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We extend the class of recently formulated scalar-nonmetricity theories by coupling a five-parameter
nonmetricity scalar to a scalar field and considering a mixed kinetic term between the metric and the scalar
field. The symmetric teleparallel constraint is invoked by Lagrange multipliers or by inertial variation.
The equivalents for the general relativity and ordinary (curvature-based) scalar-tensor theories are obtained
as particular cases. We derive the field equations, discuss some technical details, e.g., debraiding, and

formulate the Hamilton-like approach.
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I. INTRODUCTION

Both the success and failure of general relativity (GR)
motivate the community to conduct the study of gravity
theories in two directions. The first direction focuses on
finding alternative formulations of general relativity, and a
well-known example of this kind is teleparallel gravity [1].
The latter imposes a zero curvature constraint which yields
to an alternative interpretation of gravity: it is torsion [1,2]
or nonmetricity [3,4] rather than curvature that mediates
gravitational interaction. Though a mere rephrasing should
not extend the scope of the theory, it might give new
insights and deeper understanding than the original for-
mulation. For example in classical mechanics the Noether
theorem does not reveal anything that could not be deduced
from the equations of motion. The theorem is nevertheless
useful as it points out what to look for.

The second direction in the study of gravity theories
involves extensions of general relativity. Perhaps the sim-
plest extension is given by including a scalar field in the
gravity sector yielding to scalar-tensor gravity [5,6]. The
first generation of scalar-tensor theories without derivative
couplings or higher derivative terms involves a nonminimal
coupling between the scalar field and the curvature scalar
and therefore these theories are dubbed also as scalar-
curvature theories. Although one could consider multiple
scalar fields [7] and higher generations of scalar-tensor
theories such as Horndeski [8] and beyond [9], the simplest
scalar-curvature theories exhibit inflationary solutions [10],
and are powerful enough to explain phenomenologically the
early inflationary epoch [11] or the current accelerated
expansion of the universe.
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In this paper our route encompasses both of the afore-
mentioned directions: we reformulate general relativity
using the symmetric teleparallel connection and extend
the theory by allowing arbitrary coefficients in the quad-
ratic nonmetricity scalar (referred to as the newer general
relativity in [4]) which is nonminimally coupled to a scalar
field. This generalizes the theories formulated in [12] where
the quadratic nonmetricity scalar was simply the quadratic
Einstein Lagrangian, which without nonminimal coupling
would yield to the symmetric teleparallel equivalent of
general relativity.

Considering affine connection as an independent varia-
ble in addition to the metric is referred to as the so-called
Palatini variation or working in the metric-affine frame-
work. The research directions involving nonmetricity are
not new and there are several studies in this field mainly in
the context of metric-affine gravity and possible micro-
structure of spacetime [13—18]. General affine connection
contains additional structures to the Levi-Civita connection
such as torsion and nonmetricity. As the latter are tensorial,
one can argue at a textbook level that including them yields
to just a theory with some additional fields [19]. However,
from the gauge theory perspective one may ascribe to
torsion and nonmetricity a more fundamental meaning and
thus provide a further motivation for their inclusion [20].
A related issue is whether the connection is coupled to
other matter fields and whether it is constrained. A well-
known example with the gravitational Lagrangian given by
the Ricci scalar is the case where a symmetric connection is
neither coupled to matter fields nor invoking any other
constraints, then the Palatini variation yields to no modi-
fication of the Levi-Civita connection. One can motivate
the introduction of constraints from similar considerations
in mechanics where constraints play a very useful role (e.g.,
describing the motion of a simple pendulum). In the current
work we thus impose the symmetric teleparallel constraint,
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for previous studies involving symmetric teleparallelism
consider [3,4,21-32].

The symmetric teleparallel connection relies only on
nonmetricity and possesses neither curvature nor torsion
which yields to some interesting corollaries. One can trans-
form to a zero connection gauge and thereby covariantize the
partial derivatives as well as the split of the Einstein-Hilbert
action into the Einstein Lagrangian density and a boundary
term [3,4]. The symmetric teleparallel covariant derivatives
commute, this property can be for example used in order to
eliminate the Lagrange multipliers from the connection
equation [12]. Instead of introducing the Lagrange multi-
pliers, one could alternatively assume the symmetric inertial
connection from the beginning and perform the so-called
inertial variation, both methods yield the same equations for
the connection (for similar calculations in the torsion-based
teleparallel framework see [33,34]).

As this paper accompanies the work of [12] we look in
more detail some of the issues discussed there but also use a
different perspective. Thus in addition to the nonminimally
coupled quadratic nonmetricity scalar we add to the action a
mixed kinetic term and discuss its role in relation to scalar-
curvature theories. In fact the particular expression is
motivated by the boundary term in general relativity, and
hence we are actually including a disguised curvature-based
scalar-tensor theory. It is worth to pay attention that in
principle one could consider modified or exotic matter fields
which are coupled to symmetric teleparallel connection and
yield to nonvanishing hypermomentum. In the latter case we
would not obtain a simple scalar-tensor (or general rela-
tivity) equivalent since the matter sector is deformed.

A new perspective is the classical mechanics viewpoint
of the quadratic nonmetricity theory. One can interpret the
metric g as the “generalized coordinates” and its covariant
derivative Q, which by definition is the nonmetricity, as the
“generalized velocity.” In the simplest case, by “lowering
the index” with the geometric object G, which is “the
metric” in the kinetic term, one obtains the conjugate
momentum (or superpotential). One can further transform
to the Hamilton-like formulation and define the field space
metric &. It is noteworthy that the objects G and & possess
several interesting properties from which one could obtain
some physical insights (e.g., the initial value formulation).

We adopt the conventions

1

K[l“/] EE(K/AU_KLW)’ (la)
1

Ky =5 (K = Koy, (1b)
1

K(l‘”) = E (K/H/ + Kyy)a (IC)
1

Ky =5 Ky + Koz (1d)

for (anti)symmetrization. We use the mostly plus signature
of the metric and set ¢ = 1.

The paper is organized as follows. In Sec. II we revise
the concepts of nonmetricity and symmetric teleparallel

connection (in that section stressed by STP on top of
STP
quantities, e.g., V), write down the quadratic kinetic term

for the metric, and recall the contracted second Bianchi
identity. Section III is devoted to postulating the action and
deriving the field equations for the metric tensor g**, the

scalar field @, and for the connection I'™* e In Sec. IV we
STP
make use of V,g,, # 0 in order to formulate a manifestly

covariant Hamilton-like approach. Section V concludes
the paper. The main body of the paper is followed by
Appendices A-E, which contain further mathematical
details.

II. FOREKNOWLEDGE
A. Nonmetricity Q,,,

The nonmetricity

Qw,uu = va)g/u/ = Qa)(/u/)? 0,” = —nggp, (2)

enters the coefficients of the affine connection as

LC
Fim/ = F}L;w + le/ + Klmn (3)
where

LC

1
Fﬂ;w = Egﬂw(za(yg\m\y) - amg/w) = Fﬂ(/w) (33)

is the Levi-Civita part of the connection,

1
Ll;w = _Eglw(zQ(Mmh/) - Q(Hﬂl/) = Ll(w)’ (Sb)

and

1
K =359 QT wap) + Tow) = 9 Kiap- - (3¢)

Here T%,, = T*,, is the torsion. (Note that the torsion has
been included for completeness. Actually, in the following
sections we assume it to vanish.)

The nonmetricity tensor (2) possesses two independent
contractions

Qm = Qmﬂugﬂy» Q[l = Qa)/,wguw' (4)

The first of them is related to the invariant volume form as

1 1
Vw\/__ = 5 \/__ggﬂvag;w = 5 \/__gQw' (5)
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A straightforward calculation leads us further to

Vv —gR° oy — 2v[y Jv—9- Tlm/v/l V=9 (63)

1
= \/__gv[bQﬂ] - E \/_—gTﬁ;wQ/l (6al)

LC
=V _gv[DQﬂ] =V _ga[yQy]’

which 1is the homothetic or
[cf. Eq. (1.3.34) in Ref. [35]].

