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Despite the tremendous success of general relativity so far, modified theories of gravity have received
increased attention lately, motivated from both theoretical and observational aspects. In particular,
gravitational wave observations opened new possibilities for testing the viability of such theories in
the dynamical and strong-field regime. One could test each modified theory of gravity against observed
data one at a time, though perhaps a more efficient approach would be to first probe gravity in a theory-
agnostic way and map such information to that on specific theories afterward. One example of such model-
independent tests of gravity with gravitational waves is the parametrized post-Einsteinian formalism, in
which one introduces generic parameters in the amplitude and phase that capture non-Einsteinian effects. In
this paper, we derive gravitational waveforms from inspiraling compact binaries in various modified
theories of gravity that violate at least one fundamental pillar in general relativity, such as the strong
equivalence principle, Lorentz and parity invariance, and commutativity of spacetime. We achieve this by
first deriving relations between corrections to the waveform amplitude/phase and those to the frequency
evolution and Kepler’s third law, since the latter two have already been (or can easily be) derived in several
example modified theories of gravity. In particular, such an analysis allows us to derive corrections to the
waveform amplitude, which extends many of previous works that focused on deriving phase corrections
only. Moreover, we derive modified gravitational waveforms in theories with a varying gravitational
constant. In particular, we extend the previous work by introducing two different gravitational constants
(the conservative one entering in the binding energy and the dissipative one entering in the gravitational
wave luminosity) and allowing masses of binary constituents to also vary with time. We also correct some
errors in the previous literature. Our results can be used to improve current analyses of testing general
relativity with available gravitational wave data as well as to achieve new projected constraints on various
modified theories of gravity with future gravitational wave observations.
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I. INTRODUCTION

General relativity (GR) is one of the cornerstones of
modern physics and, so far, the most successful theory of
gravitation. Along with the elegant mathematical structure
and solid conceptual foundation, GR has passed all the tests
with high accuracy [1]. However, there are theoretical and
observational motivations which lead to the demand of a
modified theory of gravitation. Regarding the former, GR is
a purely classical theory and incompatible with quantum
mechanics. Strong gravitational fields at Planck scale
where quantum effects cannot be ignored [2,3], such as
in the vicinity of black holes (BHs) and the very early
Universe, require a consistent theory of quantum gravity for
their complete description. Regarding the latter, puzzling
observations such as the accelerated expansion of the
Universe [4–11] and anomalous kinematics of galaxies
[12–18] also suggest that one may need to go beyond GR to
explain such cosmological phenomena if one does not wish
to introduce dark energy or dark matter that are currently
unknown.

Before gravitational waves (GWs) were directly detected
by Advanced LIGO and Virgo, tests of gravity mainly
focused on using solar system experiments and observa-
tions of radio pulsars and cosmology. Each of these covers
different ranges of length scale and curvature strength.
Solar System experiments constrain gravity in the weak-
field and slow-motion environment. In terms of relativistic
equations of motion, such experiments give access mostly
to first-order corrections to Newtonian dynamics [1,19].
Pulsar timing observations of neutron stars (NSs) offer us
both weak-field and strong-field tests of gravity [20–29].
On one hand, binary components are widely separated, and
the relative motion of two stars in a binary is slow (and thus
weak field). On the other hand, binary pulsars consist of
NSs, which are compact and are strong-field sources of
gravity. Cosmological observations constrain gravity in the
weak-field regime but at length scales which aremany orders
of magnitude larger compared to other tests [19,30–33].
Cosmological tests of gravity include observations of cosmic
microwave background radiation [34,35,35–38], studies of
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big bang nucleosynthesis [39–45], weak gravitational lens-
ing [46–50], and observations of galaxies [19]. Other tests
include using the orbital motion of stars near the Galactic
center [51–53].
Up until now, six GW sources have been discovered (five

of them being consistent with binary BH mergers [54–58]
and the remaining one being consistent with a binary NS
merger [59]), which opened completely new ways of
testing GR. GWs provide the opportunity to probe gravity
in the strong-field and highly dynamical regime. Binary
BH merger events have been used to carry out a model-
independent test of gravity by estimating the amount of
residuals in the detected signals of GW150914 from the
best-fit waveform [60]. GW150914 has also been used to
perform a consistency test of GR between the inspiral and
postinspiral phases [60]. The addition of Virgo allowed one
to look for nontensorial polarization modes of GWs [58].
Meanwhile, the arrival time difference between gravitons
and photons in the binary NS merger event GW170817 can
be used to constrain the deviation in the propagation speed of
the former from the latter to one part in 1015, to place bounds
on the violation of Lorentz invariance and to carry out a new
test of the equivalence principle via the Shapiro time delay
[61]. Such a constraint on the propagation speed of GWs has
led one to rule out manymodified theories of gravity that can
explain the current accelerating expansion of our Universe
without introducing dark energy [62–69]. So far, no evi-
dence has been found that indicates non-GR effects.
One can carry out yet another type of tests of GR by

directly measuring or constraining non-GR parameters in
the waveform. One can derive modifications to GR wave-
forms by choosing specific modified theories of gravity,
though perhaps a more efficient approach is to perform the
test in a model-independent way. A pioneering work along
this line has been carried out in Refs. [70–72], in which the
authors treat each post-Newtonian (PN) term in the wave-
form independently and look for consistency among them.
Based on this, a data analysis pipeline (TIGER) was
developed [73,74]. One drawback of such a formalism is
that one can only treat PN terms in non-GR theories that are
also present in GR, which means that one cannot capture,
e.g., scalar dipole radiation effect entering at a negative PN
order that is absent in GR. To overcome this, Yunes and
Pretorius [75] proposed a new framework called the
parameterized post-Einsteinian (PPE) formalism, in which
they introduced new parameters that can capture non-GR
effects in waveforms in a generic way. The original work
focused on tensorial polarizations for quasicircular binaries
and introduced only the leading PN non-GR corrections in
the Fourier domain. Such an analysis was later extended to
include nontensorial polarizations [76] and multiple PN
correction terms [77] and for time domain waveforms
[78], eccentric binaries [79], and a sudden turn on of non-
GR effects [80,81]. The LIGO Scientific Collaboration and
Virgo Collaboration developed a generalized IMRPhenom
model [61] that is similar to the PPE formalism [82]. Generic

non-GR parameters in the waveform phase have been con-
strained in Refs. [56,61,82,83]with the observedGWevents.
In this paper, we derive PPE waveforms in various

modified theories of gravity. Much of the previous literature
focusedonderiving phase corrections sincematched filtering
is more sensitive to such phase corrections than to amplitude
corrections. Having said this, there are situations in which
amplitude corrections are more useful to probe, such as
amplitude birefringence in parity-violating theories of grav-
ity [84–87] and testingGRwith astrophysical stochastic GW
backgrounds [88]. We first derive PPE amplitude and phase
corrections in terms of genericmodifications to the frequency
evolution andKepler’s third law that determine thewaveform
in Fourier domain. For our purpose, this formalism is more
useful than that in Ref. [76], which derives the amplitude and
phase corrections in terms of generic modifications to the
bindingenergyof a binary and theGWluminosity.We follow
the original PPE framework and focus on deriving leading
PNcorrections in tensorialmodes only [75,89]. Nontensorial
GW modes also typically exist in theories beyond GR,
though at least in scalar-tensor theories, the amplitude of a
scalar polarization is of higher PN order than amplitude
corrections to tensor modes [76,90].
We also derive non-GR corrections in varying-G theories,

considering a PPE formalism with variable gravitational
constants. Although the gravitational constants appearing
in dissipative and conservative sectors are same in GR, they
could be different in some modified theories of gravity. We
consider two different gravitational constants, one entering in
the GW luminosity and the other in Kepler’s third law or the
binding energy. We also promote the binary masses and
the specific angular momentum to vary with time via the
sensitivities [91], which closely follow testing variation inG
with binary pulsars [28]. Ourwork extends the previouswork
of Ref. [92] in which dissipative and conservative constants
were taken to be the same and the masses of binary com-
ponents were assumed to be constant. Furthermore, we
correct the energy-balance law used in Ref. [92] for
varying-G theories by taking into account the nonconservation
of binding energy in the absence of gravitational radiation.
Non-GR corrections can enter in the gravitational wave-

form through activation of different theoretical mecha-
nisms, which can be classified as generation mechanisms
and propagation mechanisms [82]. Generation mechanisms
take place close to the source (binary), while propagation
mechanisms occur in the far zone and accumulate over
distance as the waves propagate. In this paper, we focus on
the former.1 The PPE parameters in various modified
theories of gravity are summarized in Tables I (phase
corrections) and II (amplitude corrections). Some of the

