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The vacuum solution of Einstein’s theory of general relativity provides a rotating metric with a ring
singularity, which is covered by the inner and outer horizons and an ergo region. In this paper, we will
discuss how ghost-free, quadratic curvature, infinite derivative gravity (IDG) may resolve the ring
singularity. In IDG the nonlocality of the gravitational interaction can smear out the delta-Dirac source
distribution by making the metric potential finite everywhere including at r ¼ 0. We show that the same
feature also holds for a rotating metric. We can resolve the ring singularity such that no horizons are formed
in the linear regime by smearing out a delta-source distribution on a ring. We will also show that the Kerr
metric does not solve the full nonlinear equations of motion of ghost-free quadratic curvature IDG.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is indeed a
very successful metric theory of gravity which has seen
amazing success in the infrared (IR) [1], including the
detection of the first gravitational wave signal [2]. In spite
of these successes, classical GR suffers from the ultraviolet
(UV) catastrophe at short distances and small time scales,
where there are black hole and cosmological singularities
[3–5]. It has been recently shown that a ghost-free,
quadratic curvature infinite derivative gravity (IDG) can
potentially resolve the cosmological [6] and black hole type
singularities [7]. Infinite derivatives acting on a point delta-
Dirac source smears out the singularity by a Gaussian
profile [8–10]. At a quantum level the graviton vertex
interactions become nonlocal [11–14], very similar to
string field theory [15–18]. Besides strings, nonlocality
is also a feature of loop quantum gravity, see [19], spin
foam or dynamical triangulation where Wilson loops acts
as fundamental operators; for a review, see [20]. The
quantum scatterings for such nonlocal interactions in
IDG provide a very interesting insight [21,22], where there
is a UV-IR connection when a large number of scatterings
of particles with nonlocal interactions are taken into
account. The scattering amplitude gets exponentially sup-
pressed for external momenta P2 > M2

s , and the scale of

nonlocality gets shifted by Ms → Ms=
ffiffiffiffi
N

p
[23], for N

scatterers in the limit when N ≫ 1. Furthermore, nonlocal
thermal field theory provides a resemblance to a Hagedorn
phase as shown in [24].
As the gravitational interaction in the UV weakens, both

linear [7] and nonlinear equations of motion [25] provide a
conformally flat spherically symmetric, static metric sol-
ution [8]. A similar scenario also holds in the case of a
charged point source [26]. It has also been shown that the
singularity and the event horizon does not form in a
dynamical context at a linear level [27], as a mass gap
can be formed determined by the nonlocal scale [28]. In
particular, it has been shown that singular solutions such as
Schwarzschild metric [29] and Kasner metric [30] do not
satisfy the field equations in the vacuum. Moreover, infinite
derivatives acting on the delta-Dirac distribution at the
origin are smeared out by a Gaussian profile [7,8], and the
region of nonlocality yields a nonvacuum solution as
opposed to that in GR. It is also possible to make the
gravitational radius as large as the effective scale of
nonlocality, rNL, which can be larger than the
Schwarzschild’s radius, rsch ≤ rNL [8]. At the cosmological
front, such nonlocality can potentially replace the cosmo-
logical singularity by the big bounce [6] or freezing the
Universe in the UV [31]. Outside the region of nonlocality
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the gravitational interaction becomes that of GR, thus
reproducing all the features of gravity being tested in the
IR [32]; similar features have been observed for extended
objects such as d and p-branes [33]. In Ref. [34], it was
shown that in higher curvature gravity with more than four
derivatives, the delta source gets smeared out, as for
example in the sixth order theory of gravity, and the
linearized metric turns out to be singularity-free.
However, such local theories always suffer from the
presence of ghosts at the tree level.
The aim of this paper will be to understand the rotating

metric within IDG and show how to smear out the ring
singularity of a Kerr metric [35] in the linear regime by
considering a toy model with a delta-Dirac distribution on a

rotating ring. We will show that the linear solution
approaches conformal flatness in the limit r → 0. We will
provide numerical/analytical solutions of the rotating met-
ric and show how it recovers the predictions of GR in the
IR. With the help of nonlinear equations of motion we will
show that the Kerr metric does not pass through the field
equations of ghost-free quadratic curvature IDG.

II. THE INFINITE COVARIANT DERIVATIVE
ACTION

The most general quadratic curvature action, which is
parity-invariant and torsion-free, is given by [7,25,36]:

S ¼ SEH þ Sq ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ αcðRF 1ð□sÞRþRμνF 2ð□sÞRμν þWμνλσF 3ð□sÞWμνλσÞ�; ð1Þ

where SEH corresponds to the Einstein-Hilbert and Sq
corresponds to the quadratic curvature terms; G ¼ 1=M2

p

is Newton’s gravitational constant, and αc ∼ 1=M2
s is a

dimensionful coupling, □s ≡□=M2
s , where Ms repre-

sents the scale of nonlocality at which new physics
should emerge. In the limit Ms → ∞, the action
reduces to the Einstein-Hilbert term, as expected. The
d’Alembertian operator is defined as □ ¼ gμν∇μ∇ν,
where μ, ν ¼ 0, 1, 2, 3, and we work with the mostly
positive metric convention, ð−;þ;þ;þÞ. The three
gravitational form factors, F i, are the analytic function

of □ and can be expressed in series representation as
follows:

