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The Kerr nature of a compact-object–coalescence remnant can be unveiled by observing multiple
quasinormal modes in the post-merger signal. Current methods to achieve this goal rely on matching the
data with a superposition of exponentially damped sinusoids with amplitudes fitted to numerical-relativity
(NR) simulations of binary black-hole mergers. These models presume the ability to correctly estimate the
time at which the gravitational-wave signal starts to be dominated by the quasinormal modes of a perturbed
black hole. Here we show that this difficulty can be overcome by using multipolar inspiral-merger-
ringdown waveforms, calibrated to NR simulations, as already developed within the effective-one-body
formalism (EOBNR). We build a parameterized (nonspinning) EOBNR waveform model in which the
quasinormal mode complex frequencies are free parameters (pEOBNR), and use Bayesian analysis to study
its effectiveness in measuring quasinormal modes in GW150914, and in synthetic gravitational-wave
signals of binary black holes injected in Gaussian noise. We find that using the pEOBNR model gives, in
general, stronger constraints compared to the ones obtained when using a sum of damped sinusoids and
using Bayesian model selection, we also show that the pEOBNR model can successfully be employed to
find evidence for deviations from general relativity in the ringdown signal. Since the pEOBNR model
properly includes time and phase shifts among quasinormal modes, it is also well suited to consistently
combine information from several observations—e.g., we find on the order of ∼30 GW150914-like binary
black-hole events would be needed for Advanced LIGO and Virgo at design sensitivity to measure the
fundamental frequencies of both the (2,2) and (3,3) modes, and the decay time of the (2,2) mode with an
accuracy of ≲5% at the 2-σ level, thus allowing to test the black hole’s no-hair conjecture.
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I. INTRODUCTION

Up to now, all the observed gravitational waves (GWs)
from the coalescence of compact objects by Advanced
LIGO and Virgo [1–5] are entirely consistent with the
expected gravitational radiation emitted during the inspiral,
merger and ringdown stages of a binary black hole (BBH),
as predicted by Einstein theory of general relativity (GR)
[6,7] (however, note that GW170817 [8,9] was most likely
a binary neutron star event due to its electromagnetic
counterpart). After merger, GR predicts that the remnant
black hole (BH) is described by the Kerr metric [10], the
unique stationary, axisymmetric and asymptotically flat BH
solution of the Einstein field equations in vacuum (astro-
physical BHs are thought to be electrically neutral). As
detectors with improved sensitivity and longer observation
times come online, the signal-to-noise ratio (SNR) and
number of events will increase, and more stringent

gravitational tests could put GR at stake [11,12], and/or
reveal the existence of exotic astrophysical compact objects
[13–15] in our Universe.
Consistent with theoretical predictions, the GW signals

of the five BBHs observed so far by Advanced LIGO,
GW150914, GW151226, GW170104, GW170608 and
GW170814, chirp from the inspiral stage, where the orbital
frequency increases as the two objects come closer and
closer, up to merger, where the GW luminosity reaches a
peak and nonperturbative GR effects dominate. After the
merger, the waveform settles to a linear superposition of
exponentially damped sinusoidal oscillations (ringdown) or
quasi-normal modes (QNMs), described by a discrete set of
complex frequencies which are uniquely determined by the
nature of the remnant BH and are independent on how the
BH was formed. That BHs, when formed and/or perturbed,
emit GWs described by a very specific set of QNMs was
discovered in the early 1970s [16–18]. In vacuum, the no-
hair theorems [19–22] imply that in GR the BH’s QNMs
depend only on the BH’s mass MBH and angular momen-
tum (or spin) JBH, and therefore testing this hypothesis
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requires the identification of at least two QNMs in the
ringdown waveform [23–28].1
The idea of employing spectroscopy of the ringdown

stage of compact-object binary mergers to prove that a BH
has been observed (or better rule out/constrain theories
alternative to GR or other compact objects rather than
BHs) and test the no-hair hypothesis in GR, was first
examined in Ref. [23]. Later, Ref. [24] carried out a
comprehensive study aimed at quantifying the accuracy
with which the QNM (complex) frequencies can be mea-
sured for GW sources observable by the laser-interferometer
space-based antenna (LISA), and applied statistical criteria
to estimate the resolvability of different modes. The latter
was also used in subsequent publications (e.g., see
Refs. [30–33]), which focused also on future GW detectors
on the ground. An important step in understanding the
feasibility of the BH–spectroscopy program came with
Refs. [25,26], where the authors applied Bayesian tech-
niques for the first time, employed parametrized models for
the ringdown signals and advocated for the use of multiple
events to get stronger tests of the GR no-hair conjecture.
More recently, Ref. [27] proposed a strategy to increase the
accuracy of observing a given QNM by constructively
summing the ringdown signal from multiple events, after
appropriately applying a rescale and time shift such that the
QNM in all signals has the same frequency and phase. The
same idea was proposed in Ref. [28] although only imple-
mented for the least-damped QNM. We stress, that this
recent idea to extract subdominant modes relies on using the
measured BBH parameters (i.e., masses and spins), and
importantly on knowing in advance the relative phases and
amplitudes of the excited QNMs.
In previous analyses of the BH–spectroscopy program,

all studies were conducted employing for the ringdown
signal a superposition of exponentially damped sinusoids
with either free amplitudes and phases [24,33,34] or with
amplitudes fitted to numerical-relativity (NR) simulations
[25,26,30]. Here, by contrast, we make full use of GW
modeling from BBH coalescences and employ inspiral-
merger-ringdown (IMR) waveforms as developed within
the effective-one-body formalism [35,36], augmented by
NR simulations [37] (EOBNR waveforms, for short2).
There are two main advantages in doing so. First,
EOBNR waveforms include, by construction, the phase
difference between different QNMs, tuned to NR simu-
lations, thus avoiding to apply sophisticated techniques
to enforce such a coherence a posteriori (i.e., after the
observation [27,28]). Second, there is no need to define an

a priori unknown time at which the QNMs start to dominate
the post-merger signal (or select a few arbitrary values, as
was done for GW150914 [6]), because this time is auto-
matically taken into account when building EOBNR wave-
forms, so that they match NR waveforms with high
precision. As we shall see, the apparent limit in the accuracy
of extracting QNM frequencies, as recently advocated in
Ref. [38], does not hold when employing IMR waveforms.
The rest of this paper is organized as follows. We first

introduce our IMR waveform model with free QNM
complex frequencies in Sec. II, and discuss how this model
can be used to measure the ringdown frequencies and
damping time of a BBH-coalescence remnant. In Sec. III
we present the statistical method that we employ to measure
the QNM complex frequencies, and test the IMR model
against the GW event GW150914 and NR waveforms.
Section IV studies two different approaches to measure
deviations from GR using the IMR waveform model. We
first perform a Bayesian model selection study to show that
the IMR model is able to find evidence for deviations from
GR in the ringdown. Then, we give some prospects, using
Advanced LIGO and Virgo noise curves at design sensitivity,
on how strongly the model can constrain deviations fromGR
by combining several detections. Finally, we summarize and
discuss future improvements in Sec. V.