1PPE waveforms due to modifications in the propagation
sector can be found in Refs. [82,93,94], which have been used
for GW150914, GW151226 [82], and GW170104 [56] to
constrain the mass of the graviton and Lorentz violation.
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TABLE I. PPE corrections to the GW phase δΨ≡ βub in Fourier space in various modified theories of gravity, where β is the
magnitude correction (second column) and b is the exponent correction (third column). u≡ ðπGCMfÞ1=3, whereM and η are the chirp
mass and the symmetric mass ratio of the binary, respectively, and GC is the conservative gravitational constant appearing in Kepler’s
third law. We adopt the unit GC ≡ 1 in all theories except for the varying-G ones. The expressions in dynamical Chern-Simons (dCS)
gravity and noncommutative gravity only apply to binary BHs, while those in other theories apply to any compact binaries (last
column).a The mass, sensitivity, and scalar charge of the Ath binary component are represented bymA, sA, and αA respectively. ζEdGB and
ζdCS are the dimensionless coupling constants in Einstein-dilaton Gauss-Bonnet (EdGB) and dCS gravity, respectively. s̃EdGBA are the
spin-dependent factors of the scalar charges in EdGB gravity, given below Eq. (29) for BHs while 0 for ordinary stars. χs;a are the
symmetric and antisymmetric combinations of dimensionless spin parameters, and δm is the fractional difference in masses relative to
the total massm. The amount of Lorentz violation in Einstein-Æther theory and khronometric gravity is controlled by ðc1; c2; c3; c4Þ and
ðᾱkh; β̄kh; λ̄khÞ, respectively. ws is the propagation speed of the spin-s modes in Einstein-Æther theory given by Eqs. (36)–(38), and
c14 ≡ c1 þ c4. The representative parameter in noncommutative gravity is Λ. The subscript 0 in varying-G theories denotes that the
quantity is measured at the time of coalescence t0, while a dot refers to a time derivative. δ _G is the fractional difference between the rates
at which conservative and dissipative gravitational constants change in time. The former is GC, as already explained, while the
dissipative gravitational constant is defined as the one that enters in the GW luminosity through Eq. (8). The boldface expression
indicates that it has been derived here for the first time.

PPE phase parameters

Theories Magnitude (β) Exp. (b) Binary type

Scalar tensor [95,96] − 5
7168

η2=5ðα1 − α2Þ2 −7 Any

EdGB [97] − 5
7168

ζEdGB
ðm2

1
s̃EdGB
2

−m2
2
s̃EdGB
1

Þ2
m4η18=5

−7 Any

DCS [82,98] 1549225
11812864

η−14=5ζdCS½−2δmχaχs þ ð1 − 16068η
61969

Þχ2a þ ð1 − 231808η
61969

Þχ2s � −1 BH=BH

Einstein-Æther [99] − 5
3584

η2=5
ðsEA

1
−sEA

2
Þ2

½ð1−sEA
1

Þð1−sEA
2

Þ�4=3
hðc14−2Þw3

0
−w3

1

c14w3
0
w3
1

i
−7 Any

Khronometric [99] − 5
3584

η2=5
ðskh

1
−skh

2
Þ2

½ð1−skh
1
Þð1−skh

2
Þ�4=3

ffiffiffiffiffiffiffi
ᾱkh

p h
ðβ̄kh−1Þð2þβ̄khþ3λ̄khÞ
ðᾱkh−2Þðβ̄khþλ̄khÞ

i
3=2 −7 Any

Noncommutative [100] − 75
256

η−4=5ð2η − 1ÞΛ2 −1 BH=BH

Varying G [92] − 25
851968 η

3=5
0

_GC;0½11m0 þ 3ðs1;0 þ s2;0 − δ _GÞm0 − 41ðm1;0s1;0 þm2;0s2;0Þ� −13 Any
aPractically speaking, if NSs are spinning much slower than BHs, one can use the dCS expression also for BH/NS binaries by setting

one of the spins to zero.

TABLE II. PPE corrections to the GW amplitude jh̃j ¼ jh̃GRjð1þ αuaÞ in Fourier space in various modified theories of gravity with
the magnitude α (second column) and the exponent a (third column) and jh̃GRj representing the amplitude in GR. The meaning of other
parameters is the same as in Table I. The expressions in boldface correspond to either those derived here for the first time or corrected
expressions from the previous literature.

PPE amplitude parameters

Theories Magnitude (α) Exponent (a)

Scalar tensor [76,90,101] − 5
192

η2=5ðα1 − α2Þ2 −2

EdGB − 5
192 ζEdGB

ðm2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 Þ2

m4η18=5
−2

DCS 185627
1107456 η

−14=5ζdCS½−2δmχaχs þ ð1 − 53408η
14279 Þχ2a þ ð1 − 3708η

14279Þχ2s � þ4

Einstein-Æther [99] − 5
96 η

2=5 ðsEA1 −sEA2 Þ2
½ð1−sEA1 Þð1−sEA2 Þ�4=3

hðc14−2Þw3
0−w

3
1

c14w3
0w

3
1

i
−2

Khronometric [99] − 5
96 η

2=5 ðskh1 −skh2 Þ2
½ð1−skh1 Þð1−skh2 Þ�4=3

ffiffiffiffiffiffiffi
ᾱkh

p h
ðβ̄kh−1Þð2þβ̄khþ3λ̄khÞ
ðᾱkh−2Þðβ̄khþλ̄khÞ

i
3=2

−2

Noncommutative − 3
8 η

−4=5ð2η − 1ÞΛ2 þ4
Varying G [92] 5

512 η
3=5
0

_GC;0½−7m0 þ ðs1;0 þ s2;0 − δ _GÞm0 þ 13ðm1;0s1;0 þm2;0s2;0Þ� −8
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amplitude corrections were derived here for the first time.
We also correct some errors in the previous literature.
The rest of the paper is organized as follows. In Sec. II,

we revisit the standard PPE formalism. In Sec. III, we
derive the PPE parameters in some example theories
following the formalism in Sec. II. In Sec. IV, we derive
the PPE parameters in varying-G theories. We summarize
our work and discuss possible future prospects in Sec. V.
Appendix A discusses the original PPE formalism. In
Appendix B, we derive the frequency evolution in
varying-G theories from the energy-balance law. We use
the geometric units G ¼ c ¼ 1 throughout this paper
except for varying-G theories.

II. PPE WAVEFORM

We begin by reviewing the PPE formalism. The original
formalism (that we explain in detail in Appendix A) was
developed by considering non-GR corrections to the bind-
ing energy E and GW luminosity _E [75,76]. The former
(latter) correspond to conservative (dissipative) corrections.
Here, we take a slightly different approach and consider
corrections to the GW frequency evolution _f and Kepler’s
law rðfÞ, where r is the orbital separation while f is the
GW frequency. This is because these two quantities directly
determine the amplitude and phase corrections away from
GR, and hence the final expressions are simpler than the
original ones. Moreover, non-GR corrections to _f and rðfÞ
have already been derived in the previous literature for
many modified theories of gravity.
The PPE gravitational waveform for a compact binary

inspiral in the Fourier domain is given by [75]

h̃ðfÞ ¼ h̃GRð1þ αuaÞeiδΨ; ð1Þ

where h̃GR is the gravitational waveform in GR. αua and δΨ
correspond to the non-GR corrections to the GWamplitude
and phase respectively, where u is given by

u ¼ ðπMfÞ13: ð2Þ

M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass with
component masses m1 and m2. u is proportional to the
relative velocity of the binary components. α represents the
overall magnitude of the amplitude correction, while a
gives the velocity dependence of the correction term. In a
similar manner, one can rewrite the phase correction as

δΨ ¼ βub: ð3Þ

α, β, a, and b are called the PPE parameters. When
ðα; βÞ≡ ð0; 0Þ, Eq. (1) reduces to the waveform in GR.
One can count the PN order of non-GR corrections in the

waveform as follows. A correction term is said to be of n
PN relative to GR if the relative correction is proportional

u2n. Thus, the amplitude correction in Eq. (1) is of a=2 PN
order. On the other hand, given that the leading GR phase is
proportional to u−5 [see Eq. (A12)], the phase correction in
Eq. (3) is of ðbþ 5Þ=2 PN order.
As we mentioned earlier, the PPE modifications in

Eq. (1) enter through corrections to the orbital separation
and the frequency evolution. We parametrize the former as

r ¼ rGRð1þ γrucrÞ; ð4Þ

where γr and cr are non-GR parameters which show the
deviation of the orbital separation r away from the GR
contribution rGR. To leading PN order, rGR is simply given
by the Newtonian Kepler’s law as rGR ¼ ðm=Ω2Þ1=3. Here,
m≡m1 þm2 is the total mass of the binary, while Ω≡ πf
is the orbital angular frequency. The above correction to the
orbital separation arises purely from conservative correc-
tions (namely, corrections to the binding energy).
Similarly, we parametrize the GW frequency evolution

with non-GR parameters γ _f and c _f as

_f ¼ _fGRð1þ γ _fu
c _fÞ: ð5Þ

Here, _fGR is the frequency evolution in GR, which, to
leading PN order, is given by [102,103]

_fGR ¼ 96

5
π8=3M5=3f11=3 ¼ 96

5πM2
u11: ð6Þ

Unlike the correction to the orbital separation, the one to
the frequency evolution originates corrections from both
the conservative and dissipative sectors.
Below, we will derive how the PPE parameters

ðα; β; a; bÞ are given in terms of ðγr; crÞ and ðγ _f; c _fÞ.
We will also show how the amplitude PPE parameters
ðα; aÞ can be related to the phase PPE ones ðβ; bÞ in certain
cases. We will assume that non-GR corrections are always
smaller than the GR contribution and keep only to leading
order in such corrections at the leading PN order.