F ið□sÞ ¼
X∞
n¼0

fi;n□n
s ; ð2Þ

which are reminiscent of any massless theory possessing
only derivative interactions. Note that we will always
consider analytic operators of □s and not nonanalytic
operators such as 1=□s [37,38] or lnð□sÞ [39]. The
ghost-free condition around Minkowski background can
be formulated as [7,25,36,40]:

6F 1ð□sÞ þ 3F 2ð□sÞ þ 2F 3ð□sÞ ¼ 0; að□sÞ ¼ 1þ 2F 2ð□sÞ□s þ 4F 3ð□sÞ□s ¼ e−□s : ð3Þ

The field equations for the action in Eq. (1) have been derived in Ref. [25], and they are given by

Pαβ ¼ −
Gαβ

8πG
þ αc
8πG

ð4GαβF 1ð□sÞRþ gαβRF 1ð□sÞR − 4ð∇α∇β − gαβ□ÞF 1ð□sÞR
− 2Ωαβ

1 þ gαβðΩσ
1σ þ Ω̄1Þ þ 4Rα

μF 2ð□sÞRμβ

− gαβRμ
νF 2ð□sÞRν

μ − 4∇μ∇βðF 2ð□sÞRμαÞ þ 2□ðF 2ð□sÞRαβÞ
þ 2gαβ∇μ∇νðF 2ð□sÞRμνÞ − 2Ωαβ

2 þ gαβðΩσ
2σ þ Ω̄2Þ − 4Δαβ

2

− gαβWμνλσF 3ð□sÞWμνλσ þ 4Wα
μνσF 3ð□sÞWβμνσ

− 4ðRμν þ 2∇μ∇νÞðF 3ð□sÞWβμναÞ − 2Ωαβ
3 þ gαβðΩγ

3γ þ Ω̄3Þ − 8Δαβ
3 Þ

¼ −Tαβ; ð4Þ

where Tαβ is the stress-energy tensor of the matter component, and the symmetric tensors are defined as (see Ref. [25])

Ωαβ
1 ¼

X∞
n¼1

f1n
Xn−1
l¼0

∇αRðlÞ∇βRðn−l−1Þ; Ω̄1 ¼
X∞
n¼1

f1n
Xn−1
l¼0

RðlÞRðn−lÞ; ð5Þ
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Ωαβ
2 ¼

X∞
n¼1

f2n
Xn−1
l¼0

Rμ;αðlÞ
ν Rν;βðn−l−1Þ

μ ; Ω̄2 ¼
X∞
n¼1

f2n
Xn−1
l¼0

RμðlÞ
ν Rνðn−lÞ

μ ; ð6Þ

Δαβ
2 ¼

X∞
n¼1

f2n
Xn−1
l¼0

½RνðlÞ
σ Rðβσ;αÞðn−l−1Þ −Rν;αðlÞ

σ Rβσðn−l−1Þ�;ν; ð7Þ

Ωαβ
3 ¼

X∞
n¼1

f3n
Xn−1
l¼0

Wμ;αðlÞ
νλσ Wμ

νλσ;βðn−l−1Þ; Ω̄3 ¼
X∞
n¼1

f3n
Xn−1
l¼0

WμðlÞ
νλσWμ

νλσðn−lÞ; ð8Þ

Δαβ
3 ¼

X∞
n¼1

f3n
Xn−1
l¼0

½WλνðlÞ
σμ Wλ

βσμ;αðn−l−1Þ −Wλν ;αðlÞ
σμ Wλ

βσμðn−l−1Þ�;ν: ð9Þ

The notationRðlÞ ≡□
lR is only used for the covariant derivatives acting on the curvature tensors. We can also compute the

trace of the field equations in Eq. (4) whose expression is a lot simpler and is given by [25]

P ¼ R
8πG

þ αc
8πG

ð12□F 1ð□sÞRþ 2□ðF 2ð□sÞRÞ þ 4∇μ∇νðF 2ð□sÞRμνÞ
þ 2ðΩσ

1σ þ 2Ω̄1Þ þ 2ðΩσ
2σ þ 2Ω̄2Þ þ 2ðΩσ

3σ þ 2Ω̄3Þ − 4Δσ
2σ − 8Δσ

3σÞ ¼ −T ≡ −gαβTαβ: ð10Þ

The static solution for both linerized [7,41,42] and the full
nonlinear regime [8,29] has shown that Schwarzschild-like
singular solution is not permissible within IDG. In the UV,
well inside the region of nonlocality, r ≪ 1=Ms, the Weyl
tensor Wμνλσ → 0 as r → 0. In this respect, the system has
some similarity to the fuzz ball [43]. The smearing out of
the singularity has also been seen in noncommutative
geometry, as pointed out first in Ref. [44]. In GR the
Schwarzschild metric is derived by imposing the boundary
condition at the origin, i.e., by putting a delta-Dirac
distribution at r ¼ 0 [45,46]; in our case, the IDG smears
this singularity at the origin. The entire spacetime metric is
regular in the static case, inside the nonlocal region, i.e.,

