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We extend the class of recently formulated scalar-nonmetricity theories by coupling a five-parameter
nonmetricity scalar to a scalar field and considering a mixed kinetic term between the metric and the scalar
field. The symmetric teleparallel constraint is invoked by Lagrange multipliers or by inertial variation.
The equivalents for the general relativity and ordinary (curvature-based) scalar-tensor theories are obtained
as particular cases. We derive the field equations, discuss some technical details, e.g., debraiding, and
formulate the Hamilton-like approach.
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I. INTRODUCTION

Both the success and failure of general relativity (GR)
motivate the community to conduct the study of gravity
theories in two directions. The first direction focuses on
finding alternative formulations of general relativity, and a
well-known example of this kind is teleparallel gravity [1].
The latter imposes a zero curvature constraint which yields
to an alternative interpretation of gravity: it is torsion [1,2]
or nonmetricity [3,4] rather than curvature that mediates
gravitational interaction. Though a mere rephrasing should
not extend the scope of the theory, it might give new
insights and deeper understanding than the original for-
mulation. For example in classical mechanics the Noether
theorem does not reveal anything that could not be deduced
from the equations of motion. The theorem is nevertheless
useful as it points out what to look for.
The second direction in the study of gravity theories

involves extensions of general relativity. Perhaps the sim-
plest extension is given by including a scalar field in the
gravity sector yielding to scalar-tensor gravity [5,6]. The
first generation of scalar-tensor theories without derivative
couplings or higher derivative terms involves a nonminimal
coupling between the scalar field and the curvature scalar
and therefore these theories are dubbed also as scalar-
curvature theories. Although one could consider multiple
scalar fields [7] and higher generations of scalar-tensor
theories such as Horndeski [8] and beyond [9], the simplest
scalar-curvature theories exhibit inflationary solutions [10],
and are powerful enough to explain phenomenologically the
early inflationary epoch [11] or the current accelerated
expansion of the universe.

In this paper our route encompasses both of the afore-
mentioned directions: we reformulate general relativity
using the symmetric teleparallel connection and extend
the theory by allowing arbitrary coefficients in the quad-
ratic nonmetricity scalar (referred to as the newer general
relativity in [4]) which is nonminimally coupled to a scalar
field. This generalizes the theories formulated in [12] where
the quadratic nonmetricity scalar was simply the quadratic
Einstein Lagrangian, which without nonminimal coupling
would yield to the symmetric teleparallel equivalent of
general relativity.
Considering affine connection as an independent varia-

ble in addition to the metric is referred to as the so-called
Palatini variation or working in the metric-affine frame-
work. The research directions involving nonmetricity are
not new and there are several studies in this field mainly in
the context of metric-affine gravity and possible micro-
structure of spacetime [13–18]. General affine connection
contains additional structures to the Levi-Civita connection
such as torsion and nonmetricity. As the latter are tensorial,
one can argue at a textbook level that including them yields
to just a theory with some additional fields [19]. However,
from the gauge theory perspective one may ascribe to
torsion and nonmetricity a more fundamental meaning and
thus provide a further motivation for their inclusion [20].
A related issue is whether the connection is coupled to
other matter fields and whether it is constrained. A well-
known example with the gravitational Lagrangian given by
the Ricci scalar is the case where a symmetric connection is
neither coupled to matter fields nor invoking any other
constraints, then the Palatini variation yields to no modi-
fication of the Levi-Civita connection. One can motivate
the introduction of constraints from similar considerations
in mechanics where constraints play a very useful role (e.g.,
describing the motion of a simple pendulum). In the current
work we thus impose the symmetric teleparallel constraint,
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for previous studies involving symmetric teleparallelism
consider [3,4,21–32].
The symmetric teleparallel connection relies only on

nonmetricity and possesses neither curvature nor torsion
which yields to some interesting corollaries. One can trans-
form to a zero connection gauge and thereby covariantize the
partial derivatives as well as the split of the Einstein-Hilbert
action into the Einstein Lagrangian density and a boundary
term [3,4]. The symmetric teleparallel covariant derivatives
commute, this property can be for example used in order to
eliminate the Lagrange multipliers from the connection
equation [12]. Instead of introducing the Lagrange multi-
pliers, one could alternatively assume the symmetric inertial
connection from the beginning and perform the so-called
inertial variation, both methods yield the same equations for
the connection (for similar calculations in the torsion-based
teleparallel framework see [33,34]).
As this paper accompanies the work of [12] we look in

more detail some of the issues discussed there but also use a
different perspective. Thus in addition to the nonminimally
coupled quadratic nonmetricity scalar we add to the action a
mixed kinetic term and discuss its role in relation to scalar-
curvature theories. In fact the particular expression is
motivated by the boundary term in general relativity, and
hencewe are actually including a disguised curvature-based
scalar-tensor theory. It is worth to pay attention that in
principle one could considermodified or exoticmatter fields
which are coupled to symmetric teleparallel connection and
yield to nonvanishing hypermomentum. In the latter casewe
would not obtain a simple scalar-tensor (or general rela-
tivity) equivalent since the matter sector is deformed.
A new perspective is the classical mechanics viewpoint

of the quadratic nonmetricity theory. One can interpret the
metric g as the “generalized coordinates” and its covariant
derivative Q, which by definition is the nonmetricity, as the
“generalized velocity.” In the simplest case, by “lowering
the index” with the geometric object G, which is “the
metric” in the kinetic term, one obtains the conjugate
momentum (or superpotential). One can further transform
to the Hamilton-like formulation and define the field space
metric G. It is noteworthy that the objects G and G possess
several interesting properties from which one could obtain
some physical insights (e.g., the initial value formulation).
We adopt the conventions

K½μν� ≡ 1

2
ðKμν − KνμÞ; ð1aÞ

K½μjλjν� ≡ 1

2
ðKμλν − KνλμÞ; ð1bÞ

KðμνÞ ≡ 1

2
ðKμν þ KνμÞ; ð1cÞ

KðμjλjνÞ ≡ 1

2
ðKμλν þ KνλμÞ ð1dÞ

for (anti)symmetrization. We use the mostly plus signature
of the metric and set c ¼ 1.
The paper is organized as follows. In Sec. II we revise

the concepts of nonmetricity and symmetric teleparallel
connection (in that section stressed by STP on top of

quantities, e.g., ∇STP), write down the quadratic kinetic term
for the metric, and recall the contracted second Bianchi
identity. Section III is devoted to postulating the action and
deriving the field equations for the metric tensor gμν, the
scalar field Φ, and for the connection Γλ

μν. In Sec. IV we

make use of ∇STPλgμν ≠ 0 in order to formulate a manifestly
covariant Hamilton-like approach. Section V concludes
the paper. The main body of the paper is followed by
Appendices A–E, which contain further mathematical
details.

II. FOREKNOWLEDGE

A. Nonmetricity Qωμν

The nonmetricity

Qωμν ≡∇ωgμν ¼ QωðμνÞ; Qω
σρ ¼ −∇ωgσρ; ð2Þ

enters the coefficients of the affine connection as

Γλ
μν ¼ Γ

LC
λ
μν þ Lλ

μν þ Kλ
μν; ð3Þ

where

Γ
LC

λ
μν ≡ 1

2
gλωð2∂ðμgjωjνÞ − ∂ωgμνÞ ¼ Γ

LC
λðμνÞ ð3aÞ

is the Levi-Civita part of the connection,

Lλ
μν ≡ −

1

2
gλωð2QðμjωjνÞ −QωμνÞ ¼ LλðμνÞ; ð3bÞ

and

Kλ
μν ≡ 1

2
gλωð2TðμjωjνÞ þ TωμνÞ ¼ gλωK½ωjμjν�: ð3cÞ

Here Tλ
μν ¼ Tλ½μν� is the torsion. (Note that the torsion has

been included for completeness. Actually, in the following
sections we assume it to vanish.)
The nonmetricity tensor (2) possesses two independent

contractions

Qω ≡Qωμνgμν; Q̃μ ≡Qωμνgων: ð4Þ

The first of them is related to the invariant volume form as

∇ω
ffiffiffiffiffiffi
−g

p ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμν∇ωgμν ¼

1

2

ffiffiffiffiffiffi
−g

p
Qω: ð5Þ
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A straightforward calculation leads us further to

ffiffiffiffiffiffi
−g

p
Rσ

σμν ¼ −2∇½μ∇ν�
ffiffiffiffiffiffi
−g

p
− Tλ

μν∇λ
ffiffiffiffiffiffi
−g

p ð6aÞ

¼ ffiffiffiffiffiffi
−g

p ∇½νQμ� −
1

2

ffiffiffiffiffiffi
−g

p
Tλ

μνQλ ð6a0Þ

¼ ffiffiffiffiffiffi
−g

p ∇LC½νQμ� ¼
ffiffiffiffiffiffi
−g

p ∂ ½νQμ�; ð6a″Þ

which is the homothetic or segmental curvature
[cf. Eq. (1.3.34) in Ref. [35]].

B. Symmetric teleparallel connection Γ
STP

λ
μν

In the current paper we shall utilize the symmetric

teleparallel (STP) connection Γ
STP

λ
μν by imposing, in addi-

tion to symmetricity

Γ
STP

λ
μν ¼ Γ

STP
λðμνÞ ⇔ T

STP
σ
μν ≡ 2 Γ

STP
σ ½μν� ¼! 0; ð7aÞ

also flatness

R
STP

σ
ρμν ≡ 2∂ ½μ Γ

STP
σ
ν�ρ þ 2 Γ

STP
σ ½μjλj Γ

STP
λ
ν�ρ ¼! 0: ð7bÞ

In that case, based on the Proposition 10.4.1. in Ref. [36],
there exists a coordinate system fξσg where the connection
coefficients Γ

STP
λ
μν vanish, i.e.,

∃ fξσg∶ ΓSTP λμνðξσÞ ¼ 0 ⇒ ∇STPμðÞjfξσg ¼ ∂μðÞ; ð8Þ

provided that the considered covariant derivative is partial
derivative plus additive terms multiplied by the coefficients

Γ
STP

λ
μν. The result (8) leads us to interesting corollaries. In

particular, first, the covariant derivatives commute [3]
[cf. Eqs. (1.28) and (1.29) in Ref. [37]]

∇STPμ∇
STP

νT jfξσg ¼ ∂μ∂νT ¼ ∂ν∂μT ¼ ∇STPν∇
STP

μT jfξσg; ð9Þ

where T is a tensor (density) of arbitrary rank (and weight).
Second, in an arbitrary coordinate system fxμg, the con-
nection coefficients read [4]