(6a")

segmental curvature

STP
B. Symmetric teleparallel connection T’ ’1

In the current paper we shall utilize the symmetric
STP
teleparallel (STP) connection T %,

tion to symmetricity

, by imposing, in addi-

STP STP STP STP

T4, =14, &% =2T%,=0 (Ta)

o=
also flatness

STP

RO'

STP STP

STP |
=29, T %, +20 %y T4, =0.  (7b)

prv
In that case, based on the Proposition 10.4.1. in Ref. [36],
there exists a coordinate system {&°} where the connection

STP
coefficients I" 4, vanish, i.e.,

STP

(e} T 4(E) =05 V,0lwy = 0,0, (8)

provided that the considered covariant derivative is partial

derivative plus additive terms multiplied by the coefficients
STP

r AW. The result (8) leads us to interesting corollaries. In
particular, first, the covariant derivatives commute [3]

[cf. Egs. (1.28) and (1.29) in Ref. [37]]

STP STP

VYT = 0,0,T = 0,0,T =

STP STP

vv vy-n—|{§f’}’ (9)
where T is a tensor (density) of arbitrary rank (and weight).

Second, in an arbitrary coordinate system {x*}, the con-
nection coefficients read [4]

p. _od o oo
P = 5 o \ow ) (10)

where {&°} are the coordinates for which (8) holds.
Third, one can covariantize the split [3]

VIR = =gLg — 0,(\/=gF°) (11)

where [see Eq. (8) in Ref. [3], and also, e.g., Eq. (28) in
Ref. [4]]

LC LC LC}' LC

EE = Fl)ﬂo'gzyr‘o—yp =T M]"(iw)gup (1 13.)

my 1 0] 1 @ A

= aig - Zgﬂ GucYup =+ 5611 glwép
1 0] 1 A S op /
+ Zg;wg/1 Gop — igpwépéo awg (1 13.)

is the quadratic Einstein Lagrangian, and
LC LC

BT = gLV, — 7, g” (11b)
= 97(0,9u)9" = 9" (09 ) 9" (11b)

is the boundary term, hosting the second derivatives of the

metric that reside in ;(i’: From the viewpoint of the Levi-
Civita connection, neither (11a) nor (11b) is a tensor.
However, both terms can be covariantized by considering
the symmetric teleparallel connection and promoting the
partial derivatives in (11a’) and (11b") to covariant ones,
thus reversing the line of thought that underlies (8). The
Einstein quadratic Lagrangian (11a") yields [see, e.g.,
Eq. (17) in Ref. [4], as well as Eq. (18) in Ref. [12]]

STP 1 stp STP/1 1 stp  STP "
'CE,cov = _Z Qﬁ/u/ Q 4 5 Qipy Q W
1 stp STP 1 stp STP
+ZQ#Q”_§Q;4Q”’ (12)

while [cf. Eq. (17) in Ref. [12]]

STP STP

Bioy=0°=0° (13)

is the covariantized version of the boundary term (11b’), as

(8) o (8) 4
‘CE.COV‘{gf} = Lg. t%jcov|{.§’} = 3. (14)

C. Kinetic term for the metric g**

The nonvanishing covariant derivative of the metric g**
allows us to consider the kinetic term for the metric indeed
analogously to the kinetic energy in classical mechanics.
Let us define'

Q= Qlﬂygl;wwgp Qa)ap’ (15)

'Note that in this section we actually do not need to assume the
symmetric teleparallel connection, we just need the nonmetricity.
Thus, the quantities Q,,,,, etc., will not be equipped with “STP”
on top.
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2
where

7N R— C osh ® A
HY op clé(;gy)/}g/1 6(0—9/))(1 + c25(ygﬂ)(r;6/))
+ C3.g/,w.g/1wgap + 0453 gﬂ)(oéw)

+ gﬂyé(}“ﬂéﬁ) + g(r/)é(wéi) (16)

with constants cy, ..., c5, and definitions (2), (4), contracts
in Eq. (15) to give [4]

Q = ¢10,,, 0" + €20, 0% + ;0,0
+C4Q,MQ”+C5Q,L¢QM' (17)

Let us point out that in addition to the symmetries

gl’wa)dp — gzlwwo_p — gl(lw)(uo_ﬂ (18&)
= gﬁwwm =G,." (o0) (18b)

the tensor gﬁwwﬂp is symmetric
gﬂ”ngp — gwgp/llw (18C)

in the sense of the Definition 3.9 in Ref. [38]. Precisely the
quality (18c) furnishes the result [see definitions (12) in
Ref. [26] and (18) in Ref. [4]]

1 99 ® o
Pl{ﬂ” = Ean/,w = gl/w o-pQ(u ’ (193)
=C Qﬂ;w + CZQ(yly) +c3 Qﬂg;w
~ C ~
+ C45&Qy) + ?5 (ng;w + 5(/; Qu)) (19b)

From (19a) one can clearly see a similarity to classical
mechanics. In terms of an analogy, for the simplest case, the
free particle, the “generalized momentum” 73i is obtained
by taking the derivative of the “kinetic energy” 19 with
respect to the “generalized velocity” Q,. “Lowermg the
index” of the “generalized velocity” with the “metric”
gﬂ,wwap yields the “generalized momentum.”

1. Varying G* w’ s )

A straightforward calculation shows that the variation of
(16) yields

The form 5‘; g,,wg.’l“’é(ﬂg 9p)a (multiplied by ¢) in the first 1ine
of Eq. (16) emphasizes the symmetry (18c) but for practical
calculations gﬂ(pgg)bg’“":5849”)/;6{2%),,9’1“’:gp(ﬂgb),,g“’ is more
suitable.

A
5g l”/wop

E(Agﬂ @

Y op

) 5", (20)

where

(AG%" )

T W () T
He op/p { grn 1724 O'p 6 ga‘rg {7/} u

- 2ga(ﬂgl”)/)]wo'p - 2ga(ggw/)>ﬂjﬂu}' (203)

The positioning of the indices emphasizes that the variation
respects the symmetries (18) of G* w” opr ie.,

(Agl 0]

Y22 Up)/}a = (Agﬂ<ﬂv)w(gp)>ﬁ (2Ob)

(8G"0/ )

While it is clear that varying with respect to a symmetric
object g® must yield a symmetric result, a straightforward
calculation verifies

(Ag/l w

w00 = (Ag/l %)

" 0) (e (20c)

and therefore there is no need to invoke the symmetrizing
brackets. Analogously

vgg/l w

7% gp (Agl/wwgp)ﬂanaﬂv (ZOd)

where the minus sign appears due to the convention (2).

2. Equivalent of general relativity

By comparing Eqgs. (12) and (17), we conclude that the
symmetric teleparallel equivalent of general relativity is
covered by the coefficients

1 1

1
CIZ—Z, CQZE, C321, (213)
1
cy =0, s =—=. (21b)
2
Expression (16) reduces to
Gl [ R— 5% gla)é/i 15&) 5/1
Hoep = Z (ﬂgl/)ﬂ (09/)){1 + 5 (ugﬂ)(” P)
1 1 1
+ Zg;wglwgﬂ/) - gﬂué(}L 61) _go'pé(l 51) (22)

which is the contracting object in (11a’), symmetrized with
respect to (18). In particular the splitting of the last term
appears due to (18c). Let us point out that the variation (20),
applied to (22), is useful also in the context of general
relativity, if one plugs the Einstein Lagrangian (11a’) into
the Euler-Lagrange equations. Definition (19b) yields
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1 1
Pﬂuv =72 Qll/w + B Q(ﬂiu)
1 ~ 1
+ Z (Q}L - Ql)g/w - ZE&QU) (23)

[cf. definition (24) in Ref. [12]].

