
 

Axially symmetric and static solutions of Einstein equations
with self-gravitating scalar field

Bobur Turimov,1,2,* Bobomurat Ahmedov,1,3,† Martin Kološ,2,‡ and Zdeněk Stuchlík2,§
1Ulugh Beg Astronomical Institute, Astronomicheskaya 33, Tashkent 100052, Uzbekistan

2Institute of Physics and Research Centre of Theoretical Physics and Astrophysics,
Faculty of Philosophy and Science, Silesian University in Opava,

Bezručovo nám. 13, CZ-74601 Opava, Czech Republic
3National University of Uzbekistan, Tashkent 100174, Uzbekistan

(Received 17 August 2018; published 25 October 2018)

The exact axisymmetric and static solution of the Einstein equations coupled to the axisymmetric and
static gravitating scalar (or phantom) field is presented. The spacetimes modified by the scalar field are
explicitly given for the so-called γ-metric and the Erez-Rosen metric with quadrupole moment q, and the
influence of the additional deformation parameters γ� and q� generated by the scalar field is studied. It is
shown that the null energy condition is satisfied for the phantom field, but it is not satisfied for the standard
scalar field. The test particle motion in both the modified γ-metric and the Erez-Rosen quadrupole metric is
studied; the circular geodesics are determined, and near-circular trajectories are explicitly presented for
characteristic values of the spacetime parameters. It is also demonstrated that the parameters γ� and q� have
no influence on the test particle motion in the equatorial plane.
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I. INTRODUCTION

One of the important problems in general relativity is to
find new exact analytical solutions of the Einstein field
equations. Numerous powerful methods have been devel-
oped for the derivation of new solutions of the gravitational
field equations since Einstein discovered the theory of
general relativity in 1915. Well-known, astrophysically
relevant, external vacuum solutions of Einstein field equa-
tions have been obtained by Schwarzschild and Kerr for
static and rotating black holes, respectively. In an early
paper [1], several static solutions of the Einstein equations
have been presented. The Hartle-Thorne metric [2–4]
describes the interior and the vacuum spacetime outside
any slowly rotating astrophysical object as a relativistic star.
A huge number of interesting exact solutions of the
Einstein field equations can be found in Refs. [5,6].
Astronomical objects can be deformed for various

reasons and consequently it is interesting to study the
spacetime of the deformed compact gravitational objects. In
Ref. [7] an exact axisymmetric static vacuum solution of
the Einstein equations in the case of a nonspherical mass
distributed by a compact object has been obtained. This
solution is often called the quadrupolar (quadrupole
moment) metric with an external q mass quadrupole

moment. The exact solution of the Einstein equations for
deformed spacetime, which is called γ-metric, has been
obtained in Ref. [8] and later in [9] it has been derived in a
different way. These solutions belong to the class of Weyl
type solutions and similar solutions have been studied by
various authors, for instance in [10–21].
The geodesic motion of the test particles in spacetime

described by the γ-metric has been studied in [22] and in the
quadrupolar metric in [23].
Recently, it has been shown that the massive scalar field

may give a much larger contribution to the gravitational field
around the slowly rotating neutron star in comparison with
that of the massless scalar field [24]. The exact solution of the
Einstein equations for the wormhole with the scalar field has
been recently studied [25]. Some approximate static solutions
of the Einstein equations are shown in [26–29] under the
conformal field theory approach. The contribution of the
scalar field in the spacetime of static [30–33] and rotating [34]
black holes has been also studied. Regular and quintessential
black hole solutions have been recently extended to the
rotating axially symmetric ones using the Newman-Janis
algorithm [35,36].
In this paper, we are interested in getting axisymmetric

and static solutions of the Einstein field equations, taking
into account the effect of the self-gravitating scalar field.
For this reason, we first show the derivation of the
Einstein field equations in Weyl and prolate coordinates
in close detail. Then after deriving the requested solution,
we test the effect of the gravitating scalar field in the
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spacetime of the static black hole using the test
particle motion.
The paper is organized in the following way. In Sec. II we

provide, in very detailed form, the exact analytical solutions
of the Einstein field equations with the self-gravitating
massless scalar field obeying the Klein-Gordon equation.
For convenience in the calculations’ performance, we use the
axisymmetric Weyl coordinates and the prolate spheroidal
coordinates. We derive a more general form of the axisym-
metric and static solutions of Einstein field equations,
including the influence of the external self-gravitating scalar
field. Section III is devoted to the derivation of the γ-metric
solution, which includes the external gravitating scalar field.
As a probe of the modified γ-metric, we consider test particle
motion and the energy condition in its spacetime. In Sec. IV
we obtain the modified quadrupolar metric including the
influence of the gravitating scalar field and then study
particle motion in this spacetime. Finally, in Sec. V we
summarize the obtained results and give a future outlook
related to the present work.
Throughout the paper we use a spacelike signature

ð−;þ;þ;þÞ, a system of units in which G ¼ c ¼ 1, and
restore them when we need to compare the results with
the observational data. Greek indices are taken to run from
0 to 3, Latin indices from 1 to 3.