Γ
STP

λ
μν ¼

∂xλ
∂ξσ

∂
∂xμ

�∂ξσ
∂xν
�
; ð10Þ

where fξσg are the coordinates for which (8) holds.
Third, one can covariantize the split [3]

ffiffiffiffiffiffi
−g

p
R
LC ¼ ffiffiffiffiffiffi

−g
p

LE − ∂σð
ffiffiffiffiffiffi
−g

p
ℬσÞ ð11Þ

where [see Eq. (8) in Ref. [3], and also, e.g., Eq. (28) in
Ref. [4]]

LE ¼ Γ
LC

ρ
λσgλνΓ

LC
σ
νρ − Γ

LC
λ
σλΓ

LC
σ
νρgνρ ð11aÞ

¼ ∂λgμν
�
−
1

4
gλωgμσgνρ þ

1

2
δων gμσδλρ

þ 1

4
gμνgλωgσρ −

1

2
gμνδλρδωσ

�
∂ωgσρ ð11a0Þ

is the quadratic Einstein Lagrangian, and

ℬσ ¼ gσρΓ
LC

ν
νρ − Γ

LC
σ
νρgνρ ð11bÞ

¼ gσρð∂ρgμνÞgμν − gσρð∂μgρνÞgμν ð11b0Þ

is the boundary term, hosting the second derivatives of the

metric that reside in R
LC

. From the viewpoint of the Levi-
Civita connection, neither (11a) nor (11b) is a tensor.
However, both terms can be covariantized by considering
the symmetric teleparallel connection and promoting the
partial derivatives in (11a′) and (11b′) to covariant ones,
thus reversing the line of thought that underlies (8). The
Einstein quadratic Lagrangian (11a′) yields [see, e.g.,
Eq. (17) in Ref. [4], as well as Eq. (18) in Ref. [12]]

LE;cov ¼ Q
STP ≡ −

1

4
Q
STP

λμνQ
STP

λμν þ 1

2
Q
STP

λμνQ
STP

νμλ

þ 1

4
Q
STP

μQ
STP

μ −
1

2
Q
STP

μ Q̃
STP

μ; ð12Þ

while [cf. Eq. (17) in Ref. [12]]

ℬσ
cov ¼ Q

STP
σ − Q̃

STP
σ ð13Þ

is the covariantized version of the boundary term (11b′), as

LE;covjfξτg ¼
ð8Þ

LE; ℬσ
covjfξτg ¼

ð8Þ
ℬσ: ð14Þ

C. Kinetic term for the metric gμν

The nonvanishing covariant derivative of the metric gμν

allows us to consider the kinetic term for the metric indeed
analogously to the kinetic energy in classical mechanics.
Let us define1

Q≡Qλ
μνGλ

μν
ω
σρQω

σρ; ð15Þ

1Note that in this section we actually do not need to assume the
symmetric teleparallel connection, we just need the nonmetricity.
Thus, the quantities Qλμν, etc., will not be equipped with “STP”
on top.
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where2

Gλ
μν

ω
σρ ≡ c1δα

ðμgνÞβg
λωδβ

ðσgρÞα þ c2δω
ðνgμÞðσδ

λ
ρÞ

þ c3gμνgλωgσρ þ c4δ λ
ðνgμÞðσδ

ω
ρÞ

þ c5
2
gμνδ λ

ðσδ
ω
ρÞ þ

c5
2
gσρδω

ðμδ
λ
νÞ; ð16Þ

with constants c1;…; c5, and definitions (2), (4), contracts
in Eq. (15) to give [4]

Q ¼ c1QλμνQλμν þ c2QλμνQνμλ þ c3QλQλ

þ c4Q̃μQ̃
μ þ c5QμQ̃

μ: ð17Þ

Let us point out that in addition to the symmetries

Gλ
μν

ω
σρ ¼ Gλ

νμ
ω
σρ ¼ GλðμνÞωσρ ð18aÞ

¼ Gλ
μν

ω
ρσ ¼ Gλ

μν
ω
ðσρÞ ð18bÞ

the tensor Gλ
μν

ω
σρ is symmetric

Gλ
μν

ω
σρ ¼ Gω

σρ
λ
μν ð18cÞ

in the sense of the Definition 3.9 in Ref. [38]. Precisely the
quality (18c) furnishes the result [see definitions (12) in
Ref. [26] and (18) in Ref. [4]]

Pλ
μν ≡ 1

2

∂Q
∂Qλ

μν ¼ Gλ
μν

ω
σρQω

σρ ð19aÞ

¼ c1Qλ
μν þ c2QðμλνÞ þ c3Qλgμν

þ c4δλ
ðμQ̃νÞ þ

c5
2
ðQ̃λgμν þ δλ

ðμQνÞÞ: ð19bÞ

From (19a) one can clearly see a similarity to classical
mechanics. In terms of an analogy, for the simplest case, the
free particle, the “generalized momentum” Pλ

μν is obtained
by taking the derivative of the “kinetic energy” 1

2
Q with

respect to the “generalized velocity” Qλ
μν. “Lowering the

index” of the “generalized velocity” with the “metric”
Gλ

μν
ω
σρ yields the “generalized momentum.”

1. Varying Gλ
μν

ω
σρ

A straightforward calculation shows that the variation of
(16) yields

δGλ
μν

ω
σρ ≡ ðΔGλ

μν
ω
σρÞβαδgαβ; ð20Þ

where

ðΔGλ
μν

ω
σρÞβα ¼

1

2
fδλβgατGτ

μν
ω
σρ þ δωβ gατG

τ
σρ

λ
μν

− 2gαðμGλ
νÞβωσρ − 2gαðσGω

ρÞβλμνg: ð20aÞ

The positioning of the indices emphasizes that the variation
respects the symmetries (18) of Gλ

μν
ω
σρ, i.e.,

ðΔGλ
μν

ω
σρÞβα ¼ ðΔGλðμνÞωðσρÞÞβα ¼ ðΔGω

σρ
λ
μνÞβα: ð20bÞ

While it is clear that varying with respect to a symmetric
object gαβ must yield a symmetric result, a straightforward
calculation verifies

ðΔGλ
μν

ω
σρÞβα ¼ ðΔGλ

μν
ω
σρÞðβαÞ; ð20cÞ

and therefore there is no need to invoke the symmetrizing
brackets. Analogously

∇ξGλ
μν

ω
σρ ¼ −ðΔGλ

μν
ω
σρÞβαQξ

αβ; ð20dÞ

where the minus sign appears due to the convention (2).

2. Equivalent of general relativity

By comparing Eqs. (12) and (17), we conclude that the
symmetric teleparallel equivalent of general relativity is
covered by the coefficients

c1 ¼ −
1

4
; c2 ¼

1

2
; c3 ¼

1

4
; ð21aÞ

c4 ¼ 0; c5 ¼ −
1

2
: ð21bÞ

Expression (16) reduces to

Gλ
μν

ω
σρ ≡ −

1

4
δα
ðμgνÞβg

λωδβ
ðσgρÞα þ

1

2
δω
ðνgμÞðσδ

λ
ρÞ

þ 1

4
gμνgλωgσρ −

1

4
gμνδ λ

ðσδ
ω
ρÞ −

1

4
gσρδω

ðμδ
λ
νÞ; ð22Þ

which is the contracting object in (11a′), symmetrized with
respect to (18). In particular the splitting of the last term
appears due to (18c). Let us point out that the variation (20),
applied to (22), is useful also in the context of general
relativity, if one plugs the Einstein Lagrangian (11a′) into
the Euler-Lagrange equations. Definition (19b) yields

2The form δα
ðμgνÞβg

λωδ β
ðσgρÞα (multiplied by c1) in the first line

of Eq. (16) emphasizes the symmetry (18c) but for practical
calculations gμðρgσÞνgλω¼δαðμgνÞβδ

β
ðσgρÞαg

λω¼gρðμgνÞσgλω is more
suitable.
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Pλ
μν ≡ −

1

4
Qλ

μν þ
1

2
QðμλνÞ

þ 1

4
ðQλ − Q̃λÞgμν −

1

4
δλ
ðμQνÞ ð23Þ

[cf. definition (24) in Ref. [12]].

D. Bianchi identity

If we impose (7), then

R
LC

ω
ρμν ¼ −∇STPμ L

STP
ω
νρ þ ∇STPν L

STP
ω
μρ

− L
STP

λ
μρ L

STP
ω
νλ þ L

STP
λ
νρ L

STP
ω
μλ; ð24aÞ

R
LC

σ
ν ¼

2ffiffiffiffiffiffi−gp ∇STPλ
� ffiffiffiffiffiffi

−g
p

P
STP

λσ
ν

�
þ P

STP
σ
ωλQ

STP

ν
ωλ

−
1

2
∇LCωðQ

STP
ω − Q̃

STP
ωÞδσν ; ð24bÞ

R
LC ¼ Q

STP

−∇LCω
�
Q
STP

ω − Q̃
STP

ω
�
: ð24cÞ

Therefore, by making use of the definitions (3b), (12), (23),
and (24),

Eσ
ν≡R

LC
σ
ν−

1

2
δσνR

LC

¼ 2ffiffiffiffiffiffi−gp ∇STPλ
� ffiffiffiffiffiffi

−g
p

P
STP

λσ
ν

�
þ P

STP
σ
ωλQ

STP

ν
ωλ−

1

2
δσνQ

STP ð25Þ

is the Einstein tensor.
One can show that for a symmetric tensor Eμν ¼ EðμνÞ

∇LCσð ffiffiffiffiffiffi
−g

p
Eσ

νÞ¼ ∇STPσð ffiffiffiffiffiffi
−g

p
Eσ

νÞþ
ffiffiffiffiffiffi
−g

p
L
STP

λσ
νEσλ

¼ ∇STPσð ffiffiffiffiffiffi
−g

p
Eσ

νÞ−
1

2

ffiffiffiffiffiffi
−g

p
Q
STP

ν
λσEσλ: ð26Þ

By a straightforward calculation

∇STPσð ffiffiffiffiffiffi
−g

p
Eσ

νÞ¼2∇STPσ∇
STP

λ

� ffiffiffiffiffiffi
−g

p
P
STP

λσ
ν

�
þ1

2

ffiffiffiffiffiffi
−g

p
Q
STP

ν
λσEλσ;

ð27Þ

where in addition to (20) we made use of

∇STPσ
� ffiffiffiffiffiffi

−g
p

P
STP

σ
ωλ

�
gωμ

¼ ∇STPσ
� ffiffiffiffiffiffi

−g
p

P
STP

σμ
λ

�
þ ffiffiffiffiffiffi

−g
p

P
STP

σ
ωλQ

STP

σ
ωμ; ð28aÞ

∇STPμQ
STP

νσρ¼ ∇STPνQ
STP

μσρ; ∇STPμQ
STP

ν
σρ¼ ∇STPνQ

STP

μ
σρ: ð28bÞ

Hence

∇LCσð ffiffiffiffiffiffi
−g

p
Eσ

νÞ ¼ 2∇STPσ∇
STP

λ

� ffiffiffiffiffiffi
−g

p
P
STP

λσ
ν

�
¼ 0: ð29Þ

The obtained result also follows from the symmetries of the
index structure of the included objects. In particular, based
on (23),

2
ffiffiffiffiffiffi
−g

p
P
STPðλσÞ

ν¼
ffiffiffiffiffiffi−gp
2

�
Q
STP

ν
λσþ1

2
Q
STPðλδσÞν − Q̃

STP
ðλδσÞν −

1

2
Q
STP

νgλσ
�

¼∇STPωð ffiffiffiffiffiffi
−g

p
δðλρ gσÞ½ωδ

ρ�
ν Þ: ð30Þ

Hence, acting on (30) with ∇STPσ∇
STP

λ,

2∇STPσ∇
STP

λ

� ffiffiffiffiffiffi
−g

p
P
STP ðλσÞ

ν

�
¼ ∇STPσ∇

STP

λ∇
STP

ωð
ffiffiffiffiffiffi
−g

p
δðλρ gσÞ½ωδ

ρ�
ν Þ;

ð31Þ

and taking into account that the covariant derivatives
commute (9) yields to the zero result (29).