II. FULL GRAVITATIONAL-WAVE SIGNAL TO
EXTRACT QUASINORMAL MODES

We use the IMR waveforms developed within the EOB
formalism, which provides a faithful and physical, semi-
analytic description of the full coalescence process, and it
can be made highly accurate by including information from
NR simulations. In particular, here we employ the multipolar
waveform model for nonspinning BBHs calibrated to NR
simulations in Ref. [37] (henceforth, EOBNR for short).
A GW emitted from a binary into a given sky direction
ðθ;ϕÞ can be written as hþðθ;ϕ; tÞ − ih×ðθ;ϕ; tÞ ¼P

l;m−2Ylmðθ;ϕÞhlmðtÞ, where −2Ylmðθ;ϕÞ are the −2
spin-weighted spherical harmonics. Our EOBNR model
includes the ðl; jmjÞ ¼ ð2; 1Þ, (3, 3), (4, 4), and (5, 5)
modes besides the dominant (2, 2) mode.
More specifically, for each ðl; mÞ, the merger-ringdown

EOBNR modes read

hmerger-RD
lm ðtÞ ¼

XN−1

n¼0

Almne−iσlmnðt−tlmmatchÞ t ≥ tlmmatch; ð1Þ

where n is the QNM overtone number, N is the number of
overtones included in the EOBNR model (e.g., N ¼ 8
in Ref. [37]3), and Almn are complex amplitudes

1Several examples within GR that do not satisfy the conditions
of the no-hair conjecture have been constructed. However, most
of those solutions either lead to instabilities or they require the
presence of exotic fields or time-dependent boundary conditions
for complex boson fields (see, e.g., Ref. [29]).

2The specific name of the waveform model that we use in the
LIGO ALGORITHM LIBRARY is EOBNRv2HM.

3We note that some of the high overtones used in Ref. [37] do
not have the frequency and decay time of a BH, and they were
included only to make the merger-ringdown transition as smooth
as possible.
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determined by the procedure that matches the merger-
ringdown waveform to the inspiral-plunge EOBNR
waveform hinspiral-plungelm ðtÞ. Such a procedure guarantees
differentiability at the matching point tlmmatch.

4 The quantity
σlmn ¼ ωlmn − i=τlmn, where the oscillation frequencies
ωlmn > 0 and the decay times τlmn > 0, are num-
bers associated with each QNM. It was found in
Refs. [37,39], that in the test-particle limit and compa-
rable-mass case, the different modes can peak at dif-
ferent times, depending on mass ratio and spin values.
We stress that the multipolar EOBNR model adopted here
does reproduce this important feature by including appro-
priate time shifts between the modes (Δlm

match) in the
matching procedure (for details see Fig. 1 and Sec. IIB
in Ref. [37]). Through this work we will use the same time
shifts, Δlm

match, obtained in Ref. [37]. Finally, the inspiral-
(plunge-)merger-ringdown EOBNR waveform reads
hlmðtÞ ¼ hinsp-plungelm θðtlmmatch − tÞ þ hmerger-RD

lm θðt − tlmmatchÞ,
where θðtÞ is the Heaviside step function.
In Ref. [37], the complex frequencies σlm were

expressed in terms of the final BH mass and spin [24],
and the latter were related to the BBH’s component masses
and spins through an NR–fitting-formula [37] computed
in GR. For concreteness, in Fig. 1 we show an example
where we compare the amplitude of the different modes
available in the EOBNR waveform, for a BBH with mass
ratio q ¼ 6, against the waveform obtained from a NR

simulation.5 Importantly, the model includes time shifts
between the peak of each mode and agrees very well with
NR, even for l > 2-modes.
Here, to measure the ringdown frequencies and damping

times of different QNMs, we build a parametrized EOBNR
model by relaxing the assumption that the ringdown signal
is fixed by the NR–fitting-formula in Ref. [37], and instead
promote the QNM (complex) frequencies to be free
parameters (henceforth, pEOBNR model). In the specific
applications of this paper, we will only allow σ220 and σ330
to vary freely, while all the other mode frequencies present
in the merger-ringdown waveform coincide to the GR
values. We emphasize that σ220 and σ330 varying freely
implies that the EOBNR waveform at merger (i.e., close
to the peak and at tlmmatch), does not necessarily coincide with
the GR prediction, since the matching procedure changes
the shape of the waveform for t > tlmmatch for ðl; mÞ ¼ ð2; 2Þ
and (3,3). Lastly, for t < tlmmatch, our EOBNR waveform
modes agree with the inspiral-plunge modes hinspiral-plungelm ðtÞ
computed in GR. In the future, as the EOB formalism is
extended to modified theories of GR [41,42], we will
include non-GR inspiral-plunge modes and other possible
variations around merger.
In the following, we contrast the results obtained with the

pEOBNR model, with a waveform model that consists of
solely a superposition of damped sinusoids, whose (com-
plex) frequencies are free parameters [23,24]. This has been
the most common ringdown model used in the literature to
test the no-hair conjecture and/or extract multiple QNMs.
After the NR breakthrough in 2005, the relative amplitudes
and phases of the QNMs in these models have been
constrained using fits from NR simulations of BBHs
[25,43–45]. More explicitly, the ringdown model that we
employ is (t ≥ 0)

hRDþ ðθ;ϕ; tÞ ¼
X
l;m>0

Aljmje−t=τlmYlmþ ðθÞ cosðωlmt − ϕlmÞ;

ð2Þ

hRD× ðθ;ϕ; tÞ ¼ −
X
l;m>0

Aljmje−t=τlmYlm
× ðθÞ sinðωlmt − ϕlmÞ;

ð3Þ

where Ylmþ ≡ −2Y
lm þ ð−1Þl−2Yl−m and Ylm

× ≡ −2Y
lm −

ð−1Þl−2Yl−m, and hþ ¼ h× ¼ 0, for t < 0, t ¼ 0 being
the starting time of the ringdown signal. Since we focus on
nonspinning BBHs, we use for the relative modes’ ampli-
tudes the NR-fits in Ref. [25], so that the only free
parameters are the mode frequencies ωlm, damping times
τlm, the phases ϕlm, the BBH mass ratio q and an overall
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FIG. 1. Comparison between modes’ amplitudes of the
EOBNR model [37] used here (dashed lines) and the NR
waveform (solid lines) for a BBH simulation with mass ratio
q ¼ 6 produced by the SXS collaboration [40]. In the horizontal
axis the time origin is chosen such that it corresponds to the peak
of the (2,2) mode.

