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In this article we construct an extended relativistic fðRÞ theory of gravity with matter-curvature
couplings FðR;LmattÞ for which its weak-field limit of approximation recovers the simplest version of
MOND. We do this by (a) performing an order-of-magnitude calculation and (b) perturbing the resulting
field equations of the theory to the weak-field limit. We also compute the geodesic equation of the resulting
theory and show that it has an extra force, a fact that commonly appears in general matter-curvature
couplings.
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I. INTRODUCTION

The nonbaryonic dark matter problem constitutes one of
the most important unsolved problems in current research
(cf. Refs. [1,2]). Despite the huge amount of research and
its generally accepted success, the dark matter particle has
never been detected. The gravitational anomaly that gives
rise to the dark matter and/or energy hypothesis can also be
understood as a modification of gravity at certain scales
(cf. Ref. [3]) which was first discussed in the pioneering
work of Milgrom [4,5], using a MOdified Newtonian
Dynamics (MOND) approach. The first coherent attempt
to find a relativistic version was carried out by Bekenstein
[6] with a Tensor Vector Scalar (TeVeS) theory; this idea
has been widely explored [7–11], but due to the extreme
complexity of the theory and some clear failures, research-
ers have continued searching for a relativistic theory of
gravity that yields MOND in its nonrelativistic, weak-
field limit.
Bernal et al. [12] showed that MOND acceleration can

be accounted for by a relativistic fðχÞ ¼ χ3=2 metric theory
of gravity described by the action

S ¼ c3

16πGL2
M

Z
fðχÞ ffiffiffiffiffiffi

−g
p

d4xþ 1

c

Z
Lmatt

ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where χ ≔ L2R, R is the Ricci scalar, L ∝ r1=2g l1=2, where
rg ≔ GM=c2 is the gravitational radius, l ≔ ðGM=a0Þ1=2
is the “mass-length” scale of the system and Lmatt is
the standard matter Lagrangian, related to the energy-
momentum tensor Tαβ by

Tαβ
ffiffiffiffiffiffi
−g

p
δgαβ ¼ −2δð ffiffiffiffiffiffi

−g
p

LmattÞ: ð2Þ

The constant a0 ≈ 1.2 × 10−10 ms−2 is Milgrom’s accel-
eration constant. This proposal is consistent with the results
of gravitational lensing in individual, groups and clusters
of galaxies [13] and at the same second perturbation order
is consistent with a parametrized post-Newtonian (PPN)
description where the parameter γ ¼ 1 [14]. Another
extension of gravity was performed by Barrientos and
Mendoza [15], who analyzed the action (1) using the
Palatini approach; they obtained the same functional action
fðχÞ ¼ χ3=2 that recovers the MONDian acceleration, with
a mass dependence on the coupling length L.
The problem with the action (1) is that it can only be

applied in regions sufficiently far from the sources that
produce the gravitational field, in order to approximate the
system as a point-mass source. Carranza, Mendoza, and
Torres [16] attempted to resolve this issue by considering
the mass M as the causal mass for a particular observer in
the cosmic flow, yielding a good description of an
accelerated expansion of the Universe without the intro-
duction of dark matter and/or energy.
Another recent exploration was carried out by Barrientos

and Mendoza [17] who showed that the mass dependence
on the coupling length L can be avoided by introducing
derivatives of the matter Lagrangian into the action fðχÞ. In
such a proposal the coupling constant depends exclusively
on the fundamental constants c, a0 and G, but the price to
pay is in the complexity of the field equations and the
theoretical inconveniences that arise due to the inclusion of
matter Lagrangian derivatives.
In this article we use an extension of a metric fðRÞ theory

of gravity with matter-curvature couplings FðR;LmattÞ
following the approach of Refs. [18–22] and show that
with this generalized action a relativistic theory of MOND
can be constructed. The article is presented in the following
manner. In Sec. II an order-of-magnitude calculation is
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performed to show that a specific FðR;LmattÞ can reproduce
MOND in its simplest form. Section III shows an exact
solution for a point-mass source reproducing these results.
In Sec. IV we use correct dimensional arguments to
generalize an action for a FðR;LmattÞ and show that with
this it is possible to recover either MOND or Newton’s
gravity in the weak-field limit of the theory. Finally in
Sec. V we discuss the results of the article and present our
conclusions.