D. Bianchi identity
If we impose (7), then

STP STP STP STP

LC
Ry = _vﬂL “up T V,L “up
STP STP STP STP
- LY, L%, +L", L, (24a)
LC STP STPZ STP STP y
R°, = \/—__gV,l(\/—gP 61/) + P07
1 LC STP STP
—5 V(07 =07, (24b)
LC  STP LC /STP STP
R=0-V,(0"-0°). (24¢)

Therefore, by making use of the definitions (3b), (12), (23),
and (24),

LC 1 Lc
E°,=R"°, —§5§R
STP STP/1 STP STP " 1 stp
:\/—_—gvz(\/—gp 0»)+P0w/1Quw —553Q (25)
is the Einstein tensor.

One can show that for a symmetric tensor E,, = E(,,)

Vo (VTE,) = V o(V7GE",) + G L E
_Se)o'(\/—Eg )__\/_Qv UEo‘ﬂ (26)

By a straightforward calculation

STP STP STP /1 1 STP 2
vo‘(\/_gEﬁb) (\/ P i )+§\/—ng UEllm
(27)
where in addition to (20) we made use of
STP
(¢ F o)
STP STP STP
Vo(VEIP %) + V9P 0 (280)
STP sTP STP STP STP sTP STP STP
vﬂanp:vbQ/mp’ quUGp:vaygp' (28b)

Hence

STP STP

LC

Va(VEIE) =2V,V, (V=P ) =0, (29)
The obtained result also follows from the symmetries of the
index structure of the included objects. In particular, based
on (23),

2= Fun, =1 (Sé"m+”5 =000~ 0.7

STP

V., (V=555 8)). (30)

STP STP

Hence, acting on (30) with V_V,,

STP STP

2,9, (V=P ) =

STP STP STP

V,V, V., (/=gdtges),

(31)

and taking into account that the covariant derivatives
commute (9) yields to the zero result (29).

1. Bianchi identity backwards

Yet another possibility for obtaining the general relativity
motivated coefficients (21) is the following. Let us consider
generic coefficients cy, ..., c5 and the definition (19b). By

imposing
STP STP
(\/_ P io ) Lo (32)
we obtain 62 different terms, which vanish identically, if
2¢; + ¢y =0, 2¢5+¢5 =0, (33a)
¢, +c¢5 =0, ¢y =0. (33b)

Hence, up to an overall multiplier, we obtain the general
relativity motivated coefficients (21).

One can loosen the conditions by demanding only the
STP
second derivatives of @, to vanish. The explicit terms

in (32) are

1 1 STP STP STP
5(201 +C2+C4)V_ggﬂ gpvﬂanp/lv :07 (343)
1 " STP STP STP
§(C2+C4+05)v_ggﬂ gﬂﬂv v(rQupll =0 (34b)
1 STP STP STP
5 (2C3 + CS) V _ggﬂ/1 v,uvll Qu(rpgo—p =0, (34C)
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which are the three independent possibilities for placing
indices. Hence, we slightly deform the system (33) to yield

2¢1+ ¢, =0, 2¢3+¢5 =0, (35a)
&+ cs5 =0, (35b)

where
Gy = Cy + cy. (36)

It is interesting to note that the sum (36) is mentioned in [4]
after Eq. (23). Whatever deviation from the coefficients (21),
however, instantly introduces dozens of terms into (32).

E. Remark

Let us point out that many of the presented results are
actually valid in the usual curvature-based general relativity
as well. Namely, Eqs. (24) are rather the usual definitions in
the symmetric teleparallel disguise, than links between

different geometries. Intuitively, if we consider the coinci-
STP

dent gauge (8) then V = 9 and

STP 2 LC 2 STP 2 STP 2 LC 2
r-,=r*,+L,=0=1~L",=-TI",. (37)
The definition (24a) therefore yields just the usual Riemann
curvature tensor for the Levi-Civita connection. A straight-
forward calculation verifies that the same holds in an

arbitrary coordinate system—the connection coefficients
STP
r 1”,, for the symmetric teleparallel connection simply

drop out. No connection is introduced while contracting,
and hence none of Egs. (24) actually contain the symmetric
teleparallel connection. The symmetric teleparallel version
of the Einstein tensor (25) is also just a disguise.

The same holds for the Bianchi identity. In the case of a
coordinate transformation

o _ oxY
G = Wgﬂ'l/ W ’ (38)
for (31) one can show

8,0,0,(\/=98% ¢ &)
/ 1_/ , ,
= aet| 210 0 0,0, (VL) (39)

Ox | Ox¥

which verifies that the Bianchi identity has nothing to do

with the symmetric teleparallel connection. In the coinci-
STP
dent gauge V = 0 and due to (39) a change of coordinates

actually does not introduce symmetric teleparallel con-
nection coefficients into (31). Partial derivatives as well as
symmetric teleparallel covariant derivatives commute.

Hence, the part with partial derivatives vanishes separately,
STP
and thus, the other half with connection coefficients I" * ww

must vanish separately as well.

The field equations for the symmetric teleparallel equiv-
alent of general relativity are given by the Einstein tensor
(25) which is sourced by the usual energy-momentum
tensor, and the Bianchi identity (31). Hence, in that theory
and on that level the basic geometrical object, the non-
metricity tensor Q,,, is left undetermined, as we have the
freedom to declare whatever coordinate system to be
the coincident gauge (8). We conclude that on the level
of the field equations the symmetric teleparallel equivalent
of general relativity is rather just the general relativity,
based on the curvature of the Levi-Civita connection, but
disguised as a symmetric teleparallel theory. The situation,
however, changes drastically, once we extend the theory.

III. ACTION AND FIELD EQUATIONS
A. Action

Let us postulate an action for the metric ¢"*, scalar field
@, connection ', and matter fields, collectively denoted

by y, as

op>

S = / d*xy/=g{Ly + Lo+ Ly + L1+ L}, (40)
M,

composed of the following components.
The kinetic term for the metric ¢**,

1
£y = L[0Ty ®] =25 A@)Q, (412)

contains in addition to the nonmetricity scalar Q, defined
by (15), also the dimensionless nonminimal coupling
function A(®). Roughly speaking, as in scalar-curvature
theories [5], the latter introduces a scalar field dependent
gravitational “constant” «x?/A(®). Here the constant x*
wields the dimension, and its numerical value must be
determined from the Newtonian limit.

The kinetic term with noncanonical kinetic coupling
function B(®), and self-interaction potential V(®) for the
scalar field @ are described by

£CIZ’ = ‘C(D [g;w’ (I)]

=- 2%2 (B(®) g0, ®0,® + 2£-2V(®)).

(41b)
The scalar field @, as well as the functions B(®) and V(®) are
considered to be dimensionless. Note that we have introduced
yet another dimensionful constant [#~2] =length=2=[5?].

In addition to pure kinetic terms, one can include mixed
term for the metric ¢* and scalar field ® as

084034-6
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€ ~
‘Cb = [’b[g;wv Fﬂﬂp’ (I)] = ?ayA(q))(Qﬂ - Q’u) (410)
In principle, by making use of (13), we have just integrated
the boundary term in (11) by parts. Let us point out that the
latter is indeed only a motivation, because we do not have
to consider any boundary terms explicitly when postulating
the action (40). The term (41c) has been introduced with a
constant parameter e.

If the matter Lagrangian £, is directly imported from
general relativity, i.e., without any alterations,” then there
are two particularly interesting subcases.

(1) If e =0, and the coefficients cy, ..., c5 are given by

(21), then the action (40) is equivalent to the action
(20) in Ref. [12].

(i) If e=1, and the coefficients are again those
originating from general relativity (21), then the
action (40) is equivalent to the action in scalar-
curvature theories, see, e.g., action (2.2) in Ref. [6],
but without the boundary term.

The symmetric teleparallel conditions (7) are enforced

by making use of the Lagrange multipliers

Ly = Lol 2, 45"
=k 2(4"#RY 4 1T, (41d)
where by assumption
Apor = Mo Qe =, (41d)
Finally,
L= Lin[gu-Top. 1], (41e)
Sm = A d*x\/=gL, (41¢)

describes the matter fields y. Note that £,, may depend on
the connection coefficients F’*ap.