A. Amplitude corrections

Let us first look at corrections to the waveform ampli-
tude. Within the stationary phase approximation [104,105],
the waveform amplitude for the dominant quadrupolar
radiation in the Fourier domain is given by

ÃðfÞ ¼ Aðt̄Þ
2

ffiffiffi
_f

q : ð7Þ

Here, A is the waveform amplitude in the time domain,
while t̄ðfÞ represents time at the stationary point. Aðt̄Þ can
be obtained by using the quadrupole formula for the metric
perturbation in the transverse-traceless gauge given by
[106]
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hijðtÞ ∝ G
DL

d2

dt2
Qij: ð8Þ

Here, DL is the source’s luminosity distance, and Qij is the
source’s quadruple moment tensor.
For a quasicircular compact binary, Ã in Eq. (7) then

becomes

ÃðfÞ ∝ 1ffiffiffi
_f

q G
DL

μr2f2 ∝
r2ffiffiffi
_f

q ; ð9Þ

where μ is the reduced mass of the binary. Substituting
Eqs. (4) and (5) into Eq. (9) and keeping only to leading
order in non-GR corrections, we find

ÃðfÞ ¼ ÃGR

�
1þ 2γrucr −

1

2
γ _fu

c _f

�
; ð10Þ

where ÃGR is the amplitude of the Fourier waveform in GR.
Notice that this expression is much simpler than that in the
original formalism in Eq. (A7).
Let us now show the expressions for the PPE parameters

α and a for three different cases using Eq. (10):
(i) Dissipative-dominated case.—When dissipative

corrections dominate, we can neglect corrections
to the binary separation ðγr ¼ 0Þ, and Eq. (10)
reduces to

ÃðfÞ ¼ ÃGR

�
1 −

1

2
γ _fu

c _f

�
: ð11Þ

Comparing this with the PPE waveform in Eq. (1),
we find

α ¼ −
γ _f

2
; a ¼ c _f: ð12Þ

(ii) Conservative-dominated case.—When conservative
corrections dominate, cr ¼ c _f, and there is an
explicit relation between γr and γ _f, though finding
such a relation is quite involved and one needs to go
back to the original PPE formalism as explained in
Appendix A. Non-GR corrections to the GW am-
plitude in such a formalism is shown in Eq. (A14).
Setting the dissipative correction to zero, one
finds

α ¼ −
γr
a
ða2 − 4a − 6Þ; a ¼ cr ¼ c _f: ð13Þ

(iii) Comparable dissipative and conservative case.—If
dissipative and conservative corrections enter at the
same PN order, we can set cr ¼ c _f in Eq. (10). Since

there is no generic relation between γr and γ _f in this
case, one simply finds

α ¼ 2γr −
γ _f

2
; a ¼ cr ¼ c _f: ð14Þ

Example modified theories of gravity that we study in
Secs. III and IV fall into either the first or third case.

B. Phase corrections

Next, let us study corrections to the GW phase. The
phase Ψ in the Fourier domain is related to the frequency
evolution as [107]

d2Ψ
dΩ2

¼ 2
dt
dΩ

; ð15Þ

which can be rewritten as

d2Ψ
dΩ2

¼ 2

π _f
: ð16Þ

Substituting Eq. (5) to the right-hand side of the above
equation and keeping only to leading non-GR correction,
we find

d2Ψ
dΩ2

¼ 2

π _fGR
ð1 − γ _fu

c _fÞ: ð17Þ

Using the expression of _fGR in Eq. (6) to Eq. (17) gives

d2Ψ
dΩ2

¼ 5

48
M2u−11ð1 − γ _fu

c _fÞ: ð18Þ

We are now ready to derive Ψ and extract the PPE
parameters β and b. Using Ω ¼ πf, we can integrate
Eq. (18) twice to find

Ψ ¼ ΨGR −
15γ _f

16ðc _f − 8Þðc _f − 5Þ u
c _f−5 ð19Þ

for c _f ≠ 5 and c _f ≠ 8. Here, we only keep to leading non-
GR correction, and ΨGR is the GR contribution given in
Eq. (A12) to leading PN order. Similar to the amplitude
case, the above expression is much simpler than that in the
original formalism in Eq. (A11). Comparing this with
Eqs. (1) and (3), we find

β ¼ −
15γ _f

16ðc _f − 8Þðc _f − 5Þ ; b ¼ c _f − 5: ð20Þ

The above relation is valid for all three types of corrections
considered for the GW amplitude case.
In Appendix A, we review δΨ derived in the original PPE

formalism, where we show dissipative and conservative
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contributions explicitly. In particular, one can use Eq. (A15)
to find β for all three cases separately.

C. Relations among PPE parameters

Finally, we study relations among the PPE parameters.
From Eqs. (12)–(14) and (20), one can easily see

b ¼ a − 5; ð21Þ

which holds in all three cases considered previously. Let us
consider such three cases in turn below to derive relations
between α and β:

(i) Dissipative-dominated case.—When dissipative
corrections dominate, we can use Eqs. (12) and
(20) to find α in terms of β and a as

α ¼ 8

15
ða − 8Þða − 5Þβ: ð22Þ

(ii) Conservative-dominated case.—When conservative
corrections dominate, we can set the dissipative
correction to vanish in Eq. (A15) to find

β¼−
15

8

γr
cr

c2r −2cr−6

ð8−crÞð5−crÞ
; b¼ cr−5: ð23Þ

Using this equation together with Eq. (13), we find

α ¼ 8

15

ð8 − aÞð5 − aÞða2 − 4a − 6Þ
a2 − 2a − 6

β: ð24Þ

(iii) Comparable dissipative and conservative case.—
When dissipative and conservative corrections enter
at the same PN order, there is no explicit relation
between α and β. This is because α depends on both
γr and γ _f [see Eq. (14)], while β depends only on the
latter [see Eq. (19)], and there is no relation between
the former and the latter. Thus, one can rewrite γ _f in
terms of β and substitute into Eq. (14) but cannot
eliminate γr from the expression for α.

III. EXAMPLE THEORIES

In this section, we consider several modified theories of
gravity in which non-GR corrections arise from generation
mechanisms. We briefly discuss each theory, describing
differences from GR and its importance. We derive the PPE
parameters for each theory following the formalism in
Sec. II. Among the various example theories we present
here, dissipative corrections dominate in scalar-tensor
theories, Einstein-dilaton Gauss-Bonnet (EdGB) gravity,
Einstein-Æther theory, and khronometric gravity. On the
other hand, dissipative and conservative corrections enter at
the same PN order in dynamical Chern-Simons (dCS)
gravity, noncommutative gravity, and varying-G theories.
We do not consider any theories in which conservative

corrections dominate dissipative ones, though such a
situation can be realized for, e.g., equal-mass and equal-
spin binaries in dCS gravity, in which the scalar quad-
rupolar radiation is suppressed and dominant corrections
arise from the scalar dipole interaction and quadrupole
moment corrections in the conservative sector.

A. Scalar-tensor theories

Scalar-tensor theories are one of the most well-
established modified theories of gravity in which at least
one scalar field is introduced through a nonminimal
coupling to gravity [19,108,109]. Such theories arise
naturally from the dimensional reduction of higher-
dimensional theories, such as Kaluza-Klein theory
[110,111] and string theories [112,113]. Scalar-tensor
theories have implications for cosmology as well since
they are viable candidates for the accelerating expansion of
our Universe [114–118], structure formation [119], infla-
tion [30,120,121], and primordial nucleosynthesis
[40,41,122,123]. Such theories also offer simple ways to
self-consistently model possible variations in Newton’s
constant [30] (as we discuss in Sec. IV). One of the
simplest scalar-tensor theories is Brans-Dicke (BD) theory,
in which a noncanonical scalar field is nonminimally
coupled to the metric with an effective strength inversely
proportional to the coupling parameterωBD [95,124]. So far,
themost stringent bound on the theory has been placed by the
Cassini-Huygens satellite mission via the Shapiro time delay
measurement, which gives ωBD > 4 × 104 [125]. Another
class of scalar-tensor theories that has been studied exten-
sively is Damour-Esposito-Farèse (DEF) gravity (or some-
times called quasi–Brans-Dicke theory), which has two
coupling constants ðα0; β0Þ. This theory reduces to BD
theory when β0 is set to 0 and α0 is directly related to
ωBD. This theory predicts nonperturbative spontaneous or
dynamical scalarization phenomena for NSs [126,127].
When scalarized NSs form compact binaries, these

systems emit scalar dipole radiation that changes the orbital
evolution from that in GR. Such an effect can be used to
place bounds on scalar-tensor theories. For example,
combining observational orbital decay results from multi-
ple binary pulsars, the strongest upper bound on β0 that
controls the magnitude of scalarization in DEF gravity has
been obtained as β0 ≳ −4.38 at 90% confidence level
[128]. More recently, observations of a hierarchical stellar
triple system PSR J0337þ 1715 placed strong bounds on
the strong equivalence principle (SEP) violation parameter2

as jΔj≲ 2 × 10−6 at 95% confidence level [129]. This
bound stringently constrained the parameter space ðα0; β0Þ
of DEF gravity [126,130–133].

