investigate the behaviour
of our method on grids suited for these simulations.

In Fig. 5 we investigate how the L1-norm of different
quantities, that can be used to approximate the error,
progresses during the relaxation process. First we observe

>
o
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i 10716 1 L 1 I
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FIG. 4. Convergence of the L1-norm of the difference between
the analytical and the numerical solution. Upper plot: for smooth
p [Eq. (60)]. Lower plot: for nonsmooth p [Eq. (62)]. Note that in
the upper plot only the error axis is logarithmic, while in the
lower plot both axes are logarithmic.
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FIG. 5. Progression of the L1-norm of different error quantities
during the relaxation process for the Poisson equation. Vertical
dashed lines indicate transitions to a finer grid. The respective
error quantities are: blue solid line: residual, defined as left-hand
side of Eq. (57), orange dashed line: right-hand side of Eq. (58),
green dotted line: difference to the analytical solution. Upper plot:
for smooth p [Eq. (60)]. Lower plot: for nonsmooth p [Eq. (62)].

that the difference to the analytical solution decreases even
when the computed residual, given by left-hand side of
Eq. (57), is already leveling off. This is especially remark-
able for the non-smooth case, where the residual itself is not
converging at all. For the smooth case we secondly observe
that after refining the grid the norm of right-hand side of
Eq. (58) practically continues at the same level as before.
The norm of the residual on the other hand drops quickly
after refining, reaching the right-hand sides level until
again the discretization limit is reached. These observations
suggest that for problems with smooth solutions it is
preferable to relax for longer on the coarse grid. For
problems with nonsmooth solutions, however, more new
error develops during each refinement and thus refining for
longer on the coarse grid is not paying off. Furthermore, it
is preferable to increase the grid resolution faster.

As a last simple test, we investigated the behavior in the
case of nonunique solutions. For this we took the smooth p
from Eq. (60) and imposed the Neumann boundary con-
dition 0,4y = 0, for which multiple solutions differing only
by an additive constant exist. We find that after some
relaxation the right hand side of Eq. (58) becomes
approximately constant in space. From this point on the

solution is no longer improving, since only constant terms,
which do not improve the residual of Eq. (57), are added.

V. APPLICATION TO INITIAL DATA
FOR GENERAL RELATIVITY

A. The extended conformal thin-sandwich equations

For the formulas in this section we introduce Latin letters
a,b,c, ..., htodenote the spacetime components of general
relativity. These spacetime indices are lowered and raised
by the spacetime four-metric g,,. In numerical relativity
one usually decomposes the spacetime metric g,, into a
temporal and spatial part in the form

Japdxdx? = —a?di? +y,;(dx' + pidr) (dx/ + p/dr),  (64)

where « is called the lapse, ' the shift and vi; the spatial
metric. The equations of motion in general relativity are
subject to constraint equations, which have to be solved
before the spacetime is evolved numerically. A popular
formulation of the constraint equations is given by the
extended conformal thin-sandwich (XCTS) equations
[29,30] in which the spatial metric is decomposed into a
conformal factor y and a spatial conformal metric y;; as
Yij = w7, ;- In the XCTS framework the constraint equa-
tions take the form

_ T/ K? -
D'Djy = SR -y’ <27rp TG A’/>, (65)
DID;p" = D,/ — Rp/ + 16may*J’

1~
3
2 i
+ (DB +DIp ~ ”Dkﬂ
- D;In(ay~®)

_ .. 4 _.
— ap D, (@ WSO, + SaD'K,  (66)

o 7 5
D'Dj(oy) = ay? <§AijA’-’ + EKZ +2z(p + 2J))

= 1 _
-y (0, —,BJDj)K—l-gal//R. (67)

Here D, is the covariant derivative compatible with the
conformal metric 7,;, R;; is the Ricci tensor of 7;; and R is
the corresponding Ricci scalar. The tensor A;; is
the tracefree part of the extrinsic curvature K;; and K
is the trace of K;;. The matter source terms are defined as
the following contractions of the energy-momentum tensor
Ty p = Typnnt, J' = =T,y n" and J = y**T,,, where
n® is the timelike vector normal to the spatial hypersurface
n® = (1/a,—p"/a). For conformal quantities (denoted by a
bar) the conformal spatial metric 7"/ lowers and raises
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indices and for unbarred quantities the physical spatial
metric y is used. In the XCTS equations 7,;, 9,7;;, K and
0,K are given functions, depending on the type of initial
data you want to construct.