1. Concerning notation

First, we vary the action (40) with respect to the
Lagrange multipliers and in what follows, we already
assume the symmetric teleparallel connection (7), unless
stated otherwise. Therefore, due to narrower scope, we will
omit some of the notational specifications used in [12] and
also in the previous parts of the current paper. In particular,
we omit the STP on top of quantities, and keep the notation
somewhat simpler. Nevertheless, occasionally it is neater to
use the Levi-Civita connection, which in that case would be
denoted by LC on top of the quantities.

*Note that invoking the usual minimal coupling principle in
general relativity would yield to an additional nonminimal
coupling in the teleparallel framework [39].

Second, we drop the arguments of the functions A, B,
and V. In addition to taking spacetime derivatives of these
functions, we introduce the derivative with respect to the
scalar field @ as

_d
~do

_dB Ay

/

A/

B. Field equation for the metric g

Varying the action (40) with respect to the metric g*
leads us to the expression

1
0,5 = 5 [ aislyaELor +0,(/=5%,)). (4
Therefore, the equation of motion for the metric g** is

2 1
B = —=ViVAP ) — 56, AQ
+ A(P/mezsz - ZQP”G’P‘DW)
LC LC LC LC
+¢(9u,V VA=V, VA~ 2P ,0,A)
1
+ EgﬂyBngagq)apq) - Baﬂd)ﬁyd)
+7729,V —«*T,, =0, (44)

where the energy-momentum tensor 7, is defined as

2 65
Typ=——=—"". 44a
SN PTT .
Due to (20c)
P/mp anp - 2Qp/40ppv5
= Piulon1 @)™ = 2" P’ o (452)
=0 (Qﬂ(f/) Quﬂp - 2Q/)ﬂﬂQ/)IJ(7)

- CZQ[)yUQm/D + C3<Q;4 Ql/ - ZQGQG;!D)

- C4Q;¢Qu —Cs QGQU[UJ = ~Yu» (45b)

where the tensor g,, is defined by Egs. (21), (98) in
Refs. [4,27], respectively. Let us point out that on the third
line of (44), P* v 18 indeed the quantity (23), corresponding
to general relativity, and not the generic 77’1/“,, defined by
(19). This, and also the appearance of the Levi-Civita
covariant derivatives on the same line, is due to the fact that
Eq. (41c¢), the Lagrangian L is related to general relativity.
One can write down different versions of the same equation
and some of those can be found in Appendix E. For
completeness, we include the boundary term
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Bl = —le(guwyg™ 0, A - 850,A) + 2AP°,, 16" + Bling)
(46)
where %7 | is the part that in principle may arise from the

(m.g)
unspecified matter action S,,,. The boundary term (46) does

not contribute to the field equations, and contains only the
variation 6¢** of the metric, and not its derivative
[cf. Eq. (6) in Ref. [40]].

1. Further comments on equation for g"

From (44), the field equation for the metric tensor ¢**,
one obtains that the second order derivatives of the metric

are contracted by gﬁ,,ywap as

ELLZ) — _ZAgA w

KV op

vlvwgﬂ/) + e (47)

It remains for further study how this observation is related
to the initial value problem. See the Theorem on page 13
in Ref. [41].

Contracting (44) yields

FE) = 8,A[(2C) — €)0* + (2C, + €) 0]

+ 2A%(c, 0* + C,0%) - AQ

LC LC

+ €3V iV, A + By d,®9,P
+4072V - *T, (48)
where 7 = ¢*7,,, and the constants C; and C, are

defined by (A2a).

C. Field equation for the scalar field ®

Varying action (40) with respect to the scalar field ®
reads

1
0pS = —
@ 2K2 M,

d*x{y/=gE P50 + 0,(/=9Bg))}- (49)

Hence, the dynamics for the scalar field is governed by

LC LC

E® =2BV,V°® + B ¢0,00,® — 272V
LC -
+ AQ-eAV,(0"-07) =0, (50)
while

Bl = [eA(Q° ~ 07) = 2By 9, @6 (51)

[cf. Eq. (7) in Ref. [40]].

Adding (48) to (50) yields

AE®) 4 A ¢vE)
LC LC
= 42 F(e)VV,® + 2A2F (¢)) 90,00, ®
— 202V A-24V) - FAT
+ (A)?0,®[(2C, — €)0* + (2C, + €) 07

+ AAV[(2C, = )0 + (20, + €) 7], (52)
where

AA2F (e) = 2AB + €3(A')?. (52a)

D. Debraiding the equations (44) and (50)

For solving the field equations (44) and (50) or equiv-
alently (52), it would be good to have them debraided [42].
Let us consider two distinct cases.

1) If

€=0, (53)

then, with respect to spacetime coordinates, (44)
contains second order derivatives of only the metric,
and (50) contains second derivatives of only the
scalar field. Hence the equations (44) and (50) are in
that case naturally debraided. Let us recall that this
means dropping the boundary-term-motivated La-
grangian L, defined by (41c). This observation
holds for each choice of the coefficients ¢y, ..., cs.
In the scalar-tensor extension of general relativity
[corresponding to the coefficients (21), and € = 1],
one would have to transform to the Einstein frame,
in order to obtain the situation, where the equations
are debraided [40]. Thus, one could argue, that if
€ = 0, then the theory under consideration is postu-
lated in the Einstein frame. On the other hand, the
matter fields couple to the metric residing in geom-
etry Lagrangian, and hence, it is the Jordan frame.
Therefore, contrary to the scalar-curvature case, one
could say that for the theory with ¢ = 0 (see, e.g.,
[12]), the Einstein and Jordan frames coincide,
exactly as in general relativity. In other words, the
matter fields couple to the propagating tensorial
degree of freedom (d.o.f.). However, to be more
conservative, we follow Ref. [43] and refer to the
frame as the debraiding frame (see Section VI.C in
Ref. [43]).

Let us point out that in this case, adding (48) and
(50) to yield (52) actually introduces second deriv-
atives of the metric to the equation for the scalar
field.
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i) If
e#0, (54)

then the Eq. (44) for the metric ¢** inevitably

contains the second derivatives of the scalar field
LC LC
® (note the V,V, A term, which is not a scalar). One

may, however, ease finding solutions by trying to
debraid the equation for the scalar field ®. From (52)
it follows that the sufficient conditions are

2C,—e=0, 2C,+e=0.  (55)

E. Field equation for the connection I"lﬂ,,

Varying the action (40) with respect to the connection
I, reveals

1
orS = 2k? M, d*x{y _9(E<r>),1”l/5r/lﬂv + 05(v _g‘%ﬂ(jl"))}'
(56)
Thus,
-9 v
V7 (i) =
— Vp(\/—_g/h”"”) + \/_—g/hﬂu _ /’_9_1473/41/]L — K2H M
_geaa)A6(O['”gﬂ)[géz] = 0’ (57)
and
@?F> = —4&/{”’4051_‘/{”1/ + @?m,r)’ (58)

where, as in the variation with respect to the metric, .%fm )

is the part which in principle may arise from the unspecified
matter Lagrangian (41e). The hypermomentum density is
defined as

1 65,

124 = —
Ha 2614,

(59)

and at this point it may have antisymmetric part, but this
will not contribute into what follows. Due to (9) and (41d")

1
7 Vuvy [v/ —Q(E(r))/w]

=V, V,[V=9A(P Pur), — ePW))) + k2 H, 1]

=0, (60)
which can be easily proven, if one opens the symmetrizing

parenthesis in (57), and takes into account (cf. Eq. (30) in
Ref. [12])

(V5 A)/=5P%), + 29,409, (y~5P4),)
= S VAV, (58], (61)

and the Bianchi identity

V.V (y=gP");) =0 (62)

(see Sec. II D). The result (61) is easily derived from (30)
and

V.V, (v=g4¥8") = 0. (63)

1. Varying with respect to &°

Instead of varying the action (40) with respect to the
generic connection I'™* > and imposing flatness and torsion-
less conditions via the Lagrange multipliers (41d), one may
assume the form (10) and vary with respect to the
coordinates £° (see also discussion following Eq. (13) in
Ref. [26]). Note that if this approach has been chosen, then
the Lagrangian (41d) vanishes and therefore no derivatives
of the connection appear in the action (up to the possibility
for introducing exotic matter). Let us note that*

Ox* Ox* OxP OSE®
)| == — 4
55 <8§6> DE? DE° OxP (6 a)
ox* 08k Ox* 026&°
I, =——1I7 — . (64
Ol DE° M OxP | DE DxtOx (640)
Therefore
1
8:S =2 d4x{./_—g(E(r))/"5§F’1ﬂ,, +b.t.}
=L adv e m 2 s
212 M, vV¥u A OE°
+o,(v=ge) | (65)
where
Ox* 85§p
- o‘ — (I
950 HE" 58 o
Ox*
=V, (VAED) ) 588+ B (6)

First, varying with respect to £° indeed gave us Eq. (60).
Second, from (65) (9x*/9&°)6&° = 6x*, which means that
varying with respect to £° is varying with respect to the

‘As previously, we will not use the STP notation, but we only
consider the symmetric teleparallel connection.
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coordinates x*. Third, the boundary term (66) contains
0,6&. Let us point out that the procedure was based on
varying the connection coefficients I'* v With respect to &7,

and hence the idea holds for arbitrary (ET)) .