r ≪ 2=Ms, without any singularity. Therefore, perturbation
theory can be trusted all the way from r ¼ 0 to r → ∞ as
long as mMs < M2

p; see Refs. [7,8]. As the effective
scale of nonlocality is given by Ms → Ms=

ffiffiffiffi
N

p
, where N

is the number of graviton interacting nonlocally, the
condition, mMs < M2

p, can be satisfied for large astro-
physical mass m [42].

III. RING SINGULARITY

Let us briefly recall the Kerr metric [35] in rational
polynomial coordinates, which is given by (see [47]):

ds2 ¼ −
�
1 −

2mr
r2 þ a2χ2

�
dt2 −

4marð1 − χ2Þ
r2 þ a2χ2

dtdφþ r2 þ a2χ2

r2 − 2mrþ a2
dr2 þ ðr2 þ a2χ2Þ dχ2

1 − χ2

þ ð1 − χ2Þ
�
r2 þ a2 þ 2ma2rð1 − χ2Þ

r2 þ a2χ2

�
dφ2; ð11Þ

where χ ¼ cos θ is the transformation used to bring the
standard Boyer-Lindquist coordinates, whereas m is the
mass and J ¼ am is the angular momentum, with a being
the rotation parameter. One of the key observations is that
the Kerr metric has a ring singularity which is described by
the equation (see Ref. [48] for a nice discussion):
r2 þ a2 cos2 θ ¼ 0, where it is clear that a corresponds
to the radius of the ring, whereas r is the radial coordinate
in Boyer-Lindsquit coordinates, which are defined in terms
of the Cartesian ones as follows: x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cos θ,

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinφ, and z ¼ r cos θ. The Kretsch-

mann scalar blows up when r2 þ a2 cos2 θ ¼ 0 is satisfied,

i.e., when r ¼ 0 and θ ¼ π=2, or in Cartesian coordinates,
x2 þ y2 ¼ a2; z ¼ 0, namely the ring singularity lies on a
plane which is perpendicular to the rotation axis. Let us
first discuss the physics in the linear regime, in analogy
with the static case.1 We consider the source is a Dirac
distribution on a ring of radius a, which is rotating with a
constant angular velocity,ω, in the plane x–y (z ¼ 0). Thus,

1There were attempts to understand the Kerr metric in IDG; see
[49]. However, we have found an error in our analysis, which we
have rectified here. Unfortunately, the rotation was not taken into
account correctly in the paper.
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the components of the energy momentum tensor of the
source are

T00 ¼ mδðzÞ δðx
2 þ y2 − a2Þ

π
; T0i ¼ T00vi: ð12Þ

Note that the factor π in the denominator comes from the
fact that δðx; yÞ≡ δðxÞδðyÞ ¼ πδðx2 þ y2Þ, and vi is the
tangential velocity whose magnitude can be expressed as
v ¼ ωa, and assuming that the rotation happens around the
z-axis, we have vx ¼ −yω, vy ¼ xω, vz ¼ 0. Note that this
choice of the stress-energy tensor, in analogy with the static
case, is compatible with the fact that in order for the
Einstein equations and the Kerr metric to be defined in the
entire spacetime we need a nonvanishing stress-energy
tensor at the ring. In fact, by using the theory of distribution
[46], it was rigorously shown that the stress-energy tensor

for a Kerr metric has a structure similar to the one we have
written in Eq. (12). For example, the (00) component of the
Einstein tensor in the case of the Kerr metric is G00 ∼
mδðzÞδðx2 þ y2 − a2Þ [46]. A general linearized metric,
which can describe the spacetime in the presence of a
rotating source can be written, in isotropic coordinates, as

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2h⃗ · dx⃗dtþ ð1 − 2ΨÞdx⃗2; ð13Þ

where h00 ¼ −2Φ < 1, hij ¼ −2Ψδij < 1 and h0i ≡ hi <
1 signify the weak-field and the slow rotation regime, and
now the metric components depend on the isotropic radius,
r, which should not be confused with the Boyer-Lindsquit
radial coordinate used above. To find the form of the metric
components, we would need to solve the following differ-
ential equations:

e−∇2=M2
s∇2Φðr⃗Þ ¼ e−∇2=M2

s∇2Ψðr⃗Þ ¼ 4GmδðzÞδðx2 þ y2 − a2Þ;
e−∇2=M2

s∇2h0xðr⃗Þ ¼ −16GmωyδðzÞδðx2 þ y2 − a2Þ;
e−∇2=M2

s∇2h0yðr⃗Þ ¼ 16GmωxδðzÞδðx2 þ y2 − a2Þ; ð14Þ
where we are assuming the ghost-free condition in Eq. (3). To solve the differential equations in Eq. (14) we can go to the
Fourier space and then antitransform back to coordinate space; thus, first of all, we need to compute the Fourier transforms
of the stress-energy tensor components, i.e., of T00 and T0i.

