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We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is
done by introducing, in the framework of the metric-affine formalism, a new class of theories where the
nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a
Lagrangian of the form L ∼ f1ðQÞ þ f2ðQÞLM, where f1 and f2 are generic functions of Q, and LM is the
matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor,
and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q
instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter
couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of theQ,
when implemented also in thematter sector,would allowmore universally consistent andviable realizationsof
the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the
evolution equations and imposing specific functional forms of the functions f1ðQÞ and f2ðQÞ, such as power-
law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in
two general classes of models, and found to feature accelerating expansion at late times.
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I. INTRODUCTION

The discovery of the late-time cosmic accelerated expan-
sion [1,2] has motivated an extensive amount of research on
modifications of general relativity (GR) [3–7], as a possible
cause of this cosmic speed-up. A plethora of theories have
been proposed in the literature, essentially based on specific
approaches. For instance, one may tackle the problem with
the metric formalism, which consists on setting the Levi-
Civita connection and varying the action with respect to the
metric, or consider themetric-affine formalism [8], where the
metric and the affine connection are regarded as independent
variables. Note that the metric gμν may be thought of as a

generalization of the gravitational potential and is used to
define notions such as distances, volumes and angles. On the
other hand, the affine connection Γμ

αβ defines parallel
transport and covariant derivatives.
From a mathematical point of view (but inspired by the

desire of obtaining a unified field theory) the first step in
going beyond Riemannian geometry was taken by Weyl
[9], who extended the notion of parallel transport by
considering the possibility that when vectors are trans-
ported along a closed path, their lengths, and not only their
directions, change. The nonintegrability of the length was
used by Weyl to find a geometric interpretation for the
electromagnetic field, as well as an elegant way to unify
electromagnetism and gravitation. Weyl’s theory was gen-
eralized by Dirac [10], who proposed the existence of two
metrics: the first is the unmeasurable metric dsE, which
changes as a result of the transformations in the standards
of length, and a second metric, which is measurable, and

*t.harko@ucl.ac.uk
†timoko@kth.se
‡fslobo@fc.ul.pt
§gonzalo.olmo@uv.es∥drgarcia@fc.ul.pt

PHYSICAL REVIEW D 98, 084043 (2018)

2470-0010=2018=98(8)=084043(13) 084043-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.084043&domain=pdf&date_stamp=2018-10-26
https://doi.org/10.1103/PhysRevD.98.084043
https://doi.org/10.1103/PhysRevD.98.084043
https://doi.org/10.1103/PhysRevD.98.084043
https://doi.org/10.1103/PhysRevD.98.084043


which is given by the conformally invariant atomic metric
dsA. The two metrics are conformally related, so that
fðxÞdsE ¼ dsA, where fðxÞ can be taken as any function
that transforms as fðxÞ=σðxÞ under the conformal
transformation gμν → σ2gμν. For an introduction to the
Weyl-Dirac theory, see [11]. The Weyl geometry can be
immediately generalized to include torsion. The corre-
sponding geometric model is called the Weyl-Cartan
geometry, and it was studied extensively from both the
physical and mathematical points of view [12–15]. For a
review of the basic geometric properties and of the physical
applications of the Riemann-Cartan and Weyl-Cartan
geometries, we refer the reader to [16].
It is a basic result in differential geometry that the general

affine connection may always be decomposed into three
independent components [17,18], namely,

Γλ
μν ¼ fλ μνg þ Kλ

μν þ Lλ
μν; ð1Þ

where the first term is the Levi-Civita connection of the
metric gμν, given by the standard definition

fλ μνg≡ 1

2
gλβð∂μgβν þ ∂νgβμ − ∂βgμνÞ: ð2Þ

The second term Kλ
μν is the contortion

Kλ
μν ≡ 1

2
Tλ

μν þ TðμλνÞ; ð3Þ

with the torsion tensor defined as Tλ
μν ≡ 2Γλ½μν�. The third

term is the disformation,

Lλ
μν ≡ 1

2
gλβð−Qμβν −Qνβμ þQβμνÞ; ð4Þ

which is defined in terms of the nonmetricity tensor:
Qρμν ≡∇ρgμν.
Thus, by making assumptions on the affine connection,

one is essentially specifying a metric-affine geometry [19].
For instance, the standard formulation of GR assumes a
Levi-Civita connection, which implies vanishing torsion
and nonmetricity, while its teleparallel equivalent (TEGR),
uses the Weitzenböck connection, implying zero curvature
and nonmetricity [20]. A gravitational model in a Weyl-
Cartan spacetime, in which the Weitzenböck condition of
the vanishing of the sum of the curvature and torsion scalar
was considered in [21]. A kinetic term for the torsion was
also included in the gravitational action. The field equations
of the model can be obtained from a Hilbert-Einstein type
variational principle, and they lead to a complete descrip-
tion of the gravitational field in terms of two fields, the
Weyl vector and the torsion, respectively, both defined in a
curved background. The cosmological applications of the
model were investigated for a particular choice of the free
parameters in which the torsion vector is proportional to the

Weyl vector. In particular, a de Sitter type late time
evolution can be naturally obtained from the field equations
of the model. The Weitzenböck condition of the exact
cancellation of curvature and torsion in a Weyl-Cartan
geometry was imposed into the gravitational action via a
Lagrange multiplier in [22]. The dynamical variables are
the spacetime metric, the Weyl vector and the torsion
tensor, respectively. However, once the Weitzenböck con-
dition is imposed on the Weyl-Cartan spacetime, the metric
is not dynamical, and the gravitational dynamics and
evolution is completely determined by the torsion tensor.
The gravitational field equations can be obtained from a
variational principle, and they explicitly depend on the
Lagrange multiplier. The case of Riemann-Cartan space-
times with zero nonmetricity that mimics the teleparallel
theory of gravity was also considered.
A relatively unexplored territory consists in another