1. Bianchi identity backwards

Yet another possibility for obtaining the general relativity
motivated coefficients (21) is the following. Let us consider
generic coefficients c1;…; c5 and the definition (19b). By
imposing

∇STPσ∇
STP

λ

� ffiffiffiffiffiffi
−g

p
P
STP

λσ
ν

�
¼! 0 ð32Þ

we obtain 62 different terms, which vanish identically, if

2c1 þ c2 ¼ 0; 2c3 þ c5 ¼ 0; ð33aÞ

c2 þ c5 ¼ 0; c4 ¼ 0: ð33bÞ

Hence, up to an overall multiplier, we obtain the general
relativity motivated coefficients (21).
One can loosen the conditions by demanding only the

second derivatives of Q
STP

λμν to vanish. The explicit terms
in (32) are

1

2
ð2c1 þ c2 þ c4Þ

ffiffiffiffiffiffi
−g

p
gμλgσρ∇STPμ∇

STP

σQ
STP

ρλν ¼ 0; ð34aÞ

1

2
ðc2 þ c4 þ c5Þ

ffiffiffiffiffiffi
−g

p
gμλgσρ∇STPμ∇

STP

σQ
STP

νρλ ¼ 0; ð34bÞ

1

2
ð2c3 þ c5Þ

ffiffiffiffiffiffi
−g

p
gμλ∇STPμ∇

STP

λQ
STP

νσρgσρ ¼ 0; ð34cÞ
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which are the three independent possibilities for placing
indices. Hence, we slightly deform the system (33) to yield

2c1 þ c̃2 ¼ 0; 2c3 þ c5 ¼ 0; ð35aÞ

c̃2 þ c5 ¼ 0; ð35bÞ

where

c̃2 ¼ c2 þ c4: ð36Þ

It is interesting to note that the sum (36) is mentioned in [4]
after Eq. (23).Whatever deviation from the coefficients (21),
however, instantly introduces dozens of terms into (32).

E. Remark

Let us point out that many of the presented results are
actually valid in the usual curvature-based general relativity
as well. Namely, Eqs. (24) are rather the usual definitions in
the symmetric teleparallel disguise, than links between
different geometries. Intuitively, if we consider the coinci-

dent gauge (8) then ∇STP ¼ ∂ and

Γ
STP

λ
μν ¼ Γ

LC
λ
μν þ L

STP
λ
μν ¼ 0 ⇒ L

STP
λ
μν ¼ −Γ

LC
λ
μν: ð37Þ

The definition (24a) therefore yields just the usual Riemann
curvature tensor for the Levi-Civita connection. A straight-
forward calculation verifies that the same holds in an
arbitrary coordinate system—the connection coefficients

Γ
STP

λ
μν for the symmetric teleparallel connection simply

drop out. No connection is introduced while contracting,
and hence none of Eqs. (24) actually contain the symmetric
teleparallel connection. The symmetric teleparallel version
of the Einstein tensor (25) is also just a disguise.
The same holds for the Bianchi identity. In the case of a

coordinate transformation

xλ ¼ xλðxλ0 Þ; gμν ¼
∂xμ0
∂xμ ḡμ0ν0

∂xν0
∂xν ; ð38Þ

for (31) one can show

∂σ∂λ∂ωð
ffiffiffiffiffiffi
−g

p
δðλρ gσÞ½ωδ

ρ�
ν Þ

¼ det

���� ∂x0∂x
���� ∂xν

0

∂xν ∂σ0∂λ0∂ω0 ð ffiffiffiffiffiffi
−ḡ

p
δðλ

0

ρ0 ḡ
σ0Þ½ω0

δρ
0�

ν0 Þ ð39Þ

which verifies that the Bianchi identity has nothing to do
with the symmetric teleparallel connection. In the coinci-

dent gauge ∇STP ¼ ∂ and due to (39) a change of coordinates
actually does not introduce symmetric teleparallel con-
nection coefficients into (31). Partial derivatives as well as
symmetric teleparallel covariant derivatives commute.

Hence, the part with partial derivatives vanishes separately,

and thus, the other half with connection coefficients Γ
STP

λ
μν

must vanish separately as well.
The field equations for the symmetric teleparallel equiv-

alent of general relativity are given by the Einstein tensor
(25) which is sourced by the usual energy-momentum
tensor, and the Bianchi identity (31). Hence, in that theory
and on that level the basic geometrical object, the non-
metricity tensor Qλμν is left undetermined, as we have the
freedom to declare whatever coordinate system to be
the coincident gauge (8). We conclude that on the level
of the field equations the symmetric teleparallel equivalent
of general relativity is rather just the general relativity,
based on the curvature of the Levi-Civita connection, but
disguised as a symmetric teleparallel theory. The situation,
however, changes drastically, once we extend the theory.

III. ACTION AND FIELD EQUATIONS

A. Action

Let us postulate an action for the metric gμν, scalar field
Φ, connection Γω

σρ, and matter fields, collectively denoted
by χ, as

S ¼
Z
M4

d4x
ffiffiffiffiffiffi
−g

p fLg þ LΦ þ Lb þ LL þ Lmg; ð40Þ

composed of the following components.
The kinetic term for the metric gμν,

Lg ≡ Lg½gμν;Γλ
σρ;Φ�≡ 1

2κ2
AðΦÞQ; ð41aÞ

contains in addition to the nonmetricity scalar Q, defined
by (15), also the dimensionless nonminimal coupling
function AðΦÞ. Roughly speaking, as in scalar-curvature
theories [5], the latter introduces a scalar field dependent
gravitational “constant” ∝ κ2=AðΦÞ. Here the constant κ2

wields the dimension, and its numerical value must be
determined from the Newtonian limit.
The kinetic term with noncanonical kinetic coupling

function BðΦÞ, and self-interaction potential VðΦÞ for the
scalar field Φ are described by

LΦ ≡ LΦ½gμν;Φ�

≡ −
1

2κ2
ðBðΦÞgμν∂μΦ∂νΦþ 2l−2VðΦÞÞ: ð41bÞ

The scalar fieldΦ, aswell as the functionsBðΦÞ andVðΦÞ are
considered to be dimensionless.Note thatwe have introduced
yet another dimensionful constant ½l−2�¼ length−2¼½∂2�.
In addition to pure kinetic terms, one can include mixed

term for the metric gμν and scalar field Φ as
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Lb ≡ Lb½gμν;Γλ
σρ;Φ�≡ ϵ

2κ2
∂μAðΦÞðQμ − Q̃μÞ: ð41cÞ

In principle, by making use of (13), we have just integrated
the boundary term in (11) by parts. Let us point out that the
latter is indeed only a motivation, because we do not have
to consider any boundary terms explicitly when postulating
the action (40). The term (41c) has been introduced with a
constant parameter ϵ.
If the matter Lagrangian Lm is directly imported from

general relativity, i.e., without any alterations,3 then there
are two particularly interesting subcases.

(i) If ϵ ¼ 0, and the coefficients c1;…; c5 are given by
(21), then the action (40) is equivalent to the action
(20) in Ref. [12].

(ii) If ϵ ¼ 1, and the coefficients are again those
originating from general relativity (21), then the
action (40) is equivalent to the action in scalar-
curvature theories, see, e.g., action (2.2) in Ref. [6],
but without the boundary term.

The symmetric teleparallel conditions (7) are enforced
by making use of the Lagrange multipliers

LL ≡ LL½Γλ
σρ; λσρμν; λσμν�

≡ κ−2ðλλνρμRλ
νρμ þ λλ

μνTλ
μνÞ; ð41dÞ

where by assumption

λλ
νρμ ¼ λλ

ν½ρμ�; λλ
μν ¼ λλ

½μν�: ð41d0Þ

Finally,

Lm ≡ Lm½gμν;Γλ
σρ; χ�; ð41eÞ

Sm ¼
Z
M4

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð41e0Þ

describes the matter fields χ. Note that Lm may depend on
the connection coefficients Γλ

σρ.

1. Concerning notation

First, we vary the action (40) with respect to the
Lagrange multipliers and in what follows, we already
assume the symmetric teleparallel connection (7), unless
stated otherwise. Therefore, due to narrower scope, we will
omit some of the notational specifications used in [12] and
also in the previous parts of the current paper. In particular,
we omit the STP on top of quantities, and keep the notation
somewhat simpler. Nevertheless, occasionally it is neater to
use the Levi-Civita connection, which in that case would be
denoted by LC on top of the quantities.