II. FðR; LmattÞ APPROACH

The lesson to learn from the action (1) is that the matter
Lagrangian Lmatt needs to be inserted inside the gravita-
tional action (see e.g., Ref. [3]). The idea of a nonminimal
coupling between the matter and the curvature was already
considered [23–26]. To do so, we can extend fðRÞ gravity
by introducing a specific FðR;LmattÞ described by Harko
and Lobo [18],

S ¼
Z

FðR;LmattÞ
ffiffiffiffiffiffi
−g

p
d4x; ð3Þ

with the following field equations:

FRRαβ þ ðgαβ∇μ∇μ −∇α∇βÞFR

−
1

2
ðF − FLmatt

Þgαβ ¼
1

2
FLmatt

Tαβ; ð4Þ

where FR ≔ ∂F=∂R and FLmatt
≔ ∂F=∂Lmatt. Note that

(a) FðR;LmattÞ ¼ c3R=16πGþ Lmatt=c yields standard
general relativity, (b) FðR;LmattÞ ¼ fðRÞ=2þ Lmatt=c is
standard metric fðRÞ gravity and (c)

FðR;LmattÞ ¼
c3

16πG
fðχÞ
L2

þ 1

c
Lmatt ð5Þ

is a correct generalization of Eq. (1) in which the unknown
length function L ¼ LðLmattÞ is to be found, which together
with the unknown function fðχÞ must yield a correct
MOND behavior in the limit of low acceleration scales
a ⪅ a0.

III. MONDIAN LIMIT

Let us now show that with the assumptions made in
Sec. II it is possible to obtain the basic MOND relation
based on the Tully-Fisher law. To do so, let us substitute
Eq. (5) into the field equations (4) and take the trace of the
resulting relation:

fRðχÞRþ −2fðχÞ þ 3L2∇α∇α

�
fRðχÞ
L2

�
¼ 8πGL2

c4
Tα

α:

ð6Þ
In order to find the correct MONDian limit equation, we

follow the procedure of Bernal et al. [12] and so, let

fðχÞ ¼ χb; and Lmatt ¼ ρc2; ð7Þ

where we have assumed a point-mass source generating
the gravitational field, and thus Lmatt has a dust-like form.
To order of magnitude, i.e., when R ∼ r−2curv (where rcurv is
the radius of curvature of space) and ∇ ∼ 1=r, it follows
that the first two terms on the left-hand side of Eq. (6) are
smaller than the third when r=rcurv → 0, i.e., when the
equivalent acceleration a is expected to be ≲a0.
Thus, the trace of the field equations that can be

adapted to a MONDian regime of low acceleration scales
is given by

3L2∇α∇α

�
fRðχÞ
L2

�
¼ 8πGL2

c4
Tα

α: ð8Þ

Aweak-field limit consistent with the bending of light in
individual, groups and clusters of galaxies is obtained if the
second perturbation order metric is given by [14]

ds2 ¼
�
1þ 2ϕ

c2

�
c2dt2 −

�
1 −

2ϕ

c2

�
dx2; ð9Þ

for a gravitational scalar potential ϕ and an isotropic space-
time with a PPN parameter γ ≈ 1 according to observations
of such MONDian systems [13]. With this, the Ricci scalar
takes the form R ≈ −ð2=c2Þ∇2ϕ, which at order of magni-
tude yields R ∼ a=rc2, for an acceleration a ¼ j∇ϕj.
Thus, to order of magnitude, Eq. (8) yields

a ∼G1=ðb−1Þρ1=ðb−1Þrðbþ1Þ=ðb−1Þcð2b−4Þ=ðb−1ÞL−2; ð10Þ

and so, in order to obtain the standard MOND equation,
a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ga0M
p

=r ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ga0ρr

p
. Then b ¼ −3 together with

L ∝ ðGρÞ−3=8c5=4a1=40 , which yields

FðR;LmattÞ ∝ R−3L3
matt: ð11Þ

IV. A DIMENSIONALLY CORRECT
GENERAL ACTION

Let us now consider an action motivated by Eq. (1) with
the following form:

S ¼ c3

16πGα
ffiffiffiffiffiffi
−g

p Z
fðχ; ξÞd4xþ 1

c

Z ffiffiffiffiffiffi
−g

p
Lmattd4x;

ð12Þ

where χ and ξ are dimensionless quantities given by

ξ ≔
Lmatt

λ
; and χ ≔ αR; ð13Þ

where α and λ are unknown “coupling” constants with
dimensions of length squared andenergy density respectively.
The null variations with respect to the metric yield the

following field equations:
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αfχRμν −
1

