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We have obtained a Finslerian Reissner-Nordström solution where it is asymptotic to a Finsler spacetime
with a constant flag curvature while r → ∞. The covariant derivative of a modified Einstein tensor in a
Finslerian gravitational field equation for this solution is conserved. The symmetry of the special Finslerian
Reissner-Nordström spacetime, namely, Finsler spacetime with a constant flag curvature, has been
investigated. It admits four independent Killing vectors. The Finslerian Reissner-Nordström solution
differs from the Reissner-Nordström metric only in two-dimensional subspace, and our solution requires
that its two-dimensional subspace has a constant flag curvature. We have obtained the eigenfunction of the
Finslerian Laplacian operator of the “Finslerian sphere,” namely, a special subspace with a positive constant
flag curvature. The eigenfunction is of the form Ȳm

l ¼ Ym
l þ ϵ2ðCm

lþ2Y
m
lþ2 þ Cm

l−2Y
m
l−2Þ in powers of the

Finslerian parameter ϵ, where Cm
lþ2 and Cm

l−2 are constant. However, the eigenvalue depends on both l and

m. The eigenvalues corresponding to Y0
1 remain the same with the Riemannian Laplacian operator and the

eigenvalues corresponding to Y�1
1 are different. This fact just reflects the symmetry of the Finslerian sphere,

which admits a z-axis rotational symmetry and breaks other symmetry of the Riemannian sphere. The
eigenfunction of the Finslerian Laplacian operator implies that monopolar and dipolar terms of the
multipole expansion of gravitational potential are unchanged and other multipole terms are changed.
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I. INTRODUCTION

A black hole is a specific region of spacetime that has
such a strong enough gravity that even light cannot escape
from it. Black hole physics has been discussed intensively
by physicists. The research on black hole physics originates
from the exact solution of Einstein’s gravitational field
equation. In four-dimensional spacetime, Schwarzschild
and Kerr solutions are exact solutions of the Einstein
vacuum field equation, which correspond to the spherical
symmetry and axis symmetry, respectively, and Reissner-
Nordström spacetime is a solution that corresponds to the
gravitational field generated by a charged and spherical
symmetric gravitational source. The general form of the
solutions are called Kerr-Newmann spacetime, which
corresponds to the gravitational field generated by a
charged and axis symmetric gravitational source [1].
Inspired from Kerr-Newmann spacetime, the no-hair theo-
rem of black holes was formulated by physicists [2]. It
states that a black hole only has three properties, namely,
mass, electric charge, and spin. The above solutions or
spacetimes are asymptotically flat. Schwarzschild–de Sitter
spacetime is a solution with cosmological horizons, and it
is asymptotic to de Sitter spacetime [3]. Based on Kerr-
Newmann spactime, Hawking and Bekenstein et al.
involved the concept of entropy for black holes [4],

constructed a theory of black hole thermodynamics, and
then proposed four laws of black hole thermodynamics [5].
Hawking radiation [6], as an important complement of
black hole thermodynamics, exhibits the quantum features
of a black hole.
Three physical processes could lead to the formation

of a black hole. One is the gravitational collapse of a heavy
star [7]. The second is the gravitational collapse of the
primordial overdensity in the early Universe [8–12]. The
third is high-energy collisions [13]. The merge of a black
hole binary could generate gravitational waves, such
phenomena has been observed by the Advanced LIGO
detectors, i.e., GW150914, GW151226, GW170104, and
GW170814 [14–17].
It is interesting and important to search more exact solu-

tions of gravitational field equations in four-dimensional
spacetime, and black holes that corresponded to these
solutions are expected to be tested by gravitational wave
detectors in the near future. Finsler geometry [18] is a
natural generalization of Riemannian geometry. The basic
feature of Finsler geometry is that its length element does
not have a quadratic restriction. Generally, the Finslerian
extension of a given Riemannian spacetime has less
symmetry than the Riemannian spacetime [19,20]. A
typical example of Finsler spacetime, i.e., Randers space-
time [21], breaks rotational symmetry and induces a parity
violation. By this basic feature of Finsler geometry, Finsler
geometry is used to describe a violation of Lorentzian*lixin1981@cqu.edu.cn