Second, we drop the arguments of the functions A, B,
and V. In addition to taking spacetime derivatives of these
functions, we introduce the derivative with respect to the
scalar field Φ as

A0 ≡ dA
dΦ

; B0 ≡ dB
dΦ

; V 0 ≡ dV
dΦ

: ð42Þ

B. Field equation for the metric gμν

Varying the action (40) with respect to the metric gμν

leads us to the expression

δgS ¼ 1

2κ2

Z
M4

d4xf ffiffiffiffiffiffi
−g

p
EðgÞ
μν δgμν þ ∂σð

ffiffiffiffiffiffi
−g

p
ℬσ

ðgÞÞg: ð43Þ

Therefore, the equation of motion for the metric gμν is

EðgÞ
μν ¼ 2ffiffiffiffiffiffi−gp ∇λð

ffiffiffiffiffiffi
−g

p
APλ

μνÞ −
1

2
gμνAQ

þAðPμσρQν
σρ − 2Qρμ

σPρ
νσÞ

þ ϵ
�
gμν∇

LC
σ∇LCσA −∇LCμ∇

LC

νA − 2Pλ
μν∂λA

�
þ 1

2
gμνBgσρ∂σΦ∂ρΦ − B∂μΦ∂νΦ

þ l−2gμνV − κ2T μν ¼ 0; ð44Þ

where the energy-momentum tensor T μν is defined as

T μν ≡ −
2ffiffiffiffiffiffi−gp δSm

δgμν
: ð44aÞ

Due to (20c)

PμσρQν
σρ − 2Qρμ

σPρ
νσ

¼ PðμjσρjQνÞσρ − 2QρðμσPρ
νÞσ ð45aÞ

¼ c1ðQμσρQν
σρ − 2Qρμ

σQρ
νσÞ

− c2Qρμ
σQσν

ρ þ c3ðQμQν − 2QσQσμνÞ
− c4Q̃μQ̃ν − c5Q̃

σQσμν ¼ −qμν; ð45bÞ

where the tensor qμν is defined by Eqs. (21), (98) in
Refs. [4,27], respectively. Let us point out that on the third
line of (44), Pλ

μν is indeed the quantity (23), corresponding
to general relativity, and not the generic Pλ

μν, defined by
(19). This, and also the appearance of the Levi-Civita
covariant derivatives on the same line, is due to the fact that
Eq. (41c), the Lagrangian Lb is related to general relativity.
One can write down different versions of the same equation
and some of those can be found in Appendix E. For
completeness, we include the boundary term

3Note that invoking the usual minimal coupling principle in
general relativity would yield to an additional nonminimal
coupling in the teleparallel framework [39].
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ℬσ
ðgÞ ≡ −½ϵðgμνgσλ∂λA − δσμ∂νAÞ þ 2APσ

μν�δgμν þℬσ
ðm;gÞ;

ð46Þ

whereℬσ
ðm;gÞ is the part that in principle may arise from the

unspecified matter action Sm. The boundary term (46) does
not contribute to the field equations, and contains only the
variation δgμν of the metric, and not its derivative
[cf. Eq. (6) in Ref. [40]].

1. Further comments on equation for gμν

From (44), the field equation for the metric tensor gμν,
one obtains that the second order derivatives of the metric
are contracted by Gλ

μν
ω
σρ as

EðgÞ
μν ¼ −2AGλ

μν
ω
σρ∇λ∇ωgσρ þ � � � : ð47Þ

It remains for further study how this observation is related
to the initial value problem. See the Theorem on page 13
in Ref. [41].
Contracting (44) yields

gμνEðgÞ
μν ¼ ∂λA½ð2C1 − ϵÞQλ þ ð2C2 þ ϵÞQ̃λ�

þ 2A∇LCλðC1Qλ þ C2Q̃
λÞ −AQ

þ ϵ3∇LC λ∇LCλAþ Bgσρ∂σΦ∂ρΦ

þ 4l−2V − κ2T ; ð48Þ

where T ≡ gμνT μν, and the constants C1 and C2 are
defined by (A2a).

C. Field equation for the scalar field Φ
Varying action (40) with respect to the scalar field Φ

reads

δΦS ¼ 1

2κ2

Z
M4

d4xf ffiffiffiffiffiffi
−g

p
EðΦÞδΦþ ∂σð

ffiffiffiffiffiffi
−g

p
ℬσ

ðΦÞÞg: ð49Þ

Hence, the dynamics for the scalar field is governed by

EðΦÞ ≡ 2B∇LCσ∇
LC

σΦþ B0gμν∂μΦ∂νΦ − 2l−2V 0

þA0Q − ϵA0∇LCσðQσ − Q̃σÞ ¼ 0; ð50Þ

while

ℬσ
ðΦÞ ≡ ½ϵA0ðQσ − Q̃σÞ − 2Bgσν∂νΦ�δΦ ð51Þ

[cf. Eq. (7) in Ref. [40]].

Adding (48) to (50) yields

AEðΦÞ þA0gμνEðgÞ
μν

¼ 4A2F ðϵÞ∇LC σ∇LCσΦþ ð2A2F ðϵÞÞ0gμν∂μΦ∂νΦ

− 2l−2ðV 0A − 2A0VÞ − κ2A0T

þ ðA0Þ2∂λΦ½ð2C1 − ϵÞQλ þ ð2C2 þ ϵÞQ̃λ�

þAA0∇LCλ½ð2C1 − ϵÞQλ þ ð2C2 þ ϵÞQ̃λ�; ð52Þ

where

4A2F ðϵÞ≡ 2AB þ ϵ3ðA0Þ2: ð52aÞ

D. Debraiding the equations (44) and (50)

For solving the field equations (44) and (50) or equiv-
alently (52), it would be good to have them debraided [42].
Let us consider two distinct cases.

(i) If

ϵ ¼ 0; ð53Þ

then, with respect to spacetime coordinates, (44)
contains second order derivatives of only the metric,
and (50) contains second derivatives of only the
scalar field. Hence the equations (44) and (50) are in
that case naturally debraided. Let us recall that this
means dropping the boundary-term-motivated La-
grangian Lb, defined by (41c). This observation
holds for each choice of the coefficients c1;…; c5.
In the scalar-tensor extension of general relativity
[corresponding to the coefficients (21), and ϵ ¼ 1],
one would have to transform to the Einstein frame,
in order to obtain the situation, where the equations
are debraided [40]. Thus, one could argue, that if
ϵ ¼ 0, then the theory under consideration is postu-
lated in the Einstein frame. On the other hand, the
matter fields couple to the metric residing in geom-
etry Lagrangian, and hence, it is the Jordan frame.
Therefore, contrary to the scalar-curvature case, one
could say that for the theory with ϵ ¼ 0 (see, e.g.,
[12]), the Einstein and Jordan frames coincide,
exactly as in general relativity. In other words, the
matter fields couple to the propagating tensorial
degree of freedom (d.o.f.). However, to be more
conservative, we follow Ref. [43] and refer to the
frame as the debraiding frame (see Section VI.C in
Ref. [43]).

Let us point out that in this case, adding (48) and
(50) to yield (52) actually introduces second deriv-
atives of the metric to the equation for the scalar
field.
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(ii) If

ϵ ≠ 0; ð54Þ

then the Eq. (44) for the metric gμν inevitably
contains the second derivatives of the scalar field

Φ (note the∇LCμ∇
LC

νA term, which is not a scalar). One
may, however, ease finding solutions by trying to
debraid the equation for the scalar fieldΦ. From (52)
it follows that the sufficient conditions are

2C1 − ϵ¼! 0; 2C2 þ ϵ¼! 0: ð55Þ

E. Field equation for the connection Γλ
μν

Varying the action (40) with respect to the connection
Γλ

μν reveals

δΓS ¼ 1

2κ2

Z
M4

d4xf ffiffiffiffiffiffi
−g

p ðEðΓÞÞλμνδΓλ
μν þ ∂σð

ffiffiffiffiffiffi
−g

p
ℬσ

ðΓÞÞg:

ð56Þ

Thus,

ffiffiffiffiffiffi−gp
4

ðEðΓÞÞλμν≡
≡∇ρð

ffiffiffiffiffiffi
−g

p
λλ

νμρÞ þ ffiffiffiffiffiffi
−g

p
λλ

μν −
ffiffiffiffiffiffi
−g

p
APμν

λ − κ2Hλ
μν

−
ffiffiffiffiffiffi
−g

p
ϵ∂ωAδðωσ gμÞ½σδ

ν�
λ ¼ 0; ð57Þ

and

ℬσ
ðΓÞ ≡ −4λλνμσδΓλ

μν þℬσ
ðm;ΓÞ; ð58Þ

where, as in the variation with respect to the metric,ℬσ
ðm;ΓÞ

is the part which in principle may arise from the unspecified
matter Lagrangian (41e). The hypermomentum density is
defined as

Hλ
μν ≡ −

1

2

δSm
δΓλ

μν
; ð59Þ

and at this point it may have antisymmetric part, but this
will not contribute into what follows. Due to (9) and (41d′)

−
1

4
∇ν∇μ½

ffiffiffiffiffiffi
−g

p ðEðΓÞÞλμν�
¼ ∇ν∇μ½

ffiffiffiffiffiffi
−g

p
AðPðμνÞ

λ − ϵPðμνÞ
λÞ þ κ2Hλ

ðμνÞ�
¼ 0; ð60Þ

which can be easily proven, if one opens the symmetrizing
parenthesis in (57), and takes into account (cf. Eq. (30) in
Ref. [12])

ð∇ν∇μAÞ ffiffiffiffiffiffi
−g

p
PðμνÞ

λ þ 2ð∇νAÞ∇μð
ffiffiffiffiffiffi
−g

p
PðμνÞ

λÞ

¼ −
1

2
∇μ½ð∂νAÞ∇ωð

ffiffiffiffiffiffi
−g

p
gμ½νδω�λ Þ�; ð61Þ

and the Bianchi identity

∇ν∇μð
ffiffiffiffiffiffi
−g

p
PðμνÞ

λÞ ¼ 0 ð62Þ

(see Sec. II D). The result (61) is easily derived from (30)
and

∇μ∇ωð
ffiffiffiffiffiffi
−g

p
gν½μδω�λ Þ ¼ 0: ð63Þ

1. Varying with respect to ξσ

Instead of varying the action (40) with respect to the
generic connection Γλ

μν, and imposing flatness and torsion-
less conditions via the Lagrange multipliers (41d), one may
assume the form (10) and vary with respect to the
coordinates ξσ (see also discussion following Eq. (13) in
Ref. [26]). Note that if this approach has been chosen, then
the Lagrangian (41d) vanishes and therefore no derivatives
of the connection appear in the action (up to the possibility
for introducing exotic matter). Let us note that4

δξ

�∂xλ
∂ξσ
�

¼ −
∂xλ
∂ξω

∂xρ
∂ξσ

∂δξω
∂xρ ; ð64aÞ

δξΓλ
μν ¼ −

∂xλ
∂ξσ Γ

ρ
μν
∂δξσ
∂xρ þ ∂xλ

∂ξσ
∂2δξσ

∂xμ∂xν : ð64bÞ

Therefore

δξS ¼ 1

2κ2

Z
M4

d4xf ffiffiffiffiffiffi
−g

p ðEðΓÞÞλμνδξΓλ
μν þ b:t:g

¼ 1

2κ2

Z
M4

d4x

�
∇ν∇μ½

ffiffiffiffiffiffi
−g

p ðEðΓÞÞλμν�
∂xλ
∂ξσ δξ

σ

þ ∂σð
ffiffiffiffiffiffi
−g

p
ℬσ

ðξÞÞ
	
; ð65Þ

where

ffiffiffiffiffiffi
−g

p
ℬσ

ðξÞ ≡
ffiffiffiffiffiffi
−g

p ðEðΓÞÞλσν
∂xλ
∂ξρ

∂δξρ
∂xν

−∇μð
ffiffiffiffiffiffi
−g

p ðEðΓÞÞλμσÞ
∂xλ
∂ξρ δξ

ρ þℬσ
ðm;ΓÞ: ð66Þ

First, varying with respect to ξσ indeed gave us Eq. (60).
Second, from (65) ð∂xλ=∂ξσÞδξσ ¼ δxλ, which means that
varying with respect to ξσ is varying with respect to the

4As previously, we will not use the STP notation, but we only
consider the symmetric teleparallel connection.
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coordinates xλ. Third, the boundary term (66) contains
∂νδξ

ρ. Let us point out that the procedure was based on
varying the connection coefficients Γλ

μν with respect to ξσ,
and hence the idea holds for arbitrary ðEðΓÞÞλμν.