II. GENERAL SOLUTION OF EINSTEIN
EQUATIONS WITH SELF-GRAVITATING

SCALAR FIELD

In this section we plan to incorporate into the Einstein
field equations the effect of a real massless self-gravitating
scalar field. The action for the system is described by the
following form [25]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ϵgμν∂μΦ∂νΦÞ; ð1Þ

where g is the determinant of the metric tensor gμν of the
arbitrary spacetime, R is the Ricci scalar of the curvature,
and Φ is the massless gravitating scalar field; ϵ is the
constant which is responsible for the scalar field at ϵ ¼ 1
and the phantom field with value ϵ ¼ −1, respectively.
Hereafter, minimizing the action in Eq. (1), one can

obtain equations of motion of the system which is described
by the Einstein field equations, taking into account the
gravitating scalar field and the Klein-Gordon equation for
the gravitational scalar field in the following form:

Rμν ¼ 2ϵ∂μΦ∂νΦ; ð2Þ

□Φ ¼ 0; ð3Þ

where Rμν is the Ricci tensor of the curvature and □ is
the d’Alembertian in four dimensional curved space. It is
well known that Eqs. (2) and (3) are coupled differential

equations and finding their solutions is not an easy task so
far. In this work we present axial-symmetric and static
solutions of the field equations, (2) and (3), and compare the
solutions with those previously obtained in the literature.

A. Axisymmetric and static solution

In order to simplify the problem we can make an
assumption that the gravitating scalar field is axially
symmetric and stationary. In Weyl coordinates (t; ρ;ϕ; z)
the general form of the static metric can be described by

ds2 ¼ −e2Udt2 þ e−2U½e2Vðdρ2 þ dz2Þ þ ρ2dϕ2�; ð4Þ

where U and V are the functions of the coordinates ρ and z,
respectively. Then the explicit form of the field equations,
(2) and (3), for the spacetime metric (4) can be written
as [25]

ΔΦ ¼ Φρρ þ
1

ρ
Φρ þΦzz ¼ 0; ð5Þ

ΔU ¼ Uρρ þ
1

ρ
Uρ þUzz ¼ 0; ð6Þ

Vρ ¼ ρðU2
ρ −U2

z þ ϵΦ2
ρ − ϵΦ2

zÞ; ð7Þ

Vz ¼ 2ρðUρUz þ ϵΦρΦzÞ; ð8Þ

where subindices indicate the derivative with respect to
the coordinates ρ and z, respectively.
For convenience one can consider the prolate coordinates

(t; X; Y;ϕ) in which the spacetime metric (4) can be
rewritten in the following form [11–14]:

ds2¼−e2Udt2þσ2e−2U
�
e2VðX2−Y2Þ

×

�
dX2

X2−1
þ dY2

1−Y2

�
þðX2−1Þð1−Y2Þdϕ2

�
; ð9Þ

where σ is the dimensional parameter; later in the text the
physical meaning of this parameter will be introduced.
Here we can introduce useful notations which are the

relations between the prolate spheroidal coordinates
(X; Y;ϕ) and Weyl coordinates (ρ; z;ϕ) indicated as

ρ¼σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2−1Þð1−Y2Þ

q
; z¼σXY; ϕ¼ϕ; ð10Þ

and similarly they can be related with the spherical
coordinates (r; θ;ϕ) in the following form:

X ¼ r
σ
− 1; Y ¼ cos θ; ϕ ¼ ϕ: ð11Þ
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Note that here the zeroth (temporal) component of the
coordinate t is the same in all these coordinates.
Finally, the field equations, (5)–(8), can be rewritten in

terms of the prolate coordinates X and Y in the form

½ðX2 − 1ÞΦX�X þ ½ð1 − Y2ÞΦY �Y ¼ 0; ð12Þ

½ðX2 − 1ÞUX�X þ ½ð1 − Y2ÞUY �Y ¼ 0; ð13Þ

VX ¼ 1 − Y2

X2 − Y2
½XðX2 − 1ÞU2

X

− Xð1 − Y2ÞU2
Y − 2YðX2 − 1ÞUXUY �

þ ðU → ϵΦÞ; ð14Þ

VY ¼ X2 − 1

X2 − Y2
½YðX2 − 1ÞU2

X

− Yð1 − Y2ÞU2
Y þ 2Xð1 − Y2ÞUXUY � ð15Þ

þ ðU → ϵΦÞ: ð16Þ

One can easily see that Eqs. (12) and (13) are similar to
each other and one can seek their solutions in the following
separable form: fΦ; Ug ¼ fðXÞgðYÞ (see, e.g., [11]) and
using Eqs. (12) and (13) one can write the following
Legendre equations for the functions fðXÞ and gðYÞ in the
form:

½ðX2 − 1ÞfX�X − lðlþ 1Þf ¼ 0; ð17Þ

½ð1 − Y2ÞgY �Y þ lðlþ 1Þg ¼ 0; ð18Þ

where l is the multipole number that can take the integer
values. The solutions of Eqs. (17) and (18) are

fðXÞ ¼ C1lPlðXÞ þ C2lQlðXÞ; ð19Þ

gðYÞ ¼ C3lPlðYÞ þ C4lQlðYÞ; ð20Þ

where PlðXÞ is the Legendre polynomial, QlðYÞ is the
Legendre function of the second kind, andC1l − C4l are the
integration constants, respectively. From the physical point
of view, both solutions fΦ; Ug should be asymptotically
flat which means

lim
X→∞

fðXÞ ¼ 0; C1l ¼ 0; ð21Þ

and they should be regular everywhere

lim
Y→0

gðYÞ ¼ const; C4l ¼ 0: ð22Þ

In order to get correct results, here we use the following
property of the Legendre function of the second kind

Qlð−XÞ ¼ ð−1Þlþ1QlðXÞ. Consequently, the solutions for
the functions ΦðX; YÞ and UðX; YÞ can be written as

ΦðX; YÞ ¼
X∞
l¼0

ð−1Þlþ1plQlðXÞPlðYÞ; ð23Þ

UðX; YÞ ¼
X∞
l¼0

ð−1Þlþ1qlQlðYÞPlðYÞ; ð24Þ

where new constants (of integration) ql and pl are the
standard multipole moments of the gravitational compact
object and the multipole moments generated by the
gravitating scalar field, respectively, and they are totally
independent quantities. The unknown function VðX; YÞ can
be found by solving Eqs. (14) and (15), which is quite a
complicated task. The explicit form of the function VðX; YÞ
is given by (detailed calculation are shown in Ref. [14])

VðX; YÞ ¼
X∞
l;n¼0

ð−1Þlþnðqlqn þ ϵplpnÞΓflng; ð25Þ

where the exact form of Γflng can be found in the Appendix.
In order to find the physically meaningful solution, one

can set ϵ ¼ 0, q0 ¼ 1 and ql ¼ 0 (l > 0) in solutions (24)
and (25) and obtain the well-known Schwarzschild solution

U ¼ 1

2
ln
X − 1

X þ 1
¼ 1

2
ln

�
1 −

2σ

r

�
; ð26Þ

V ¼ 1

2
ln

X2 − 1

X2 − Y2
¼ 1

2
ln

r2 − 2σr
r2 − 2σrþ σ2sin2θ

: ð27Þ

Here one can easily see that the dimensional parameter σ is
the total mass of the compact object σ ¼ M.

III. ANALYTIC SOLUTION OF THE EINSTEIN
EQUATIONS WITH SELF-GRAVITATING
SCALAR FIELD FOR THE γ-METRIC

In this section we study the zeroth order approximation
of the solutions for the profile functions and present the
generalized form of the well-known γ-metric including
the effect of the scalar field. By considering the case
when q0 ¼ γ, p0 ¼ γ�, and ql ¼ pl ¼ 0 ðl > 0Þ in
Eqs. (23)–(25), one can obtain the results for the functions
ΦðX; YÞ, UðX; YÞ, and VðX; YÞ in the following form:

ΦðX; YÞ ¼ γ�
2
ln
X − 1

X þ 1
; ð28Þ

UðX; YÞ ¼ γ

2
ln
X − 1

X þ 1
; ð29Þ

VðX; YÞ ¼ γ2 þ ϵγ2�
2

ln
X2 − 1

X2 − Y2
; ð30Þ
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Using the coordinate transformation in expression (11) we
can obtain the generalized form of the γ-metric in spherical
coordinates

ds2¼−
�
1−

2M
r

�
γ

dt2þ
�
1−

2M
r

�
1−γ

×

��
1−

M2sin2θ
r2−2Mr

�
1−γ2−ϵγ2�

×

��
1−

2M
r

�
−1
dr2þr2dθ2

�
þr2sin2θdϕ2

�
; ð31Þ

and the scalar field has a form

ΦðrÞ ¼ γ2�
2
ln

�
1 −

2M
r

�
: ð32Þ

Note that in the absence of the scalar field, which is when
ϵ ¼ 0, we get the γ-metric. From Eq. (31) one can see that
the scalar field contributes into grr and gθθ components of
the metric tensor. The other two components of the metric
tensor do not depend on the parameter γ� produced by the
gravitating scalar field.
In expression (32) we can see that the scalar function

ΦðrÞ depends on the radial coordinate only. Figure 1 draws
the equipotential surface of the gravitating scalar fieldΦðrÞ
in the (x − z) plane for the different values of the γ�
parameter. One can easily see that with increasing the γ�
parameter, the gravitational force is getting stronger and the
spacetime around the object will be deformed due to the
presence of the scalar field as shown in Fig. 1.