In Eq. (67) the product ey is taken as one variable. For
our computations we rewrite this equation with the help of
Eq. (65) as

DiDa = % (Dia)(Djw) — v (9, - piD;)K

. K?
+ ay? (AijA” t3 Ar(p + J)) , (68)

so we can solve directly for . We have tested our elliptic
solver with both versions and found them to work equally
well in our applications. In the following we investigate the
XCTS system with our replacement for the lapse equation,
but the analysis would be exactly the same for the original
system.

The principal part of the XCTS equations is given by

7 0 0 W
0 M8 +g7%el 0 |a0;| B (69)
0 0 Tl a

The principal part is coupled only between the components
of pi. Thus we can carry out the hyperbolicity analysis
independently for y, a and f'.

The metric to lower and raise spatial indices in the
hyperbolic relaxation method is in principal arbitrary, but
for the XCTS equations we use the conformal metric 7;;,
because this choice simplifies the following formulas
considerably. Another peculiarity is the fact that spatial
indices and field indices “mix,” but in general they are
lowered and raised by different metrics. Therefore we do
not lower and raise field indices and instead write the
Euclidian metric explicitly.

For the conformal factor part we have in the hyperbolic
relaxation system a'/ = 7'/ and we choose b'; = &'. Here
we have suppressed the field indices, because we only have
a single field y. The characteristic variables and speeds of
the hyperbolic relaxation system of the y part are then
given by

) =r;— sjsir<l") 2 =0, (70)

at =y sV, =41, (71)

i
where rEl") is the reduction variable for y.

The lapse part has exactly the same principal part, so we
have identical @'/ and b'; and the characteristics are

ﬁ? =r- sjsirf."), A =0, (72)

G Y e (73)

i
with rl(.a) being the reduction variable for a.

In the derivation of the hyperbolic relaxation equations
we labeled the fields with lower indices. For the shift
however we use upper indices here and thus one has to be
careful, not to confuse the indices. Therefore, we introduce
auxiliary fields ¢, with

p* =g (74)

Substituting f* we obtain for the principal part of the shift
equations

005y = (P34 370,07 )00yt (79

We take b! ]ﬁa to be the inverse of a (as defined in Sec. II D),
b'p = 5555 — 1675, The characteristic variables and
speeds for this part of the hyperbolic relaxation system
are then given by

ﬁ?}' =Ty~ bsjgy(bss_l)aesiria (76)
i 1 l ka i
= 1)y = 88Ty + 5 (8) = 5,58y )3:8"5 i, (77)
%y =0, (78)
iy = ¢, = a*ri (79)
i 1 € ja
= ¢y £ (' +35°060% 754 ). (80)
A ==L, (81)

where the r;,, denote the reduction variables for the
auxiliary fields ¢,.

At the domain boundary we want the solution to fall off
like the Schwarzschild solution, ie., w =%+ 1 and
a= % + 1. This ansatz gives rise to the following Robin
boundary conditions

11—y l—a
05 = — 05| 9o = T, (82)

For the shift we likewise impose a radial falloff by the
Robin condition

: ﬂi
Osp'loa =" (83)
As an initial guess we always use the flat space solution,
re,w = 1,a =1, = 0. Of course an initial guess, that is

084044-13



RUTER, HILDITCH, BUGNER, and BRUGMANN

PHYS. REV. D 98, 084044 (2018)

a good approximation to the solution is always the
preferred start for the relaxation, since it will take less
time to relax to the solution or might be necessary to relax
at all. However we find our simple initial guess to work
well and it demonstrates in a nice way the high robustness
of the hyperbolic relaxation method exhibited in our
experiments.

B. Scalar field

The energy-momentum tensor for a scalar field ¢ is
given by

1
Tah = va¢vh¢ - Egab(vc(bvcfﬁ + m2¢2)’ (84)

where V denotes the covariant derivative compatible with
9gap- We consider conformally flat moment-of-time-
symmetry initial data, i.e., 7;;=6;;, "V, =0, 9,7;; = 0
and maximal slicing K = 0, 9,K = 0. This yields for the
matter quantities

p =37 0)OF) + 3w ()
Ji=0, (86)

1 ij 3 2 42
J= —57 (81'47)(3]“}") _Em ¢ (87)

For a massless scalar field (m = 0) the solutions for lapse
and shift are trivially given by a = 1 and ' = 0 and we
only have to determine the conformal factor y by solving
Eq. (65), now taking the form

0 = 890,0, + mps(9,4)(0,). (88)

For a massive scalar field (m # 0) one would have either
have to solve additionally for the lapse or one gives up the
requirement on J,K. For the scalar field we choose radially
symmetric, smooth initial data of the form

b(r)=p <tanhf — tanh 5) : (89)
c c
where ¢ and p are free parameters, that we choose for our
test tobe 6 =1 and p = 0.1.