2. Equation with GR motivated coefficients

Let us consider the coefficients (21), originating from
general relativity, and matter action which does not contain
generic connection. Then PðμνÞ

λ ¼ PðμνÞ
λ, and the equation

for connection simplifies to

ð1 − ϵÞ∇μ½ð∂νAÞ∇ωð
ffiffiffiffiffiffi
−g

p
gμ½νδω�λ Þ� ¼ 0: ð67Þ

Hence, for the action where ϵ ¼ 0, i.e., without the
boundary-term-motivated Lagrangian (41c), we obtain
the equation (30) in Ref. [12]. However, if ϵ ¼ 1 and we
are thus considering an action that is equivalent to the
action in scalar-curvature tensor theories (see action (2.2) in
Ref. [6]), then the symmetric teleparallel connection is not
constrained by this equation. It turns out that in that case, on
the level of the field equations we are once more consid-
ering a curvature-based theory in symmetric teleparallel
disguise—the coefficients of the symmetric teleparallel
connection do not appear in the equations. See also
Sec. II E.
The connection equation (67) can be expressed as

ð1 − ϵÞ∂μ0 ½ð∂ ½ν0AÞ∂λ0�ð
ffiffiffiffiffiffi
−ḡ

p
ḡμ

0ν0 Þ�

¼ ð1 − ϵÞ det
���� ∂x∂ξ
���� ∂xλ∂ξλ0 ∇μ½ð∂ ½νAÞ∇λ�ð

ffiffiffiffiffiffi
−g

p
gμνÞ�; ð68Þ

where the left-hand side is evaluated in ξσ
0
coordinates,

stressed (only in this subsection) by adding a bar on top of
ḡ, and a prime along the indices. The result (68) just
transforms the right hand side under a change of coor-
dinates, convincing us that ξσ

0
are the coordinates in which

the connection coefficients vanish.
In such theory, for particular ansätze of the metric gμν

and the scalar field Φ, Eq. (68) provides us a differential
equation for determining the Jacobian matrix ∂xμ=∂ξμ0 as
∂xμ
∂ξμ0 ∂μ



∂νA

∂xν
∂ξ½ν0

∂xλ
∂ξλ0�∂λ

�
det

����∂x∂ξ
���� ffiffiffiffiffiffi−g
p ∂ξμ0

∂xσ g
σρ∂ξν0
∂xρ
��

¼ 0:

ð69Þ

3. Simple example of Γλ
μν ≠ 0

Although the choice Γλ
μν ¼ 0 is always consistent with

the symmetric teleparallel conditions (7), it might never-
theless lead to contradictions if a theory is presented in a
particular coordinate system.
Let us consider the GR motivated coefficients (21). The

equation for the connection is then (67) or analogously
(68). In Ref. [12] we studied spatially (Levi-Civita) flat

Friedmann cosmology as an example (see Sec. V in
Ref. [12]). It turned out that vanishing connection coef-
ficients Γ̄λ0

μ0ν0 ¼ 0 lead to consistent results, if first the
(Levi-Civita) flat Friedmann-Lemaître-Robertson-Walker
(FLRW) line element is expressed in Cartesian coordinates
ξ0

0 ≡ t, ξ1
0 ≡ x, ξ2

0 ≡ y, ξ3
0 ≡ z, i.e.,

ds2 ¼ −ðdξ00 Þ2 þ ðaðξ00 ÞÞ2δ̄i0j0dξi0dξj0 ; ð70aÞ

and second the scalar field is assumed to depend only on
cosmological time, i.e.,

Φ≡Φðξ00 Þ ⇒ A≡Aðξ00 Þ: ð70bÞ

Equation (68) verifies that result immediately. Namely,
both the metric ḡμν and the scalar field Φ only depend on
the cosmological time t and hence the antisymmetrization
on the first line yields zero. Reducing covariant derivatives
to partial ones is in this case a consistent procedure. The
nonvanishing components of the nonmetricity are

∇00 ḡi0j0 ¼ ∂00 ḡi0j0 ¼ 2Hḡi0j0 ; ð71Þ

where H ≡ _a=a, and _a≡ da=dt.
Perhaps the simplest example of nonvanishing symmet-

ric teleparallel connection coefficients arises, if one eval-
uates (70a) in spherical coordinates x0 ¼ t, x1 ¼ r, x2 ¼ ϑ,
x3 ¼ φ

ξ0 ¼ x0; ξ1 ¼ x1 sin x2 cos x3; ð72aÞ

ξ2 ¼ x1 sin x2 sin x3; ξ3 ¼ x1 cos x2; ð72bÞ

resulting in

ds2 ¼ −ðdx0Þ2 þ gijdxidxj; ð73Þ

ðaðx0ÞÞ−2ðgijÞ ¼

0
B@

1 0 0

0 r2 0

0 0 r2sin2ϑ

1
CA: ð73aÞ

The corresponding Jacobian matrix

�∂ξj0
∂xk
�
¼

0
BBB@

1 0 0 0

0 sinϑ cosφ r cosϑ cosφ −r sinϑ sinφ
0 sinϑ sinφ r cosϑ sinφ r sinϑ cosφ

0 cosϑ −r sinϑ 0

1
CCCA

ð74Þ

and its inverse
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�∂xi
∂ξj0
�

¼

0
BBBBB@

1 0 0 0

0 sin ϑ cosφ sinϑ sinφ cosϑ

0 cos ϑ cosφ
r

cos ϑ sinφ
r − sin ϑ

r

0 − sinφ
r sinϑ

cosφ
r sinϑ 0

1
CCCCCA; ð75Þ

obviously satisfy (69). Calculating the connection coeffi-
cients via (10) leads to

Γ1
22 ¼ −r; Γ1

33 ¼ −rsin2ϑ; Γ2
12 ¼

1

r
; ð76aÞ

Γ2
33 ¼−sinϑcosϑ; Γ3

13 ¼
1

r
; Γ3

32 ¼ cotϑ: ð76bÞ

Expressions (76) are nothing else than the nonvanishing
Christoffel symbols for (73a) [and thus possess metric
compatibility with respect to (73a)]. Applying the pre-
scription (10) on the Jacobian matrix (74) does not generate
temporal components of the connection coefficients, such
as Γ1

01 [cf. Christoffel symbols for whole FLRW metric
given for example by Eqs. (8.44) in Ref. [19]]. The
covariant derivative with respect to the time direction thus
reveals nonmetricity as

∇0gij ¼ ∂0gij ¼ 2Hgij; ð77Þ

which corresponds to (71). All other components of the
covariant derivative yield zero also in the spherical
coordinates.

F. Continuity equation

Let us consider the diffeomorphism invariance of the
action (40)

δζS ¼ 1

2κ2

Z
M4

d4x

� ffiffiffiffiffiffi
−g

p
EðgÞ
μν Lζgμν þ

ffiffiffiffiffiffi
−g

p
EðΦÞLζΦ

þ ffiffiffiffiffiffi
−g

p ðEðΓÞÞλμνLζΓλ
μν þ

δSm
δχ

Lζχ

	
¼ 0; ð78Þ

where we have used (44), (50), and (57), respectively. By
calculating the Lie derivatives, i.e., Lζgμν, LζΦ and LζΓλ

μν

[see Ref. [44], in particular Eq. (10) for the Lie derivative of
the connection], integrating by parts, neglecting matter
equations and boundary terms, we obtain

δζS ¼ 1

2κ2

Z
M4

d4xf ffiffiffiffiffiffi
−g

p ½2∇LCωðgωμEðgÞ
μν Þ þ EðΦÞ∂νΦ�

þ∇ω∇λ½
ffiffiffiffiffiffi
−g

p ðEðΓÞÞνλω�gζν ¼ 0: ð79Þ

In order to calculate the first line

2
ffiffiffiffiffiffi
−g

p ∇LCωðgωμEðgÞ
μν Þ þ ffiffiffiffiffiffi

−g
p

EðΦÞ∂νΦ

¼ 4∇ω∇λ½
ffiffiffiffiffiffi
−g

p
AðPλω

ν − ϵPλω
νÞ� −

ffiffiffiffiffiffi
−g

p
κ22∇LCωT ω

ν;

ð80Þ

we made use of (E1), (26), (24b), and (62). If the
coefficients c1;…; c5 are GR-motivated (21), then for
two particular cases the usual continuity equation

∇LCωT ω
ν ¼ 0 is manifestly fulfilled. First, if A ¼ 1, i.e.,

we consider the symmetric teleparallel equivalent of gen-
eral relativity (with minimally coupled scalar), second, if
ϵ ¼ 1, i.e., the equivalent to scalar-curvature theories (see,
e.g., Ref. [6]). If this is not the case, then let us also include
the third additive expression from (79). Combining (80)
and (60) yields

−2κ2
� ffiffiffiffiffiffi

−g
p ∇LCωT ω

ν þ 2∇ω∇λHν
λω
�
¼ 0; ð81Þ

which also follows from

2κ2δζSm ¼ 0; ð82Þ

i.e., from the diffeomorphism invariance of the matter
action (41e′).