A. Energy conditions

In this subsection we briefly study the energy condition
in the spacetime of the generalized γ-metric given in
Eq. (31). The energy-momentum tensor for the scalar field
can be expressed as

Tμν ¼ ϵ

�
∂μΦ∂νΦ −

1

2
gμνgαβ∂αΦ∂βΦ

�
; ð33Þ

from expression (33) the energy density and the compo-
nents of the pressure can be defined as ρ ¼ T0

0 and Pi ¼ Ti
i,

and the explicit form of the energy density and the
components of the pressure is

ρ ¼ Pθ ¼ Pϕ ¼ −Pr ¼ −
ϵγ2�M2

2r4

�
1−

2M
r

�
γ−2

×

�
1−

M2sin2θ
r2 − 2Mr

�
γ2þϵγ2�−1

: ð34Þ

The null energy condition (NEC) can be found from the
expression, ρþ Pi ≥ 0 (i ¼ r; θ;ϕ), using Eq. (34) as

ρþ Pr ≡ 0; ð35Þ

ρþ Pθ ¼ ρþ Pϕ ¼ −
ϵγ2�M2

r4

�
1 −

2M
r

�
γ−2

×

�
1 −

M2sin2θ
r2 − 2Mr

�
γ2þϵγ2�−1

: ð36Þ

The physical interpretation of NEC is that the energy
density measured by an observer traversing along the null
curve is always positive (never negative). One can see that
expression (35) is always satisfied by the NEC condition
for the spacetime metric (31) while expression (36) satisfies
the NEC condition only in the case when ϵ ≤ 0, which
corresponds to the phantom field. This means that the
observer traversing along the null curve can measure
positive energy, even in the case of the antigravitating
phantom scalar field. Figure 2 shows the NEC precisely
where the radial dependence of ρþ Pi (i ¼ r; θ;ϕ) is
presented.

B. Test particle motion

In this subsection we study test particle motion in the
spacetime metric (31). The Hamiltonian for the test particle
with mass m can be written in the form [37]

H ¼ 1

2
gμνpμpν þ

1

2
m2; ð37Þ

FIG. 1. The shape of the scalar fieldΦðr; θÞ described by Eq. (32) in the x-z plane for the different values of the γ� parameter: γ� ¼ 0.9,
γ� ¼ 1, γ� ¼ 1.1, and γ� ¼ 1.2.
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where pμ ¼ muμ is the kinematical four-momentum. The
equations for particle motion are

dxμ

dζ
≡ pμ ¼ ∂H

∂pμ
;

dpμ

dζ
¼ −

∂H
∂xμ : ð38Þ

Here the affine parameter ζ of the particle is related to its
proper time τ by the relation ζ ¼ τ=m.
Because of the symmetries of the modified γ-metric

spacetime (31) one can easily find the conserved quantities
that are the energy and the axial angular momentum of the
particle and can be expressed as

E ¼ −pt ¼ mgtt
dt
dτ

; ð39Þ

L ¼ pϕ ¼ mgϕϕ
dϕ
dτ

: ð40Þ

Introducing for convenience the specific parameters,
energy E, and axial angular momentum L

E ¼ E
m
; L ¼ L

m
; ð41Þ

one can rewrite the Hamiltonian (37) in the form

H ¼ 1

2
grrp2

r þ
1

2
gθθp2

θ þ
m2

2
gtt½E2 − Veffðr; θÞ�; ð42Þ

where Veffðr; θÞ denotes the effective potential of the test
particle, which is given by the relation

Veffðr; θÞ≡ −gttð1þ gϕϕL2Þ

¼
�
1 −

2M
r

�
γ
�
1þ L2

r2sin2θ

�
1 −

2M
r

�
γ−1

�
:

ð43Þ

It is important to note that the effective potential Veffðr; θÞ
depends only on the metric parameter γ while it is free of
the parameters ϵ and γ�.
The particle motion is limited by the energetic bounda-

ries given by

E2 ¼ Veffðr; θÞ: ð44Þ

Now we properly investigate the features of the effective
potential (43) represented in Fig. 3. The stationary points of

FIG. 2. Radial dependence of fρþ Pig (i ¼ r; θ;ϕ) for the different values of parameters γ and γ�. (Left panel) Solid line corresponds
to γ ¼ 1, dashed line to γ ¼ 0.9, and dashed line to γ ¼ 1.1 at γ� ¼ 1 and θ ¼ π=2. (Center panel) Solid line corresponds to γ� ¼ 1,
dashed line to γ� ¼ 0.9, and dashed line to γ� ¼ 1.1 at γ ¼ 1 and θ ¼ π=2. (Right panel) Solid line corresponds to γ ¼ 1, dashed line to
γ ¼ 0.9, and dashed line to γ ¼ 1.1 at γ� ¼ 1 and θ ¼ 0.

FIG. 3. Radial profiles of the effective potential in equatorial plane Veffðr; π=2Þ for the various values of angular momentum L. In the
plots the different values for the γ parameter are used.
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the effective potential Veffðr; θÞ function, where maxima or
minima can exist, are given by the equations

∂rVeffðr; θÞ ¼ 0; ∂θVeffðr; θÞ ¼ 0: ð45Þ

The second of the extrema equations (45) gives θ ¼ π=2.
In other words, all extrema of the Veffðr; θÞ functions are
located at the equatorial plane and there is no off-equatorial
extrema. The first extrema equation of (45) leads to the
equation being quadratic with respect to the specific
angular momentum L and hence the circular orbits can
be determined by the relation [22]