A. Smearing out the ring singularity at the linearized level

Let us first compute the corresponding gravitational potential, Φ ¼ Ψ; we need the Fourier transform of the ring
distribution in Eq. (12):

F ½δðzÞδðx2 þ y2 − a2Þ� ¼
Z

dxdydzδðzÞδðx2 þ y2 − a2Þeikxxeikyyeikzz: ð15Þ

It can be computed by performing the integral in cylindrical coordinates: x ¼ ρ cosφ, y ¼ ρ sinφ, z ¼ z, so that

F ½δðzÞδðx2 þ y2 − a2Þ� ¼
Z∞

−∞

dzδðzÞeikzz
Z∞

0

dρρδðρ2 − a2Þ
Z2π

0

dφeikxρ cosφeikyρ sinφ ¼ πI0
�
ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
; ð16Þ

where I0 is a modified Bessel function, which is also defined in terms of the Bessel function as I0ðxÞ ¼ J0ðixÞ. By
antitransforming, we obtain the gravitational potential in coordinate space:

Φðr⃗Þ ¼ −4πGm
Z

d3k
ð2πÞ3

e−k
2=M2

s

k2
I0
�
ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
eikxxeikyyeikzz; ð17Þ

where d3k ¼ dkxdkydkz and k2 ¼ k2x þ k2y þ k2z . In order to study whether the ring singularity is still present or not in IDG,
we can simplify the integral in Eq. (17), by considering ourselves on the x–y (z ¼ 0) plane, where the ring singularity lies in
the case of the Kerr metric. Thus, by setting z ¼ 0 and going to cylindrical coordinates, kx ¼ ζ cosφ, ky ¼ ζ sinφ, kz ¼ kz,
we can rewrite the integral in Eq. (17) as follows:

ΦðρÞ ¼ −Gm
Z∞

0

dζI0ðiaζÞI0ðiζρÞErfc
�

ζ

Ms

�
; when Ms → ∞ ⇒ ΦGRðρÞ ¼ −Gm

Z∞

0

dζI0ðiaζÞI0ðiζρÞ; ð18Þ
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where the last integral corresponds to the GR case. The two
integrals in Eq. (18) cannot be solved analytically, but we
can compute them numerically. From the numerical com-
putation one can explicitly see that for x2 þ y2 ¼ a2, the

gravitational potential in GR diverges as expected, whereas
in IDG it is singularity-free; see Fig. 1. This is what we
expected physically; the IDG smears out a ring distribution
very similarly to the case of a point source [6–8,41].
Furthermore, we can trust the linear regime all the way up
to ρ ¼ 0, as long as 2Φð0Þ < 1. The integral in Eq. (18) can
be evaluated analytically at ρ ¼ 0:

Φð0Þ ¼ −
Gm
a

Erf

�
Msa
2

�
; ð19Þ

where the linearized approximation yields 2Φð0Þ < 1. As
ErfðMsa=2Þ < 1, the case of a > 2Gm always satisfies the
inequality; in the opposite case, a < 2Gm, the weak-field
inequality is satisfied as long as

a <
2

Ms
ðradius of the ring < scale of nonlocalityÞ:

ð20Þ

This suggests that ghost-free IDG can indeed avoid the
ring-type singularity.

B. Computing h0i components for a rotating ring

So far we have only computed the static gravitational
potential generated by a delta-Dirac distribution on the ring.
We now wish to study the components h0i which are related
to the fact that the ring is also rotating with a constant
angular velocity ω. We would need to compute the
following Fourier transforms:

F ½jδðzÞδðx2 þ y2 − a2Þ� ¼
Z

dxdydzjδðzÞδðx2 þ y2 − a2Þeikxxeikyyeikzz; ð21Þ

where j ¼ x, y. The computation can be performed by using cylindrical coordinates as done in Eq. (16):

F ½xδðzÞδðx2 þ y2 − a2Þ� ¼
Z∞

−∞

dzδðzÞeikzz
Z∞

0

dρρ2δðρ2 − a2Þ
Z2π

0

dφeikxρ cosφeikyρ sinφ cosφ¼ πa
kxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q I1

�
ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
;

ð22Þ
and by following similar steps we also obtain

F ½yδðzÞδðx2 þ y2 − a2Þ� ¼ πa
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q I1