IV. HAMILTON-LIKE APPROACH

A. Field space metric ðGλωÞ
Let us define

ðGλωÞ≡
�

AGΛΩ ϵA0GΛω

ϵA0GλΩ −Bgλω

�
; ð83Þ

where in order to suppress some indices, we have used a
convention where, e.g.,

GΛΩ ≡ Gλ
μν

ω
σρ; GωΛ ≡Gωλ

μν: ð83aÞ

The capital Greek letter indicates the first small Greek
letter. Here

GξΛ ¼Gξλ
μν≡−

1

2
ðgξλgμν−δξðμδ

λ
νÞÞ≡GΛξ ¼Gλ

μν
ξ; ð84Þ

and thus the field space metric (83) only depends on the
usual metric gμν and on the scalar field Φ but not on their
derivatives. By introducing

Ψ≡
�
gμν

Φ

�
; ð85Þ
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we may write the kinetic terms in the action (40) as

AQ − BðΦÞgμν∂μΦ∂νΦþ ϵ∂μAðΦÞðQμ − Q̃μÞ

¼ ð∇λgμν ∇λΦ Þ
�AGλ

μν
ω
σρ ϵA0Gλ

μν
ω

ϵA0Gλω
σρ −Bgλω

��∇ωgσρ

∇ωΦ

�

¼ ∇λΨðGλωÞ∇ωΨ: ð86Þ

Here, in order to simplify the notation, we adopt

∇ωΨ ¼
� ∇Ωg

∇ωΦ

�
¼
�∇ωgσρ

∂ωΦ

�
: ð86aÞ

One can thus write the whole Lagrangian (density) (41), a
function of the metric gμν, its “generalized velocity”5

∇λgμν ≡ −Q μν
λ , the scalar field Φ, ∂λΦ, and matter

Lagrangian Lm as

ffiffiffiffiffiffi
−g

p
L ¼ 1

2κ2
ffiffiffiffiffiffi
−g

p ∇λΨðGλωÞ∇ωΨ

− κ−2l−2 ffiffiffiffiffiffi
−g

p
V þ ffiffiffiffiffiffi

−g
p

Lm: ð87Þ

Note that we have not included the Lagrangian (41d) for the
Lagrange multipliers. We assume the connection to have
the symmetric teleparallel form (10), and in that case ξ
resides entirely in the “generalized velocity” ∇λgμν. Hence,
the whole Lagrangian is indeed only a function of the scalar
field and the metric along with their “generalized veloc-
ities,” and matter Lagrangian Lm.

B. “Generalized momenta”

Based on analogy, let us define “generalized
momenta” as

ΠΛ
ðgÞ≡

∂ ffiffiffiffiffiffi−gp
L

∂∇Λg

¼ ffiffiffiffiffiffi
−g

p
κ−2ðAGΛΩ∇ΩgþϵA0GΛω∂ωΦÞ

¼ ffiffiffiffiffiffi
−g

p
κ−2ð−APΛþϵA0GΛω∂ωΦÞ; ð88aÞ

Πλ
ðΦÞ ≡

∂ ffiffiffiffiffiffi−gp
L

∂∂λΦ
¼ ffiffiffiffiffiffi

−g
p

κ−2ðϵA0GλΩ∇Ωg − Bgλω∂ωΦÞ: ð88bÞ

In this section, for simplicity, we assume that the matter
Lagrangian Lm depends on the metric only algebraically. In
principle one could also consider more generic cases,
where these momenta also include, e.g., the Levi-Civita
connection contribution to the matter Lagrangian Lm.

The details of such calculations are beyond the scope of
the current paper, but there does not seem to be any obvious
reason, why the following results should not hold for the
generic cases as well.
In order to construct a “Hamiltonian”, one should invert

ðGλωÞ. This fails in only two distinct cases. First, if the
condition (B4) does not hold, and hence GΛΩ is not
invertible. Second, if the multiplier (C4) vanishes. Of
course we also assume that A ≠ 0. For all other cases
ðGλωÞ is invertible. See Appendix C.

1. “Generalized momenta” in distinct cases

First, let us consider the case ϵ ¼ 0, then

Πλ ¼ ffiffiffiffiffiffi
−g

p
κ−2
�
AGΛω

σρ∇ωgσρ

−Bgλω∂ωΦ

�
; ð89Þ

and we see that the fields are debraided as suggested in
Sec. III D.
Second, in the case of the coefficients (21) and ϵ ¼ 1,

corresponding to the scalar-curvature [6] equivalent,

Πλ ¼ ffiffiffiffiffiffi
−g

p
κ−2A

�
AGΛω

σρ∇ωĝσρ

−2F ð1Þgλω∂ωΦþA0Gλω
μν∇ωĝμν

�
;

ð90Þ

where in addition to the quantities (22), (52a), (84), we also
defined

ĝμν ≡Agμν; ĝσρ ¼ A−1gσρ ð91Þ

which is the Einstein frame (invariant) metric (see Eq. (18)
in Ref. [45], and Eq. (8) in Ref. [46]). Moreover

I3 ≡�
Z ffiffiffiffiffiffiffiffiffiffiffi

F ð1Þ
p

dΦ ð92Þ

is the Einstein frame (invariant) scalar field (see Eq. (15) in
Ref. [45] and Eq. (5b) in Ref. [46], also Eqs. (55), (60) in
Ref. [45]). Note that in that case we can transform to the
Einstein frame, where A ¼ 1, and debraid the variables.

C. Hamilton-like equations

The “Hamiltonian” is

H≡ κ2

2
ffiffiffiffiffiffi−gp ΠλðG−1

λωÞΠω þ κ−2l−2 ffiffiffiffiffiffi
−g

p
V −

ffiffiffiffiffiffi
−g

p
Lm; ð93Þ

where

Πλ ≡
 

ΠΛ
ðgÞ

Πλ
ðΦÞ

!
ð93aÞ

5Note that by convention we vary with respect to gμν and thus
the “generalized velocity” and also “generalized momentum”
gain a minus sign. One could also vary with respect to gμν and
then the “generalized velocity” would be ∇λgμν ≡þQλμν.
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gathers the “generalized momenta,” and is transposed if
necessary. A straightforward calculation verifies

∇λΨ ¼ ∂H
∂Πλ : ð94Þ

Calculating the equations for ∇λΠλ, and checking the
consistency with Eqs. (44) and (50), namely showing that
up to choice of variables

∇λðΠðgÞÞλμν þ
∂H
∂gμν ¼ð44Þ −

ffiffiffiffiffiffi−gp
2κ2

EðgÞ
μν ; ð95aÞ

∇λΠλ
ðΦÞ þ

∂H
∂Φ ¼ð50Þ −

ffiffiffiffiffiffi−gp
2κ2

EðΦÞ; ð95bÞ

is rather easy if one makes use of the result

δðG−1
λωÞ ¼ −ðG−1

λσ ÞðδGσρÞðG−1
ρωÞ: ð96Þ

Note that we do not need to calculate the expression
explicitly, because the inverses ðG−1

λωÞ contract with “gen-
eralized momenta,” thus yielding up to a multiplier the
“generalized velocities,” analogously to the Lagrangian
case. In principle, however, one can also calculate the
variation of the inverse explicitly, by making use of

δðG−1Þτξζωσρ ¼ −
1

2
fgταðG−1Þβξζωσρ

þ gωαðG−1Þβσρτξζ − 2ðG−1ÞτξζωμðσδρÞβ gαμ
− 2ðG−1ÞωσρτμðξδζÞβ gαμgδgαβ; ð97Þ

which can be shown via (B1) and (20). Note that for
simplicity we assumed that the matter Lagrangian does not
depend on the derivatives of the metric tensor, therefore

T μν ¼ −
2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LmÞ
∂gμν : ð98Þ

Unfortunately one cannot use a Poisson brackets like
structure because the chain rule cannot be invoked. The
field equations already contain contractions and by making
use of these one cannot calculate neither

∂ð Þ
∂ΠΛ

ðgÞ
∇σΠΛ

ðgÞ nor
∂ð Þ
∂Πλ

ðΦÞ
∇σΠλ

ðΦÞ; ð99Þ

unless perhaps in the case when there is a dependence only
on one coordinate, in which case the necessity for con-
tractions would drop somehow appropriately.
Let us point out that in such a Hamilton-like scheme we

only obtain the equations (95), and hence there is no
equivalent to the connection equation (60). We can,
however, reproduce this equation by taking into account

the diffeomorphism invariance of the action, see Sec. III F.
In Eqs. (95) the connection is present in the symmetric
teleparallel covariant derivative which by a suitable choice
of coordinates can be transformed to ordinary partial
derivative. In the generic case such a transformation is
permitted, and consistency must be checked only after one
has chosen particular ansätze for the metric and the scalar
field. Let us recall that varying with respect to ξσ is due to
(65) varying with respect to the coordinates xσ.

V. SUMMARY

In recent years teleparallel theories have gained more
attention as alternative theories of gravity. While one
mostly works in the torsion-based setting, there has been
interest in the direction of symmetric teleparallelism, where
instead of curvature or torsion gravity is effectively
described by nonmetricity. In the current paper we
extended the class of scalar-nonmetricity theories by
coupling the quadratic five-parameter nonmetricity scalar
to a scalar field. This coupling resembles scalar-tensor
theories where the scalar field is coupled to the metric
tensor d.o.f. As our previous work [12] indicates, when one
considers as the quadratic nonmetricity scalar the equiv-
alent for general relativity, one obtains a different theory
than a simple scalar-curvature extension of general rela-
tivity. The current work on the one hand broadens this
extension by five parameter generalization of the general
relativity motivated quadratic nonmetricity scalar (the
newer general relativity [4]), and on the other hand the
inclusion of the boundary-term-motivated mixed kinetic
term for gμν and Φ allows us to obtain an equivalent to the
ordinary scalar-curvature theory as a particular subcase.
Much of the literature on symmetric teleparallelism is

phrased in terms of differential forms (see, e.g., [3,21–24]),
and only recently coordinate basis and explicit formulation
in terms of tensor components have gained more attention
(see [4,12,25–29,31]). Thus, for the benefit of the reader,
we included some foreknowledge in the Sec. II. As most
remarkable results from this section, it is, first, interesting
to observe that the variation of the metriclike object Gλ

μν
ω
σρ

in the contraction (15) is given in terms of itself as
expressed in (20). The hunch behind the result is the
following. In the general relativity the Einstein tensor
contracts to minus the Ricci scalar, i.e., minus the
Einstein-Hilbert Lagrangian. We expect that in the non-
metricity based theory also at least part of the variation with
respect to the metric contracts to minus Q. Hence, in a
sense we have to “detach” the contractionQ ¼ Qλ