equivalent formulation of GR, which is denoted the
symmetric teleparallel equivalent of GR (STEGR). Here,
one considers a vanishing curvature and torsion, and it is
the nonmetricity tensor Q that describes the gravitational
interaction. The STEGR was presented in the original brief
paper [23], where the authors emphasize that the formu-
lation brings a new perspective to bear on GR, and the
gravitational interaction effects, via the nonmetricity,
present a character similar to the Newtonian force and
are derived from a potential, namely, the metric. However,
the formulation is geometric and covariant. The topic was
further explored in [24], where the STEGR was represented
by the most general quadratic and parity conserving
lagrangian with lagrange multipliers for vanishing torsion
and curvature. It was shown that the considered lagrangian
is equivalent to the Einstein-Hilbert lagrangian for certain
values of the coupling coefficients. Furthermore, it was also
shown that in the gravitational analogue of the Lorenz
gauge [25], the field equations can be written as a system
of Proca equations, which may be of interest in the study
of propagation of gravitational-electromagnetic waves.
More recently, the symmetric teleparallel theories of

gravity were analyzed in [26], where an exceptional class
was discovered which is consistent with a vanishing
affine connection. In fact, based on this remarkable
property, a simpler geometrical formulation of GR was
proposed that is oblivious to the affine spacetime struc-
ture, thus fundamentally depriving gravity from any
inertial character. The resulting theory is described by
the Einstein-Hilbert action purged from the boundary
term and is more robustly underpinned by the spin-2 field
theory. This construction also provides a novel starting
point for modified gravity theories, and presents new and
simple generalizations where analytical self-accelerating
cosmological solutions arise naturally in the early and
late-time universe. These topics were further explored in
[27], where the linear perturbations in flat space were
analyzed, and in [28,29].
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A generalization of STEGR was considered in [19],
where a nonminimal coupling of a scalar field to the
nonmetricity invariant was introduced. The similarities and
differences with analogous scalar-curvature and scalar-
torsion theories were considered by discussing the field
equations, role of connection, conformal transformations,
relation to the fðQÞ theory, and cosmological applications.
This recent class of scalar-nonmetricity theories was
extended by considering a five-parameter quadratic non-
metricity scalar and including a boundary term [30]. The
equivalents for general relativity and ordinary (curvature
based) scalar-tensor theories were also obtained as particu-
lar cases. These nonminimal couplings motivate us to
explore modifications of STEGR by considering a coupling
between nonmetricity and the matter Lagrangian, much is
the spirit of the case treated in [31–33]. In fact, the
nonminimal curvature-matter coupling and generalizations
were extensively explored in the literature (see for instance
[34–44]), and we refer the reader to [45,46] for recent
reviews. The nonminimal torsion-matter coupling was also
analyzed in detail [47–51] and a dynamical system analysis
was developed in [52].
Thus, the aim of the present paper is to present an

extension of the symmetric teleparallel gravity, by intro-
ducing a new class of theories where the nonmetricity Q is
coupled nonminimally to the matter Lagrangian, in the
framework of the metric-affine formalism. This work is
outlined in the following manner: In Sec. II, we present and
motivate the symmetric teleparallel equivalent of general
relativity (STEGR). In Sec. III, we consider an extended
STEGR, by coupling a general function of the nonmetricity
to the matter Lagrangian. In Sec. IV, we consider some
cosmological applications, and we conclude in Sec. V with
a summary and some perspectives.

II. COVARIANT EINSTEIN LAGRANGIAN

In 1916, Einstein wrote down [53] a simple Lagrangian
formulation for his field equations

LE ¼ gμνðfα βμgfβ ναg − fα βαgfβ μνgÞ; ð5Þ

featuring the Levi-Civita connection written here as the
Christoffel symbols of the metric defined in Eq. (2). The
more standard Lagrangian formulation first discovered by
Hilbert in 1915, given by the metric Ricci scalar R,
contains additional terms which involve second derivatives
of the metric. In fact, R ¼ LE þ LB, where the boundary
term (a total derivative) is

LB ¼ gαμDαfν μνg − gμνDαfα μνg; ð6Þ

where theDα is the covariant derivative with the connection
(2). The reason why the higher-derivative formulation has
become the standard one is that the Lagrangian (5) is not
covariant.

This can be repaired by promoting the partial derivatives
of the metric in (2) to covariant ones. We will therefore
introduce an independent “Palatini connection” Γα

μν, with a
covariant derivative ∇α, in order to define the tensor

Lα
βγ ¼ −

1

2
gαλð∇γgβλ þ∇βgλγ −∇λgβγÞ; ð7Þ

which is nothing but the disformation (4) explicitly written.
This way, the invariant

Q ¼ −gμνðLα
βμLβ

να − Lα
βαLβ

μνÞ; ð8Þ

is by construction equivalent to (minus) the Einstein
Lagrangian (5), when the covariant derivative reduces to
the partial one, i.e.,

∇α¼0 ∂α; Q¼0 − LE: ð9Þ

This gauge choice, denoted with the 0, was called the
coincident gauge and shown to be consistent in the
symmetric teleparallel geometry [26].
Though in this geometry the connection Γα

μν has neither
curvature nor torsion, the connection (2) and its curvature
still play their physical roles. Note that the Dirac
Lagrangian, connected with the Γα

μν in the symmetric
teleparallel geometry, filters out everything but the

Christoffel symbols (2) from Γα
μν ¼ fα μνg þ Lα

μν¼0 0.
The Q-formulation is thus a pretty subtle improvement
of GR, since (minimally coupled) fermions are still con-
nected metrically [28], and whilst the pure gravity sector is
now trivially connected, effectively nothing changes but
just the higher-derivative boundary term LB disappears
from the action.