2
gμνðf − ξfξÞ

¼
�
8πGα
c4

þ fξ
2λ

�
Tμν − αðgμνΔ −∇μ∇νÞfχ ð14Þ

with the standard definition of the energy-momentum
tensor

Tμν ¼ gμνLmatt − 2
∂Lmatt

∂gμν ; ð15Þ

in full agreement with Eq. (2).
The trace of Eq. (14) is given by

χfχ − 2ðf − ξfξÞ þ 3αΔfχ ¼
�
8πGα
c4

þ fξ
2λ

�
T: ð16Þ

Since c, G and a0 are independent fundamental con-
stants, Buckingham’s Π theorem of dimensional analysis
implies that

α ¼ κ
c4

a02
and λ ¼ κ0

a02

G
; ð17Þ

where κ and κ0 are pure dimensionless proportionality
constants.
Following the previous approach, we can assume that

fðχ; ξÞ ¼ χγξβ: ð18Þ

For the case of dust, the perturbation orders in the terms
of the field equation are

αfχRμν −
1

2
gμνðf − ξfξÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Oð−2ðγþβÞÞ

þ αðgμνΔ −∇μ∇νÞfχ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Oð−2ðγþβþ1ÞÞ

¼ 8πGα
c4

Tμν|fflfflfflfflffl{zfflfflfflfflffl}
Oð2Þ

þ fξ
2λ

Tμν|fflffl{zfflffl}
Oð2ðγþβÞÞ

: ð19Þ

A. Poisson-like equation for MOND

The lowest perturbation order of the previous equation is
2 and so, the choice γ ¼ −β yields

ðgμνΔ −∇μ∇νÞfχ ¼
8πG
c4

Tμν: ð20Þ

Contracting Eq. (20) with gμν gives

3Δfχ ¼
8πG
c4

T; ð21Þ

which at the lowest perturbation order for dust takes the
form

ð−2κÞγ−1κ0γ a02

Gγþ1
∇2ðf∇2ϕgγ−1ρ−γÞ ¼ 8π

3
ρ: ð22Þ

To order of magnitude, this last equation implies that

a ≈Mð1þγÞ=ðγ−1Þr−2ð1þγÞ=ðγ−1Þ; ð23Þ

and so, in order to recover a MONDian expression for the
acceleration, we must have

γ ¼ −3: ð24Þ

With this value, the Poisson-like equation (22) is

3

8π

ða0GÞ2
ð2κÞ4κ03∇

2ðf∇2ϕg−4ρ3Þ ¼ ρ: ð25Þ

An analytic solution to the previous equation for the case
of a point-mass source is given in the Appendix.
Note that Eq. (25) represents a nonlinear generalization

of the standard Poisson equation ∇2ϕ ∝ ρ. A family of
these nonlinear generalizations was discussed in Ref. [27],
with Poisson-like equations of the form∇ · ðμðj∇ϕjÞ∇ϕÞ ∝
ρ satisfying conformal invariance in all cases studied.
Equation (25) does not fall into that category and as such,
it differs from the standard AQUAdratic Lagrangian
(AQUAL) proposal [28]. This is due to the fact that the
nonlinearity of Eq. (25) applies not only to the scalar
potential ϕ but also to the mass density ρ, since this last one
appears inside the Laplacian operator on the left-hand side
of Eq. (25).

B. Poisson’s equation for Newtonian gravity

Another possible choice for Eq. (19) is γ þ β ¼ 1 which
yields

αfχRμν −
1

2
gμνðf − ξfξÞ ¼

�
8πGα
c4

þ fξ
2λ

�
Tμν: ð26Þ

This lowest perturbation order choice means that

ðgμνΔ −∇μ∇νÞfχ ¼ 0: ð27Þ

Taking the trace of Eq. (26) for dust, a relation between
the Ricci scalar and the matter density is obtained:

R ¼
�
−

16π

γ þ 1
ðκκ0Þ1−γ

�
1=γ G

c2
ρ: ð28Þ

At the lowest perturbation order, when R ¼ −ð2=c2Þ∇2ϕ,
this previous equation can be constructed (with the appro-
priate coupling constants) to yield Newtonian gravity
(Poisson’s equation) for any value of γ ≠ −1.
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V. DISCUSSION

In this article we have shown, exactly and using an order
of magnitude approach, that a FðR;LmattÞ theory of gravity
described by

fðχ; ξÞ ¼ χ−3ξ3; χ ≔ αR; ξ ≔ Lmatt=λ; ð29Þ

is a good candidate for a full relativistic extension ofMOND,
in regions where the acceleration of test particles≲a0. In the
weak-field limit it converges to standard MOND for a point-
mass source M, with ρ ¼ MδðrÞ and Lmatt ¼ ρc2. It is our
intention to explore this interpretation with applications to
the lensing and dynamics of individual, groups and clusters
of galaxies as well as cosmology. The advantage of this
approach is that it is a full metric formalism and does not
involve interpretations of gravity using the Palatini formal-
ism or torsion as we have previously explored [29,30].
Furthermore, it is a correct generalization to the first attempts
made by Bernal et al. [12].
At first sight, the action given by the Lagrangian density