4We note that making tlmmatch independent of the overtone
number was found to be enough to match the NR waveforms
very well in Ref. [37].

5The NR waveforms used in this paper are from the Simulating
eXtreme Spacetimes (SXS) catalog in Ref. [40]. The modes’
amplitudes shown in Fig. 1 refer to SXS:BBH:0166.
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amplitude factor (see Eqs. (5)–(8) in Ref. [25]). One crucial
difference of this ringdown model from the pEOBNR
model discussed above, is that the former assumes that
all modes start at the same time, and this is not observed
in NR simulations of BBHs (see Fig. 1 and Ref. [37]).
Furthermore, the pEOBNR model also includes overtones
beyond n ¼ 0, which can be excited around merger, as also
observed in NR simulations [46,47].
An important difficulty to overcome when using a

damped sinusoid model is the need to define a specific
starting time at which the GW signal is well described by a
sum of QNMs. Since the arrival time of the signal in the
different detectors is a function of the sky position, to
correctly define the time at which the ringdown starts in all
detectors, one not only needs to know the geocentric time at
coalescence but also the sky position of the signal [34]. For
a real event these parameters are a priori unknown and
must be obtained from a previous analysis done with an
IMR waveform. In addition to this difficulty, to avoid
biases and accurately recover the ringdown parameters for
an IMR signal, we also find it necessary to zero out the
synthetic GW signals injected in Gaussian noise prior to the
starting time of the damped sinusoid model. This behavior
was already pointed out in Ref. [34], and is related to
matching a model with a cutoff in the time domain to a
signal that includes all the IMR information. These
technical difficulties can be completely avoided by using
an IMR model, and therefore provide an additional moti-
vation for this work.
In summary, focusing on nonspinning BBHs with

component masses m1 and m2, we consider two different
waveform models: (i) the pEOBNR waveform built from
Ref. [37] with free parameters ϑGR ¼ fMc; q;DL;α; δ;ψ ;
θ; tc;ϕcg, where Mc ¼ Mν3=2 is the (redshifted) chirp
mass, with ν ¼ m1m2=ðm1 þm2Þ2 and M the (redshifted)
total mass, q ¼ m1=m2 > 1 is the mass ratio, DL is
the luminosity distance, θ is the inclination angle of the
binary, α, δ and ψ are the right ascension, declination and
polarization angles, respectively, and tc and ϕc are the
(geocentric) time and phase at coalescence, supplemented
with free complex QNM frequencies for the (220) and
(330)modesϑ ¼ ϑGR ∪ fω220; τ220;ω330; τ330g; and (ii) the
damped sinusoid model given by Eqs. (2) and (3). In this
work we either use only one damped sinusoid, or use a
two-damped sinusoid model with relative amplitudes for
the (220) and (330) modes fitted to NR as given in
Ref. [25], neglecting all the other modes. Therefore for
the two-damped sinusoid model the free parameters are
ϑRD ¼ fω220;ω330; τ220;ϕ220; τ330;ϕ330; A; qg, with A an
overall amplitude, that can be related to the BH final
mass and the luminosity distance, while for the single
damped sinusoid model, the free parameters are simply
ϑRD ¼ fω220; τ220;ϕ220; Ag. We note that for both sinusoid
models we fix the sky location fα; δg and geocentric time at
coalescence tc which can be obtained by first performing

parameter estimation using an IMR model. The damped
sinusoid model is then chosen to start at a given fixed time
after the coalescence time such as to fit only the ringdown
part of the signal.

III. INFERENCE WITH THE PARAMETERIZED
INSPIRAL-MERGER-RINGDOWN MODEL

We now use Bayesian analysis [48,49] to test the ability
of the pEOBNR model to recover the QNM complex
frequencies. In particular, we infer the ringdown-signal’s
parameters of GW150914 [1], which, so far, is the loudest
BBH event detected by Advanced LIGO, and the only
event with a non-negligible amount of SNR in the ring-
down, and of a few synthetic GW signals injected in
Gaussian noise. For the latter we employ two nonspinning
NR waveforms from the SXS catalog [40]: (i) one with
mass ratio q ¼ 1.5 (SXS:BBH:0007) and total mass
M ¼ 70 M⊙, which mimics the GW150914 event, and
(ii) another with mass ratio q ¼ 6 (SXS:BBH:0166) and
total mass M ¼ 84 M⊙, for which modes with l > 2 are
non-negligible—e.g., at merger the (3,3)-mode is ∼70%
smaller than the dominant (2,2)-mode in the face-on/off
binary configuration (see Fig. 1).
We estimate the probability density function PDF for a

parameter vector ϑ according to the LIGO ALGORITHM

LIBRARY sampling algorithm in Ref. [50]. We sample the
posterior density pðϑjh; dÞ for the model h given the data d
as a function of ϑ using:

pðϑjh; dÞ ∝ LðdjϑÞ × pðϑÞ; ð4Þ

where LðdjϑÞ is the likelihood function of the observed
data for given values of the parameters ϑ, and pðϑÞ is the
prior probability density of the unknown parameter vector
ϑ. To obtain the likelihood function LðdjϑÞ, we first
generate the GW polarizations hþðϑÞ and h×ðϑÞ according
to the waveform models described above. We then combine
the polarizations into the two Advanced LIGO and
Advanced Virgo detector responses at design sensitivity,
h1;2;3, by projecting them on the detector antenna patterns

[51]: hkðϑÞ ¼ hkþðϑÞFðþÞ
k ðϑÞ þ hk×ðϑÞFð×Þ

k ðϑÞ. The like-
lihood is then defined as the sampling distribution of
the residuals, assuming they are distributed as Gaussian
noise colored by the power spectral density PSD for each
detector [50]:

LðdjϑÞ ∝ exp

�
−
1

2

X
k¼1;2;3

hhkðϑÞ − dkjhkðϑÞ − dki
�
; ð5Þ

where h·j·i denotes the noise-weighted inner product [51].
Here for the Advanced LIGO noise spectral density we use
the ZERO_DET_high_P PSD [52], while for Virgo we
use the PSD in Ref. [53]. We use the common “zero-noise”
approximation, where instead of averaging many PDFs
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obtained with different Gaussian noise realizations, we
directly obtain this averaged PDF by setting the noise
realisation, dk, to be identically zero, while keeping the
detectors’ PSD when computing the noise-weighted inner
product in Eq. (5).
We follow the choices in Ref. [50] for the prior

probability density pðϑÞ in Eq. (4). When recovering
the signal with the pEOBNR model, we sample the
QNM complex frequencies in the dimensionless parameter
GMBHσlm=c3 with a flat priorGMBHωlm=c3 ∈ ½0.3; 1� and
GMBH=τlm=c3 ∈ ½0.03; 0.2�, whereMBH is the mass of the
remnant BH. These priors are chosen such that within this
range, the pEOBNR model is reasonably smooth at the
matching point between the inspiral-plunge and merger-
ringdown parts. When we use the damped sinusoids,
we employ flat priors for the dimensionful quantities
flm ∈ ½50; 500� Hz and 1=τlm ∈ ½50; 500� s−1, with
2πflm ¼ ωlm. Finally, for all runs done, we have not seen
that the posteriors for the frequency and damping time of
the 220 or 330 modes lean against the prior boundaries,
whenever the SNR after merger of the corresponding mode
is above ∼5.

A. Putting the IMR model to test using GW150914

GW150914 [1] was the first and, so far, loudest BBH’s
GW signal detected by Advanced LIGO and Virgo.
Constraints for the frequency and damping time of the
dominant QNM for this event were computed in Ref. [6].
Following the latter, we use 8 s of data centered around
GW150914 from both Livingston and Hanford LIGO
detectors, and infer GW150914’s parameters using the
pEOBNR model. In Fig. 2 we show the 90% credible
intervals of the 2D PDF for the recovery of the dominant
QNM frequency f220 and damping time τ220. We also
compare the results with the constraints that we obtain
when using the two damped sinusoid model with different
starting times.6 We also show the frequencies as inferred by
assuming GR and using the posterior distributions of the
remnant mass and spin parameters as derived in Ref. [6]
(black solid line). Our main conclusion is that the pEOBNR
model gives constraints that are in full agreement with
the ones inferred from the posterior distributions of the
remnant mass and spin parameters, and even slightly
stronger than the damped sinusoid model. In addition, as
already emphasized, the pEOBNR model avoids intrinsic
issues inherent with using a damped sinusoid model such as
potential biases due a non-optimal choice of the a priori

unknown starting time for the ringdown signal. In particu-
lar, one can see that choosing the damped sinusoid model to
start tRD ¼ 1 ms after merger gives inconsistent results
with the expected frequency and damping time, showing
that this choice is too early for the start of the ringdown,
something which is a priori unknown from the data alone.
In addition, the uncertainty in the measurement of the time
at coalescence and sky position is naturally included in the
pEOBNR model, while such uncertainty cannot be easily
incorporated in the damped sinusoid model (see Ref. [34]
for a proposal on how to include such uncertainty).

B. Putting the IMR waveform model to test using
numerical-relativity waveforms

It was recently claimed in Ref. [38] that there is an
intrinsic limit in the accuracy with which one can extract
QNM frequencies, when describing the postmerger signal
by a sum of exponentially damped sinusoids. In particular,
Ref. [38] argued that although a more sensitive detector can
probe later times in the GW signal, it does not necessarily
mean one can get tighter constraints on the ringdown
frequencies and damping times, due to a tension between
the need to maximize the SNR at which one extracts the
QNM frequencies, and an optimal choice for the time at
which the signal can be well-described by a sum of QNMs.
The authors speculated that this effect might be due to
residual nonlinearities decaying on similar timescales to the
ringdown signal, but more recently Ref. [55] argued that
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FIG. 2. 90% credible interval contours for the dominant QNM,
using the pEOBNR model and a damped sinusoid model at
starting times tRD ¼ 1, 3, 5 ms after merger. The black solid
line shows the 90% credible region for the frequency and decay
time of the (220) QNM inferred from the posterior distributions
of the remnant BH mass and spin parameters, as derived in
Ref. [6]. GW150914 is consistent with the coalescence of two
nonspinning BHs, with an inferred total (redshifted) mass of
M=M⊙ ¼ 70:6þ4.6

−4.5 , mass ratio q ¼ 0.82þ0.17
−0.20 and luminosity

distance DL=Mpc ¼ 410þ160
−180 [54].

6For comparison with Ref. [6], we fix the starting time of the
damped sinusoid model to be t0 ¼ tc þ 1; 3; 5 ms (in units of the
BBH total mass this corresponds to ∼3M; 9M; 15M after merger,
respectively), where we choose tc to be given by the maximum
likelihood GPS time obtained from the run using the pEOBNR
model, namely we use tc ¼ 1126259462.408 s. For the sky
position we fix the right ascension α ¼ 1.953 rad and declination
δ ¼ −1.2 rad.
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this effect is likely due to the increasing importance of the
overtones in the large-SNR limit.
In fact, as we show below and as expected, we do not

find any conclusive evidence of this limitation when
using the IMR waveform at our disposal. In particular,
as already emphasized, the pEOBNR model includes
overtones and naturally encodes information on the starting
time of the ringdown. In addition to these features, the
model also includes crucial information necessary to
accurately measure subdominant modes, such as time
shifts between the peak of the different modes and their
relative phase and amplitude difference compared to the
dominant (220) mode.
To reproduce the features seen in Ref. [38] we inject an

NR waveform with mass ratio q ¼ 1.5 (SXS:BBH:0007)
and total redshifted massM ¼ 70 M⊙ at different distances
while keeping all the other parameters constant.7 Following

[38] we define the loudness of the signal as loudness ¼
500 Mpc=DL. For the injections that we consider,
loudness ¼ 1 corresponds to a network SNR ≈ 50 and
SNRRD ≈ 20.8 We also note that, everything else being
fixed, loudness ∝ SNR. Following Ref. [38], and to avoid
potential errors introduced by the presence of higher-modes
in the NR signal, we inject the (2,2) and (3,3) modes of the
NR waveform separately. To understand whether potential
biases are due to residual nonlinearities in the NR wave-
form or simply due to a nonoptimal choice of the starting
time for the damped sinusoid model, we also inject the
EOBNR waveform mode [37] with the same parameters of
the NR waveform, for which the ringdown part is exactly
described by a sum of QNMs [see Eq. (1)]. The injected
signals are then recovered using both the pEOBNR model,
which has free QNM complex frequencies, and a single
damped sinusoid model, with different starting times.