III. MATTER COUPLINGS

A. Action and field equations

More substantial distinctions arise in generalizations of
the fðQÞ gravitational theory. In this work, we consider the
action defined by two functions, given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
f1ðQÞ þ f2ðQÞLM

�
; ð10Þ

where LM is a Lagrangian function for the matter fields.
Nonminimal couplings with a function of the R have

been considered extensively [31–33], since they predict
very interesting phenomenology. Due to the higher-
derivative property of the scalarR, however, these theories
are best considered as effective theories which might
become problematical at certain limits. As an example,
for a density of a canonical scalar field ϕ, the nonminimal
coupling of the form f2ðRÞLϕ introduces a kinetic term
which does not fit into the viable Horndeski class. Let us
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point out, however, that such problems are likely to
disappear when this coupling is formulated in the metric-
affine approach because the field equations remain second
order, see e.g., [54].
Therefore the proposal is to reconsider the nonminimal

curvature couplings in the framework ofQ gravity. Since the
scalar invariantQ in Eq. (8) involves no higher derivatives, a
coupling f2ðQÞLϕ results in second-order equations of
motion. Thus, the form of the action (10) is inspired by
thewell-studied theory in the curvature formulation, wherein
the two functions f1 and f2 have been considered to depend
on the metric curvature R [45,46].
The motivation is to see whether the subtle improvement

of the geometrical formulation, when implemented in the
matter sector, would allow more universally consistent and
viable realizations of the nonminimal curvature-matter
coupling theories.
We define the nonmetricity tensor and its two traces as

follows:

Qαμν ¼ ∇αgμν; Qα ¼ Qα
μ
μ; Q̃α ¼ Qμ

αμ: ð11Þ

It is also useful to introduce the superpotential

4Pα
μν ¼ −Qα

μν þ 2QðμανÞ −Qαgμν

− Q̃αgμν − δαðμQνÞ; ð12Þ

which, by using Eq. (7), can also be written as

Pα
μν ¼ −

1

2
Lα

μν þ
1

4
ðQα − Q̃αÞgμν −

1

4
δαðμQ̃νÞ: ð13Þ

One can readily check that Q ¼ −QαμνPαμν (with our sign
conventions that are the same as in Ref. [26]). For nota-
tional simplicity, let us introduce the following definitions

f ¼ f1ðQÞ þ 2f2ðQÞLM;

F ¼ f01ðQÞ þ 2f02ðQÞLM; ð14Þ

where primes ( 0) stand for derivatives of the functions with
respect to Q. We also specify the following variations

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LMÞ
δgμν

; ð15Þ

Hλ
μν ¼ −

1

2

δð ffiffiffiffiffiffi−gp
LMÞ

δΓλ
μν

; ð16Þ

as the energy-momentum tensor and the hypermomentum
tensor density, respectively.
Varying the action (10) with respect to the metric, one

obtains the gravitational field equations given by

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
FPα

μνÞ þ
1

2
gμνf1

þ FðPμαβQν
αβ − 2QαβμPαβ

νÞ ¼ −f2Tμν: ð17Þ

When varying the action (10) with respect to the con-
nection, there are two possibilities to impose the symmetric
teleparallelism. We can either use the “inertial variation”
[55] by setting the connection in its pure-gauge form in the
action, or we can consider a general connection in the
action but supplement it with lagrange multipliers to
eliminate the curvature and torsion [29]. Either way, we
now obtain

∇μ∇νð
ffiffiffiffiffiffi
−g

p
FPμν

α − f2Hα
μνÞ ¼ 0: ð18Þ

B. Matter coupling when L=LE +LM

In the case L ¼ Qþ LMðg;∇Þ, the canonical energy-
momentum tensor of the metric is, by definition,

tμν ≡ −
1

2

� ∂Q
∂Qμαβ

Qναβ þ δμνQ

�

¼ −PμαβQναβ −
1

2
δμνQ: ð19Þ

In addition, we now define the inertial hypermomentum
tensor as

τμν ≡ 2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
Pαμ

νÞ: ð20Þ

In the coincident gauge, the scalar Q in the Lagrangian
reduces to the Einstein pseudotensor and the tensor (19)
reduces to what is known as the Einstein canonical energy-
momentum pseudotensor. The field equation is

τμν − tμν ¼ Tμ
ν; ð21Þ

which is equivalent to the field equation of GR. The
variation with respect to the connection yields the equation

∇μð
ffiffiffiffiffiffi
−g

p
τμνÞ ¼ ∇μ∇αð

ffiffiffiffiffiffi
−g

p
Hν

μαÞ; ð22Þ
which together with (21) implies the covariant conservation
of the energy-momentum tensor,DμTμν ¼ 0. The covariant
conservation relation assumes that the right-hand side of
Eq. (22) identically vanishes. Matter is minimally coupled,
and the equivalence principle is obeyed. It is crucial to the
gauge interpretation of the theory that the minimal coupling
prescription is indeed conducted properly in the first-order
framework, ∂μ → ∇μ, whereas the consistency of the
Weitzenböck teleparallelism requires resorting to ∂μ →
Dμ (see Ref. [29] for discussion, details and references).
In this paper, we study the nonminimally coupled

generalizations of the theory introduced above in
Sec. III A. When f2ðQÞ ≠ 0, we expect to see breaking
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of the equivalence principle. This is confirmed below, and
we shall derive the explicit form of the ensuing “fifth force”
associated with the equivalence principle violation. Such
forces could potentially escape detection in the Solar
system while being responsible for the dark energy or
dark matter in the Universe, which requires that they are
attributed with the energy scales comparable to the present
Hubble rate. The recent insights into the geometric foun-
dations of gravity [28] provide the fully covariant frame-
work to study the subtle issue of the breaking of the
equivalence principle. The energy-momentum tensor (19),
which is an impossibility in the more standard description
of GR that uses the (pseudo-)Riemannian surface geometry,
assumes its canonical expression and the gravitational
connection is generated purely by the time and the space
translations, which is the natural basis for the connection of
the gauge interaction sourced by energy and momentum.
This understood, we explore the possible extra forces
resulting from a breaking of the translation symmetry.
We would expect that the fðQÞ models can avoid ghosts

but the issue of the strong coupling of the additional
degrees of freedom remains to be clarified [29]. It is a
preliminary speculation that this might be alleviated by
matter coupling that also breaks the translation invariance,
but this issue should be studied elsewhere.