The computational domain is divided into eight sub-
patches, where the inner five subpatches are of smaller
extent to improve the resolution near the center. In Fig. 6
we show the numerical solution for the conformal factor
and the absolute value of the residual of Eq. (65) for a
resolution of 21 collocation points per subpatch. A general
feature that can be observed in the residual are spikes at the
boundary of subpatches, which are expected for quantities
involving first and second derivatives in a discontinuous
Galerkin approximation.

7107°
1.06 P\ | —— conformal factor 4 10-10
———— abolute residual 4 10711
410712
-410°%3
] {g-14
41071
i —410716
I N 1 —-17
15 20 25 3010

radius r

conformal factor ¢
absolute residual

FIG. 6. Steady state at a resolution of 21 collocation points per
subpatch for the initial data of the scalar field. Solid line:
conformal factor. Dashed line: residual for conformal factor, as
given by the right-hand side of Eq. (88).

We also investigate how the solution converges with
increasing resolution. For this purpose we look at the
Chebyshev coefficients and investigate their convergence
against the coefficients of a high resolution solution. In
Fig. 7 we present the convergence behavior of the lowest
Chebyshev mode C(0,0,0) against its value for a reso-
lution of 31 collocation points. We observe an exponential
convergence until we hit machine precision at around a
resolution of 25 collocation points per subpatch.

C. Tolman-Oppenheimer-Volkoff star

The energy-momentum tensor of a perfect fluid is
given by

Tab = (€+p)uaub +pgahv (90)

where € is the proper energy density, p the fluid pressure
and u, the fluid four-velocity. The Tolman-Oppenheimer-
Volkoff (TOV) solution [29,31,32] is a static radially
symmetric solution to general relativity, thus we have

u, = (@,0), 7;j = 6;;, 0,7;; =0 and we consider again
5

S

S

Om

=

S

S

~=

@) . I . I . I . I

_ 5 10 15 20 25

number of grid points n
FIG. 7. Convergence of the lowest Chebyshev coefficient

C(0,0,0) at the innermost subpatch for the initial data of the
scalar field. The system is relaxed for different numbers of
collocation points. The plot shows the absolute value of the
difference between the Chebyshev coefficient at the highest
resolution (31 collocation points) and its value for n collocation
points per subpatch. For n = 25 the difference is zero within
machine precision and is therefore not displayed on the loga-
rithmic axis.
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maximal slicing K =0, 0,K = 0. The matter quantities
then become

p=c¢, Ji=0, J =3p. (91)

We assume for our tests a polytropic equation of state and
express the matter quantities in terms of the specific

enthalpy h,
- (1 + n(1h+_n1)> <K(}i _+1n))n’ (%2)

J =3k (ﬁ) " (93)

where « is the adiabatic constant and 7 is the polytropic
index. The Euler equation follows from energy-momentum
conservation, i.e., for a fluid with temperature 7 = 0

ut (va(hub) - vb(hua)> =0, (94)

which has to be satisfied in addition to the XCTS equations.

For our assumptions the Euler equation is satisfied for ah =
const and thus specifying the specific enthalpy at the origin

yields
h(0)a(0) -
h(r) = { 20 if a(r) <

HOJa(0) o

1 else

We can immediately get the solution for the shift ' = 0
and are left with solving Egs. (65) and (68) of the XCTS
system.