�
ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
; ð23Þ

where I1 is a modified Bessel function. We can express the components h0j in coordinate space as antitransforms:

h0jðr⃗Þ ¼ 16Gmωa
Z

d3k
ð2πÞ3

e−k
2=M2

s

k2
kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q I1

�
ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
eikxxeikyyeikzz; ð24Þ

0 1 2 3 4 5 6 7
–2.0

–1.5

–1.0

–0.5

0.0

=(x2 +y2 )1/2

2 GR

IDG

Multipole expansion in IDG

FIG. 1. In this plot we have shown the results of the numerical
computation for the integrals in Eq. (18), and the behavior of the
metric potential in the case of the multipole expansion in Eq. (31).
The blue line corresponds to the behavior of the perturbation,
2Φ ¼ −h00, in GR, and the orange line to the behavior of the
metric potential in IDG; the dashed red line represents the metric
potential in the case of the multipole expansion. We have chosen
G ¼ 1, m ¼ 0.5, a ¼ 1 and Ms ¼ 0.9. We can notice that the
gravitational potential in GR blows up for ρ ¼ a ¼ 1, whereas it
is finite in IDG; moreover, the metric coming from the multipole
expansion is a very good approximation outside the source, i.e.,
for ρ > a.
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where j ¼ x, y. By using cylindrical coordinates, similar to the integrands in Eq. (18), and setting z ¼ 0, we obtain similar
expressions for the cross-terms:

h0xðx; yÞ ¼ 4Gmωa
y
ρ

Z∞

0

dζI1ðiaζÞI1ðiζρÞErfc
�

ζ

Ms

�
; h0yðx; yÞ ¼ −4Gmωa

x
ρ

Z∞

0

dζI1ðiaζÞI1ðiζρÞErfc
�

ζ

Ms

�
; ð25Þ

where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radial cylindrical coordinate in the plane z ¼ 0. As θ ¼ π=2, we have x ¼ ρ cosφ, y ¼ ρ sinφ,

and thus all the radial dependence and the singularity structures are taken into account by the integrals:

HðρÞ ≔
Z∞

0

dζI1ðiaζÞI1ðiζρÞErfc
�

ζ

Ms

�
; when Ms → ∞ ⇒ HGRðρÞ ≔

Z∞

0

dζI1ðiaζÞI1ðiζρÞ; ð26Þ

where the last integral corresponds to the GR case. The two
integrals in Eq. (26) cannot be solved analytically, but we
can compute them numerically and check the absence of
any singularities. As it also happens for the potentials h00
and hij, the cross-term h0i shows the presence of a ring
singularity in GR; indeed, from the numerical analysis one
can explicitly see that for x2 þ y2 ¼ a2 the function HGR
diverges in GR. Whereas in IDG the cross-term turns out to
be singularity-free, indeed, the function H is finite every-
where. In analogy with the static scenario, also in the
rotating case, IDG is responsible for a smearing effect, in
this case of the delta-Dirac ring distribution. Note that at the
origin, ρ ¼ 0, z ¼ 0, the cross-term vanishes, which
implies that in IDG the spacetime metric approaches
conformal flatness; indeed, at r ¼ 0 the rotating metric
becomes that of the static case [41].
In the IR regime, for ρ ≫ a, the metric components

found above match extremely well with the case of GR.
Indeed, for distances larger than the radius of the ring and

the scale of nonlocality, i.e., ρ ≫ 2=Ms > a, we recover the
Lense-Thirring metric [50].2 To exactly recover the Lense-
Thirring metric at large distances, we need to identify
J ¼ ma2ω, which is nothing but the relation J ¼ Iω, where
I ¼ ma2 is the moment of inertia of the delta-Dirac ring
distribution. Note that the relation J ¼ am does not hold,
but the angular momentum is related to the parameter a
through the momentum of inertia of the source.

C. Rotating metric outside the source: multipole
expansion in IDG

We now wish to determine the generic form of the metric
in IDG outside the rotating source, without assuming any
large distance limit. In this regime, the linear treatment is
valid; see Eq. (13). The components h00 and hij will be the
same as that already obtained in the static case; to compute
the ð0iÞ components we can consider a multipole expansion
for ErfðMsjr⃗ − r⃗0j=2Þ=jr⃗ − r⃗0j,

1

jr⃗ − r⃗0jErf
�
Msjr⃗ − r⃗0j

2

�
¼ 1

r
Erf

�
Msr
2

�
þ
�
1

r3
Erf

�
Msr
2

�
−

Msffiffiffi
π

p
r2
e−

M2
s r

2

4

�X3
j¼1

xjx0j þ � � � ; ð28Þ

which recovers the GR case in the large distance regime,Msr ≫ 2, as expected. Such a multipole expansion holds true for
r > r0 ∼ a, which means outside the source. By using Eq. (28), we can now compute the h0i components:

h0iðr⃗Þ ¼ 4G
Z

d3r0
T0iðr⃗0Þ
jr⃗ − r⃗0jErf

�
Msjr⃗ − r⃗0j

2

�
¼ 2G

�
1

r3
Erf

�
Msr
2

�
−

Msffiffiffi
π

p
r2
e−

M2
s r

2

4

�
ðr⃗ × J⃗Þi; ð29Þ

We can move from Cartesian to isotropic coordinates, so that the dφdt component of the metric will be given by