FIG. 3. 95% credible interval contours for the frequency and damping time of the (220) and (330) modes of a GW event with mass
ratio q ¼ 1.5, total (redshifted) massM ¼ 70 M⊙ as a function of the loudness, defined as loudness ¼ 500 Mpc=DL. The dashed black
lines corresponds to the injected values. We compare the recovery using the pEOBNR model with the one using a single damped
sinusoid with starting time t0 ¼ tc þ tRD. In the left panels we show the recovery for an NR injection, while in the right panels we show
the recovery for an injection with an EOBNR waveform with the same parameters.

7We use θ ¼ 2.2 rad, α ¼ 1.21 rad, δ ¼ −1.165 rad and
tc ¼ 1126259462 s.

8Here we define the SNR in the ringdown, SNRRD, as the SNR
computed starting from the peak (or merger) of the (2,2) mode.
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Our results are summarized in Fig. 3. As expected, by
increasing the loudness (i.e., increasing the SNR of the
injected signal), the error decreases roughly as 1=SNR. As
can be seen in the left panels, when recovering the NR
signal with a single damped sinusoid, if one chooses a
starting time too early after merger, one expects the damped
sinusoid to recover inaccurate QNM frequencies, while
choosing a starting time too late after merger leads to large
statistical errors. We find that one needs to start the
matching at a time after merger of at least tRD ≳ 20M
for the (220) mode and tRD ≳ 15M for the (330) mode, to
get unbiased frequencies and damping times. This is
consistent with recent studies on the starting time of the
ringdown in BBH mergers [56]. On the other hand, the
pEOBNR model recovers both the frequency and damping
time of the NR waveform with a very a good accuracy,
although we find a small bias of ∼1% for the (220)
frequency compared to the injected value. This is likely
a systematic bias due to modeling errors in the inspiral-
plunge part of the IMRmodel [57]. In fact, as can be seen in
the right panels, when injecting the EOBNR waveform, as
expected the pEOBNR model recovers unbiased frequen-
cies and damping times while the behavior of the damped
sinusoid model is similar to what we found for the NR
injection, therefore no apparent sign of residual nonlinear-
ities in the NR waveforms are found when using the
damped sinusoid model. In addition, in Ref. [57] it was
shown that at sufficiently large SNRs, biases of the same
order can occur for the measured BH masses when
recovering a NR waveform with an EOBNRv2HM tem-
plate. We expect that this error propagates to the recovered
QNM frequencies, explaining the small bias we observe for
the pEOBNR model. We therefore find no conclusive
evidence that the limitation discussed in Ref. [38] is due
to residual nonlinearities in the ringdown part of the NR

waveform, and in particular we find no evidence that the
IMR pEOBNR model has such limitation (aside from
modeling errors).
So far, we have assumed that the different modes in the

signal can be distinguished and recovered separately. In a
realistic scenario one would prefer instead to use the IMR
pEOBNR model against the full GW signal, since disen-
tangling the different modes is a very challenging task that
would induce unavoidable systematic errors. Therefore, in
Fig. 4 we also show an example where we inject an NR
waveform with all available modes (i.e., up to l ¼ 8Þ, for
mass ratio q ¼ 6 (SXS:BBH:0166) and total (redshifted)
mass M ¼ 84 M⊙. We consider an injection with total
network SNR ≈ 70, corresponding to a luminosity distance
DL ¼ 160 Mpc and SNRRD ≈ 34. We recover again the
GW signal using the pEOBNR model, with all the modes
available in the model, and contrast it with the recovery
when using a two damped-sinusoid model, with amplitudes
fitted to NR [25], using different starting times. Due to the
large-mass ratio, in this case there is a clear hierarchy
between the amplitude of different modes, and higher
modes have a non-negligible contribution to the overall
waveform. For this mass ratio the peak amplitude of the
(3,3)-mode is roughly 70% smaller than the (2,2)-mode, as
can be seen in Fig. 1, and therefore strong constraints on a
second QNM can be obtained even for a reasonable SNR in
the ringdown (i.e., ≈34). As we see, the pEOBNR model
recovers unbiased results for the ringdown frequency and
damping time, even if the NR waveform includes more
subdominant modes. On the other hand, when using the
two damped-sinusoid model and choosing starting times
that give comparable errors to the pEOBNR model, we
always recover slightly biased QNM parameters. These
results demonstrate the need of including more physical
effects, e.g., include more modes and overtones [44,45,58],
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FIG. 4. Left: 90% credible interval contours for the (220) QNM complex frequency for NR waveform with mass ratio q ¼ 6, total
(redshifted) mass M ¼ 84 M⊙ and IMR network SNR ≈ 70, corresponding to an SNR in the ringdown of SNRRD ≈ 34. The black star
corresponds to the injected value for the (220) QNM. Right: Same, but for the recovery of the (330) QNM.
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in the more theory-agnostic damped-sinusoid model, if one
wanted to use it to get accurate and precise values for the
QNM frequencies and damping times of BBHs event, and
test the no-hair conjecture.
We note that at the time of this writing, no suitable NR

waveform computed in alternative theories of gravity are
available for testing. While the tests in this section validate
our approach to constrain small deviations from GR, we do
hope that further tests with non-GR waveforms will be
performed in the future.

IV. TESTING THE GENERAL RELATIVISTIC
NO-HAIR CONJECTURE

Having laid down the ability of the pEOBNR waveform
model to measure the ringdown complex frequencies, we
now investigate the capacity of the IMR model to detect
small deviations from GR in the ringdown part of the signal
using two approaches: (i) a Bayesian model selection
scheme, and (ii) by directly measuring the QNM frequen-
cies using Bayesian parameter estimation and computing
the constraints on deviations from GR.
Such approaches have been used in the past [25,26],

however focusing on the damped sinusoid model, which as
we have argued above, is prone to technical difficulties.
Therefore, from now on, we focus solely on the IMR
pEOBNR model.