2. Equation with GR motivated coefficients

Let us consider the coefficients (21), originating from
general relativity, and matter action which does not contain
generic connection. Then P#), = P#), and the equation
for connection simplifies to

(1= &)V, (0,4, (V=gg¥5)] =0.  (67)

Hence, for the action where ¢ =0, i.e., without the
boundary-term-motivated Lagrangian (41c), we obtain
the equation (30) in Ref. [12]. However, if ¢ = 1 and we
are thus considering an action that is equivalent to the
action in scalar-curvature tensor theories (see action (2.2) in
Ref. [6]), then the symmetric teleparallel connection is not
constrained by this equation. It turns out that in that case, on
the level of the field equations we are once more consid-
ering a curvature-based theory in symmetric teleparallel
disguise—the coefficients of the symmetric teleparallel
connection do not appear in the equations. See also
Sec. ITE.
The connection equation (67) can be expressed as

(1 - 6)8;/ [(a[u )a/l’]<\/?g”/yl)}
~ (1= 3 259,10, A7 (V=3 (69)

where the left-hand side is evaluated in & coordinates,
stressed (only in this subsection) by adding a bar on top of
g, and a prime along the indices. The result (68) just
transforms the right hand side under a change of coor-
dinates, convincing us that 5"/ are the coordinates in which
the connection coefficients vanish.

In such theory, for particular ansdtze of the metric g,,
and the scalar field ®, Eq. (68) provides us a differential
equation for determining the Jacobian matrix dx* /& as

Oxt ox¥ Ox 85” 85”
R e GV e DI
(69)

3. Simple example of F’lﬂ,, #0

Although the choice I”,w = 0 is always consistent with
the symmetric teleparallel conditions (7), it might never-
theless lead to contradictions if a theory is presented in a
particular coordinate system.

Let us consider the GR motivated coefficients (21). The
equation for the connection is then (67) or analogously
(68). In Ref. [12] we studied spatially (Levi-Civita) flat

Friedmann cosmology as an example (see Sec. V in
Ref. [12]). It turned out that vanishing connection coef-
ficients T* wv =0 lead to consistent results, if first the
(Levi-Civita) flat Friedmann-Lemaitre-Robertson-Walker

(FLRW) line element is expressed in Cartesian coordinates
=1 =x,&=y & =zie,

ds? = —(d&) + (a(&Y))?5,dE"dE",  (70a)
and second the scalar field is assumed to depend only on

cosmological time, i.e.,

® =) 5 A= A&,

(70b)
Equation (68) verifies that result immediately. Namely,
both the metric g,, and the scalar field ® only depend on
the cosmological time ¢ and hence the antisymmetrization
on the first line yields zero. Reducing covariant derivatives
to partial ones is in this case a consistent procedure. The
nonvanishing components of the nonmetricity are

Vogrj = 0ygry = 2Hgy, (71)

where H = a/a, and a = da/dt.

Perhaps the simplest example of nonvanishing symmet-
ric teleparallel connection coefficients arises, if one eval-
uates (70a) in spherical coordinates x* =1, x' = r, x> = 9,
¥ =g

&' = x!sinx? cos x3,

& =0, (72a)

52 I ain v2 cin 3

= x! sin x? sin x3, & =x'cosx?, (72b)

resulting in

dS2 = —(dx0)2 + g,»jdxidxj, (73)
1 0 0
(a(x*)2(gi) =0 0 (73a)
0 0 r%in?d

The corresponding Jacobian matrix

1 0 0 0
ol 0 sindcosg rcosdcosp —rsindsing
<W> - 0 sindsing rcosdsing rsindcosp
0 cosd —rsind 0
(74)

and its inverse
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1 0 0 0
<axi > 0 sindcosg sindsing cosd
o B cos 9 cos cos 9 sin ind | (75)
o¢/ 0 == ST
sin ¢ cos @
0 7 sin/:9 rsind 0

obviously satisfy (69). Calculating the connection coeffi-
cients via (10) leads to

1
F122 = —r, F133 = —rSin219, F212 = —, (768_)
r
1
I =—sindcosd, TP3=-, TIP3 =cotd. (76b)
r

Expressions (76) are nothing else than the nonvanishing
Christoffel symbols for (73a) [and thus possess metric
compatibility with respect to (73a)]. Applying the pre-
scription (10) on the Jacobian matrix (74) does not generate
temporal components of the connection coefficients, such
as I'!); [cf. Christoffel symbols for whole FLRW metric
given for example by Egs. (8.44) in Ref. [19]]. The
covariant derivative with respect to the time direction thus
reveals nonmetricity as

Vogi; = 009;j = 2Hg;;, (77)

which corresponds to (71). All other components of the
covariant derivative yield zero also in the spherical
coordinates.

F. Continuity equation

Let us consider the diffeomorphism invariance of the
action (40)

1
5.8 =—
¢ 2]('2 M,

58,
+ =g(ED)» L, 1T, + Wﬁdf} =0, (78)

d4x{\/—_gE,(fL)£¢g”” + —gE@ LD

where we have used (44), (50), and (57), respectively. By
calculating the Lie derivatives, i.e., L,¢", L,® and L T?,,
[see Ref. [44], in particular Eq. (10) for the Lie derivative of
the connection], integrating by parts, neglecting matter
equations and boundary terms, we obtain

LC
5 =5 [ dly=gV, (¢ El) + EV0,0)
K M,
+V, Valy=g(E®), ]} = 0. (79)

In order to calculate the first line

LC
29V, (¢ EY) + /=gE®) 5, ®

LC
— 4V,,,V,1[ /_gA(fpﬂa)D _ €Pimb)] _ /__gK22vaww
(80)

we made use of (El), (26), (24b), and (62). If the
coefficients c¢y,...,cs are GR-motivated (21), then for
two particular cases the wusual continuity equation

LC

V,7?,=0 is manifestly fulfilled. First, if A =1, i.e.,
we consider the symmetric teleparallel equivalent of gen-
eral relativity (with minimally coupled scalar), second, if
€ = 1, i.e., the equivalent to scalar-curvature theories (see,
e.g., Ref. [6]). If this is not the case, then let us also include
the third additive expression from (79). Combining (80)
and (60) yields

LC
_22 ( /=N T, + 2va,vm/w) —0, (81)
which also follows from
2K25§Sm = 0, (82)

i.e., from the diffeomorphism invariance of the matter
action (41¢").