C. The divergence of the energy-momentum tensor

To begin with, let us note that in the symmetric tele-
parallel geometry, the nonmetricity tensor satisfies the
Bianchi identity

∇½αQβ�μν ¼ 0: ð23Þ
We would like to deduce the energy-momentum conserva-
tion, i.e., the metric divergence of the tensor Tμν as defined
in (15). We denote the purely Riemannian quantities with
the curly symbols, and thus the metric covariant derivative
with the symbol (2) is written with Dα.
To arrive at a useful form for the divergence of the

energy-momentum tensor, as the first step, we raise one
index in Eq. (17),

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
FPαμ

νÞ þ
1

2
δμνf1

þ FPμαβQναβ ¼ −f2Tμ
ν; ð24Þ

which has, in fact, simplified the equation. Now recall that
in symmetric teleparallel geometry the connection is the
sum of the metric piece (2) and the disformation (7).
Therefore, for example, for an arbitrary vector Vα, we have

∇μVα ¼ DμVα þ Lα
μβVβ: ð25Þ

Applying the same reasoning to amixed-index tensor density
vμν, taking into account that Lα

αμ ¼ − 1
2
Qμ, we have

Dμvμν ¼ ∇μvμν þ Lα
μνvμα: ð26Þ

Now we can consider vμν ¼ ∇αð ffiffiffiffiffiffi−gp
FPαμ

νÞ such a
mixed-index tensor density. Therefore, we obtain for its
metric divergence

Dμ∇αð
ffiffiffiffiffiffi
−g

p
FPαμ

νÞ ¼ ∇α∇βðf2Hν
αβÞ

þ Lα
μν∇βð

ffiffiffiffiffiffi
−g

p
FPβμ

αÞ; ð27Þ
where, for the first term, we have exploited the fact that in
symmetric teleparallel geometry ½∇μ;∇ν� ¼ 0, and then
used the connection equation of motion (18). Taking the
divergence of the full field equation (24) and using the
above result leads to

−Dμðf2Tμ
νÞ −

2ffiffiffiffiffiffi−gp ∇α∇βðf2Hν
αβÞ

¼ Lλ
μνð2∇α −QαÞðFPαμ

λÞ

þ 1

2
∂νf1 þDμðFPμαβQναβÞ: ð28Þ

We can first separate the ∇αF-terms by simply using the
Leibniz rule on the second and the third line. The two terms
we get combine to zero,

2ð∇βFÞPβμ
λLλ

μα þ ðDμFÞPμνλQανλ

¼ ð∇βFÞPβμλð2Lλμα þQαμλÞ ¼ 0; ð29Þ
where in the first equality, we have just regrouped the
terms, and in the second equality noted that Pβμλ ¼ PβðμλÞ.
Thus, Eq. (28) takes the following form:

−Dμðf2Tμ
νÞ −

2ffiffiffiffiffiffi−gp ∇α∇βðf2Hν
αβÞ

¼ Fð2∇βPβμ
λ − Pβμ

λQβÞLλ
μν

þ 1

2
f1;ν þ FDμðPμβλQνβλÞ: ð30Þ

Next, we rewrite the metric covariant derivative, in
analogy with the expressions (25) and (26) and get

−Dμðf2Tμ
νÞ −

2ffiffiffiffiffiffi−gp ∇α∇βðf2Hν
αβÞ

¼ Fð2∇βPβμ
λ − Pβμ

λQβ þ PμαβQλαβÞLλ
μν

þ 1

2
ðFPμαβQμQναβ þ f1;νÞ þ F∇μðPμβλQνβλÞ: ð31Þ

We can then easily deal with the two derivative terms. By
using again the symmetry Pαμν ¼ PαðμνÞ and the identity
(23), it is not difficult to see that

2ð∇βPβμ
λÞLλ

μν þ∇μðPμβλQνβλÞ
¼ 2PβμαQβαλLλ

μν þ Pμαβð∇νQμαβÞ: ð32Þ
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Furthermore, by a straightforward but tedious calculation
using the definition (12), one can show that

ð∇αPμνλÞQμνλ ¼ Pμνλð∇αQμνλÞ þ ð4PβμγQβγλ

þ 2PμγβQλγβ − 2Pβμ
λQβÞLλ

μα

− 2PμνβQμQναβ: ð33Þ
Using this information in Eq. (31), we then arrive at the
final result as follows:

−Dμðf2Tμ
νÞ −

2ffiffiffiffiffiffi−gp ∇α∇βðf2Hν
αβÞ

¼ Fð2PβμγQβγλ − Pβμ
λQβ þ PμαβQλαβÞLλ

μν

þ 1

2
ðFPμαβQμQναβ þ f;αÞ þ FPμβλð∇νQμβλÞ

¼ 1

2
f1;ν þ

F
2
½ð∇νPμβλÞQμβλ þ Pμβλð∇νQμβλÞ�

¼ 1

2
f1;ν −

F
2
Q;ν ¼ −LMf2;ν: ð34Þ

In the four steps above, we have substituted the results
given by Eqs. (32) and (33), and then used the definitions of
Q and of F, respectively.
We may write this result explicitly as

DμTμ
ν þ

2ffiffiffiffiffiffi−gp ∇α∇βHν
αβ

¼ −
2ffiffiffiffiffiffi−gp
f2

½ð∇α∇βf2ÞHν
αβ þ 2f2;ðα∇βÞHν

αβ�

− ðTμ
ν − δμνLMÞ∇μ log f2: ð35Þ

The second line is due to the nonminimal coupling of the
hypermomentum, which, perhaps interestingly, can now
contribute also directly and not only via its (second)
derivatives. The third line is due to the nonminimal
coupling of the energy-momentum tensor. This term is
second order in derivatives (assuming, of course, that the
LM does not contain higher derivatives), which confirms
our optimistic expectation.