L2 ¼ L2
extðrÞ≡ γMr2

r −Mð1þ 2γÞ
�
1 −

2M
r

�
1−γ

: ð46Þ

At Fig. 4 the function LextðrÞ is plotted for various values
of parameter γ. Similarly, the energy of the test particle
can be expressed as

E2 ¼ E2
extðrÞ≡ r −Mð1þ γÞ

r −Mð1þ 2γÞ
�
1 −

2M
r

�
γ

: ð47Þ

The local extrema of the LextðrÞ function is equivalent to
the ∂2

rVeffðr; θ ¼ π=2Þ ¼ 0 condition and they determine
the innermost stable circular orbits (ISCO) radius located at

rISCO=M ¼ 1þ 3γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5γ2 − 1

q
; ð48Þ

and from Eq. (48) we can find that the γ parameter should
be γ ≥ 1=

ffiffiffi
5

p
.

The unstable circular photon orbit m ¼ 0 given by the
divergence of the effective potential (43) will be located at

rph=M ¼ 1þ 2γ: ð49Þ

In the case when γ ¼ 1 one can have rISCO ¼ 6M and
rph ¼ 3M, which are responsible for the radius of the ISCO
and photon sphere, respectively, in the Schwarzschild
spacetime.
In Fig. 4 the various dependences of the radius of the

ISCO and the photon sphere are shown. In the range of the
values of γ ≥ 1 one can see that with increasing the γ
parameter, the radius of the ISCO and photon sphere
increases while in the range of the values 1=

ffiffiffi
5

p
≤ γ ≤ 1

are small in comparison with that in general relativity.
One can easily see that Eqs. (46)–(48) for the angular

momentum, the energy, and radius of the ISCO of the
test particle, respectively, do not contain q, which means
that the gravitating scalar field does not act on the
test particles in the equatorial plane. Numerical calcu-
lations show that the effects of the gravitating scalar field
can be seen in the particle motion in the off-equatorial
plane. As a test of the spacetime geometry (31) we have
presented the particle trajectories for the different values
of the metric parameters γ, γ�, and ϵ in several planes
in Fig. 5.

IV. ANALYTIC SOLUTION OF THE EINSTEIN
EQUATIONS WITH SELF-GRAVITATING
SCALAR FIELD FOR THE QUADRUPOLE-

MOMENT METRIC

In this section we briefly consider the influence of the
gravitating scalar field into the quadrupole moment metric,
which is described by Erez-Rosen [7], with two free
parameters of the black hole, massM, and mass quadrupole
moment q. Now we can consider the next leading order
approximation in the coefficients ql and pl in the solutions,
(23)–(25), of the field equations. We study the case when
q0 ¼ p0 ¼ 1, q1 ¼ p1 ¼ 0 (which is not existed of the
mass dipole moment), and ql ¼ pl ¼ 0 (l > 2), and then
we have

FIG. 4. (Left panel) Position of extrema (max. min.) of the effective potential, giving stable (min) and unstable (max) circular orbits for
the Schwarzschild (γ ¼ 1) spacetime. (Central panel) Position of extrema (max. min.) of the effective potential for the different values of
the γ parameter. (Right panel) Position of the ISCO and photon orbit in the dependence from the parameter γ.
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FIG. 5. Test particle trajectories in the spacetime metric (31) for the different values of parameters γ, γ�, and ϵ. In the first and second
(including third) columns, particle trajectory, x-y and x-z planes, are given while in the fourth column a 3D x-y-z pattern of the particle
trajectory is shown.
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ΦðX; YÞ ¼ 1

2
ln
X − 1

X þ 1
þ q�

2
ð3Y2 − 1Þ ×

�
3X
2

þ 3X2 − 1

4
ln
X − 1

X þ 1

�
; ð50Þ

UðX; YÞ ¼ 1

2
ln
X − 1

X þ 1
þ q

2
ð3Y2 − 1Þ

�
3X
2

þ 3X2 − 1

4
ln
X − 1

X þ 1

�
; ð51Þ

VðX; YÞ ¼ ð1þ qÞ2 þ ϵð1þ q�Þ2
2

ln
X2 − 1

X2 − Y2
−
3ðqþ ϵq�Þ

2
ð1 − Y2Þ

�
X ln

X − 1

X þ 1
þ 2

�

þ 9ðq2 þ ϵq2�Þ
16

ð1 − Y2Þ
�
X2 þ Y2 − 9X2Y2 −

4

3
þ X

�
X2 þ 7Y2 − 9X2Y2 −

5

3

�
ln

X2 − 1

X2 − Y2

þ 1

4
ðX2 − 1ÞðX2 þ Y2 − 9X2Y2 − 1Þln2 X2 − 1

X2 − Y2

�
; ð52Þ

where q and q� are the mass quadrupole moments of the gravitational object. The Erez-Rosen solution [7] can be obtained
in the limiting case when q� ¼ 0. In order to find the physically meaningful solution for the scalar field, one writes it in
terms of the spherical coordinates in the form

Φðr; θÞ ¼ 1

2
ln

�
1 −

2M
r

�
þ q�

2

�
3r2 − 6Mrþ 2M2

4M2
ln

�
1 −

2M
r

�
þ 3ðr −MÞ

2M

�
ð3cos2θ − 1Þ; ð53Þ

FIG. 6. The equipotential surface of the scalar potential Φðr; θÞ in the x − z plane for the different values of the mass quadrupole
moment: q� ¼ 0, q� ¼ 0.2, q� ¼ 0.5, and q� ¼ 1.