2h⃗ · dx⃗dt ¼ −4GJ
�
1

r
Erf

�
Msr
2

�
−
Msffiffiffi
π

p e−
M2
s r

2

4

�
sin2θdφdt; ð30Þ

2Recall that the Lense-Thirring metric represents the weak-field and slow-rotation limit of the Kerr metric [50]:

ds2 ¼ −
�
1 −

2Gm
r

�
dt2 þ 4GJ

r3
ðydxdt − xdydtÞ þ

�
1þ 2Gm

r

�
ðdr2 þ r2dΩ2Þ: ð27Þ
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which in the regime Msr ≫ 2 recovers GR result, as
expected. Moreover, by expressing J ¼ Iω ¼ ma2ω and
imposing jh0ij ∼GmM2

sωa2 < 1, we can notice that the
slow rotation regime means ω < 1=a, when we also require
GmMs < 1 and aMs < 1. Note also that by recasting the
cross-term in terms of the angular momentum and imposing

the linearized regime we obtain jh0ij ∼GM2
sJ < 1, which

also means J < ðMp=MsÞ2. From the last inequality, as
Ms ≤ Mp, the angular momentum J may also exceed one
in IDG. The linearized spacetime metric in Eq. (13) outside
the source, r > a, in the case of IDG reads as

ds2 ¼−
�
1−

2Gm
r

Erf

�
Msr
2

��
dt2þ

�
1þ 2Gm

r
Erf

�
Msr
2

��
ðdr2þ r2dΩ2Þ− 4GJ

�
1

r
Erf

�
Msr
2

�
−
Msffiffiffi
π

p e−
M2
s r

2

4

�
sin2θdφdt:

ð31Þ

From Figs. 1 and 2, it is clear that the metric constructed by
using the multipole expansion is a very good approxima-
tion to describe the spacetime outside the source, r > a;
whereas in the regime Msr ≫ 2, we recover the GR
predictions; indeed Eq. (31) reduces to the Lense-Thirring
metric [50] in Eq. (27). Thus, in the case of ghost-free IDG,
for a rotating source we have found a hierarchy of scales:
the radius of the source a, the Schwarzschild radius rsch ¼
2Gm and the scale of nonlocality rNL ∼ 2=Ms, which have
to satisfy the following set of inequalities to preserve the
linearity:

rNL ∼
2

Ms
> rsch ¼

2m
M2

p
> a: ð32Þ

As long as the inequality in Eq. (32) holds, the spacetime
metric is valid all the way from r ¼ ∞ up to r ¼ 0, and it
turns out to be free from any curvature singularity and also
devoid of any horizons. Furthermore, because in our case,
the h00 component is always bounded below unity, there is
no ergo region, as first pointed out in [49].

IV. NON-KERR TYPE METRIC IN THE FULL
NONLINEAR THEORY

We now wish to move towards the full nonlinear regime
and show that the Kerr metric does not solve the full
nonlinear field equations in Eq. (4). First of all, note that
strictly speaking the Schwarzschild metric in GR is not a
vacuum solution everywhere; indeed there is a delta-Dirac
distribution at the origin, so that the stress-energy tensor is
nonvanishing at r ¼ 0. Thus, even in the absence of the
Weyl squared term WμνρσF 3ð□sÞWμνρσ, the full nonlinear
IDG field equations will not allow the Schwarzschild
metric as a solution, due to the presence of infinite order
covariant derivatives acting on a delta-Dirac source. We can
argue the same also in the case of the Kerr metric. As it was
rigorously shown in Ref. [46] by using the theory of
distribution, the Kerr metric is not a vacuum solution
everywhere, but there is a nonvanishing stress-energy
tensor expressed as combinations of delta Dirac and theta
Heaviside on the ring [46]. Thus, the infinite order
covariant derivatives acting on the theta-Heaviside and
delta-Dirac distributions on a ring generically will generate
an object which will have a nonpoint support. In this sense,
the Kerr metric will not pass as a vacuum solution of the
IDG field equations.
We now wish to show that the Kerr metric does not pass

as a pure vacuum solution (i.e., Tμν ¼ 0 everywhere) if the
Weyl squared term with a nonconstant form factor (either
local or nonlocal),F 3ð□sÞ ≠ const, is taken into account in
the action. Let us first demand that the Kerr metric,
Eq. (11), is a vacuum solution for the full nonlinear
equations (4); i.e., let us impose the Ricci flatness,
R ¼ 0, Rμν ¼ 0, whereas the Weyl tensor is nonvanishing
but coincides with the Riemann tensor. Let us now check
whether the Kerr metric is allowed as a vacuum solution