D. The energy and momentum balance equations

The expression of the divergence of the energy-
momentum tensor, as given by Eq. (35), shows that due
to the coupling between the nonmetricity Q and the matter
fields, in the present theory the matter energy-momentum
tensor is no longer conserved. Generally, in theories with
nonconserved divergence of the energy-momentum tensor
we can write DμTμ

ν ¼ Aν, where Aν is a model-dependent
four-vector. In order to find a physical interpretation of Aν,
we consider that the matter content of the gravitating
system can be described by the energy-momentum tensor
of a perfect fluid, given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð36Þ

where ρ and p are the thermodynamic energy and pressure,
with the four-velocity uμ satisfying the normalization
condition uμuμ ¼ −1, and the differential identity
uνDμuν ¼ 0, respectively. We also introduce the projection
operator hνλ ¼ δνλ þ uλuν, which satisfies the algebraic
relation uνhνλ ¼ 0. By taking the divergence of the
energy-momentum tensor given by Eq. (36), we obtain

ðDμρþDμpÞuμuν þ ðρþ pÞuνDμuμ

þ ðρþ pÞuμDμuν þ gμνDμp ¼ Aν: ð37Þ

We multiply first Eq. (37) by uν, which immediately gives

_ρþ 3Hðρþ pÞ ¼ Aνuν ¼ S; ð38Þ

where we have denoted the overdot as _¼ uμDμ, and
considered the following definitions: H ¼ ð1=3ÞDμuμ,
and S ¼ Aνuν, respectively. We multiply now Eq. (37)
with the projection operator hνλ, thus obtaining

hνλ½ðρþ pÞ _uν þDνp� ¼ hνλAν; ð39Þ

or, equivalently,

d2xλ

ds2
þ fλ μνguμuν ¼

hλν

ρþ p
ðAν −DνpÞ ¼ F λ; ð40Þ

which translates as nongeodesic motion, where F λ is an
extra force arising due to the Q-matter coupling.
Equation (38) gives the energy balance equation in

modified gravity with Q couplings, or, in other words,
the amount of energy entering or going out from a given
volume. The term S acts as a source for the energy creation/
annihilation. The matter energy of the gravitating system is
conserved only if the condition Aνuν ≡ 0 is satisfied in a
given spacetime volume. If Aνuν ≠ 0, then particles or
energy transfer processes must take place in the system.
One such particular physical process that could be
described by an energy balance equation of type (38) is
represented by particle creation that could result from the
irreversible energy transfer from the gravitational field to
matter [56,57]. By taking into account the explicit form of
the divergence of the energy-momentum tensor from the
result (35), we can decompose the energy source term as

S ¼ ST þ SH; ð41Þ

where ST is defined by

ST ¼ ðρþ LMÞ
_f2
f2

; ð42Þ

and the hypersource is given as
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SH ¼ −
2ffiffiffiffiffiffi−gp uν

�
∇α∇βHν

αβ

þ 1

f2
ð∇α∇βf2ÞHν

αβ þ 1

f2
f2;ðα∇βÞHν

αβ

�
: ð43Þ

Note that the energy source (42) vanishes for perfect fluids,
when we adopt the Lagrangian prescription LM ¼ −ρ.
Equation (40) gives the equation of motion of massive

particles in modified gravity with Q coupling. From its
general form it immediately follows that the motion is not
geodesic, and an extra-force with components F λ exerts a
supplementary force on any particle. The extra force is
orthogonal to the matter four-velocity, since, due to the
presence of the projection operator in its expression, we
always have F λuλ ≡ 0. This result points towards the fact
that the extra-force as given by Eq. (40) is physical, since it
satisfies the usual condition for a “normal” force, which
requires that only the components of the four-force that are
orthogonal to the four-velocity of the particle can influence
its trajectory. In modified gravity withQ couplings, the extra
force can be written, by recalling again the result (35), as

F λ ¼ −
hαλ∇αp
ρþ p

þ F λ
T þ F λ

H; ð44Þ

where the first term on the right-hand side is the usual general
relativistic contribution of the pressure gradient, and the extra
force consists of the following terms:

F λ
T ¼ ð−pþ LMÞhλν∇ν log f2; ð45Þ

and the hyperforce

F λ
H ¼ −

2ffiffiffiffiffiffi−gp hλν
�
∇α∇βHν

αβ

þ 1

f2
ð∇α∇βf2ÞHν

αβ þ 1

f2
f2;ðα∇βÞHν

αβ

�
; ð46Þ

respectively. It is interesting that the extra force (45) vanishes
identically for a perfect fluid if we adopt the Lagrangian
prescription LM ¼ p, in which case the source term (42) in
turn would be nonvanishing.

IV. COSMOLOGICAL APPLICATION

We now explore several cosmological applications. For
this purpose, consider the isotropic, homogeneous and
spatially flat line element given by

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞδijdxidxj; ð47Þ
where we have included the lapse function NðtÞ for
generality, though in the present case we have the usual
time reparametrization freedom and may impose N ¼ 1 at
any time. It is then convenient to define the expansion and
the dilation rates as

H ¼ _a
a
; T ¼

_N
N
; ð48Þ

respectively. We shall work in the coincident gauge, and it
is straightforward to obtain that Q ¼ 6ðH=NÞ2.
We shall assume standard perfect fluid matter, whose

energy-momentum tensor given by (36) is diagonal. The
field equations (17) in this case imply the following two
generalized Friedmann equations:

f2ρ ¼ f1
2
− 6F

H2

N2
; ð49Þ

−f2p ¼ f1
2
−

2

N2
½ð _F − FTÞH þ Fð _H þ 3H2Þ�; ð50Þ

respectively. It is easy to check that in the limit of standard
GR, f1 ¼ −Q and f2 ¼ 1 ¼ −F, these reduce to the
standard Friedmann equations. The equation of motion
for the connection (18) is identically satisfied for the theory
(10) in the background (47). The continuity equation of
matter can be deduced from the above two equations (49)
and (50), and is given by

_ρþ 3Hðρþ pÞ ¼ −
6f02H
f2N2

ð _H −HTÞðLM þ ρÞ: ð51Þ

This is in accordance with the general result (42). Since in
the minisuperspace given by Eq. (47) setting LM ¼ −ρ, we
recover the standard continuity equation

_ρþ 3Hðρþ pÞ ¼ 0: ð52Þ
This is compatible with the fact that the connection
equation (18) is trivialized in the isotropic and homo-
geneous background.