2The SEP violation parameter is defined as Δ ¼ mG=mI − 1,
where mG and mI are, respectively, the gravitational and inertial
mass of a pulsar [129].
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Can BHs also possess scalar hair like NSs in scalar-
tensor theories? The BH no-hair theorem can be applied to
many of the scalar-tensor theories that prevent BHs from
acquiring scalar charges [134–138] including BD and DEF
gravity, though exceptions exist, such as EdGB gravity
[139–143], that we explain in more detail in the next
subsection. On the other hand, if the scalar field cosmo-
logically evolves as a function of time, BHs can acquire
scalar charges, known as the BH miracle hair growth
[144,145] (see also Refs. [146,147] for related works).
Let us now derive the PPE parameters in scalar-tensor

theories. Gravitational waveforms are modified from that in
GR through the scalar dipole radiation. Using the orbital
decay rate of compact binaries in scalar-tensor theories in
Refs. [20,28], one can read off the non-GR corrections
to _f as

γ _f ¼ 5

96
η2=5ðα1 − α2Þ2 ð25Þ

with c _f ¼ −2. Given that the leading correction to the
waveform is the dissipative one in scalar-tensor theories,
one can use Eq. (20) to derive the PPE phase correction as

βST ¼ −
5

7168
η2=5ðα1 − α2Þ2 ð26Þ

with b ¼ −7. Here, αA represents the scalar charge of the
Ath binary component. Using further Eq. (22), one finds the
amplitude correction as

αST ¼ −
5

192
η2=5ðα1 − α2Þ2 ð27Þ

with a ¼ −2. These corrections enter at −1 PN order
relative to GR.
The scalar charges αA depend on specific theories and

compact objects. For example, in situations in which the
BH no-hair theorem [134–136] applies, αA ¼ 0. On the
other hand, if the scalar field is evolving cosmologically,
BHs undergo miracle hair growth [144] and acquire scalar
charges given by [145]

αA ¼ 2mA
_ϕ½1þ ð1 − χ2AÞ1=2�; ð28Þ

where _ϕ is the growth rate of the scalar field while mA and
χA are the mass and the magnitude of the dimensionless
spin angular momentum of the Ath body, respectively. The
PPE phase parameter β for binary BHs in such a situation
was derived in Ref. [82]. Another well-studied example is
Brans-Dicke theory, in which one can replace ðα1 − α2Þ2 in
Eqs. (26) and (27) as 2ðs1 − s2Þ2=ð2þ ωBDÞ [20]. Here, sA
is the sensitivity of the Ath body and roughly equals its
compactness (0.5 for BHs and ∼0.2 for NSs). The PPE
parameters in this theory have been found in Ref. [76].
Scalar charges and the PPE parameters in generic

screened modified gravity have recently been derived in
Refs. [101,148].
The phase correction in Eq. (26) has been used to derive

current and future projected bounds with GW interferom-
eters. Regarding the former, GW150914 and GW151226
do not place any meaningful bounds on _ϕ [82]. On the other
hand, by detecting GWs from BH-NS binaries, aLIGO and
Virgo with their design sensitivities can place bounds that
are stronger than the above binary pulsar bounds from
dynamical scalarization for certain equations of state and
NS mass range [81,128,149,150].3 The Einstein Telescope,
a third-generation ground-based detector, can yield con-
straints on BD theory from BH-NS binaries that are 100
times stronger than the current bound [151]. Projected
bounds with future space-borne interferometers, such as
DECIGO, can be as large as 4 orders of magnitude stronger
than current bounds [152], while those with LISA may not
be as strong as the current bound [96,153].
Up until now, we have focused on theories with a

massless scalar field, but let us end this subsection by
commenting on how the above expressions for the PPE
parameters change if one considers a massive scalar field
instead. In such a case, the scalar dipole radiation is present
only when the mass of the scalar fieldms is smaller than the
orbital angular frequency Ω ¼ πf. Then, if the Yukawa-
type correction to the binding energy is subdominant,
Eqs. (26) and (27) simply acquire an additional factor of
ΘðΩ −ms=ℏÞ, where Θ is the Heaviside function. For
example, the gravitational waveform phase in massive BD
theory is derived in Ref. [154]. The situation is similar if
massive pseudoscalars, such as axions, are present [155].

B. Einstein-dilaton Gauss-Bonnet gravity

EdGB gravity is a well-known extension of GR, which
emerges naturally in the framework of low-energy effective
string theories and gives one of the simplest viable high-
energy modifications to GR [156,157]. It also arises as a
special case of Horndeski gravity [19,158], which is the
most generic scalar-tensor theory with at most second-order
derivatives in the field equations. One obtains the EdGB
action by adding a quadratic-curvature term to the Einstein-
Hilbert action, in which the scalar field (dilaton) is non-
minimally coupled to theGauss-Bonnet termwith a coupling
constant ᾱEdGB [159].4 A stringent upper bound on such a
coupling constant has been placed using the orbital decay
measurement of a BH low-mass x-ray binary (LMXB) asffiffiffiffiffiffiffiffiffiffiffiffiffiffijᾱEdGBj
p

< 1.9 × 105 cm [160]. A similar upper bound has
been placed from the existence of BHs [157]. Equation of
state–dependent bounds from the maximum mass of NSs
have also been derived in Ref. [161].

3One needs to multiply Eq. (26) by a steplike function to
capture the effect of dynamical scalarization.

4We use barred quantities for coupling constants so that one
can easily distinguish them from the PPE parameters.
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BHs in EdGB gravity are of particular interest since they
are fundamentally different from their GR counterparts.
Perturbative but analytic solutions are available for static
[139,141,162,163] and slowly rotating EdGB BHs [164–
166], while numerical solutions have been found for static
[159,167,168] and rotating [157,169,170] BHs. One of the
important reasons for considering BHs in EdGB is that BHs
acquire scalar monopole charges [97,141,171,172] while
ordinary stars such as NSs do not if the scalar field is
coupled linearly to the Gauss-Bonnet term in the action
[97,173]. This means that binary pulsars are inefficient to
constrain the theory, and one needs systems such as BH
LMXBs [160] or BH/pulsar binaries [173] to have better
probes on the theory.
We now show the expressions of the PPE parameters for

EdGB gravity. The scalar monopole charge of EdGB BHs
generates scalar dipole radiation, which leads to an earlier
coalescence of BH binaries compared to GR. Such scalar
radiation modifies the GW phase with the PPE parameters
given by [82,97]

βEdGB ¼ −
5

7168
ζEdGB

ðm2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 Þ2

m4η18=5
ð29Þ

and b ¼ −7. Here, ζEdGB ≡ 16πᾱ2EdGB=m
4 is the dimension-

less EdGB coupling parameter, and s̃EdGBA are the spin-

dependent factors of the BH scalar charges given by s̃EdGBA ≡
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χA

2
p

− 1þ χA
2Þ=χA2 [171,172].5 In EdGB gravity,

the leading-order correction to the phase enters through the
correction of the GW energy flux, and hence the theory
corresponds to a dissipative-dominated case.We can then use
Eq. (22) to calculate the amplitude PPE parameters as

αEdGB ¼ −
5

192
ζEdGB

ðm2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 Þ2

m4η18=5
ð30Þ

and a ¼ −2. These corrections enter at −1 PN order.
One can use the phase correction in Eq. (29) to derive

bounds on EdGB gravity with current [82] and future [160]
GW observations. Similar to the scalar-tensor theory case,
current binary BH GW events do not allow us to place any
meaningful bounds on the theory. Future second- and third-
generation ground-based detectors and LISA can place
bounds that are comparable to current bounds from
LMXBs [160]. On the other hand, DECIGOhas the potential
to go beyond the current bounds by 3 orders of magnitude.