μνPλ
μν to

yield (45a). The result is also useful in the curvature-based
general relativity, covered by (22), as we can first make
the noncovariant split (11) and then vary the Einstein
Lagrangian (11a′). Second, let us point out that in many
expressions the inclusion of the symmetric teleparallel
connection is just a disguise, as there exists a purely
Levi-Civita connection based version, see, e.g., (24) for
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the Riemann tensor, and (29) for the Bianchi identity. In the
coincident gauge (8) symmetric teleparallel covariant
derivatives reduce to partial ones, and a rule of thumb is
the following. Let us choose the coincident gauge (8), and
interpret the thereby obtained partial derivatives as regular
partial derivatives, i.e., that do not transform covariantly by
themselves. If the whole expression transforms as a tensor
nevertheless, then this expression does not depend on the
symmetric teleparallel connection in any coordinate system
[see, e.g., Eq. (39)].
The action (40) in Sec. III is motivated as follows. First,

the inclusion of the scalar field potential V in (41b) in
principle allows to describe both early and late time
accelerated expansion of the Universe, as the potential
behaves similarly to the cosmological constant. Second, the
inclusion of the generic five-parameter dependent non-
metricity scalar Q in (41) stems from the observation that
the basic field equations (44), (50), and (57) have the same
form regardless of the particular values of the coefficients
c1;…; c5. Third, it is remarkable and at the same time
expected, that the general-relativity-boundary-term-
motivated Lagrangian (41c) leads to general-relativity-
motivated Pλ

μν [definition (23)] when varied with respect
to the metric as on the third line of Eq. (44), as well as when
varied with respect to the connection which after some
manipulation leads to Eq. (60).
The Hamilton-like formulation in Sec. IV first of all

draws attention to the fact that nonvanishing nonmetricity
immediately allows to introduce a manifestly covariant
“generalized velocity” for the metric. Note, that on the level
discussed in the current paper, the variables are the
“generalized coordinates” gμν, Φ, the corresponding
“generalized momenta” ΠΛ

ðgÞ, Πλ
ðΦÞ, and in addition the

matter fields. The symmetric teleparallel connection is not
explicitly present and this might ease solving the equations.
A particularly interesting subcase is the equivalent to the
scalar-(curvature)tensor theories (see, e.g., Ref. [40]) given
by ϵ ¼ 1 in the Lagrangian (41c) while ci-s are given by
(21). In fact, as the symmetric teleparallel connection drops
out in this case, we have a curvature-based theory in the
symmetric teleparallel disguise. Such a formulation in a
sense allows an interpolation between curvature-based and
nonmetricity-based scalar-tensor theories. The “generalized
momenta” for this particular theory, i.e., Eqs. (90) are
consistent with our previous knowledge as they turn out to
be the momenta for the Einstein frame metric and scalar
field, which describe the two types of propagating
d.o.f. [47]. Last but not least, in order to construct a
“Hamiltonian” (93), we must in principle invert the field
space metric ðGλωÞ, defined by (83). For the subcase under
consideration the necessary and sufficient condition for the
field space metric to be invertible is (C7), which in this case
(ϵ ¼ 1), is the multiplier of the d’Alembert operator in
Eq. (52), and generalizes the condition ω ≠ − 3

2
for the

Brans-Dicke parameter [5,47].

There are different directions for future work. One could
study some specific applications, e.g., in order to distin-
guish the simplest scalar-nonmetricity and scalar-torsion
theories [34,43,48–50] one could study perturbations on a
cosmological background (see Ref. [51]) or carry out the
conventional Hamiltonian analysis. Similar studies could
be carried out in order to compare the new and the newer
general relativity (see Refs. [52] and [31] for recent
references concerning the theories, respectively). From
the curvature-based scalar-tensor theories it is known that
the spontaneous scalarization effect has a considerable
influence in the strong field regime, e.g., in astrophysical
objects such as neutron stars, even if in the weak field
regime the theory is indistinguishable from general rela-
tivity (see, e.g., [53,54] and references therein). It would be
most intriguing to study, especially nowadays, the possible
spontaneous scalarization and its consequences, in particu-
lar on the gravitational waves, also in the context of the
family of scalar-nonmetricity theories proposed in the
current paper. Another direction would be to study more
general actions in the symmetric teleparallel framework,
e.g., include more coupling functions or couplings to matter
(for the latter, see [29]), include the parity violating term,
consider higher derivatives.
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APPENDIX A: CONTRACTIONS OF Gλ
μν

ω
σρ

Let us calculate the contractions of Gλ
μν

ω
σρ, defined by

(16). A straightforward calculation yields

gμνGλ
μν

ω
σρ ¼ C1gσρgλω þ C2δ

λ
ðσδ

ω
ρÞ; ðA1aÞ

δνλG
λ
μν

ω
σρ ¼ C3gμðσδωρÞ þ C4δ

ω
μ gσρ; ðA1bÞ

gλωGλ
μν

ω
σρ ¼ C5gμνgσρ þ C6gσðμgνÞρ; ðA1cÞ

gμσGλ
μν

ω
σρ ¼ C7gλωgνρ þ C8δ

λ
ρδ

ω
ν þ C9δ

λ
νδ

ω
ρ ; ðA1dÞ

where
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C1 ≡ c1 þ 4c3 þ
1

2
c5; C2 ≡ c2 þ c4 þ 2c5; ðA2aÞ

C3 ≡ c1 þ
1

2
c2 þ

5

2
c4 þ

1

2
c5; C4 ≡ 1

2
c2 þ c3 þ

5

4
c5;

ðA2bÞ

C5 ≡ 4c3 þ c5; C6 ≡ 4c1 þ c2 þ c4; ðA2cÞ

C7 ≡ 5

2
c1 þ

1

4
c2 þ c3 þ

1

4
c4; C8 ≡ 3

2
c2 þ

1

2
c5;

ðA2dÞ

C9 ≡ 3

2
c4 þ

1

2
c5: ðA2eÞ

The coefficients C2, C3, C4, C5, C7 are linearly inde-
pendent and form a basis. One can show that

C1 ¼ −
5

2
C2 þ C3 þ 4C4; ðA3aÞ

C6 ¼ −9C2 þ 4C3 þ 16C4 − 4C5; ðA3bÞ

while C8 and C9 are more complicated combinations, also
including C7.
The first four of these coefficients enter the theory

through [see definition (19b)]

Pλ ≡ Pλ
μνgμν ¼ C1Qλ þ C2Q̃

λ; ðA4aÞ

P̃ν ≡ Pλ
μνδ

μ
λ ¼ C4Qν þ C3Q̃ν: ðA4bÞ

Also, if one considers the local Weyl rescaling of the
metric

ḡμν ¼ eΩðΦÞgμν; ḡμν ¼ e−ΩðΦÞgμν ðA5Þ

the nonmetricity tensor Qλμν and its two contractions
transform as

Q̄λμν ≡∇λḡμν ¼ eΩðQλμν þ gμν∂λΩÞ; ðA6aÞ

Q̄λ ≡ Q̄λμνḡμν ¼ Qλ þ 4∂λΩ; ðA6bÞ

¯̃Qλ ≡ Q̄μνλḡμν ¼ Q̃λ þ ∂λΩ: ðA6cÞ

Thus, based on the definition (17), it follows that

Q̄ ¼ e−ΩQþ 2e−ΩC1Qμ∂μΩþ 2e−ΩC2Q̃
μ∂μΩ

þ e−Ωð4C1 þ C2Þgμν∂μΩ∂νΩ: ðA7Þ

For GR motivated values (B11a) Eq. (A7) yields Eq. (33)
in Ref. [12].

APPENDIX B: INVERTING Gλ
μν

ω
σρ

In order to invert Gλ
μν

ω
σρ, defined via (16), with respect

to the Einstein product (see definition (2.1) in Ref. [38]),
i.e., to calculate

ðG−1Þτξζλμν∶ ðG−1ÞτξζλμνGλ
μν

ω
σρ ≡ δωτ δ

ðξ
ðσδ

ζÞ
ρÞ ðB1Þ

explicitly, we make an ansatz as

ðG−1Þτξζλμν ≡ k1gζðμgνÞξgτλ þ k2δ
ðξ
λ g

ζÞðμδνÞτ

þ k3gξζgτλgμν þ k4δ
ðξ
τ gζÞðμδ

νÞ
λ

þ k5
2
gξζδðμτ δ

νÞ
λ þ k6

2
gμνδðξτ δ

ζÞ
λ : ðB2Þ

A straightforward calculation leads us to the following
system of linear algebraic equations

0
BBBBBBBBB@

c1
c2
2

0 0 0 0

c2 c1þ c2
2

0 0 0 0

c3
c5
4

C1 0 C4 0

c4
c4þc5

2
0 C3 0 C2

c5
2

c4
2

C2 0 C3 0
c5
2

c3þ c5
4

0 C4 0 C1

1
CCCCCCCCCA

0
BBBBBBBBB@

k1
k2
k3
k4
k5
2

k6
2

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

1

0

0

0

0

0

1
CCCCCCCCCA
: ðB3Þ

The matrix of the coefficients is regular, if

det ¼
�
c21 þ

1

2
c1c2 −

1

2
c22

�
ðC1C3 − C2C4Þ2 ≠ 0: ðB4Þ

The system (B3) is solved by

k1 ¼
�
c21 þ

1

2
c1c2 −

1

2
c22

�
−1
�
c1 þ

1

2
c2

�
; ðB5aÞ

k2 ¼
�
c21 þ

1

2
c1c2 −

1

2
c22

�
−1
ð−c2Þ; ðB5bÞ

k3 ¼

�

c21 þ
1

2
c1c2 −

1

2
c22

�
ðC1C3 − C2C4Þ

�
−1

×
�
−c21c3 − c1c2c3 þ

1

2
c1c2c5 −

5

2
c1c3c4

þ 5

8
c1c25 −

1

4
c22c3 −

1

4
c22c4 þ

1

4
c22c5 − 7

4
c2c3c4

þ 7

16
c2c25

�
; ðB5cÞ
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k4 ¼

�

c21 þ
1

2
c1c2 −

1

2
c22

�
ðC1C3 − C2C4Þ

�
−1

×

�
−c21c4 þ c1c2c5 − 4c1c3c4 þ c1c25 − c22c3

− c2c3c4 þ
1

4
c2c25

�
; ðB5dÞ

k5
2
¼

�

c21 þ
1

2
c1c2 −

1

2
c22

�
ðC1C3 − C2C4Þ

�
−1

×

�
−
1

2
c21c5 þ c1c2c3 þ

1

2
c1c2c4 −

1

4
c1c2c5

þ c1c3c4 −
1

4
c1c25 þ

1

2
c22c3 −

1

4
c22c5

þ 5

2
c2c3c4 −

5

8
c2c25

�
; ðB5eÞ

k6 ¼ k5: ðB5fÞ

If the determinant (B4) is nonvanishing then the result
(B5f) enforces the symmetry