A. The cosmological evolution equations

In the following, we will adopt the gauge N ¼ 1, thus
working in the framework of standard Friedman-
Robertson-Walker (FRW) geometry. With this choice,
we have

Q ¼ 6H2; ð53Þ
and T ¼ 0, respectively. Therefore the field equations (49)
and (50) can be reformulated as

3H2 ¼ f2
2F

�
−ρþ f1

2f2

�
; ð54Þ

_H þ 3H2 þ
_F
F
H ¼ f2

2F

�
pþ f1

2f2

�
: ð55Þ

By eliminating the term 3H2 between the above two
equations, we obtain the following evolution equation
for H
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_H þ
_F
F
H ¼ f2

2F
ðρþ pÞ: ð56Þ

From Eq. (54), we obtain the matter density as a function
of Q in the form

ρðQÞ ¼ ðf1=2f2Þ½1 − 2ðf01=f1ÞQ�
1 − ðf02=f2ÞQ

: ð57Þ

After adding Eqs. (55) and (56), and by introducing the
effective energy density ρeff and effective pressure peff of
the cosmological fluid, defined as

ρeff ¼ −
f2
2F

�
ρ −

f1
2f2

�
; ð58Þ

peff ¼
2 _F
F

H −
f2
2F

�
ρþ 2pþ f1

2f2

�
; ð59Þ

we can write the gravitational field equations in a form
similar to the Friedmann equations of GR as

3H2 ¼ ρeff ; ð60Þ
2 _H þ 3H2 ¼ −peff : ð61Þ

An important cosmological quantity, the deceleration
parameter, defined as

q ¼ d
dt

1

H
− 1 ¼ −

_H
H2

− 1; ð62Þ

can be obtained from Eq. (56) as

q ¼
_F
F
1

H
−

f2
2H2F

ðρþ pÞ − 1: ð63Þ

Moreover, to describe cosmological evolution, and the
possible transition to an accelerated phase, we also intro-
duce the parameter w of the dark energy equation of state,
defined as

w ¼ peff

ρeff
¼

−4 _FH þ f2ðρþ 2pþ f1
2f2

Þ
f2ðρ − f1

2f2
Þ : ð64Þ

Alternatively, the deceleration parameter can be written as

q ¼ 1

2
ð1þ 3wÞ ¼ 2þ 3ð4 _FH − f1 − 2f2pÞ

f1 − 2f2ρ
: ð65Þ

B. The de Sitter solution

As a first step in considering explicit theoretical models,
we consider the problem of the existence of a de Sitter type
vacuum solution of the cosmological field equations. The
de Sitter solution corresponds to ρ ¼ p ¼ 0, and H ¼
H0 ¼ constant, respectively. For a vacuum de Sitter type

Universe, Eq. (56) immediately gives _F ¼ 0, and
F ¼ constant ¼ F0. For the vacuum state LM ¼ 0, and
therefore the definitions of f and F reduce to f ¼ f1ðQÞ,
and F ¼ f01ðQÞ.
The condition F ¼ constant ¼ −F0 is satisfied for anyQ

only in the case

f1ðQÞ ¼ −F0Q − 2Λ ¼ −6F0H2
0 − 2Λ; ð66Þ

where Λ is an arbitrary constant of integration. In the
vacuum de Sitter phase, both field equations (60) and (61)
reduce to the algebraic form

3H2
0 ¼

6F0H2
0 þ 2Λ

4F0

; ð67Þ

or equivalently

H0 ¼
ffiffiffiffiffiffiffiffi
Λ
3F0

s
: ð68Þ

The specific case of Eq. (66) is, of course, equivalent to GR
with a cosmological constant Λ with the normalization
F0 ¼ 1. However, there exist vacuum de Sitter solutions in
very generic cases. The combination of the field equa-
tions (60) and (61) supports consistently such solutions as
long as

ðlog f1ðQÞÞ0 ¼ 1

12H2
0

; ð69Þ

when the right-hand side is evaluated at Q ¼ 6H2
0. As one

can see immediately fromEqs. (63) and (64), for the de Sitter
evolution we obtain q ¼ −1, and w ¼ −1, respectively.

C. Cosmological models with specific forms of f 1 and f 2
In order to investigate more general cosmological

models, we need to fix the functional form of the functions
f1ðQÞ and f2ðQÞ. Once this form is fixed a priori, the
system of gravitational equations becomes closed, and their
solutions can give a full description of the cosmological
evolution. We consider two natural parametrizations, a
power-law and an exponential. The functions have inde-
pendent parameters. They need not have the same func-
tional forms either as their physical role is different, but we
leave the study of more general combinations elsewhere.

1. Power-law dependence of the nonminimal couplings

As a first example of cosmological models of this type
we consider the case in which both f1 and f2 have a simple
power-law dependence on Q, so that

f1ðQÞ ¼ AQαþ1; f2ðQÞ ¼ BQβþ1; ð70Þ
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where A, B, α and β are arbitrary constants. For the matter
Lagrangian, we will adopt the expression LM ¼ −ρ.
Moreover, we assume that the cosmological matter satisfies
the linear barotropic equation of state with p ¼ ðγ − 1Þρ.
For the function F, we obtain the expression

FðQÞ ¼ Að1þ αÞQα − 2Bð1þ βÞQβρ

¼ Að1þ αÞð6H2Þα − 2Bð1þ βÞð6H2Þβρ: ð71Þ

Substituting the above expressions of f1, f2 and F into
Eq. (54) allows us to obtain the energy density as

ρ ¼ Að1þ 2αÞð6H2Þα−β
Bð2þ 4βÞ : ð72Þ

Hence, the evolution equation of the Hubble function (56)
takes the form

_H ¼ −
3γH2

2ðα − βÞ ; ð73Þ

which provides the following solution

HðtÞ ¼ 2H0ðα − βÞ
2ðα − βÞ þ 3γH0ðt − t0Þ

; ð74Þ

where H0 ¼ Hðt0Þ and

aðtÞ ¼ a0½2ðα − βÞ þ 3γH0ðt − t0Þ�
2ðα−βÞ

3γ ; ð75Þ

respectively. This means that the Universe expands as if it
was dominated by a fluid with the effective equation of
state parameter

γeff ¼
γ

α − β
: ð76Þ

In this model, the deceleration parameter has a constant
value q ¼ 3γ=2ðα − βÞ during the entire cosmological
evolution (when the equation of state γ of the cosmological
matter is a constant). Depending on the numerical values of
α and β, a large range of cosmological behaviors can be
obtained, including both accelerating and decelerating
phases, with the possibility of the deceleration parameter
of taking a q ≈ −1 value. In this case, we obtain a power
law type accelerating expansion of the Universe. Exact de
Sitter type evolution can however only be realized with a
cosmological constant γ ¼ 0.