A. Bayesian model selection

Bayesian model selection has been extensively used in
the context of testing GR [25,26,59,60], and is particularly
useful to find statistical evidence for deviations from GR
even when the majority of the GW events have a small
SNR, and parameter estimation alone might not be enough
to confidently measure such deviations. Model selection
can also naturally be used to get statistical evidence from a
small deviation from GR by combining the information
from several observations [26,60]. In fact, for most of the
BBH events that Advanced LIGO and Virgo is detecting,
we do not expect to be able to impose strong constraints on
the QNM complex frequencies [32], and therefore this is
the most promising avenue to detect deviations from GR,
before LISA or third-generation detectors on the ground,
such as Cosmic Explorer and Einstein Telescope are online.
As said above, similar studies were done in the past in

Refs. [25,26], but they focused on damped-sinusoid mod-
els, both for the injected GW signal and the waveform
model used to recover it, and they were done using the PSD
of Einstein Telescope. Besides the use of an IMR model to
recover the signal, another crucial difference here, is that
we also inject IMR waveforms. If one would do a Bayesian
model selection study on such population using damped
sinusoids as templates, one would need to deal with the
problem of defining the optimal starting time for the
ringdown, that is in general dependent on the particular

binary’s configuration. Using the IMR model completely
avoids this problem. In addition, a Bayesian model selec-
tion with an IMR model also naturally incorporates the
consistency test that both the inspiral-plunge and merger-
ringdown are consistent with GR.
In general, given some observed data d, the support for a

given model hypothesesH can be quantified by integrating
Eq. (4) (with h replaced by H) over ϑ:

pðHjdÞ ∝ LðdjHÞ × pðHÞ: ð6Þ

To compare two different model hypotheses, say Hi and
Hj, in light of the observed data, we compute the ratio of
posterior probabilities also known as the odds ratio [59,60]:

Oi
j ¼

pðHijdÞ
pðHjjdÞ

¼ pðHiÞ
pðHjÞ

LðdjHiÞ
LðdjHjÞ

¼ pðHiÞ
pðHjÞ

Bi
j; ð7Þ

where pðHiÞ=pðHjÞ is the prior odds of the two hypoth-
eses and Bi

j is the Bayes factor. In the following, we quote
directly the Bayes factor, so that by construction, if Bi

j >
1ð<1Þ the data prefers the model iðjÞ. Then, we need to
multiply by the prior odds (which in the case of GR versus
non-GR could be a large effect) to get the odds ratio.
Even though no waveform model that corresponds to a

non-GR theory is currently available, we may ask: “Given
the observed data, are the QNM frequencies and damping
times compatible with GR?”. To address this question, we
consider two different hypotheses models: (i) HGR, which
corresponds to the hypothesis that the events are described
by EOBNR waveforms where QNM frequencies are fixed
to the GR values, and (ii)HnonGR, which corresponds to the
hypothesis that the QNM complex frequencies are (addi-
tional) free parameters and are described by pEOBNR
waveforms. Note that the latter also includes GR for a
particular choice of QNM frequencies, however, even if
GR is the correct theory, the model is penalized when
performing Bayesian model selection due to the addition of
extra parameters that are not needed to describe the data.
For simplicity, in this work, the model HnonGR uses the
hypothesis that only the frequencies and damping times
of the (220) and (330) are not fixed by the inspiral
parameters as given in GR, but all the other QNMs included
in the model do (i.e., the 21-mode, 44-mode, and 55-mode
and their overtones). We note that we could follow an
approach similar to TIGER (Test Infrastructure for GEneral
Relativity) [60], where all combinations of possible free
parameters are included in the non-GR hypothesis. This
approach is in general quite robust in finding deviations
from GR even for low SNR systems, but it can be
computationally expensive because several models must
be analyzed. Therefore, for practical purposes, we only
consider the hypothesis that the frequencies and damping
times of the (220) and (330) are free at the same time.
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To carry out the analysis on a reasonable timescale, we
fix the sky position and the parameters influencing mostly
the inspiral-plunge phase, namely the mass ratio q and
chirp mass Mc. Given that the inspiral is the same for both
the GR (EOBNR) and non-GR (pEOBNR) hypotheses, this
is a reasonable assumption that should not influence the
qualitative picture of the results, especially at large SNRs,
where the inspiral parameters and the sky position are
measured with very good accuracy. However, the model
and framework presented here are not limited to those
assumptions, and we plan to relax them and do a more
comprehensive analysis in the near future.
Given a detection, we compute the Bayes factor as:

BnonGR
GR ¼ BnonGR

noise

BGR
noise

; ð8Þ

where BnonGR
noise and BGR

noise are the Bayes factors for HnonGR

and HGR against the hypothesis that the data contain
only noise, which we obtain using a nested sampling
algorithm as implemented in the LIGO ALGORITHM

LIBRARY [50].
For the catalogs of injections we construct two popula-

tions of 100 BBH sources, one with GR waveforms using
the EOBNR waveform model [37], that we call the GR
population, and a second catalogue with the pEOBNR
model with QNM frequencies given by σ220¼σGR220ð1þδσÞ
and σ330 ¼ σGR330ð1þ δσÞ where we fixed δσ ¼ 0.1 (the
same choice was done in Ref. [26]). Below we refer to the
latter as the non-GR population. We note that this choice is
not necessarily unrealistic, since deviations of 10% in the
QNM frequencies have been found in some alternative
theories to GR. QNM frequencies of spherically symmetric
solutions were computed in theories such as Einstein-
Maxwell-dilaton [61], dynamical Chern-Simons gravity
[62], Einstein-dilaton-Gauss-Bonnet gravity [63–65] and
for some solutions in massive (bi)gravity [66–68]. On the
other hand, not much progress has been made to compute
QNMs for spinning BHs in alternative theories to GR, the
only exception being the Kerr-Newman case in Einstein-
Maxwell theory [69–72]. Most of the estimates for QNMs
of spinning BHs in modified gravity have instead used the
connection between the light ring and QNMs [64,73–75],
which is formally only valid in the eikonal l → ∞ limit and
known to fail to describe some families of QNMs when
additional degrees of freedom are present [64].
We draw the component (redshifted) masses of the 100

sources from a uniform distribution between 30 and
180 M⊙ and maximum total (redshifted) mass 210 M⊙.
This choice implies a distribution for the mass ratios
proportional to 1=q2 with a maximum value q ¼ 6. We
draw the sky position and orientations ðα; δ;ψ ; θÞ from
uniform distributions on the sphere. The signals are
distributed uniformly in volume with a network SNR for
the IMR signal ranging from SNR ¼ 8 to SNR ¼ 100