ðG−1Þτξζλμν ¼ ðG−1Þλμντξζ; ðB6Þ

as in (18c).
For later use, let us define

K1 ≡ k1 þ 4k3 þ
1

2
k6 ¼ C3ðC1C3 − C2C4Þ−1; ðB7aÞ

K2 ≡ k2 þ k4 þ 2k5 ¼ −C2ðC1C3 − C2C4Þ−1; ðB7bÞ

K3≡k1þ
1

2
k2þ

5

2
k4þ

1

2
k5¼C1ðC1C3−C2C4Þ−1; ðB7cÞ

K4 ≡ 1

2
k2 þ k3 þ

5

4
k6 ¼ −C4ðC1C3 − C2C4Þ−1; ðB7dÞ

analogously to (A2a)–(A2b). Conveniently

K1K3 − K2K4 ¼ ðC1C3 − C2C4Þ−1: ðB8Þ

1. Inverting GR motivated Gλ
μν

ω
σρ

For the general relativity case (22)

ðG−1Þτξζλμν ¼ 4δðξλ g
ζÞðμδνÞτ þ 2

3
gξζgτλgμν

−
4

3
δðξτ gζÞðμδ

νÞ
λ −

4

3
gξζδðμτ δ

νÞ
λ −

4

3
gμνδðξτ δ

ζÞ
λ ;

ðB9aÞ

i.e.,

k1 ¼ 0; k2 ¼ 4; k3 ¼
2

3
; ðB10aÞ

k4 ¼ −
4

3
;

k5
2
¼ −

4

3
;

k6
2
¼ −

4

3
: ðB10bÞ

2. Coefficients Ci and Ki in GR motivated case

Based on definitions (A2a), (A2b), (B7), and numerical
values (21), (B10), let us calculate

C1jGR ¼ 1

2
; C2jGR ¼ −

1

2
; ðB11aÞ

C3jGR ¼ −
1

4
; C4jGR ¼ −

1

8
; ðB11bÞ

K1jGR ¼ 4

3
; K2jGR ¼ −

8

3
; ðB11cÞ

K3jGR ¼ −
8

3
; K4jGR ¼ −

2

3
: ðB11dÞ

APPENDIX C: INVERTING THE FIELD
SPACE METRIC ðGλωÞ

In order to invert (83), i.e., the field space metric ðGλωÞ,
let us recall, how block matrices are inverted. From
Wikipedia [55]

�
A B

C D

�−1
¼
�
A−1 þ A−1BF−1CA−1 −A−1BF−1

−F−1CA−1 F−1

�

ðC1Þ

where

F ¼ D − CA−1B: ðC2Þ

In our case

Fξζ ¼ −Bgξζ − ϵ2
ðA0Þ2
A

GξΛðG−1ÞΛΩGΩζ

¼ −2AFgξζ; ðC3Þ

which is invertible, if the multiplier

F≡ 2AB þ ϵ2ðA0Þ2 1
4
½6ðK1 − K4Þ − 3ðK2 − K3Þ�

4A2
; ðC4Þ

where

1

8
½6ðK1 − K4Þ − 3ðK2 − K3Þ�

¼ 9

8

�
k1 −

1

2
k2 þ 2k3 þ

1

2
k4 −

1

2
k5 −

1

2
k6

�
; ðC5Þ
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in front of gξζ is nonvanishing. In terms of the coefficients
c1, …, c5

1

8
½6ðK1 − K4Þ − 3ðK2 − K3Þ�

¼ 9

8

ðc1 þ c2 þ 2c3 þ 2c4 þ 2c5Þ
C1C3 − C2C4

: ðC6Þ

Hence, we see that dividing by zero can only occur, when
(B4) vanishes, but in that case the coefficients ki cannot be
determined via (B3).
In the GR motivated case (B10), or analogously (21) we

obtain

F ¼ 2AB þ ϵ23ðA0Þ2
4A2

≠ 0: ðC7Þ

(i) If ϵ ¼ 0 then this result accommodates the multiplier
of the d’Alembert operator in the scalar field
equation of motion (50).

(ii) If ϵ ¼ 1, then the multiplier is the same as (52a), i.e.,
the multiplier of the d’Alembert operator in (52) (see
also definition (12) in Ref. [45]). Under the assump-
tions this particular equation does not contain
second derivatives of the metric tensor, because
the conditions (55) are fulfilled. Note that this case
corresponds to the scalar-curvature theory [6], and
hence one can transform to the Einstein frame and
decouple the “generalized momenta” (90), which
then also contain (C7).

(iii) If ϵ ≠ 0 and ϵ ≠ 1, then (C7) differs from (52a) by ϵ2

multiplier.
The inverse for the field space metric (83) reads

ðG−1
ωξÞ≡

 ðG−1
ωξÞ11 ðG−1

ωξÞ12
ðG−1

ωξÞ21 ðG−1
ωξÞ22

!
ðC8Þ

where

ðG−1
ωξÞ11 ≡A−1ðG−1ÞΩΞ þ ϵ2

�
A0

A

�
2

ðG−1ÞΩΓGΓμðF−1Þμν
×GνϒðG−1ÞϒΞ; ðC9aÞ

ðG−1
ωξÞ12 ≡ −ϵ

A0

A
ðG−1ÞΩϒGϒμðF−1Þμξ; ðC9bÞ

ðG−1
ωξÞ21 ≡ −ϵ

A0

A
ðF−1ÞωμGμϒðG−1ÞϒΞ; ðC9cÞ

ðG−1
ωξÞ22 ≡ ðF−1Þωξ: ðC9dÞ

A straightforward calculation verifies that indeed

ðGλωÞðG−1
ωξÞ ¼

�ΔΛ
Ξ 0

0 δλξ

�
; ðC10Þ

where

ΔΛ
Ξ ≡ δλξδ

ðσ
ðμδ

ρÞ
νÞ: ðC11Þ

Note that the prescription (C1) could be used recursively,
and hence, if the momenta (88) would also include con-
tributions from the matter Lagrangian Lm, then the inverse
(C8) could be used in the later steps of the recursion.

APPENDIX D: BLOCK DIAGONAL
PARTITIONING OF ðGλωÞ

From the definition (83) of the field space metric ðGλωÞ
one can observe that

ðGλωÞT ≡
�

AGΛΩ ϵA0GΛω

ϵA0GλΩ −Bgλω

�T

≡
�

AGΩΛ ϵA0GωΛ

ϵA0GΩλ −Bgωλ

�
; ðD1Þ

and due to that symmetry it is natural to seek for some
diagonal partitioning procedure for such an object.
A visit to the Mathematics Stack Exchange site [56]

reveals the following. Let

M≡
�
A B

C D

�
ðD2Þ

be a block matrix, then

�
I1 0

−CA−1 I2

��
A B

C D

��
I1 −A−1B

0 I2

�

¼
�
A 0

0 D − CA−1B

�
; ðD3Þ

where I1 and I2 are some suitable unit matrices. In our case
C ¼ BT and ðA−1ÞT ¼ A−1. Under these conditions (D3)
turns out to be a congruence transformation PTMP
where

P ¼
�
I1 −A−1B

0 I2

�
: ðD4Þ

Due to

P−1 ¼
�
I1 A−1B

0 I2

�
ðD5Þ

Eq. (D3) is not a similarity transformation and thus the term
diagonalization would not be suitable. However, for tensor
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components with two indices at the same vertical position,
it is exactly the congruence transformation that corresponds
to a change of the basis.
In our case

ðPω
ξ Þ≡

�ΔΩ
Ξ −ϵ A0

A ðG−1ÞΞΛGΛω

0 δωξ

�
; ðD6Þ

and thus

ðPλ
ξÞTðGξζÞðPω

ζ Þ ¼
�
AGΛΩ 0

0 Fλω

�
: ðD7Þ

In this diagonal partitioning scheme F≡D − CA−1B is
already familiar from (C3).
The “generalized velocities” (86a) transform as

P−1∇Ψ ¼
�ΔΩ

Ξ ϵ A0
A ðG−1ÞΞΛGΛω

0 δωξ

��∇Ωg

∂ωΦ

�
; ðD8Þ

where

ðG−1ÞΞΛGΛω

¼ −
1

2
½gσρδωξ ðK1 − K4Þ þ gωðσδρÞξ ðK2 − K3Þ�. ðD9Þ

If the coefficients k1;…; k5 are given by (B10), and
ϵ ¼ 1 then we obtain the familiar result

∇ωΨ ↦

�
A∇ωĝσρ

∂ωΦ

�
; ðD10Þ

where ĝσρ is defined via (91).

APPENDIX E: DIFFERENT FORMS FOR
EQUATIONS FOR METRIC gμν

Since for a metric incompatible connection the covariant
derivative does not commute with raising an index, one
obtains

gωμEðgÞ
μν ¼ 2ffiffiffiffiffiffi−gp ∇λð

ffiffiffiffiffiffi
−g

p
APλω

νÞ þAPω
σρQν

σρ

−
1

2
δωνAQþ 1

2
δωνBgσρ∂σΦ∂ρΦ − Bgωμ∂μΦ∂νΦ

þ ϵ
�
δων∇

LC
σ∇LCσA −∇LC ω∇LCνA − 2Pλω

ν∂λA
�

þ l−2δων V − κ2T ω
ν ¼ 0: ðE1Þ

Additionally in Eq. (44) one can use the Levi-Civita
covariant derivative instead of the STP one

EðgÞ
μν ¼2∇LCλðAPλ

μνÞ−2AQωλðμPλω
νÞ

þ2AQðμλωPjλωjνÞþAQðμσρPνÞσρ−
1

2
gμνAQ

þ1

2
gμνBgσρ∂σΦ∂ρΦ−B∂μΦ∂νΦþl−2gμνV−κ2T μν

þϵ
�
gμν∇

LC
σ∇LCσA−∇LCμ∇

LC

νA−2Pλ
μν∂λA

�
¼0. ðE2Þ

Note that in such a form we must include symmetrizing
parenthesis explicitly.
Let us consider the case ϵ ¼ 0, and Gλ

μν
ω
σρ ¼ Gλ

μν
ω
σρ

[see definitions (16) and (22)], then one can write a more
transparent form

−A
��

∇LCσ − 1

2
Qσ

�
Lσ

μν þ
1

2
∇LCμQν − Lσ

ρμLρ
σν

−
1

2
gμν∇

LC

σðQσ − Q̃σÞ þ 1

2
gμνQ

�

þ 1

2
gμνðBgσρ∂σΦ∂ρΦþ 2l−2VÞ − B∂μΦ∂νΦ

− ∂σA
�
Lσ

μν −
1

2
gμνðQσ − Q̃σÞ þ 1

2
δσ
ðμQνÞ

�
¼ κ2T μν:

ðE3Þ

Note that due to (6a′′) and (7b) ∇LCμQν ¼ ∇LCðμQνÞ.
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