0 1 2 3 4 5 6 7
–0.8

–0.6

–0.4

–0.2

0.0

=(x2 +y2 )1/2

H GR
IDG
Multipole expansion in IDG

FIG. 2. In this plot we have shown the results of the numerical
computation for the integrals in Eq. (26) and the behavior of the
same function in the case of the multipole expansion in Eq. (30).
The blue line corresponds to the behavior of the function HGR,
and so of the cross-term in GR; the orange line to the behavior of
the function HIDG, and so of the cross-term in IDG; the dashed
red line represents the cross-term in the case of the multipole
expansion. For convenience we have chosen a ¼ 1 and
Ms ¼ 1.5. We can notice that the metric components h0i blow
up in GR for ρ ¼ a ¼ 1, whereas they are finite in IDG;
moreover, the metric coming from the multipole expansion is
a very good approximation outside the source, i.e., for ρ > a.
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with Pαβ ¼ 0 and R ¼ 0 and Rμν ¼ 0 (which also means Gαβ ¼ 0). Thus, by imposing the Ricci flatness, the full field
equations in Eq. (4) become

Pαβ ¼ 0 ¼ Pαβ
3 ¼ αc

8πG
ð−gαβWμνλσF 3ð□sÞWμνλσ þ 4Wα

μνσF 3ð□sÞWβμνσ

− 8∇μ∇νðF 3ð□sÞWβμναÞ − 2Ωαβ
3 þ gαβðΩγ

3γ þ Ω̄3Þ − 8Δαβ
3 Þ: ð33Þ

n order to obtain some insight into this problem, let us first consider the right hand side of Pαβ
3 up to second order in □s,

namely

F 3ð□sÞ ¼ ðf30 þ f31□s þ f32□2
sÞ; ð34Þ

and study the field equations order by order, as we had done for the static case in Ref. [29]. After some computations (see
Appendix), we have obtained the following results.
At the zeroth order in □s: This is the case of local fourth order gravity of Stelle [51]:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ αc½f10R2 þ f20RμνRμν þ f30WμνλσWμνλσ�Þ: ð35Þ

As we are requiring the condition to be Ricci flat, the
full field equations in Eq. (4) are explicitly reduced to
Eq. (33), where the only relevant terms that remain to be
analyzed are those corresponding to the form-factor
coefficient f30. However, in this case the local contri-
bution from the Weyl squared term with a constant form
factor, f30, vanishes in four dimensions as we can use
the Gauss-Bonnet topological invariant to rewrite the
Weyl squared in terms of Ricci scalar squared and Ricci
tensor squared. Thus, the Kerr metric is still an exact
solution for the local fourth order quadratic gravity in
Eq. (35) [51].

At the first order in □s: Even though the Weyl con-
tribution vanishes at zeroth order, this is not the case for the
higher powers of box, i.e., □n

s , with n > 0. Indeed, at the
first order in box, we obtain

Pð1Þαβ
3 ð□sÞ ¼

αc
8πG

f31

0
BBB@

a00 0 0 a03
0 a11 0 0

0 0 a22 0

a30 0 0 a33

1
CCCA; ð36Þ

with the dimensionless matrix elements given by

a00 ¼
144G2m2ð−8a4Gmþa2rð100G2m2−8Gmrþ5r2Þþ5r4ðr−2GmÞÞ

r11M2
sða2þ rðr−2GmÞÞ ; a03 ¼−

288aG3m3ð4a2þ25rðr−2GmÞÞ
r11M2

sða2þ rðr−2GmÞÞ ;

a11 ¼−
1008G2m2ð4a4þ5a2rðr−2GmÞþ r2ðr−2GmÞ2Þ

r12M2
s

; a22 ¼
144G2m2ð28a2þ rð21r−50GmÞÞ

r12M2
s

;

a30 ¼−
288aG3m3ð4a2þ25rðr−2GmÞÞ

r11M2
sða2þ rðr−2GmÞÞ ; a33 ¼

144G2m2ðrð100G2m2−92Gmrþ21r2Þ−8a2GmÞ
r11M2

sða2þ rðr−2GmÞÞ ;

where we have fixed the equatorial plane, χ ¼
cosðπ=2Þ ¼ 0, without any loss of generality. We can
also compute the two-rank symmetric tensor Pαβ

3 ð□sÞ at
higher order in box; see e.g., Appendix for the computa-
tions of the second order in box and for the explicit

expression of Pð2Þαβ
3 ð□sÞ.

Generic orders in □s: We can now ask what would
happen for generic higher orders in □s. Note that for
the Kerr metric one has □s ∼ 2r

M2
sðr2þa2χ2Þ ∂r,

3 and by

dimensional analysis we can find the behavior of the
lowest order in power of 1=r at each order in box. We
have already seen that the lowest order in 1=r at one box
goes like 1=r10, and at two boxes we have 1=r12; see
Appendix. By proceeding in the same way, we can notice
that at third order in box, the lowest contribution in powers
of 1=r is f33ðG2m2=r14M6

sÞ, and at fourth order in box
f34ðG2m2=r16M8

sÞ. Finally, we can hint that at n-th order in
box, the lowest contribution in powers of 1=r will be
always proportional to f3nðG2m2=r8þ2nM2n

s Þ. By just
looking at the lowest order contributions at each order in
box, we can notice that the tensor Pαβ