IV. HAMILTON-LIKE APPROACH
A. Field space metric (&)

Let us define

AG

83
e A/ G (83)

(@) = ( cAGN )

_Bglw

where in order to suppress some indices, we have used a
convention where, e.g.,

gAQ = g/lm/wgp’ (gwA = (ga;/lm/. (83a)

The capital Greek letter indicates the first small Greek
letter. Here

1
_ — < — _
G = O, =~ (479, ~ 5,6 =GN =65 (84)

and thus the field space metric (83) only depends on the
usual metric g,, and on the scalar field ® but not on their

derivatives. By introducing
g””)
) 85
(% 8

b g
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we may write the kinetic terms in the action (40) as

AQ — B(d>)g’“’8ﬂ®8y(b + €8MA(CI))(Q” — Q")
AGHe e A®H, 0N (Y gor
o v )

(Vg vm( o
V(G W, (86)

eA (Siﬂw op

Here, in order to simplify the notation, we adopt

\Y V, g%
V,U‘I’ _ Q4 _ w9 )

V,o® 0,®
One can thus write the whole Lagrangian (density) (41), a
function of the metric ¢*, its ‘“generalized Velocity”5

V¢ = -0, the scalar field ®, 9,®, and matter
Lagrangian L, as

(86a)

1
VI = 5 5 TRV H(G)T,
— k72072 /=gV + /=L (87)

Note that we have not included the Lagrangian (41d) for the
Lagrange multipliers. We assume the connection to have
the symmetric teleparallel form (10), and in that case &
resides entirely in the “generalized velocity” V,¢**. Hence,
the whole Lagrangian is indeed only a function of the scalar
field and the metric along with their “generalized veloc-
ities,” and matter Lagrangian L.

B. “Generalized momenta”

Based on analogy, let us define “generalized
momenta” as
A Ea,/—gﬁ
@™ 9V,g
=/—gk2(AG NV gg+ e A G ), D)
= /=g 2 (—APN+ e A G 0, D), (88a)
. = 0/—gL
@) = 90,0
= /=gk 2 (e A&V o9 — Bg0,,®). (88b)

In this section, for simplicity, we assume that the matter
Lagrangian £, depends on the metric only algebraically. In
principle one could also consider more generic cases,
where these momenta also include, e.g., the Levi-Civita
connection contribution to the matter Lagrangian L.

*Note that by convention we vary with respect to ¢** and thus
the “generalized velocity” and also “generalized momentum”
gain a minus sign. One could also vary with respect to g,, and
then the “generalized velocity” would be V,g,, = +0,,,.

The details of such calculations are beyond the scope of
the current paper, but there does not seem to be any obvious
reason, why the following results should not hold for the
generic cases as well.

In order to construct a “Hamiltonian”, one should invert
(&%), This fails in only two distinct cases. First, if the
condition (B4) does not hold, and hence GA? is not
invertible. Second, if the multiplier (C4) vanishes. Of
course we also assume that A4 # 0. For all other cases
(%%*) is invertible. See Appendix C.

1. “Generalized momenta” in distinct cases

First, let us consider the case ¢ = 0, then

A Awa v(u op
G )

Hll — /=5 K_2<
¢ _Bgﬂma(uq)

and we see that the fields are debraided as suggested in
Sec. III D.

Second, in the case of the coefficients (21) and ¢ =1,
corresponding to the scalar-curvature [6] equivalent,

Hi _ZA AGA(”,;/, va} go’/)
SV —2F(1)g**0,® + A&,V 5" )
(90)

where in addition to the quantities (22), (52a), (84), we also
defined

G = Agﬂvv o =Ag? (91)

which is the Einstein frame (invariant) metric (see Eq. (18)
in Ref. [45], and Eq. (8) in Ref. [46]). Moreover

I,= i/ VF(1)dd (92)

is the Einstein frame (invariant) scalar field (see Eq. (15) in
Ref. [45] and Eq. (5b) in Ref. [46], also Egs. (55), (60) in
Ref. [45]). Note that in that case we can transform to the
Einstein frame, where A = 1, and debraid the variables.

C. Hamilton-like equations

The “Hamiltonian” is

K2

%2_

(DN 4 k2672 /=gV = /=gLm, (93)

J

where

(93a)
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gathers the “generalized momenta,” and is transposed if
necessary. A straightforward calculation verifies

oxX

VY =22
AT A

(94)
Calculating the equations for V,IT%, and checking the
consistency with Egs. (44) and (50), namely showing that
up to choice of variables

O 4) /=9 (9
Vﬁ(H(g))‘ +8g"” = — ) E,fi, (95&)
O (50) /=9
Villly) + 5o = =S5 E@), 95b
o) T oP 2i? (95b)
is rather easy if one makes use of the result
8(93) = —(G:5)(657)(%0)- (96)

Note that we do not need to calculate the expression
explicitly, because the inverses (%) contract with “gen-
eralized momenta,” thus yielding up to a multiplier the
“generalized velocities,” analogously to the Lagrangian
case. In principle, however, one can also calculate the
variation of the inverse explicitly, by making use of

1

5(G)H," = =5 {9675,
+ (G717 5 = 2(G7),% 108 g,
~2(G7), % #4685 g Y557, (97)

which can be shown via (B1) and (20). Note that for
simplicity we assumed that the matter Lagrangian does not
depend on the derivatives of the metric tensor, therefore

T, = -0, (98)
V=9  0¢
Unfortunately one cannot use a Poisson brackets like
structure because the chain rule cannot be invoked. The
field equations already contain contractions and by making
use of these one cannot calculate neither

o

9
o X g, — (©9)

)V HA nor
& O,
unless perhaps in the case when there is a dependence only
on one coordinate, in which case the necessity for con-
tractions would drop somehow appropriately.

Let us point out that in such a Hamilton-like scheme we
only obtain the equations (95), and hence there is no
equivalent to the connection equation (60). We can,
however, reproduce this equation by taking into account

the diffeomorphism invariance of the action, see Sec. III F.
In Eqgs. (95) the connection is present in the symmetric
teleparallel covariant derivative which by a suitable choice
of coordinates can be transformed to ordinary partial
derivative. In the generic case such a transformation is
permitted, and consistency must be checked only after one
has chosen particular ansdtze for the metric and the scalar
field. Let us recall that varying with respect to £° is due to
(65) varying with respect to the coordinates x°.

V. SUMMARY

In recent years teleparallel theories have gained more
attention as alternative theories of gravity. While one
mostly works in the torsion-based setting, there has been
interest in the direction of symmetric teleparallelism, where
instead of curvature or torsion gravity is effectively
described by nonmetricity. In the current paper we
extended the class of scalar-nonmetricity theories by
coupling the quadratic five-parameter nonmetricity scalar
to a scalar field. This coupling resembles scalar-tensor
theories where the scalar field is coupled to the metric
tensor d.o.f. As our previous work [12] indicates, when one
considers as the quadratic nonmetricity scalar the equiv-
alent for general relativity, one obtains a different theory
than a simple scalar-curvature extension of general rela-
tivity. The current work on the one hand broadens this
extension by five parameter generalization of the general
relativity motivated quadratic nonmetricity scalar (the
newer general relativity [4]), and on the other hand the
inclusion of the boundary-term-motivated mixed kinetic
term for g, and @ allows us to obtain an equivalent to the
ordinary scalar-curvature theory as a particular subcase.

Much of the literature on symmetric teleparallelism is
phrased in terms of differential forms (see, e.g., [3,21-24]),
and only recently coordinate basis and explicit formulation
in terms of tensor components have gained more attention
(see [4,12,25-29,31]). Thus, for the benefit of the reader,
we included some foreknowledge in the Sec. II. As most
remarkable results from this section, it is, first, interesting
to observe that the variation of the metriclike object G* W’y
in the contraction (15) is given in terms of itself as
expressed in (20). The hunch behind the result is the
following. In the general relativity the Einstein tensor
contracts to minus the Ricci scalar, i.e., minus the
Einstein-Hilbert Lagrangian. We expect that in the non-
metricity based theory also at least part of the variation with
respect to the metric contracts to minus Q. Hence, in a
sense we have to “detach” the contraction Q = Q,**P* u 1O
yield (45a). The result is also useful in the curvature-based
general relativity, covered by (22), as we can first make
the noncovariant split (11) and then vary the Einstein
Lagrangian (11a"). Second, let us point out that in many
expressions the inclusion of the symmetric teleparallel
connection is just a disguise, as there exists a purely
Levi-Civita connection based version, see, e.g., (24) for
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the Riemann tensor, and (29) for the Bianchi identity. In the
coincident gauge (8) symmetric teleparallel covariant
derivatives reduce to partial ones, and a rule of thumb is
the following. Let us choose the coincident gauge (8), and
interpret the thereby obtained partial derivatives as regular
partial derivatives, i.e., that do not transform covariantly by
themselves. If the whole expression transforms as a tensor
nevertheless, then this expression does not depend on the
symmetric teleparallel connection in any coordinate system
[see, e.g., Eq. (39)].