(corresponding to luminosity distances from roughly
DL ¼ 100 Mpc up to DL ¼ 5000 Mpc).
We summarize the results in Fig. 5 where we show the

(log) Bayes factor for the individual sources as a function of
the SNR in the ringdown part of the signal only (SNRRD).
Since the sources are distributed uniformly in volume, the
majority of our signals has an SNRRD < 10. In this region,
there is no clear difference between the log Bayes factor for
the GR and non-GR population. In fact, for SNRRD < 10,
even for the non-GR population the preferred model is
the GR waveform (which follows from the fact that
lnBnonGR

GR < 0 for the non-GR population). This is consis-
tent with the fact that the GR and non-GR waveforms
have the same inspiral. Therefore, since the SNR in the
ringdown is small, and Bayesian model selection naturally
incorporates an Occam’s razor selection, the model with
fewer parameters (i.e., the GR waveform) is favored in this
region. However, for SNRRD ≳ 15 we see a separation
between the GR injections and the non-GR injections and
for SNRRD ≳ 25, the non-GR waveform are always favored
for the non-GR events (i.e., lnBnonGR

GR > 0). As one would
expect, the separation becomes much clearer with increas-
ing SNRRD. We note that the threshold SNRRD at which
deviations from GR can be detected are dependent on
the particular non-GR deviation. However, this study
illustrates the nontrivial fact that even at relatively low
SNRs, Bayesian model selection is able to find statistical
evidence for deviations from GR.

B. Bounding free parameters of the ringdown signal

Given a set of detected GW signals from BBHs for which
QNM frequencies and damping times can be measured, the
natural steps to follow are to first test the compatibility of
the waveform with GR using Bayesian model selection, as
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FIG. 5. The log Bayes factors for individual sources. The red
circles represent signals with GR waveforms (EOBNR), while the
blue crosses correspond to the non-GR waveforms (pEOBNR).
A separation between the two is visible for SNRRD ∼ 15, and
becomes more pronounced as the SNR increases.
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done in the previous subsection, and then quantify how
well we can constrain deviations from GR using parameter
estimation. This can be done for single GW events, but
stronger constraints can be obtained by combining the
information from all the detections as shown in Ref. [26].
There, two different approaches were proposed: (i) the odds
ratio obtained in the previous subsection can be combined
by just multiplying the odds ratio coming from all the
events, thus allowing to get stronger evidence for or against
GR. For a large group of N identical events, this method
effectively improves the SNR of the single event case by a
factor ∼N 1=4 [27]; and (ii) assuming that the Bayesian
model selection test gives no evidence for deviations from
GR, one combines the posterior density distributions for
δσlm, which measures the fractional deviation from the
QNM complex frequencies of a Kerr BH in GR:

σlm ¼ σGRlm ð1þ δσlmÞ: ð9Þ

Given that in GR δσlm ¼ 0, the information from multiple
events can be combined by multiplying the posterior
density distributions of all detections as

pðδσjH; d1; d2; d3;…;N Þ ¼ 1

pðδσÞ1−N
YN
A¼1

pðδσjH; dAÞ;

ð10Þ

where N denotes the number of detections. For a large
group of N identical events, the width of this PDF
decreases as ∼N −1=2. We emphasize that when using
Eq. (10) one assumes that the value of δσlm is the same
across all events. Therefore, since for generic theories of
gravity the deviations δσlm could also be a function of the
final BH mass, spin and any other charges that may be
present in the correct theory of gravity, constraints obtained
using this method only make sense if no evidence for
deviations from GR are found after performing the
Bayesian model selection test [26].
More recently Ref. [27] proposed an alternative hypoth-

esis testing method that makes use of the combined
information from multiple detections and could, in princi-
ple, enhance the efficiency to detect subleading modes
compared to the Bayesian model selection method used in
Ref. [26]. This method proposes to make full use of the
information coming from the measured BBH parameters, to
coherently sum the ringdown signal of a target mode from
multiple events. It could, in an ideal scenario, effectively
improve the SNR of a single event by a factor ∼N 1=2,
assuming N identical events [27]. However, implementing
the coherent stacking method of Ref. [27] is technically
very challenging. Here, we follow Ref. [26] and use
Eq. (10) to combine the information from a population
of detected BBHs.

Since for each event we sample on the parameter σlm, we
compute the PDFs for δσlm a posteriori by using Eq. (9). To
compute σGRlm we use the fitting formulas in Ref. [24] (see
Appendix E therein) where for the spin and mass of the
final BH we employ the fitting formulas in Ref. [37] [see
Eqs. (29a) and (29b) therein]. The results for the constraints
on the parameters δσlm, when considering the GR BBH
population described in the previous subsection,9 are
displayed in Fig. 6. In particular, we show how the median
and 95% confidence interval evolve with the number of
detections ordered randomly. Although the constraints
from a single event can be quite uninformative, when all
sources are taken into account the 95% confidence interval
shrinks to a maximum error away from the median of
∼0.7%, ∼1.6% and ∼2.4%, for δf220, δf330 and δτ220,
respectively. As expected and as shown in Fig. 7, we find
that at large enough N , the error decreases approximately
as N −1=2. Overall, our results are consistent with previous
studies [26], although we remind that Ref. [26] used
damped sinusoids for both the injected GW signal and
the recovery, while we injected and recovered with an IMR
waveform that consistently includes time and phase shifts
between QNMs.
It is worth noticing that if we consider only events with

(total) SNR below 30 (which accounts for 60 events of
the entire population), and combine them, we obtain at
95% confidence that the maximum errors away from the
median are ∼1.7%–5.3% and ∼6.7%, for δf220, δf330 and
δτ220, respectively. Moreover, we find that δf220 is the
quantity for which we gain less by combining several
events, because it is the best measured quantity—e.g., for
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9We note that for this study, unlike what was done in the
previous subsection, we keep all waveform’s parameters free.
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some individual events with SNR less than 30, we get errors
on the order of ∼5%. By contrast, if we consider only
events with SNR less than 30, the errors of δf330 and δτ220
for individual events are always larger than 20%.
Quite interestingly, using Eq. (10) for identical