For our test we choose an adiabatic constant of x =
123.6489 and a polytropic index of n = 1 and the enthalpy
in the star’s center is set to 2(0) = 1.2. We present the
solution for the conformal factor and the lapse in Fig. 8 and
investigate the convergence of their lowest Chebyshev
modes in Fig. 9. The residuals are large at the stellar
surface, i.e., where a(r) = h(0)a(0). This is caused by the
fact that the matter terms are not smooth at this point, which
can be seen in the kink in the specific enthalpy 4. As for the
nonsmooth right-hand sides discussed in Sec. IV B, we
have to make sure that the kink lies at a subpatch boundary.
By trial and error we find the stellar surface for the above
parameters to be located at r = 9.7098 and we place a
subpatch boundary at this position “by hand.” A more
sophisticated method is to fit coordinates automatically to
the stellar surface [33]. This however is beyond the scope
of this paper as we here want to focus on applications of
the hyperbolic relaxation method. In contrast to what we
observed in the nonsmooth case for the Poisson equation,
here the Chebyshev coefficients converge exponentially
despite the kink in the specific enthalpy. The convergence
rate however is much smaller than that observed for the
initial data of the scalar field.

1.2
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—-x-- lapse 3001
. -—-- absolute residual
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FIG. 8. Steady state at a resolution of 27 collocation points per

subpatch for the initial data of the TOV star. Solid line: conformal
factor. Orange dashed line with markers: lapse. Green dash-
dotted line: absolute value of the residual for the conformal factor,
as given by the right-hand side of Eq. (65). Vertical dashed line:
position of the stellar surface.
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FIG. 9. Convergence of the lowest Chebyshev coefficient as in
Fig. 7 for the initial data of the TOV star. The highest resolution
used in these runs was 77 collocation points per subpatch.

D. Neutron star binaries

For the construction of neutron star binary initial data we
follow the scheme of [32] using the constant three-velocity
approximation. However, to solve the XCTS equations we
do not rely on iterating the solution of the equations for the
conformal factor, lapse and shift separately, but instead we
solve for all variables simultaneously relaxing the complete
XCTS system, which accelerates the solution process. This
is a feature that most solvers for this type of initial data do
not provide, and it could turn out to be an advantage of our
method. Furthermore, we do not start with superposed
(boosted) TOV solutions, but instead start with a flat metric
v=1a=1, ﬂi, as discussed at the end of Sec. VA.

For our test we consider equal mass neutron stars with a
specific enthalpy of 4 = 1.01 in each of their centers and a
separation of 80. For the equation of state we choose again
k = 123.6489 and n = 1. The stars’ centers are located at
the z-axis and their velocities are parallel to the x-axis.
We construct in initial data for irrotational stars on a
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FIG. 10. Steady state at a resolution of 11 collocation points per
subpatch for the initial data of a binary neutron star system. We
show data along the positive z-axis. The values on the negative
axis are symmetric (anti-symmetric for the shift component ).
Solid line: conformal factor. Orange dashed line with markers:
lapse. Purple dotted line: x-component of the shift, shown here
with an offset of one for clarity. Green dash-dotted line: absolute
value of the residual for the conformal factor, as given by the
right-hand side of Eq. (65). Vertical dashed line: position of the
stellar surface.

quasicircular orbit. In Fig. 10 we present results for the
conformal factor, lapse, the x-component of the shift, the
residual of the conformal factor equation. As for the TOV
star initial data, the residuals are biggest on those sub-
patches which contain the stellar surfaces, where the matter
fields are not smooth.

Because we are not using surface-fitted coordinates
[33-35] we can not place the stellar surface at a subpatch
boundary, and thus no high-order convergence in the norm of
the residuals can be seen with increasing number of
collocation points. Although this may be a disadvantage
for studies of initial data per se, the situation changes if the
goal is evolution of the data. Since in an actual evolution of
this data surface-fitted coordinates are normally not retained,
the high accuracy of initial data with surface-fitted coor-
dinates will be lost relatively quickly anyway. On the other
hand, methods like [33] require expensive iterations to
determine the surface fitting coordinates as part of the
solution process, so any method which works without special
coordinates is more efficient in that part of the algorithm. In
fact, part of the motivation for the multigrid method in [32]
was to construct a solver which works on a general Cartesian
grid without surface-fitting coordinates. The hyperbolic
relaxation method achieves the same goal.

VI. CONCLUSIONS

The most common types of relaxation methods are based
on the famous Gauss-Seidel method, which can be moti-
vated by rewriting the problem as a parabolic diffusion

equation that relaxes from an initial guess to the solution of
the elliptic PDE. In this paper we investigated a new class
of relaxation methods, which are not based on parabolic,
but rather on hyperbolic PDEs. In the literature hyperbolic
relaxation is usually discussed from the point of view that a
hyperbolic equation is given which may contain physical or
numerical dissipation terms. In this work we assume that an
elliptic equation is given, which is extended to a hyperbolic
relaxation equation for the purpose of solving the elliptic
equation. In some respect, hyperbolic relaxation might
actually be as well suited for the solution of elliptic PDEs as
parabolic relaxation.