The action (40) in Sec. III is motivated as follows. First,
the inclusion of the scalar field potential V' in (41b) in
principle allows to describe both early and late time
accelerated expansion of the Universe, as the potential
behaves similarly to the cosmological constant. Second, the
inclusion of the generic five-parameter dependent non-
metricity scalar Q in (41) stems from the observation that
the basic field equations (44), (50), and (57) have the same
form regardless of the particular values of the coefficients
cy,...,Cs. Third, it is remarkable and at the same time
expected, that the general-relativity-boundary-term-
motivated Lagrangian (41c) leads to general-relativity-
motivated P’lﬂy [definition (23)] when varied with respect
to the metric as on the third line of Eq. (44), as well as when
varied with respect to the connection which after some
manipulation leads to Eq. (60).

The Hamilton-like formulation in Sec. IV first of all
draws attention to the fact that nonvanishing nonmetricity
immediately allows to introduce a manifestly covariant
“generalized velocity” for the metric. Note, that on the level
discussed in the current paper, the variables are the
“generalized coordinates” ¢*, ®, the corresponding
“generalized momenta” H@), H?q,), and in addition the
matter fields. The symmetric teleparallel connection is not
explicitly present and this might ease solving the equations.
A particularly interesting subcase is the equivalent to the
scalar-(curvature)tensor theories (see, e.g., Ref. [40]) given
by € =1 in the Lagrangian (41c) while c;-s are given by
(21). In fact, as the symmetric teleparallel connection drops
out in this case, we have a curvature-based theory in the
symmetric teleparallel disguise. Such a formulation in a
sense allows an interpolation between curvature-based and
nonmetricity-based scalar-tensor theories. The “generalized
momenta” for this particular theory, i.e., Egs. (90) are
consistent with our previous knowledge as they turn out to
be the momenta for the Einstein frame metric and scalar
field, which describe the two types of propagating
d.o.f. [47]. Last but not least, in order to construct a
“Hamiltonian” (93), we must in principle invert the field
space metric (€*”), defined by (83). For the subcase under
consideration the necessary and sufficient condition for the
field space metric to be invertible is (C7), which in this case
(e = 1), is the multiplier of the d’Alembert operator in
Eq. (52), and generalizes the condition @ # —3 for the
Brans-Dicke parameter [5,47].

There are different directions for future work. One could
study some specific applications, e.g., in order to distin-
guish the simplest scalar-nonmetricity and scalar-torsion
theories [34,43,48-50] one could study perturbations on a
cosmological background (see Ref. [51]) or carry out the
conventional Hamiltonian analysis. Similar studies could
be carried out in order to compare the new and the newer
general relativity (see Refs. [52] and [31] for recent
references concerning the theories, respectively). From
the curvature-based scalar-tensor theories it is known that
the spontaneous scalarization effect has a considerable
influence in the strong field regime, e.g., in astrophysical
objects such as neutron stars, even if in the weak field
regime the theory is indistinguishable from general rela-
tivity (see, e.g., [53,54] and references therein). It would be
most intriguing to study, especially nowadays, the possible
spontaneous scalarization and its consequences, in particu-
lar on the gravitational waves, also in the context of the
family of scalar-nonmetricity theories proposed in the
current paper. Another direction would be to study more
general actions in the symmetric teleparallel framework,
e.g., include more coupling functions or couplings to matter
(for the latter, see [29]), include the parity violating term,
consider higher derivatives.
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APPENDIX A: CONTRACTIONS OF G* @

W op
Let us calculate the contractions of G MD“’”/), defined by
(16). A straightforward calculation yields

PG, = Cihod” + C257.85),. (Ala)
5", = C39u60%) + CadllGapr (Alb)
9109 10" 5p = Cs9uwop + C69o(u9)p- (Alc)
9G04y = C19 9 + Cs8,5) + Co8i55,  (Ald)
where
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1
Cl =Cy +4C3 +—C5,

5 Cy =cy + ¢y + 2cs5,

(A2a)

1 5 1 1 5
C3ECI+§C2+EC4+§CS, C4E§CZ+C3+ZCSv
(A2b)
C5 = 4C3 + Cs, C6 = 4C1 + Cy + Cy, (AZC)
5 1 1 3 1
C7E§C|+ZC2+C3+ZC4, CgE§C2+§C57
(A2d)
3 1
C9 E§C4 +§C5. (A2e)

The coefficients C,, C3, C4, Cs, C; are linearly inde-
pendent and form a basis. One can show that

5
C1 = —ECQ + C3 —+ 4C4, (A3a)

Cs =—-9C, +4C5 4+ 16C, — 4Cs, (A3b)
while Cg and Cy are more complicated combinations, also
including C;.

The first four of these coefficients enter the theory
through [see definition (19b)]

Pt= ,Pi;wgﬂb = CIQ/1 + C2QA’ (A4a)

P, =P8 = C,0, + C50,. (Adb)
Also, if one considers the local Weyl rescaling of the
metric
G = Q(P) Gy v = e~ (@) [ (AS)
the nonmetricity tensor Q,,, and its two contractions
transform as

Q/l/w = v/lf_]uz/ = eQ(Qﬁm/ + gm/alg)’ (A6a)
0, = 03,7 = 0, +40,Q. (A6D)
0, = 0, 7" = 0, + 0,Q. (A6c)

Thus, based on the definition (17), it follows that

Q =e90Q +2e7%C,0"0,Q + 2e72C,0"9,Q

+ e (4C, + Cy)¢0,00,9. (A7)

For GR motivated values (B11a) Eq. (A7) yields Eq. (33)
in Ref. [12].

APPENDIX B: INVERTING G*,,

M op
In order to invert gﬁwwg , defined via (16), with respect

to the Einstein product (see definition (2.1) in Ref. [38]),
1.e., to calculate

(GDE ()5 G, =608 (Bl
explicitly, we make an ansatz as

(g_l)’[gcll“/ = klgé(,“‘gl’)g‘g’[}L + kzé(fgcxﬂé:)
+ k3 g g + k45<fg§)(”5;)

k k
+5 gl + 2 gsls). (B2)

A straightforward calculation leads us to the following
system of linear algebraic equations

(]

Cq 5 0O 0 0 O kl 1
Cy C1+% 0 0 0 0 k2 0
c S ¢, 0 ¢ 0 ks 0
3 ) i‘ 1 4 _ (B3)
g 225 0 C 0 G ||k 0
S % G 0G 0|3 0
S a+s 06 0 ) \ & 0
The matrix of the coefficients is regular, if
2, ] 1, 2
det = Cl + EC]CZ - §C2 (C1C3 - C2C4) ?é 0. (B4)
The system (B3) is solved by
, 1 1, -1 1
kl = C1+5C1C2—502 C1+§C2 s (BSa)
2 1 o\
k2 =17 -+ 5C1Cr —5C5 (—Cz), (BSb)
2 2
> 1 1, -
k3: C1+EC1C2—§C2 (C1C3—C2C4)
) 1 5
X (—clc3 —Cicrc3 + §c102c5 - 5010304
5 1 1 1 7
+ gClcg - ZC%C:; - ZC%C4 + ZC%CS — ZC2C3C4
7
+]—6C2C§), (BSC)
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1 1 -1
k4 = |:(C% +§C1C2 ——C%) (C1C3 - C2C4):|
2

X (—C%C4 + 10905 — 4cjczcq + €162 — ey

1
— CpC3Cy + ZCZC%) . (BSd)
k 1 1 -1
75 = [(C% t5cc - 5“2) (C\C5 - C2C4)}
1, 1 1
X —50105 + cica03 + 5010204 - Zc1c2c5
1 2 2 2
+ C1C3Cy _chcS +502C3 —ZC2C5
5 5
+§C2€3C4 —§62C§>, (BSC)
k6 - k5 (BSf)