FIG. 7. Radial profiles of the effective potential in equatorial plane Veffðr; π=2Þ for the various values of angular momentum L. In the
plots the different values for q parameter are used.
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and in the weak field approximation Eq. (53) has a form

Φðr; θÞ ≃ −
M
r
þ q�M3

15r3
ð3cos2θ − 1Þ: ð54Þ

We can see that the first linear term in the right-hand side of
Eq. (54) is responsible for Newtonian potential, and the
second term is responsible for the quadrupole moment
potential, where q� is a dimensionless mass quadrupole
moment produced by the gravitating scalar field.
In Fig. 6 the equipotential surface of the scalar field

Φðr; θÞ using expression (53) for the different values of the
quadrupole moment q� is illustrated. One can easily see
that, due to the q� parameter, the spacetime around the
black hole is axially deformed.
It is convenient to write a simple analytical form of the

metric for further calculations. In the linear approximation
of the mass quadrupole moments q and q�, one can write
the following spacetime metric:

gtt ¼ −
�
1 −

2M
r

�
½1þ qF1ðrÞP2ðcos θÞ� þOðq2Þ; ð55aÞ

grr ¼
�
1 −

2M
r

�
−1
�
1þ M2sin2θ

r2 − 2Mr

�
−ϵ

×

�
1þ qF1ðrÞP2ðcos θÞ − ðqþ ϵq�Þ

×

�
2 ln

�
1þ M2sin2θ

r2 − 2Mr

�
þ 3F2ðrÞsin2θ

��

þOðq2; q2�Þ; ð55bÞ

gθθ ¼ r2
�
1þ M2sin2θ

r2 − 2Mr

�
−ϵ
�
1þ qF1ðrÞP2ðcos θÞ

− ðqþ ϵq�Þ
�
2 ln

�
1þ M2sin2θ

r2 − 2Mr

�
þ 3F2ðrÞsin2θ

��

þOðq2; q2�Þ; ð55cÞ
gϕϕ ¼ r2sin2θ½1 − qF1ðrÞP2ðcos θÞ� þOðq2Þ; ð55dÞ

which is a generalized form of the Erez-Rosen metric with
external parameter q� produced by the gravitational scalar
field where P2ðcos θÞ ¼ ð3cos2θ − 1Þ=2 and the functions
F1ðrÞ and F2ðrÞ are defined as

F1ðrÞ ¼ 3

�
r
M

− 1

�
þ
�
3r2

2M2
−
3r
M

þ 1

�
ln

�
1 −

2M
r

�
;

ð56Þ

F2ðrÞ ¼ 2þ
�
r
M

− 1

�
ln

�
1 −

2M
r

�
: ð57Þ

A. Test particle motion

Consider the particle motion in the spacetime metric (55)
with the linear term of quadrupole momenta q and q�.
Using the equation of motion for the test particle we can
obtain the following effective potential:

VeffðrÞ¼
�
1−

2M
r

��
1þL2

r2
−
qF1ðrÞ

2

�
1þ2L2

r2

��
: ð58Þ

Figure 7 draws the radial dependence of the effective
potential for motion in the equatorial plane (θ ¼ π=2) for
the different values of the angular momentum, and for three
different values of quadruple moment q.
In order to find the critical values of the energy and

the angular momentum one has to use the following
conditions:

E2 ¼ VeffðrÞ; V 0
effðrÞ ¼ 0; ð59Þ

and the solution of these equations for the energy and the
angular momentum can be found as

E2
ext ¼

ðr − 2MÞ2
rðr − 3MÞ − q

�ðr −MÞðr − 2MÞð6r2 − 21Mrþ 19M2Þ
2Mrðr − 3MÞ2

þ ðr − 2MÞ2ð6r3 − 21Mr2 þ 23M2r − 6M3Þ
4M2rðr − 3MÞ2 ln

�
1 −

2M
r

��
þOðq2Þ; ð60Þ

TABLE I. Dependence of the mass quadrupole moment q from
the values of the radius of the ISCO (rISCO), the critical energy
(EISCO), and angular momentum (LISCO) of the test particles
orbiting around the black hole.

q rISCO=M LISCO=M EISCO

0 6.00000 3.46410 0.888889
0.1 5.98552 3.46155 0.888684
0.2 5.97090 3.45898 0.888478
0.3 5.95616 3.45640 0.888269
0.4 5.94127 3.45379 0.888057
0.5 5.92624 3.45116 0.887844
0.6 5.91107 3.44852 0.887627
0.7 5.89575 3.44585 0.887408
0.8 5.88027 3.44316 0.887187
0.9 5.86464 3.44046 0.886963
1.0 5.84884 3.43773 0.886736
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FIG. 8. Test particle trajectories in the spacetime metric (55) for different values of parameters q, q�, and ϵ. In the first and second
(including third) columns particle trajectories in the x-y and x-z planes are given, respectively, while in the fourth column a 3D x-y-z
pattern of particle trajectory is shown.
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L2
ext ¼