C. Dynamical Chern-Simons gravity

Dynamical Chern-Simons gravity is described by
Einstein-Hilbert action with a dynamical (pseudo)scalar
field that is nonminimally coupled to the Pontryagin
density with a coupling constant ᾱdCS [174,175]. Similar

to EdGB gravity, dCS gravity arises as an effective field
theory from the compactification of heterotic string theory
[176,177]. Such a theory is also important in the context of
particle physics [174,178–180], loop quantum gravity
[181,182], and inflationary cosmology [183]. Demanding
that the critical length scale (below which higher-curvature
corrections beyond quadratic order cannot be neglected
in the action) has to be smaller than the scale probed by
tabletop experiments, one finds

ffiffiffiffiffiffiffiffiffiffiffiffijᾱdCSj
p

< Oð108 kmÞ
[184]. Similar constraints have been placed from measure-
ments of the frame-dragging effect by Gravity Probe B and
LAGEOS satellites [185].
We now derive the expressions of the PPE parameters for

dCS gravity. While BHs in EdGB gravity possess scalar
monopole charges, BHs in dCS gravity possess scalar
dipole charges that induce scalar quadrupolar emission
[97]. On the other hand, scalar dipole charges induce a
scalar interaction force between two BHs. Each BH also
acquires a modification to the quadrupole moment away
from the Kerr value. All of these modifications result in
both dissipative and conservative corrections entering at the
same order in gravitational waveforms. For spin-aligned
binaries,6 corrections to Kepler’s law and frequency evo-
lution in dCS gravity are given in Ref. [98] within the slow-
rotation approximation for BHs, from which we can derive

γr ¼
25

256
η−9=5ζdCSχ1χ2

−
201

3584
η−14=5ζdCS

�
m2

1

m2
χ22 þ

m2
2

m2
χ21

�
ð31Þ

with cr ¼ 4 and

γ _f ¼ 38525

39552
η−9=5ζdCSχ1χ2

−
309845

553728
η−14=5ζdCS

�
m2

1

m2
χ22 þ

m2
2

m2
χ21

�
ð32Þ

with c _f ¼ 4. Here, ζdCS ¼ 16πᾱ2dCS=m
4 is the dimension-

less coupling constant. Using Eqs. (31) and (32) in
Eqs. (14) and (20), respectively, one finds

αdCS ¼
185627

1107456
η−14=5ζdCS

�
−2δmχaχs

þ
�
1 −

53408η

14279

�
χ2a þ

�
1 −

3708η

14279

�
χ2s

�
ð33Þ

with a ¼ 4 and

5s̃EdGBA are zero for ordinary stars like NSs [97,173].

6See recent works [186,187] for precession equations in dCS
gravity.
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βdCS ¼
1549225

11812864
η−14=5ζdCS

�
−2δmχaχs

þ
�
1 −

16068η

61969

�
χ2a þ

�
1 −

231808η

61969

�
χ2s

�
ð34Þ

with b ¼ −1. Here, χs;a ¼ ðχ1 � χ2Þ=2 are the symmetric
and antisymmetric combinations of dimensionless spin
parameters, and δm ¼ ðm1 −m2Þ=m is the fractional differ-
ence in masses relative to the total mass. The above
corrections enter at 2 PN order.
Can GW observations place stronger bounds on the

theory? Current GWobservations do not allow us to put any
meaningful bounds on dCS gravity [82] (see also
Ref. [87]). However, future observations have the potential
to place bounds on the theory that are 6 to 7 orders of
magnitude stronger than current bounds [98]. Such stronger
bounds can be realized due to relatively strong gravitational
field and large spins that source the pseudoscalar field.
Measuring GWs from extreme mass ratio inspirals with
LISA can also place bounds that are 3 orders of magnitude
stronger than current bounds [188].

D. Einstein-Æther and khronometric theory

In this section, we study two example theories that break
Lorentz invariance in the gravity sector, namely, Einstein-
Æther and khronometric theory. Lorentz-violating theories
of gravity are candidates for low-energy descriptions of
quantum gravity [189,190]. Lorentz violation in the gravity
sector has not been as stringently constrained as that in the
matter sector [191–193], and several mechanisms that
prevent percolation of the latter to the former exist [193,194].
Einstein-Æther theory is a vector-tensor theory of

gravity, in which, along with the metric, a spacetime is
endowed with a dynamical timelike unit vector (Æther)
field [195,196]. Such a vector field specifies a particular
rest frame at each point in spacetime and hence breaks the
local Lorentz symmetry. The amount of Lorentz violation is
controlled by four coupling parameters (c1; c2; c3, and c4).
Einstein-Æther theory preserves diffeomorphism invari-
ance and hence is a Lorentz-violating theory without
abandoning the framework of GR [196]. Along with the
spin-2 gravitational perturbation of GR, the theory predicts
the existence of the spin-1 and spin-0 perturbations [197–
199]. Such perturbation modes propagate at speeds that are
functions of the coupling parameters ci, and in general
differ from the speed of light [198].
Khronometric theory is a variant of Einstein-Æther

theory, where the Æther field is restricted to be hypersur-
face orthogonal. Such a theory arises as a low-energy limit
of Hořava gravity, a power-counting renormalizable quan-
tum gravity model with only spatial diffeomorphism
invariance [19,190,200–202]. The amount of Lorentz
violation in the theory is controlled by three parameters,

ðᾱkh; β̄kh; λ̄khÞ. Unlike Einstein-Æther theory, the spin-1
propagating modes are absent in khronometric theory.
Most of parameter space in Einstein-Æther and khrono-

metric theory have been constrained stringently from
current observations and theoretical requirements. Using
the measurement of the arrival time difference between GWs
and electromagnetic waves in GW170817, the difference in
the propagation speed of GWs away from the speed of light
has been constrained to be less than ∼10−15 [59,61]. Such a
bound can bemapped to bounds onLorentz-violating gravity
as jc1 þ c3j≲ 10−15 [203,204] and jβ̄khj ≲ 10−15 [205].7

Imposing further constraints from solar system experiments
[207–209], big bang nucleosynthesis [210] and theoretical
constraints such as the stability of propagating modes,
positivity of their energy density [211], and the absence of
gravitational Cherenkov radiation [212], allowed regions in
the remaining parameter space have been derived for
Einstein-Æther [204] and khronometric [205] theory.
Binary pulsar bounds on these theories were studied in
Refs. [213,214] before the discovery ofGW170817, within a
parameter space that is different from the allowed regions in
Refs. [204,205].
Let us now derive the PPE parameters in Einstein-Æther

and khronometric theories. Propagation of the scalar and
vector modes is responsible for dipole radiation and loss of
angular momentum in binary systems, which increase the
amount of orbital decay rate. Regarding Einstein-Æther
theory, the PPE phase correction is given by [99]

βEA ¼ −
5

3584
η2=5

ðsEA1 − sEA2 Þ2
½ð1 − sEA1 Þð1 − sEA2 Þ�4=3

×
ðc14 − 2Þw3

0 − w3
1

c14w3
0w

3
1

ð35Þ

with b ¼ −7. Here, ws is the propagation speed of the spin-
s modes in Einstein-Æther theory given by [196]

w2
0 ¼

ð2 − c14Þc123
ð2þ 3c2 þ cþÞð1 − cþÞc14

; ð36Þ

w2
1 ¼

2c1 − cþc−
2ð1 − cþÞc14

; ð37Þ

w2
2 ¼

1

1 − cþ
; ð38Þ

with

c14 ≡ c1 þ c4; c� ≡ c1 � c3; c123 ≡ c1 þ c2 þ c3:

ð39Þ

7Such bounds are consistent with the prediction in Ref. [99]
based on Ref. [206].
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sA in Eq. (35) is the sensitivity of the Ath body and has been
calculated only for NSs [213,214]. Given that the leading-
order correction in Einstein-Æther theory arises from the
dissipative sector [99], we can use Eq. (22) to find the PPE
amplitude correction as8

αEA ¼ −
5

96
η2=5

ðsEA1 − sEA2 Þ2
½ð1 − sEA1 Þð1 − sEA2 Þ�4=3

×
ðc14 − 2Þw3

0 − w3
1

c14w3
0w

3
1

ð40Þ

with a ¼ −2. Similar to Einstein-Æther theory, the PPE
parameters in khronometric theory are given by [99]

βkh ¼ −
5

3584
η2=5

ðskh1 − skh2 Þ2
½ð1 − skh1 Þð1 − skh2 Þ�4=3

×
ffiffiffiffiffiffiffi
ᾱkh

p �ðβ̄kh − 1Þð2þ β̄kh þ 3λ̄khÞ
ðᾱkh − 2Þðβ̄kh þ λ̄khÞ

�
3=2

ð41Þ

with b ¼ −7 and

αkh ¼ −
5

96
η2=5

ðskh1 − skh2 Þ2
½ð1 − skh1 Þð1 − skh2 Þ�4=3

×
ffiffiffiffiffiffiffi
ᾱkh

p �ðβ̄kh − 1Þð2þ β̄kh þ 3λ̄khÞ
ðᾱkh − 2Þðβ̄kh þ λ̄khÞ

�
3=2

ð42Þ

with a ¼ −2. These corrections enter at −1 PN order.
The above corrections to the gravitational waveform can

be used to compute current and projected future bounds on
the theories with GW observations, provided one knows
what the sensitivities are for compact objects in binaries.
Unfortunately, such sensitivities have not been calculated
for BHs, and hence one cannot derive bounds on the
theories from recent binary BH merger events. Instead,
Ref. [82] used the next-to-leading 0 PN correction that is
independent of the sensitivities and derived bounds from
GW150914 and GW151226, though such bounds are
weaker than those from binary pulsar observations
[213,214]. On the other hand, Ref. [99] includes both
the leading and next-to-leading corrections to the waveform
and estimates projected future bounds with GWs from
binary NSs. The authors found that bounds from second-
generation ground-based detectors are less stringent than
existing bounds even with their design sensitivities.
However, third-generation ground-based ones and space-
borne interferometers can place constraints that are com-
parable, and in some cases 2 orders of magnitude stronger
compared to the current bounds [99,215].