3 satisfies the
following relation:

3More precisely, for the Kerr metric the box operator reads□s¼
1
M2

s
gνμ∇ν∇μ¼ 1

M2
s ða2χ2þr2Þ½ða2þrðr−2GmÞÞ∂2

rþ2ðr−GmÞ∂r�.
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Pαβ
3 ∼ f31O

�
1

r10

�
þ f32O

�
1

r12

�
þ � � � þ f3nO

�
1

r8þ2n

�

þ � � � ; ð37Þ

from which it is clear that in order to vanish we would
require an unlikely fine-tuning among all coefficients f3n.
In this respect, Kerr-like metric as in Eq. (11) cannot be a
vacuum solution of the full nonlinear field equations in
Eq. (4); indeed it does not pass through at any order in box,
Wμνρσ□

nWμνρσ with n ≥ 1.

V. CONCLUSIONS

Let us briefly conclude our study. In this paper we
have studied the rotating metric in the case of ghost-free
IDG [7]. First, we have worked in the linear regime and
found the spacetime metric in the case of a stress-energy
tensor given by a delta-Dirac distribution on a rotating
ring. In GR, this kind of source generates a metric
solution which suffers from the presence of a ring
singularity, where the Kretschmann scalar blows up,
and indeed the metric components diverge on the ring,
i.e., for x2 þ y2 ¼ a2 and z ¼ 0, which mimics the ring
singularity appearing in the Kerr metric [35]. Instead, we
have found that in the IDG the spacetime metric turns
out to be singularity-free, and for r → 0 the metric
becomes conformally flat, i.e., the cross-term vanishes at
the origin, where the metric coincides with the static one
[7,8]. Moreover, the linear approximation can be trusted
all the way from the IR to the UV regime, provided we
require slow rotations, mMs < M2

p, and a < 2=Ms. The
last inequality means that the region of nonlocality has
to engulf the ring source of radius a. In IDG the angular
momentum has to satisfy the inequality J < ðMp=MsÞ2
which implies that its value may also exceed one, unlike
in GR. We have shown that outside the source, r > a,
the spacetime metric can be well described by a multi-
pole expansion which recovers the Lense-Thirring metric
in the local regime, r > 2=Ms. Finally, we have ana-
lyzed the full field equations and shown that the Kerr
metric, seen as Ricci flat, will not pass as a vacuum
solution if the form factor F 3ð□sÞ is not constant;

indeed, the Weyl contribution does not vanish at each
order in box.
Hence, the notion of a rotating black hole that we have in

GR would be different in IDG, i.e., without singularity,
without event horizons, and without the ergo region.
Indeed, our study might have an interesting impact in
astrophysical black holes, which should be discussed
elsewhere in some detail. Hopefully, our analysis will also
shed some light in the presence of LIGO/VIRGO data and
understanding the spacetime near a rotating nonsingular
compact object.
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APPENDIX: SECOND ORDER
CONTRIBUTIONS FROM

THE WEYL TERM

We now wish to present the explicit expression of the
two-rank symmetric tensor Pαβ

3 at second order in □s. It is
given by

Pð2Þαβ
3 ð□sÞ ¼

αc
8πG

f32

0
BBB@

a00 0 0 a03
0 a11 0 0

0 0 a22 0

a30 0 0 a33

1
CCCA; ðA1Þ

with the dimensionless matrix elements, defined as

a00 ¼
576G2m2

r15M4
sða2 þ rðr − 2GmÞÞ ½4a

4Gmrð89Gm − 66rÞ − 72a6Gm

þ a2r2ð−1578G3m3 þ 927G2m2r − 656Gmr2 þ 140r3Þ þ r5ð939G2m2 − 744Gmrþ 140r2Þ�;

a03 ¼ −
1152aG3m3

r15M4
sða2 þ rðr − 2GmÞÞ ½36a

4 − 2a2rð89Gm − 52rÞ þ r2ð789G2m2 − 696Gmrþ 148r2Þ�;
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a11 ¼
576G2m2

r15M4
s

½2a4ð193Gm− 50rÞ þ a2rð−967G2m2 þ 718Gmr− 120r2Þ

þ r2ð390G3m3 − 459G2m2rþ 172Gmr2 − 20r3Þ�;

a22 ¼
576G2m2ða2ð100r− 426GmÞ þ rð789G2m2 − 534Gmrþ 80r2ÞÞ

r15M4
s

;

a30 ¼ −
1152aG3m3ð36a4 − 2a2rð89Gm− 52rÞ þ r2ð789G2m2 − 696Gmrþ 148r2ÞÞ

r15M4
sða2 þ rðr− 2GmÞÞ ;

a33 ¼ −
576G2m2

r15M4
sða2 þ rðr− 2GmÞÞ ½72a

4Gm− 4a2Gmrð89Gm− 38rÞ þ r2ð1578G3m3 − 1857G2m2rþ 694Gmr2 − 80r3Þ�:
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