Mr2

r− 3M
−q

�
r2ðr−MÞð3r2 − 9Mrþ 10M2Þ

2Mðr− 3MÞ2 þ r2ð3r4− 15Mr3þ 30M2r2− 26M3rþ 6M4Þ
4M2ðr− 3MÞ2 ln

�
1−

2M
r

��
þOðq2Þ:

ð61Þ
The radius of the ISCO can be found from the condition V 00

effðrÞ ≤ 0 in addition to expressions (60) and (61) which allow
us to obtain the following nonlinear equation:

r − 6M − q

�
12r5 − 111Mr4 þ 364M2r3 − 501M3r2 þ 214M4rþ 54M5

2M2ðr − 2MÞðr − 3MÞ

þ 12r5 − 99Mr4 þ 273M2r3 − 286M3r2 þ 54M4rþ 36M5

4M3ðr − 3MÞ ln

�
1 −

2M
r

��
þOðq2Þ ¼ 0: ð62Þ

Obviously, it is difficult to get an analytical solution of
Eq. (62). Hereafter, performing a careful numerical analysis of
expression (62), one can find that the radius of the ISCO
decreases with increasing the value of the q parameter. In
Table I a list of numerical solutions for the radius of the ISCO,
the energy, and the angularmomentumof particles for different
values of the mass quadrupole moment is shown. With the
increaseof theparameterq radiusof the ISCOtoagravitational
object, the values of the energy and the angular momentum of
particles decrease. It means that the mass quadrupole moment
q sustains the stability of particles circularly orbiting around
the black hole. One can conclude that due to the mass
quadrupole moment of the black hole particles, the motion
is more stable than that in the Schwarzschild spacetime.
The trajectories of the test particles in the spacetime

of the generalized Erez-Rosen metric (55) at several planes

for the different values of the parameters are shown in Fig. 8.
The motion of the test particle becomes regular (not chaotic
as in the Kerr spacetime) in the quadrupole moment metric.
It is interesting to study chaotic motion in the space-

time with deformation parameters γ, γ�, q and q�. In order to
check chaotic motion around the black hole we have used the
general form of the spacetime metric which is given by
expressions (50)–(52). Numerical calculations show that the
trajectory of test particles becomes chaotic for large values of
the γ�, q, and q� parameters, as shown in Fig. 9.

B. Energy conditions

Using the expression for the energy-momentum (33)
one can easily find the density and the components of the
pressure for the scalar field defined in Eq. (53) in the form

FIG. 9. Chaotic trajectories of test particles in several planes in background geometry described by (31) and (55) when ϵ ¼ 1. In the
first and second (including third) columns, particle trajectory x-y and x-z planes are given while in the fourth column the phase-space
diagram of particle trajectory is shown.
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ρ ¼ Pθ ¼ Pϕ ¼ −Pr

¼ −
ϵM2

2r3ðr − 2MÞ
�
1þ M2sin2θ

rðr − 2MÞ
�

ϵ
�
1þ q

�
2 ln

�
1þ M2sin2θ

rðr − 2MÞ
�
− F1ðrÞP2ðcos θÞ þ 3F2ðrÞsin2θ

�

þ q�

�
2ϵ ln

�
1þ M2sin2θ

rðr − 2MÞ
�
þ 3ϵF2ðrÞsin2θ þ 1 −

6r
M

þ 3r2

M2
þ 3r
2M

�
r
M

− 2

��
r
M

− 1

�
ln

�
1 −

2M
r

���
: ð63Þ

From Eq. (63) we can see that ρþ Pr ¼ 0 which always
satisfies the NEC condition while the expressions for
ρþ Pθ;ϕ satisfy the NEC condition only in the case when
ϵ ≤ 0, which corresponds to the phantom field.

V. CONCLUSION

In the present paper we have derived axisymmetric and
static solutions of the Einstein field equations by taking into
account the effect of an additional self-gravitating scalar
field. In particular, we have presented an exact analytical
solution of the combined Einstein equations for two
different modified spacetime metrics which belong to the
Weyl class of solutions as (i) the modified γ-metric and
(ii) the modified quadrupole moment metric. Obtained
results can be summarized as follows:

(i) We have studied the influence of the scalar field
in spacetime properties of axial-symmetric and
static vacuum solutions of combined Einstein field
equations which generalize the Schwarzschild’s
spherically symmetric solution to include γ, γ� and
mass quadrupole parameters q, q�. We have required
that the scalar field be axially symmetric, static, and
that the solutions satisfy the asymptotic flatness and
curvature regularity. We have obtained a generalized
form of the γ metric with an additional γ� and
generalized form of the Eres-Rosen (quadrupole
moment) metric which includes the q� mass quadru-
pole produced by the self-gravitating scalar field.