R−3L3
matt from which we have obtained the MONDian

behavior seems to diverge in the Minkowskian regime,
namely when R → 0. In order to show that this is not so, we
proceed in the following way. Using Eqs. (17), (18), and
(24), and the fact that γ ¼ −β, Eq. (21) turns into

−
9

8πk4k03

�
a0G
c6

�
2

ΔðR−4L3
mattÞ ¼ T; ð30Þ

which in the weak-field limit for a point-mass source is

−
9

8πk4k03

�
a0G
c5

�
2∇2ðR−4L3

mattÞ ¼ MδðrÞ: ð31Þ

Using the well-known result

∇2

�
1

r

�
¼ −4πδðrÞ; ð32Þ

the following relation is satisfied:

R−4L3
matt ¼

2πk4k03

9

�
c5

a0G

�
2M
r
: ð33Þ

Therefore, in the weak-field limit, this proposal has the
following relation: L3

matt ∝ R4=r. This implies that the
Lagrangian density for the action that we are interested
in converges to R−3L3

matt ∝ R=r → 0 as r increases.
Finally, we discuss the geodesic equation of the theory.

Following a similar procedure as the one shown in
Refs. [18,31], the geodesic equation is given by

dxμ

ds2
þ Γμ

να
dxν

ds
dxα

ds
¼ fμ; ð34Þ

where

fμ ¼ ðgμν − uμuνÞ∇μ ln

�
ð16πκκ0 þ fξÞ

dLmatt

dρ

�
: ð35Þ

As expected, the usual relation uμfμ ¼ 0 is obtained.
This means that the extra force is perpendicular to the four-
velocity. For dust, the extra force takes the following form:

fν ¼ ðgμν − uμuνÞ∇μ ln ½16πκκ0 þ fξ�: ð36Þ
This type of extra force has been studied and interpreted in
the literature (cf. Ref. [32]) and in a very different context
than the one discussed in this article to yield MOND-like
accelerations in Ref. [33]. Investigations into its nature and
its astrophysical consequences require further research.
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APPENDIX: POISSON-LIKE EQUATION

Let us begin by rewriting Eq. (25) as

K∇2ðf∇2ϕg−4ρ3Þ ¼ ρ; ðA1Þ

where for simplicity we have defined

K ≔
3

8π

ða0GÞ2
ð2κÞ4κ03 : ðA2Þ

The matter density for a point-mass source is given by

ρ ¼ M
4πr2

δðrÞ; ðA3Þ

and since the Laplacian for a spherically symmetric
problem is

∇2ψ ¼ 1

r2
d
dr

�
r2
dψ
dr

�
; ðA4Þ

then, Eq. (A1) turns into

4πK
d
dr

�
r2

d
dr

ðf∇2ϕg−4ρ3Þ
�

¼ MδðrÞ: ðA5Þ

Integration of the previous equation yields

4πK
d
dr

ðf∇2ϕg−4ρ3Þ ¼ M
r2

; ðA6Þ

which another integration gives
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4πKf∇2ϕg−4ρ3 ¼ −
M
r
: ðA7Þ

Using again Eqs. (A3) and (A4) and after some algebraic
steps, we obtain

ð−KÞ1=4
�
M
4π

�
1=2

�
r3

δðrÞ
�

1=4

δðrÞ ¼ d
dr

�
r2
dϕ
dr

�
; ðA8Þ

which after another integration is written as

ð−KÞ1=4
�
M
4π

�
1=2

�
r3

δðrÞ
�

1=4
����
0

¼ r2
dϕ
dr

: ðA9Þ

Using the fact that the acceleration a ¼ jaj ¼ j∇ϕj and
the Dirac delta function is given by

δðr ¼ 0Þ ¼ lim
r→0

1

2πr
; ðA10Þ

the relation for the accelerations is given by

�
−K

M2

23π

�
1=4 1

r
¼ a: ðA11Þ

Substitution of the value of K given in Eq. (A2), yields

�
−

3

45κ03π2

�
1=4 1

κ

ða0GMÞ1=2
r

¼ a: ðA12Þ

Thus, the choice κ03 ¼ −3=45π2κ4 yields a MONDian
acceleration a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

GMa0
p

=r.
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