We investigated how a hyperbolic relaxation method
(HypRelax) can be constructed for a general class of second
order, nonlinear elliptic PDEs and discussed its structure
and properties. A discussion of the general hyperbolicity
properties has been carried out and three specific choices
for the relaxation were discussed. For the special case of the
Laplace equation, a mode analysis revealed that there is a
critical wave number at which the qualitative behavior of
the modes is changing. It has also been seen that at low
wave number the damping rate approaches that of the
Jacobi method from above. It is an interesting topic for the
future how the specific choice of the relaxation system
(choice of b/ /) affects the behavior of the modes, how that
choice can be optimized, and what would be the modes for
more general elliptic equations.

Furthermore, we have shown how the standard types of
boundary conditions—Dirichlet, Neumann and Robin
boundary conditions—can be implemented within the
hyperbolic relaxation framework.

With regard to advantages, hyperbolic relaxation shares
with several other methods the feature that it is “matrix
free,” i.e., it is possible to avoid the construction of an
explicit matrix form by applying the differential operator
directly. Also note that as in Jacobi methods, nonlinear
equations can be treated without linearization, avoiding the
additional work of e.g., outer Newton-Raphson iterations.

The ease of implementation is a key feature of hyperbolic
relaxation. In the past, we implemented a parallel geometric
multigrid method for the BAM and CACTUS codes [32,36-38].
We also interfaced BAM to the HYPRE package [39,40] for
access to a variety of elliptic solvers, in particular algebraic
multigrid. To avoid complicated dependencies, some of the
black hole initial data was later computed with a stand-alone
Newton-Raphson method, or even with the direct solver in
MATLAB for numerical stability [41]. Our current production
runs for a wide range of binary neutron star initial data rely
on the sophisticated spectral solver SGRID [33,42.43].
Unsurprisingly, compared to the various approaches just
mentioned, hyperbolic relaxation is very straightforward to
implement given a hyperbolic evolution code.

We have implemented the hyperbolic relaxation method
in our spectral hyperbolic evolution code BAMPS [14,15]
(and in a finite differencing test code). For numerical tests
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we have applied it to Poisson’s equation, and we also
presented applications to numerical relativity initial data,
where we have seen a high robustness with respect to the
choice of an initial guess and regarding the simultaneous
solution of the XCTS equations. Given the complexity of
binary neutron star initial data and the correspondingly
involved numerical methods that have been developed to
solve these elliptic equations, e.g., [30] and references
therein, it is a nontrivial result that the hyperbolic relaxation
method results in a robust and quite efficient elliptic
solver.

We have seen that the damping rate at low wave numbers
is comparable to that of the Jacobi method and thus very
low. In this study we were most interested in the basic
properties of the hyperbolic relaxation method and thus we
focussed on a simple scheme of successive refinement, but
there exist more sophisticated accelerators, in particular
multigrid methods, that could be implemented also for a
hyperbolic relaxation scheme. Another possible extension
of our hyperbolic relaxation implementation would be an
adaptive mesh refinement scheme, for which we see two
main advantages. First of all, there are the usual savings due
to optimized local resolution, and second, since we want to
use the solution of the elliptic equation as initial data, this
will provide us with a grid that should already be well
adapted to the evolution of the obtained data. Another idea

is to employ adaptive time stepping, for which however
special care would be required to keep the scheme stable.

With regard to initial data for neutron stars, one of the
potential problems is the lack of differentiability at the
surface of the stars. We were prepared to evolve the neutron
star data with a high-resolution shock-capturing method,
but in fact this was not necessary given the strong damping
of the equations. In applications where the wave propaga-
tion feature is important, shock handling may be a feature
that comes at no extra cost assuming that there is an
evolution code providing the appropriate methods.

The investigations of this paper can only serve as a first
step in the exploration of this potentially promising branch
of new relaxation methods. Hyperbolic relaxation might
become with further study, and in particular in combination
with acceleration methods, the basis of an alternative
numerical solution method for elliptic equations.
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