E. Noncommutative gravity

Although the concept of nontrivial commutation rela-
tions of spacetime coordinates is rather old [216,217], the
idea has been revived recently with the development of
noncommutative geometry [218–222] and the emergence
of noncommutative structure of spacetime in a specific
limit of string theory [223,224]. Quantum field theories on
noncommutative spacetime have been studied extensively
as well [225–227]. In the simplest model of noncommu-
tative gravity, spacetime coordinates are promoted to
operators, which satisfy a canonical commutation relation

½x̂μ; x̂ν� ¼ iθμν; ð43Þ

where θμν is a real constant antisymmetric tensor. In
ordinary quantummechanics, Planck’s constant ℏmeasures
the quantum fuzziness of phase space coordinates.
In a similar manner, θμν introduces a new fundamental
scale that measures the quantum fuzziness of spacetime
coordinates [100].
To obtain stringent constraints on the scale of non-

commutativity, low-energy experiments are advantageous
over high-energy ones [228,229]. Low-energy precision
measurements such as clock-comparison experiments with
nuclear-spin-polarized 9Beþ ions [230] give a constraint on
noncommutative scale as 1=

ffiffiffi
θ

p ≳ 10 TeV [228], where θ
refers to the magnitude of the spatial-spatial components of
θμν.9 A similar bound has been obtained from the meas-
urement of the Lamb shift [231]. Another speculative
bound is derived from the analysis of atomic experiments
which is 10 orders of magnitude stronger [229,232]. Study
of inflationary observables using cosmic microwave back-
ground data from Planck gives the lower bound on the
energy scale of noncommutativity as 19 TeV [233,234].
Let us now review how the binary evolution is modified

from that in GR in this theory. Several formulations of
noncommutative gravity exist [235–240], though the first-
order noncommutative correction vanishes in all of them
[241,242], and the leading-order correction enters at second
order. On the other hand, first-order corrections may arise
from gravity-matter interactions [242,243]. Thus, one can
neglect corrections to the pure gravity sector and focus on
corrections to the matter sector (i.e., energy-momentum
tensor) [100]. Making corrections to the classical matter
source and following an effective field theory approach,
expressions of energy and GW luminosity for quasicircular
BH binaries have been derived in Ref. [100], which give the
correction to the frequency evolution in Eq. (5) as

γ _f ¼ 5

4
η−4=5ð2η − 1ÞΛ2 ð44Þ

8Equations (40) and (42) correct errors in Ref. [99].

9The corresponding bound on the time-spatial components of
θμν is roughly 6 orders magnitude weaker than that on the spatial-
spatial components.
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with c _f ¼ 4 and Λ2 ¼ θ0iθ0i=ðl2pt2pÞ with lp and tp repre-
senting the Planck length and time, respectively. On the
other hand, the modified Kepler’s law in Eq. (4) can be
found as [100]

γr ¼
1

8
η−4=5ð2η − 1ÞΛ2 ð45Þ

with cr ¼ 4.
We are now ready to derive the PPE parameters in

noncommutative gravity. Given that the dissipative and
conservative leading corrections enter at the same PN order,
one can use Eqs. (44) and (45) in Eq. (14) to find the PPE
amplitude correction as

αNC ¼ −
3

8
η−4=5ð2η − 1ÞΛ2 ð46Þ

with a ¼ 4. Similarly, substituting Eq. (44) into Eq. (20)
gives the PPE phase correction as

βNC ¼ −
75

256
η−4=5ð2η − 1ÞΛ2 ð47Þ

with b ¼ −1. βNC can also be read off from the phase
correction derived in Ref. [100]. The above corrections
enter at 2 PN order.
The above phase correction has already been

used to derive bounds on noncommutative gravity from
GW150914 as

ffiffiffiffi
Λ

p ≲ 3.5 [100], which means that the
energy scale of noncommutativity has been constrained
to be the order of the Planck scale. Such a bound, so far, is
the most stringent constraint on the noncommutative scale
and is 15 orders of magnitude stronger compared to the
bounds coming from particle physics and low-energy
precision measurements.10

IV. VARYING-G THEORIES

Many of the modified theories of gravity that violate the
strong equivalence principle [1,244,245] predict that the
locally measured gravitational constant (G) may vary with
time [246]. Since the gravitational self-energy of a body is a
function of the gravitational constant, in a theory in which
G is time dependent, masses of compact bodies are also
time dependent [91]. The rate at which the mass of an
object varies with time is proportional to the rate of change
of the gravitational coupling constant [91]. Such a variation
of mass, together with the conservation of linear momen-
tum, causes compact bodies to experience anomalous
acceleration, which results in a time evolution of the
specific angular momentum [91]. Existing experiments
that search for variations in G at the present time (i.e.,

at very small redshift) include lunar laser ranging obser-
vations [247], pulsar timing observations [248,249], radar
observations of planets and spacecraft [250], and surface
temperature observations of PSR J0437-4715 [251].
Another class of constraints on a long-term variation of
G comes from big bang nucleosynthesis [252,253] and
helioseismology [254]. The most stringent bound on j _G=Gj
is of the order ≲10−14 yr−1 [255].
More than one gravitational constant can appear in

different areas of a gravitational theory. Here, we introduce
two different kinds of gravitational constants, one that
arises in the dissipative sector and another that arises in the
conservative sector. The constant that enters in the GW
luminosity through Einstein equations, i.e., the constant in
Eq. (8), is the one we refer to as the dissipative gravitational
constant (GD), while that which enters in Kepler’s law or
the binding energy of the binary is what we refer to as the
conservative one (GC). These two constants are the same in
GR, but they can be different in some modified theories of
gravity. An example of such a theory is Brans-Dicke theory
with a cosmologically evolving scalar field [256].
The PPE parameters for varying-G theories have pre-

viously been derived in Ref. [92] for GD ¼ GC. Here, we
improve the analysis by considering the two different types
of gravitational constant and including variations in
masses, which are inevitable for strongly self-gravitating
objects when G varies [91]. We also correct small errors in
Ref. [92]. We follow the analysis of Ref. [257] that derives
gravitational waveforms from BH binary inspirals with
varying mass effects from the specific angular momentum.
We also present another derivation in Appendix B using the
energy-balance argument in Ref. [92].
The formalism presented in Sec. II assumes that G and

the masses are constant and hence are not applicable to
varying-G theories. Thus, we will derive the PPE param-
eters in varying-G theories by promoting the PPE formal-
ism to admit time variation in the gravitational constants
and masses as

mAðtÞ ≈mA;0 þ _mA;0ðt − t0Þ; ð48Þ

GCðtÞ ≈ GC;0 þ _GC;0ðt − t0Þ; ð49Þ

GDðtÞ ≈GD;0 þ ð1þ δ _GÞ _GC;0ðt − t0Þ; ð50Þ

where t0 is the time of coalescence. Here, we assumed that
spatial variations of GC and GD are small compared to
variations in time. δ _G gives the fractional difference
between the rates at which GC and GD vary with time
and could be a function of parameters in a theory. The
subscript 0 denotes that the quantity is measured at the time
t ¼ t0. Other time variations to consider are those in the
specific angular momentum j and the total mass m:

10Notice that the GW bound is on the time-spatial components
of θμν, while most of particle physics and low-energy precision
experiments place bounds on its spatial-spatial components.
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jðtÞ ≈ j0 þ _j0ðt − t0Þ; ð51Þ

mðtÞ ≈m0 þ _m0ðt − t0Þ: ð52Þ

_j0 and _m0 can be written in terms of binary masses and
sensitivities defined by

sA ¼ −
GC

mA

δmA

δGC
; ð53Þ

as [91]