If the determinant (B4) is nonvanishing then the result
(B5f) enforces the symmetry

(G715  = (G (B6)
as in (18c).
For later use, let us define
1
K] = kl + 4k3 —+ Ekﬁ = C3(C1C3 — C2C4)_1, (B7a)
K2 = k2 + k4 + 2k5 = —Cz(cl C3 —_ C2C4)_1, (B7b)
1 5 1 -
Ky=k +§k2 +§k4 +§k5 =C(C1C3-C,C4)™',  (BTc)
1 5 .
Ky= §k2 + k3 + Zke =—C4(C,C3 = C,Cy)7",  (B7d)
analogously to (A2a)-(A2b). Conveniently
K\K3 — KyKy = (C1C3 = CyCy) ! (B8)
1. Inverting GR motivated G*,”
For the general relativity case (22)
1y & — 458 D) 4 2 v
(G )1’ /1” - 45,{9 M6T +_g£ g‘r/lg”
—35“ Oing?) gffa !5 g"”é €59,
(B9a)

, (B10a)
ke 4
S Bl
2 3 (B10b)

2. Coefficients C; and K; in GR motivated case

Based on definitions (A2a), (A2b), (B7), and numerical
values (21), (B10), let us calculate

Cilor =3 CGlor=-3  (BlIa)
CGlaw=-3.  Claw=-g  (BlIb)
K1|GR:g’ K2|GR:_§ (Bllc)
K3‘GR:_§7 Kylgr = — (B11d)

APPENDIX C: INVERTING THE FIELD
SPACE METRIC (%*)

In order to invert (83), i.e., the field space metric (€**),
let us recall, how block matrices are inverted. From
Wikipedia [55]

<A B)—l_(A—1+A—lBF—ICA—1 —A—IBF-1>

C D -F-'cAa™! F!
(C1)
where
F=D-CA™'B. (C2)
In our case
Fie = - - A i) oo
= 2AF g, (C3)
which is invertible, if the multiplier
= 2AB + 2(A)?4 [6({342— K,) - 3(K, — K3)] ()
where
1
3 [6(K) — K4) = 3(K, — K3)]
= g (kl —%kz + 2k; +%k4 —%k5 —%k6>, (C3)
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in front of ¢ is nonvanishing. In terms of the coefficients
Cly +-v5 Cj5

[6(K; — K4) —3(Ks — K3)]

| =

_2(6’1 +C2+2C3 +2C4+2C5) (Cﬁ)
-8 C,Cy— C,Cy ’

Hence, we see that dividing by zero can only occur, when
(B4) vanishes, but in that case the coefficients k; cannot be
determined via (B3).

In the GR motivated case (B10), or analogously (21) we
obtain

2AB + e23(A')?

3= 4A?

£0. (C7)

(1) If e = 0 then this result accommodates the multiplier
of the d’Alembert operator in the scalar field
equation of motion (50).

(ii) If e = 1, then the multiplier is the same as (52a), i.e.,
the multiplier of the d’ Alembert operator in (52) (see
also definition (12) in Ref. [45]). Under the assump-
tions this particular equation does not contain
second derivatives of the metric tensor, because
the conditions (55) are fulfilled. Note that this case
corresponds to the scalar-curvature theory [6], and
hence one can transform to the Einstein frame and
decouple the “generalized momenta” (90), which
then also contain (C7).

(iii) Ife # 0and e # 1, then (C7) differs from (52a) by €2
multiplier.

The inverse for the field space metric (83) reads

(e:h) = ((?,;é)“ (?;é)u)

where

N 2
(Tot) = AG gz +€ <%> (G )ar®(F ),

X G (G ) ya, (C9a)
-1 — A/ —1 T, 1
(D)1 = —e 3 (G )ar ST (F),q (C9)
-1 — A’ -1 T(o-1
(b = —e 7 (F),, 87 (G =, (C9¢)
(b = (F ) (c94)

A straightforward calculation verifies that indeed

A —1 A/E\ O
where
A — sis(oop)
Ag = 5550[5”) (C11)

Note that the prescription (C1) could be used recursively,
and hence, if the momenta (88) would also include con-
tributions from the matter Lagrangian £, then the inverse
(C8) could be used in the later steps of the recursion.

APPENDIX D: BLOCK DIAGONAL
PARTITIONING OF (&%)

From the definition (83) of the field space metric (&)
one can observe that

(giwy‘ _ ( Ag/\Q aA/(ﬁAa))T
eA®2 By
AgQA 6./4/65(”/\
=(vg Cm ) @D
eA'® —Byg

and due to that symmetry it is natural to seek for some
diagonal partitioning procedure for such an object.

A visit to the Mathematics Stack Exchange site [56]
reveals the following. Let

A B
M= ( ) (DZ)
C D
be a block matrix, then
< I 0><A B)(Il —A‘1B>
—CcA™! 1, C D 0 I,
A 0
(3 i)
0 D-CA™'B

where I, and I, are some suitable unit matrices. In our case
C = BT and (A™")T = A~!. Under these conditions (D3)
turns out to be a congruence transformation PTMP

where
(11 —A“B)
P = .
0 I,

P_]_<11 A—lB>
“\o0 I

Eq. (D3) is not a similarity transformation and thus the term
diagonalization would not be suitable. However, for tensor

(D4)
Due to

(D5)
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components with two indices at the same vertical position,
it is exactly the congruence transformation that corresponds
to a change of the basis.

In our case
Ag:wz —€A/ g_l = (SAw
(P?) = ( 0— .A( 5w)_A )v (D6)
4
and thus
AGM 0
wreen - (" L) o)

In this diagonal partitioning scheme F =D — CA™'B is
already familiar from (C3).
The “generalized velocities” (86a) transform as
AL A (G, @A \Y
PIVY — ( 2 €40 )z >< Qg), (D8)
0 57 0,

where

(G 1)zA G

1
= 3 lg75¢(Ky ~ Ko) + 9”5 (Ky ~ K3)]. - (DY)

If the coefficients ki, ..., ks are given by (B10), and
€ = 1 then we obtain the familiar result

AV, >

D10
0, (D10)

w

V\I’»—><

where ¢°” is defined via (91).

APPENDIX E: DIFFERENT FORMS FOR
EQUATIONS FOR METRIC g#

Since for a metric incompatible connection the covariant
derivative does not commute with raising an index, one
obtains

2

V'
1 1

— 5 00AQ + 5 8By ,00,® — By, 00,0

gmﬂEfg) — vl(\/__gA’l)iwy) + A'])(HO_PQDO'/;

LC LC

LC LC
+ €<5Z’V V. A-VoV, A 2P’1“’D81A)
+ 7250V —k*T%, = 0. (E1)
Additionally in Eq. (44) one can use the Levi-Civita
covariant derivative instead of the STP one
E{Y) =2V,(AP,,) ~2AQ ., P*
wo— p) 7% A v)
1
+2A00 " Pliajy) + AQu" Pojop =5 9uAQ
1
+§g,,y8g””8ﬂ<b8pcb—B(?#(DQDCD—I—K‘ZgWV—KZTW

LC LC LC LC

—|—€(gWV"V6.A—VﬂVU.A—ZPAW@A):0. (E2)

Note that in such a form we must include symmetrizing
parenthesis explicitly.

T _ A 0w A o
Let us consider the case € = 0, and G*,, o = G* op

[see definitions (16) and (22)], then one can write a more
transparent form

LC 1 1LC
-A ( (va - 5 Qa) LU/w + 5 v}d Qu - Lo-p/leo‘v
1 ~ 1
- Egﬂyvn’(Qﬁ - Qo‘) + Eg/wQ>

1
+ 5 9/ By 0,®0,® +2£7V) ~ 5,80, P

1 ~ 1
- 86”4 <Lallu - Eg;w(Q” - QJ) + Eé&Qv)) = KzT/w‘

(E3)

LC LC
Note that due to (62”) and (7b) V,Q, = V(,0,).
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