2. Exponential dependence of the nonminimal couplings

As a second example of a cosmological scenario in the
framework of the matter-Q field coupling theory, we
consider the case of the exponential dependencies of the
functions f1 and f2 on the Q-field, so that

f1 ¼ AeαQ; f2 ¼ BeβQ; ð77Þ

where A, B, α and β are, once again, arbitrary constants. For
the function F, we easily obtain

FðQÞ ¼ AαeαQ − 2βBeβQρ: ð78Þ

In the following, we assume again that Q ¼ 6H2 > 0,
and HðQÞ ¼ ffiffiffiffiffiffiffiffiffi

Q=6
p

, _H ¼ _Q=2
ffiffiffi
6

p ffiffiffiffi
Q

p
. Then from

Eq. (54), we obtain the density of the matter as a function
of Q in the form

ρðQÞ ¼ A½2αQðtÞ − 1�eðα−βÞQðtÞ

2B½2βQðtÞ − 1� : ð79Þ

By using the above representation of the density, we obtain
for the function F the expression

F ¼ Aðα − βÞeαQðtÞ

1 − 2βQðtÞ : ð80Þ

The evolution of the Hubble function (56) can be
obtained, in terms of Q, as the solution of the following
first-order differential equation

dQ
dt

¼
ffiffiffi
3

2

r
γ

ffiffiffiffi
Q

p ð1 − 2αQÞð1 − 2βQÞ
ðα − βÞð1þ 2ðαþ βÞQ − 4αβQ2Þ : ð81Þ

The general solution of Eq. (81) is given by

tðQÞ − t0 ¼
2

γ

ffiffiffi
2

3

r
f

ffiffiffiffiffiffi
2α

p
½tanh−1ð

ffiffiffiffiffiffiffiffiffi
2αQ

p
Þ

− tanh−1ð
ffiffiffiffiffiffiffiffiffiffiffi
2αQ0

p
Þ� þ

ffiffiffiffiffi
2β

p
½tanh−1ð

ffiffiffiffiffiffiffiffiffiffiffi
2βQ0

p
Þ

− tanh−1ð
ffiffiffiffiffiffiffiffiffi
2βQ

p
Þ� − ðα − βÞð

ffiffiffiffi
Q

p
−

ffiffiffiffiffiffi
Q0

p
Þg;
ð82Þ

where we have used the initial condition Qðt0Þ ¼ Q0.
Hence, we have obtained the general solution of the field
equations in a parametric form, with Q taken as the
parameter.
The evolution of the scale factor can be obtained from

the equation

1

a
da
dQ

¼
ffiffiffiffi
Q
6

r
dt
dQ

; ð83Þ

and is given by

aðQÞ ¼ a0
ð1 − 2βQÞ2
ð1 − 2αQÞ2 e

−ðα−βÞQ=3γ; ð84Þ

where a0 is an arbitrary constant of integration.
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The deceleration parameter can be obtained as

qðQÞ¼−
3

2

γð1−2αQÞð1−2βQÞ
ðα−βÞQð1þ2ðαþβÞQ−4αβQ2Þ−1: ð85Þ

In order to obtain a dimensionless form of the cosmo-
logical evolution equations, we introduce a set of dimen-
sionless variables ðh; τ; r; α̃; β̃; Q̃Þ, defined as

H ¼ H0h; t ¼ τ

H0

; ρ ¼ 3H2
0r;

α ¼ α̃

H2
0

; β ¼ β̃

H2
0

; Q ¼ H2
0Q̃; ð86Þ

where H0 is a fixed value of the Hubble function, which
may correspond, for example, to the end of inflation, or to
the present age of the Universe. For the ratio of the
constants A and B, we obtain the expression

A
B
¼ 6H2

0ð2βQ0 − 1Þ
2ð2αQ0 − 1Þ e−ðα−βÞQ0 ; ð87Þ

where Q0 ¼ Qðτ0Þ. For A=B > 0, the condition of the
positivity of the matter energy density imposes the con-
straints α > 1=12 and β > 1=6 on the model parameters α
and β. All the dimensionless expressions of the time
evolution, Hubble function, energy density and deceleration
parameter can be simply obtained from the dimensional form
by simply substituting the initial variables with the dimen-
sionless ones. Hencewewill notwrite down the explicit form
of thedimensionless representationof the basic cosmological
evolution equations, and of their solutions.
The variations of the Hubble function, scale factor,

matter energy density, and deceleration parameter are
represented, for different values of the model parameters
α̃ and β̃ in Figs. 1 and 2, respectively.

FIG. 1. Specific case of the exponential dependence of the nonminimal couplings. Variation as function of the dimensionless time τ of the
Hubble function h (left figure) and of the scale factor a (right figure) for a pressureless Universe with γ ¼ 1 for β̃ ¼ 0.054, and different
values of α̃: α̃ ¼ 0.124 (solid curve), α̃ ¼ 0.144 (dotted curve), α̃ ¼ 0.164 (short dashed curve), α̃ ¼ 0.184 (dashed curve), and α̃ ¼ 0.204
(long dashed curve). ForQ0, we have adopted the initial valueQ0 ¼ 6, and að0Þ ¼ 0.015. We refer the reader to the text for more details.