_j0 ¼
m1;0s1;0 þm2;0s2;0

m1;0 þm2;0

_GC;0

GC;0
j0; ð54Þ

_m0 ¼ −
m1;0s1;0 þm2;0s2;0

m1;0 þm2;0

_GC;0

GC;0
m0; ð55Þ

respectively.
Next, we explain how the binary evolution is affected by

the variation of the above parameters. First, GW emission
makes the orbital separation r decay with the rate given by
[258]

_rGW ¼ −
64

5

GDG2
C μm2

r3
: ð56Þ

Second, time variation of the total mass, (conservative)
gravitational constant, and specific angular momentum
changes r at a rate of

_r _G ¼ −
�

_GC;0

GC
þ _m0

m
− 2

_j0
j

�
r; ð57Þ

which is derived by taking a time derivative of the specific
angular momentum j≡ ffiffiffiffiffiffiffiffiffiffiffiffi

GCmr
p

. Having the evolution of r
at hand, one can derive the evolution of the orbital angular
frequency using Kepler’s third law as

_Ω ¼ 1

2Ωr3

�
m _GC;0 þ _m0GC − 3mGC

_r
r

�
: ð58Þ

Using the evolution of the binary separation _r≡ _rGW þ _r _G
in Eq. (58), together with Eqs. (54) and (55), we can find
the GW frequency evolution as

_f ¼
_Ω
π

¼ 96

5
π8=3G2=3

C GDM5=3f11=3

×

�
1þ 5

96

_GC;0GC

GDη
½2m − 5ðm1;0s1;0 þm2;0s2;0Þ�x−4

�
;

ð59Þ
where x≡ ðπGCmfÞ2=3 is the squared velocity of the
relative motion. Here, we only considered the leading
correction to the frequency evolution entering at −4 PN
order. Using Eqs. (48)–(50) and (55) in Eq. (59), one finds

_f ¼ 96

5
π8=3f11=3η0G

2=3
C;0GD;0m

5=3
0

×

�
1 −

5GC;0
_GC;0

768η0G2
D;0

½3ð1þ δ _GÞGC;0m0 − ð3s1;0 þ 3s2;0

þ14ÞGD;0m0 þ 41ðm1;0s1;0 þm2;0s2;0ÞGD;0�x−40
�
:

ð60Þ
Notice thatGC;0 andGD;0 differ only by a constant quantity,
and such a difference will enter in _f at 0 PN order, which is
much higher than the −4 PN corrections. We will thus
ignore such 0 PN corrections and simply use GD;0 ¼
GC;0 ≡G0 from now on.
Based on the above binary evolution, we now derive

corrections to the GW phase. We integrate Eq. (60) to
obtain time before coalescence tðfÞ − t0 and the GW phase
ϕðfÞ≡ R

2πfdt ¼ R ð2πf= _fÞdf as

tðfÞ ¼ t0 −
5

256
G0M0u0−8

×

�
1−

5

1536

_GC;0

η0
½11m0 þ 3ðs1;0 þ s2;0 − δ _GÞm0

−41ðm1;0s1;0 þm2;0s2;0Þ�x−40
�
; ð61Þ

ϕðfÞ ¼ ϕ0 −
1

16
u0−5f1

−
25

9984

_GC;0

η0
½11m0 þ 3ðs1;0 þ s2;0 − δ _GÞm0

−41ðm1;0s1;0 þm2;0s2;0Þ�x−40 g; ð62Þ

with u0 ≡ ðπG0M0fÞ13. The GW phase in the Fourier space
is then given by

ΨðfÞ ¼ 2πftðfÞ − ϕðfÞ − π

4

¼ 2πft0 − ϕ0 −
π

4
þ 3

128
u−50

�
1 −

25

19968

_GC;0

η0
½11m0 þ 3ðs1;0 þ s2;0 − δ _GÞm0 − 41ðm1;0s1;0 þm2;0s2;0Þ�x−40

�
: ð63Þ
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From Eq. (63), one finds the PPE phase parameters
as b ¼ −13 and

β _G ¼ −
25

851968
_GC;0η

3=5
0 ½11m0 þ 3ðs1;0 þ s2;0 − δ _GÞm0

−41ðm1;0s1;0 þm2;0s2;0Þ�: ð64Þ

Next, we derive the PPE amplitude parameters. Using
Kepler’s law in Eq. (9), one finds

ÃðfÞ ∝ 1ffiffiffi
_f

q GDðtÞ
DL

μðtÞrðtÞ2f2

∝
1ffiffiffi
_f

q GDðtÞGCðtÞ2=3μðtÞmðtÞ2=3: ð65Þ

Using further Eqs. (48)–(50) in Eq. (65), we find the
amplitude PPE parameters as a ¼ −8 and

α _G ¼ 5

512
η3=50

_GC;0½−7m0 þ ðs1;0 þ s2;0 − δ _GÞm0

þ13ðm1;0s1;0 þm2;0s2;0Þ�: ð66Þ

Let us comment on how the above new PPE parameters
in varying-G theories differ from those obtained previously
in Ref. [92]. The latter considers GD ¼ GC (which corre-
sponds to δ _G ¼ 0) and sA ¼ 0 (which is only true for
weakly gravitating objects). However, the above expres-
sions for the PPE parameters do not reduce to those in
Ref. [92] under these limits. This is because Ref. [92] did
not take into account the fact that the binding energy is not
conserved in the absence of GW emission in varying-G
theories. In Appendix B, we show that the correct appli-
cation of the energy-balance law does indeed lead to the
same conclusion as in this section.
Equations (64) and (66) can be used to constrain varying-

G theories with GW observations. Recent GW events
(GW150914 and GW151226) place constraints on the
variation of G that are much weaker than the current
constraints [82]. Projected GW bounds have been calculated
in Ref. [92] (see Ref. [215] for an updated forecast of future
GW bounds on _G), which gives j _G0=G0j≲ 10−11 yr−1,
considering a single merger event. Although GW bounds
are less stringent compared to the existing bounds [256], they
are unique in the sense that they can provide constraints at
intermediate redshifts, while the existing bounds are for very
small and large redshifts [92]. Furthermore, GW constraints
give _G0=G0 at the location of merger events, which means
that a sufficient number of GWobservations can be used to
construct a three-dimensional constraint map of _G0=G0 as a
function of sky locations and redshifts [92].

V. CONCLUSIONS

We derived non-GR corrections to the GW phase and
amplitude in various modified theories of gravity. We
achieved this by revisiting the standard PPE formalism
and considered generic corrections to the GW frequency
evolution and Kepler’s third law that have been derived in
many non-GR theories. Such a formalism yields the
expressions of the PPE parameters, which are simpler
compared to the original formalism [75,76]. We derived
the PPE amplitude parameters for the first time in EdGB,
dCS, and noncommutative gravity. We also corrected some
errors in the expressions of the PPE amplitude parameters
in Einstein-Æther and khronometric theories in the pre-
vious literature [99].
We also considered the PPE formalism with variable

gravitational constants by extending previous work [92] in
a few different ways. One difference is that we introduced
two different gravitational constants, one entering in the
GW luminosity (dissipative G) and the other entering in the
binding energy and Kepler’s law (conservative G). We also
included time variations of component masses in a binary in
terms of the sensitivities following Ref. [91], which is a
natural consequence in varying-G theories. We further
introduced the effect of nonconservation of the binding
energy in the energy-balance law. Such an effect arises due
to an anomalous acceleration caused by time variations in
G or masses [91] that was not accounted for in the original
work of Ref. [92]. Including all of these, we derived the
PPE amplitude and phase corrections to the gravitational
waveform from compact binary inspirals.
The analytic expressions of the PPE corrections derived in

this paper, especially those in the amplitude, can be used to
improve analyses on testing GR with observed GW events
and to derive new projected boundswith future observations,
since most of previous literature only includes phase cor-
rections. For example, one can reanalyze the available GW
data for testing GR including amplitude corrections with a
Bayesian analysis [60]. One can also carry out a similar
Fisher analysis as in Ref. [82] by including amplitude
corrections and mapping bounds on generic parameters to
those on fundamental pillars in GR. GW amplitude correc-
tions are also crucial for testing strong-field gravity with
astrophysical stochastic GW backgrounds [87,88]. One
could further improve the analysis presented in this paper
by considering binaries with eccentric orbits [79] or includ-
ing spin precession [78,187]. We leave these possible
avenues of extensions for future work.
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APPENDIX A: ORIGINAL PPE FORMALISM

In this Appendix, we review the original PPE formalism.
In particular, we will show how the amplitude and phase
corrections depend on conservative and dissipative correc-
tions, in which the former are corrections to the effective
potential of a binary while the latter are those to the GW
luminosity. We will mostly follow the analysis in Ref. [76].
First, let us introduce conservative corrections. We

modify the reduced effective potential of a binary as

Veff ¼
�
−
m
r
þ L2

z

2μ2r2

��
1þ A

�
m
r

�
p
�
; ðA1Þ

where Lz is the z component of the angular momentum. A
and p show the magnitude and exponent of the non-GR
correction term, respectively. Such a modification to the
effective potential also modifies Kepler’s law. Taking the
radial derivative of Veff in Eq. (A1) and equating it to zero
gives modified Kepler’s law as