(ii) The analytical expressions for the components of the
energy-momentum tensor are obtained for the self-
gravitating scalar field. An extensive analysis of the
energy of the scalar field has shown that in the case
of the phantom field (ϵ ¼ −1) it satisfies the NEC
while in the case of gravitating scalar field (ϵ ¼ 1) it
does not satisfy the NEC.

(iii) We have studied the test particle motion in the
spacetime of both the generalized γ-metric and the
quadrupole moment metric and have probed the γ�
and q� parameters produced by the gravitating scalar
field into the test particle motion. The Hamilton-
Jacobi equation of motion for the test particle is
chosen as in our preceding research done in Ref. [37].
Our analysis shows that γ� and q� parameters do not
contribute into the energy and angular momentum of
the test particle and consequently do not affect
particle trajectory at the equatorial plane. Conse-
quently, the motion of the test particle becomes

regular (rather than chaotic) in both generalized γ
and generalized Erez-Rosen metrics.

(iv) We have presented the exact analytical expression
for the radius of the ISCO, the critical values of
the energy and the angular momentum of the test
particles in terms of the γ parameter in the spacetime
of the γ-metric. It is shown that for the range
γ ≥ 1=

ffiffiffi
5

p
of the values of the γ parameter, the

radius of the ISCO and the photon sphere increase.
For the range of the values of γ ≥ 1 we have found
that with increasing the γ parameter the radius of
the ISCO and photon sphere increase while for the
range of the values 1=

ffiffiffi
5

p
≤ γ ≤ 1 they are small in

comparison with that in the Schwarzschild space-
time. After performing a numerical analysis of the
equations of particle motion in the spacetime of the
generalized quadrupole moment metric, we have
found that the radius of ISCO decreases with an
increase of the value of the q parameter. It has been
shown that the quadrupole moment metric has
circular orbits that are more strongly bounded when
compared to that in the Schwarzschild metric.
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APPENDIX: THE FUNCTION VðX;YÞ
The explicit form of the function VðX; YÞ in Eq. (25) is given by [14]

VðX; YÞ ¼
X∞
l;n¼0

ð−1Þlþnðqlqn þ ϵplpnÞΓflng; ðA1Þ

where

Γflng ¼ 1

2
ln

X2−1

X2−Y2
þðϵnþ ϵl−2ϵnϵlÞ ln

Xþ1

X−1
þðX2−1Þ

�
X

�
An;lQ0

nðXÞQlðXÞþAl;nQ0
lðXÞQnðXÞ

�
−Cn;lQnðXÞQlðXÞ

�

þðX2−1Þ
�
ð1− ϵnÞClþ ϵlClþ1−

ϵn
lþ1

�
PlðYÞ− ð−1Þl

�
Q0

lðXÞ
�

þðX2−1Þ2
�
QlðXÞBl;n−Q0

lðXÞAl;nþ
1

nþ1
Al;nQ0

lðXÞQ0
nðXÞ

�
; ðA2Þ

with

ϵn ¼
�
1; n ¼ even integer;

0; n ¼ odd integer;

and

Al;n ¼
X½n=2−1�
k¼0

�
1

n − 2kþ 1
þ 1

n − 2k

�
Al;n−2kQ0

n−2kðXÞ; ðA3Þ

Bl;n ¼
X½n=2−1�
k¼0

�
1

n − 2k − 1
þ 1

n − 2k

�
Bl;n−2k−1Q0

n−2k−1ðXÞ; ðA4Þ

Cl;n ¼
X½n=2−1�
k¼0

�
1

n − 2k − 1
þ 1

n − 2k

�
½Pn−2k−1 þ ð−1Þnþ1�Q0

n−2k−1ðXÞ; ðA5Þ

Al;n ¼
X½n=2−1�
k¼0

Xμðn;l−2k−1Þ

s¼0

ð2l − 4k − 1ÞKðl − 2k − 1; n; lÞ
2ðlþ nÞ − 4ðkþ sÞ − 1

ðPlþn−2ðkþsÞðYÞ − Plþn−2ðkþsþ1ÞðYÞÞ; ðA6Þ

Bl;n ¼
X½n=2−1�
j¼0

X½n=2−1�
k¼0

Xμðn−2k−1;l−2j−1Þ

s¼0

ð2l − 4j − 1Þð2n − 4k − 1ÞKðl − 2j − 1; n − 2k − 1; sÞ
2ðlþ nÞ − 4ðjþ kþ sÞ − 3

× ðPlþn−2ðjþkþsÞ−1ðYÞ − Plþn−2ðkþlþsÞ−3ðYÞÞ; ðA7Þ

Cl;n ¼ Bnþ1;l − ðnþ 1ÞAn;l: ðA8Þ

Here a bracket [Q] denotes an integer part of quantity Q and μða; bÞ ¼ minða; bÞ, and the Clebsch-Gordon coefficients
Kðl; n; kÞ are defined by

Kðl; n; kÞ ¼ 2lþ 2n − 4kþ 1

2lþ 2n − 2kþ 1

al−kan−k
alþn−k

; ðA9Þ

and

ak ¼
ð2k − 1Þ!!

k!
:
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