FIG. 2. Specific case of the exponential dependence of the nonminimal couplings. Variation as function of the dimensionless time τ of
the energy density of the matter r (left figure) and of the deceleration parameter q (right figure) for a pressureless Universe with γ ¼ 1 for
β̃ ¼ 0.054, and different values of α̃: α̃ ¼ 0.124 (solid curve), α̃ ¼ 0.144 (dotted curve), α̃ ¼ 0.164 (short dashed curve), α̃ ¼ 0.184
(dashed curve), and α̃ ¼ 0.204 (long dashed curve). ForQ0, we have adopted the initial valueQ0 ¼ 6, and að0Þ ¼ 0.015. See the text for
more details.
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As one can see from Fig. 1 the Hubble function is a
monotonically decreasing function of the time, indicating an
expansionary evolution of the Universe. In the large time
limit, the rate of time variation h is slow, and it shows a
significant dependence on the numerical values of the model
parameters α̃ and β̃. The scale factor is a monotonically
increasing function of time, and in the late stages of the
cosmological evolution, it shows a relatively weak depend-
ence on α̃ and β̃. The energy density of the matter, presented
in the left panel of Fig. 2, monotonically decreases in time,
and in the large time limit it tends to zero in a way almost
independent on α̃ and β̃. However, the early time evolution is
significantly influenced by the model parameters. The
evolution of the Universe begins in an accelerating state,
with the deceleration parameter q, shown in the right panel of
Fig. 2, taking negative initial values of the order of
q ≈ −0.70. Then the Universe begins to accelerate, with
q, showing a complex dynamics, decreasing in time. In the
large time limit, the Universe reaches the exponentially
accelerating de Sitter phase with q ¼ −1, a result which is
independent on the model parameters.
We obtain accelerating solutions, which imply the

breaking of the strong energy condition. Super-accelerating
solutions were not found, so there is no evidence of the null
energy condition violation.

V. SUMMARY AND FUTURE OUTLOOK

In this work, we have explored an extension of the
symmetric teleparallel gravity, by considering a new class
of theories where the nonmetricity Q is coupled non-
minimally to the matter Lagrangian, in the framework of
the metric-affine formalism. As in the standard curvature-
matter couplings, this nonminimal Q-matter coupling
entails the nonconservation of the energy-momentum
tensor, and consequently the appearance of an extra force.
We have verified whether the subtle improvement of the
geometrical formulation, when implemented in the matter
sector, would allow more universally consistent and viable
realizations of the nonminimal curvature-matter coupling
theories. Furthermore, we have also analyzed several
cosmological applications.
As a first step in this direction we have obtained the

generalized Friedmann equations describing the cosmo-
logical evolution in flat FRW type geometry. The coupling
between matter and the Q field introduces two types
of corrections. The first is the presence of a term of the
form f2=2F multiplying the components of the energy-
momentum tensor (energy density and pressure) in both
Friedmann equations. Secondly, an additive term of the
form f1=4F also appears in the generalized Friedmann
equations. The basic equations describing the cosmological
dynamics can then be reformulated in terms of an effective
energy density and pressure, which both depend on the
standard components of the energy-momentum tensor, and

on the functions fiðQÞ, i ¼ 1, 2, and on FðQ; ρÞ. In the
vacuum case ρ ¼ p ¼ 0, the deceleration parameter takes
the form q ¼ −1þ 12 _FH=f1, showing that, depending on
the mathematical forms of the coupling functions, a large
number of cosmological evolutionary scenarios can be
obtained. Generally, we have shown explicitly that for late
times, the Universe attains an exponentially accelerating de
Sitter phase.
We have also considered two explicit classes of cosmo-

logical models obtained by choosing some specific func-
tional forms for the functions f1ðQÞ and f2ðQÞ,
corresponding to power law and exponential forms of the
couplings. In the case of the power law dependence of fiðQÞ,
i ¼ 1, 2, the field equations can be solved exactly, leading to
a power-law dependence of the scale factor. The deceleration
coefficient is constant, but by an appropriate choice of the
parameters accelerating evolutions can be easily obtained. In
the case of the exponential dependence of the couplings, the
overall cosmological dynamics of the Universe is very
complex, and the relevant results can be obtained only by
numerically integrating the evolution equation. The results
are strongly dependent on the numerical values of the model
parameters. For the specific range of cosmological param-
eters, we have considered that the Universe is born in an
accelerated phase, and in the large time limit it reaches the de
Sitter phase, which acts as an attractor for the generalized
Friedmann equations. This solution may represent an alter-
native to the standard inflationary scenario [58,59], in which
the de Sitter phase is triggered by the presence of some
cosmological scalar fields. Of course, the present model is
also valid when instead of ordinary matter one considers
scalar fields. Considering inflation in Q-coupling gravity in
the presence of scalar fields may give a new perspective on
the physical, geometrical and cosmological processes that
may have played a dominant role in the very early evolution
of the Universe.
Thus, in summary, we have established the theoretical

consistency and motivations on these extensions of fðQÞ
family of theories. Furthermore, we considered cosmologi-
cal applications, in which the presented approach provides
gravitational alternatives to dark energy. As future avenues
of research, one should aim in characterizing the phenom-
enology predicted by these theories with a nonmetricity-
matter coupling, in order to find constraints arising from
observations. The study of these phenomena may also
provide some specific signatures and effects, which could
distinguish and discriminate between the various theories
of modified gravity. We also propose to use a background
metric to analyze the dynamic system for specific non-
metricity-matter coupling models, and use the data of SNIa,
BAO, CMB shift parameter to obtain restrictions for the
respective models, and explore in detail the analysis of
structure formation. Another topic that needs to be
addressed is the analysis of the post-Newtonian formalism
applied to this nonminimal extension of fðQÞ gravity, in
order to pass the local gravity constraints. Work along these
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lines are presently underway, and are to be presented in the
near future.
The nonminimally coupled theory violates the equiv-

alence principle, which is interesting to study in the new
covariant framework of Q gravity that makes possible the
canonical energy-momentum tensor and thus the localiza-
tion of gravitational energy. Theoretical investigations into
the nonminimally coupled Q gravity can be carried out
further into the physical implications to the violations of the
energy conditions and the possible violations of usual
thermodynamical relations.
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