Ω2 ¼ m
r3

�
1þ 1

2
Ap

�
m
r

�
p
�
: ðA2Þ

The above equation further gives the orbital separation as

r ¼ rGR

�
1þ 1

6
Apη−

2p
5 u2p

�
; ðA3Þ

where to leading PN order rGR is given by Kepler’s law as
rGR ¼ ðm=Ω2Þ1=3. For a circular orbit, radial kinetic energy
does not exist, and the effective potential energy is the same
as the binding energy of the binary. Using Eq. (A3) in
Eq. (A1) and keeping only to leading order in non-GR
corrections, the binding energy becomes

E ¼ −
1

2
η−2=5u2

�
1 −

1

3
Að2p − 5Þη−2p

5 u2p
�
: ðA4Þ

Next, let us introduce dissipative corrections. Such
corrections to the GW luminosity can be parametrized by

_E ¼ _EGR

�
1þ B

�
m
r

�
q
�
; ðA5Þ

where _EGR is the GR luminosity that is proportional to
v2ðm=rÞ4 with v ¼ rΩ ¼ ðπmfÞ1=3 representing the rela-
tive velocity of binary components.11

Let us now derive the amplitude corrections. First, using
Eqs. (A4) and (A5) and applying the chain rule, the GW
frequency evolution is given by

_f ¼ df
dE

dE
dt

¼ _fGR

�
1þ Bη−

2q
5 u2q þ 1

3
Að2p2 − 2p − 3Þη−2p

5 u2p
�
;

ðA6Þ

where _fGR is given by Eq. (6). Next, using Eqs. (A3) and
(A6) in Eq. (9) and keeping only to leading order in non-
GR corrections, the GW amplitude in the Fourier domain
becomes

ÃðfÞ ¼ ÃGR

�
1 −

B
2
η−

2q
5 u2q −

1

6
Að2p2 − 4p − 3Þη−2p

5 u2p
�
:

ðA7Þ

Next, we move onto deriving phase corrections. One can
derive the GW phase in the Fourier domain by integrating
Eq. (18) twice. Equivalently, one can use the expression

ΨðfÞ ¼ 2πftðfÞ − ϕðfÞ − π

4
; ðA8Þ

where tðfÞ gives the relation between time and frequency
and can be obtained by integrating (A6) as

tðfÞ ¼
Z

dt
df

df

¼ t0 −
5M
256u8

�
1þ 4

3
A
ð2p2 − 2p − 3Þ

ðp − 4Þ η−
2p
5 u2p

þ 4

q − 4
Bη−

2q
5 u2q

�
; ðA9Þ

with t0 representing the time of coalescence and keeping
only the Newtonian term and leading-order non-GR cor-
rections. On the other hand, ϕðfÞ in Eq. (A8) corresponds
to the GW phase in the time domain and can be calculated
from Eq. (A6) as

ϕðfÞ ¼
Z

2πfdt ¼
Z

2πf
_f

df

¼ ϕ0 −
1

16u5

�
1þ 5

3
A
ð2p2 − 2p − 3Þ

ð2p − 5Þ η−
2p
5 u2p

þ 5

2q − 5
Bη−

2q
5 u2q

�
; ðA10Þ

withϕ0 representing the coalescence phase. Using Eqs. (A9)
and (A10) in (A8) and writing ΨðfÞ as ΨGRðfÞ þ δΨðfÞ,
non-GR modifications to the phase can be found as

11If we assume _EGR to be proportional to r4Ω6, which directly
follows from the quadrupole formula without using Kepler’s
law, we will find slightly different expressions for _f and the
waveform [76].
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δΨðfÞ ¼ −
5

32
A

2p2 − 2p − 3

ð4 − pÞð5 − 2pÞ η
−2p

5 u2p−5

−
15

32
B

1

ð4 − qÞð5 − 2qÞ η
−2q

5 u2q−5; ðA11Þ

with ΨGR to leading PN order being given by [103]

ΨGR ¼ 2πft0 − ϕ0 −
π

4
þ 3

128
u−5: ðA12Þ

We can easily rewrite the above expressions using γr and
cr. Comparing Eq. (A3) with Eq. (4), we find

A ¼ 12γr
cr

η
cr
5 ; p ¼ cr

2
: ðA13Þ

Using this, we can rewrite the GWamplitude in Eq. (A7) as

ÃðfÞ ¼ ÃGR

�
1 −

B
2
η−

2q
5 u2q −

γr
cr

ðc2r − 4cr − 6Þucr
�
:

ðA14Þ

Similarly, one can rewrite the correction to the GW phase in
Eq. (A11) as

δΨðfÞ ¼ −
15

8

γr
cr

c2r − 2cr − 6

ð8 − crÞð5 − crÞ
ucr−5

−
15

32
B

1

ð4 − qÞð5 − 2qÞ η
−2q

5 u2q−5: ðA15Þ

On the other hand, rewriting the above expressions further
in terms of γ _f and c _f is not so trivial in general since
corrections to the frequency evolution in Eq. (A6) involve
two independent terms instead of one.

APPENDIX B: GW FREQUENCY EVOLUTION
FROM ENERGY-BALANCE LAW IN

VARYING-G THEORIES

In this Appendix, we show an alternative approach to
finding _f in varying-G theories in Eq. (59) by correcting
and applying the energy-balance law used in Ref. [92]. We
begin by considering the total energy of a binary given by
E ¼ −ðGCμmÞ=2r. To calculate the leading-order correc-
tion to the frequency evolution due to the time-varying
gravitational constants, we use Kepler’s law to rewrite the
binding energy as

Eðf;GC;m1; m2Þ ¼ −
1

2
μðGCmΩÞ2=3; ðB1Þ

where Ω ¼ πf is the orbital angular frequency. Taking a
time derivative of the above expression and using
Eqs. (48)–(50) in Eq. (B1), the rate of change of the
binding energy becomes

dE
dt

¼ π2=3

6f1=3G1=3
C m4=3

½−3fGCmð _m1;0m2 þm1 _m2;0Þ

−2m3ηðGC
_f þ f _GCÞ þm2fGCη _m�: ðB2Þ

We can use the following energy-balance argument to
derive _f. In GR, the time variation in the binding energy is
balanced with the GW luminosity _EGW emitted from the
system given by

_EGW ¼ 1

5
GDh⃛Qij ⃛Qij −

1

3
ð⃛QkkÞ2i ¼

32

5
r4GDμ

2Ω6: ðB3Þ

In varying-G theories, there is an additional contribution
_E _G due to variations in G, masses, and the specific angular
momentum. Namely, the binding energy is not conserved
even in the absence of GW emission, and the energy-
balance law is modified as

dE
dt

¼ − _EGW þ _E _G: ðB4Þ

To estimate such an additional contribution, we rewrite
the binding energy in terms of the specific angular
momentum as

EðGC;m1; m2; jÞ ¼ −
G2

Cμm
2

2j2
: ðB5Þ

Taking the time variation of this leads to

_E _G ¼ ∂E
∂j _j0 þ

∂E
∂m1

_m1;0 þ
∂E
∂m2

_m2;0 þ
∂E
∂GC

_GC;0; ðB6Þ

where _j0 is given by Eq. (54) and originates purely from the
variation of GC (i.e., no GW emission).
We are now in a position to derive the frequency

evolution. Using Eqs. (B3), (B5), and (B6) in Eq. (B4),
one finds

dE
dt

¼ −
32

5
π10=3f10=3η2G4=3

C GDm10=3

�
1þ 5G2

Cη
3=5m

64GD

×

�
_m0

m
þ _m1;0

m1

þ _m2;0

m2

− 2
_j0
j
þ 2

_GC;0

GC

�
u−8

�
; ðB7Þ

where u ¼ ðπGCMfÞ1=3. Substituting this further into
Eq. (B2) and solving for _f, one finds the frequency
evolution as
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_f ¼ 96

5
π8=3G2=3

C GDM5=3f11=3
�
1þ 5

96

GC

GD

_GC;0η
3=5½2m

− 5ðm1;0s1;0 þm2;0s2;0Þ�u−8
�
; ðB8Þ

in agreement with Eq. (59).
Along with the constancy of masses, the second term in

Eq. (B4) was also missing in Ref. [92]. Consequently,
our PPE parameters in Eqs. (64) and (66) do not agree

with Ref. [92] even when we take the limit of no time
variation in masses. The difference in β _G is smaller than
20%, while α _G differs by a factor of 7. Despite the
discrepancy, we expect the projected bounds on _G0=G0

calculated in Ref. [92] to be qualitatively correct. This
is because a matched filtering analysis is more sensitive
to phase corrections than to amplitude ones, in which
the difference between our results and Ref. [92] is
small.
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