GW150914-like events with mass ratio q ¼ 1.5, total
(redshifted) mass M ¼ 70 M⊙, luminosity distance DL ¼
500 Mpc and inclination θ ¼ 2.2 rad (i.e., the EOBNR
injection with loudness ¼ 1 in Fig. 3), one can estimate
howmany such events would be needed to test the BH’s no-
hair conjecture with Advanced LIGO and Virgo at design
sensitivity, assuming that GR is the correct theory. The
posterior density distributions for a single event is shown in
Fig. 8, where we see that no relevant constraints can be put
on the frequency of the (330) with a single event, however
by combining several observations one can get interesting
constraints. The results are summarized in Fig. 9 where we
plot the 2-σ errors for δf220, δf330 and δτ220. We find that
we would need ∼20 GW150914-like events to constrain
the frequency of the (220) mode by 1% at the 2-σ level,
while to constrain the damping time of the (220) mode by
5% one would need ∼23 such events. On the other hand, to
constrain the frequency of the (330) by 5% we would need
at least ∼32 events, and we note that this last number is
highly dependent on the BBH mass ratio and inclination.
From the expected rates for GW150914-like events [76],
one can conclude that, in the best case scenario, with one
year of observations at design sensitivity one could have
Oð10Þ GW150914-like events, therefore being able to
measure f330 with an error of the order of 10% at the
2-σ level, while f220 and τ220 would be measured with 2-σ
errors of less than 2% and 10%, respectively.
A concrete way to visualize what this means in terms of

testing the no-hair conjecture is to relate the measured
QNM frequencies and damping times with the mass and

spin of a Kerr BH in GR, as done in Refs. [25,43]. Using
the fits of Ref. [24], one can draw bands for each measured
QNM parameter in the mass versus spin plane. If the bands
do not intersect then one can invalidate GR or conclude that
the final object is not a BH. For the GW150914-like events
discussed above, our results are summarized in Fig. 10
where we show the projections of the 95% confidence
intervals for ðf22; f33; τ22Þ in the mass versus spin of the
final compact object, when considering only one event and,
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FIG. 8. Posterior density distributions of the quantities δf220,
δf330, δτ220 and δτ330 for a single GW150914-like event with
mass ratio q ¼ 1.5, total (redshifted) mass M ¼ 70 M⊙, lumi-
nosity distance DL ¼ 500 Mpc and inclination θ ¼ 2.2 rad. The
red solid lines correspond to the injected values.
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for illustration, when combining 30 identical events.10 As
one can see, the bands intersect perfectly at the injected
value (yellow star in Fig. 10) with a significant decrease of
the width of the bands when combining several events. This
illustrates how combining several events can be used to
severely constrain deviations from GR.

V. OUTLOOK

We investigated the advantages of using IMR wave-
forms, with respect to damped-sinusoid models, to measure
ringdown frequencies and damping times in the post-
merger signal of a compact-object coalescence. To address
this goal, we built a parameterized multipolar IMR wave-
form model within the EOB formalism (pEOBNR), and
investigated its ability in measuring the QNM complex
frequencies in GW150914, and in several synthetic GW
signals injected in Gaussian noise.
We found the following important advantages: (i) using

an IMR model, calibrated to NR waveforms, one does not
need to define an a priori unknown starting time at which
the signal can be described as a sum of exponentially
damped sinusoids [25,26,34,45,55,56], therefore avoiding
potential biases due to a nonoptimal choice of the ringdown
starting time [38]; (ii) the IMR model avoids technical
issues inherent to assuming a waveform with a cutoff at a
particular time, namely the need to know in advance the sky
position and time at coalescence [6,34]; (iii) the IMRmodel
naturally includes important physics, such as phase shifts
between different modes, their relative amplitudes and the

presence of overtones [37,46]; and (iv) the IMR model
generically leads to stronger constraints on the QNM
frequencies compared to what can be achieved with a
damped-sinusoid model.
The approach that we here presented should also be seen

as complementary to previous works on the subject.
Besides directly measuring the ringdown frequencies,
our IMR model can also be used to validate the results
obtained with the more agnostic damped-sinusoid models.
In particular, as we showed, the pEOBNR model already
provides very interesting constraints on the frequency and
damping time of the dominant QNM of GW150914 [1].
This work can be improved in several fronts and should be

seen as a first step toward more accurate waveform models
that allow to measure deviations from GR. Although we
presented results using a nonspinning BBH waveform
model, the extension to nonprecessing, spinning BBHs is
straightforward and will be done in the future, using the
recently developed multipolar EOBNR model with spins
aligned/antialigned with the direction perpendicular to the
orbital plane [58]. Given that EOBNR models naturally
encodes time shifts between different modes and their
relative amplitudes and phases, it could in principle be used
as a starting point to perform the coherent stacking proposed
in Refs. [27,28]. A proper implementation of the method is,
however, challenging and requires further work. The IMR
model here presented could also be extended to allow GR
deviations in the inspiral phase. In addition, further work
in detector noise modelling is needed to handle non-
Gaussianities in the data. We do note that longer waveform
models, such as the ones generated with our IMR model, are
in general more robust against deviations from Gaussian
noise than shorter waveform models, such as the damped-
sinusoid models. We hope to come back to these relevant
issues in the near future. Finally, we note that a MCMC
parameter estimation run using the pEOBNR model is in
general much slower than using the much simpler damped

FIG. 10. Left: Projections of the 95% confidence intervals for ðf22; f33; τ22Þ in the mass (M) versus dimensionless spin (j≡ J=M2) of
the final compact object for a GW150914-like event. The yellow star corresponds to the injected value. Right: Same, but after combining
30 GW150914-like identical events.

10We note that in reality all the events will have different
masses and spins. A possible way to produce a plot similar to
Fig. 10 for nonidentical events is to pick a reference event and use
Eq. (9) with the combined posteriors for δσlm to get the BH mass
and spin of the reference event. The requirement that all the bands
intersect at the same point would then be equivalent to all the
modes being consistent with δσlm ¼ 0.
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sinusoid model. However, as already done in the literature
(see e.g., Ref. [77,78]), efficient waveforms can be obtained
building a reduce-order-model of pEOBNR waveforms,
which we plan to develop in the near future.
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