PHYSICAL REVIEW D 98, 084030 (2018)

2470-0010=2018=98(8)=084030(8) 084030-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.084030&domain=pdf&date_stamp=2018-10-17
https://doi.org/10.1103/PhysRevD.98.084030
https://doi.org/10.1103/PhysRevD.98.084030
https://doi.org/10.1103/PhysRevD.98.084030
https://doi.org/10.1103/PhysRevD.98.084030


invariance [22–25] and study the anisotropy of our
Universe [26,27].
We have suggested an anisotropic inflation model in

which the background space is taken to be a Randers space.
This anisotropic inflation model could account for the
power asymmetry of the cosmic microwave background
(CMB) [28]. In Finsler geometry, there is no unique
extension of Riemannian geometric objects, such as the
connections and curvature [18]. This feature is also
involved in searching the gravitational field equation in
Finsler spacetime [29–33]. We have proposed the gravita-
tional field equation in Finsler spacetime and found a non-
Riemannian exact solution [34]. This solution, or metric, is
none other than the Schwarzschild metric, except for the
change from the Riemann sphere to the “Finslerian sphere,”
and an interior solution for the Finslerian Schwarzschild
metric also exists. We have proved that the covariant
derivative of the Finslerian gravitational field equation
for the metric is conserved. It is interesting to search a
general solution for our Finslerian gravitational field
equation and test if the black hole corresponding to the
solution possesses the three properties, namely, mass,
electric charge, and whether or not there is spin. The
spherical harmonics are an eigenfunction of the Laplacian
operator for the Riemann sphere, which plays an important
role in modern physics. Since our Finslerian Schwarzschild
solution admits a Finslerian sphere, it is worth investigating
the eigenfunction of the Laplacian operator for a Finslerian
sphere. It is expected that the symmetry of the Finslerian
sphere has a direct influence on its eigenfunction.
This paper is organized as follows. In Sec. II, we give a

brief introduction to the Reissner-Nordström metric. Then,
we present the Finslerian Reissner-Nordström solution
in Finsler spacetime. We discuss the symmetry of the
Finslerian Reissner-Nordström metric at the end of Sec. II.
In Sec. III, we present the Finslerian Laplacian operator of
the Finslerian sphere, and give the eigenfunction and
corresponding eigenvalue of the Finslerian Laplacian
operator. Conclusions and remarks are given in Sec. IV.

II. EXACT SOLUTION OF GRAVITATIONAL
FIELD EQUATION IN FINSLER SPACETIME

A. Brief introduction to the Reissner-Nordström metric

In general relativity, the Reissner-Nordström spacetime
is given as follows

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2
k; ð1Þ

where f ¼ k − 2GM
r − br2 þ 4πGQ2

r2 , and the metric dΩ2
k

denotes the two-dimensional metric with constant sectional
curvature k. Usually, after a reparametrization, we can set k
to be 1, 0, −1. The Reissner-Nordström is a solution of the
Einstein field equation, i.e.,

Ricμν − gμνS=2 ¼ 8πGTμν; ð2Þ

where Ricμν is the Ricci tensor and S ¼ gμνRicμν is the
scalar curvature. The energy-momentum tensor of the
Reissner-Nordström spacetime is given as

Tμν ¼ Tem
μν þ Tc

μν; ð3Þ

where Tem
μν ¼ Q2

2r4 diagff;−f; r2gωijg (gωij is the metric of
dΩ2

k) denotes the energy-momentum tensor of the electro-
magnetic field and Tc

μν ¼ −3bgμν=8πG. The Reissner-
Nordström spacetime will reduce to four-dimensional
spacetime with a constant curvature, namely, the de
Sitter spacetime, if Q ¼ M ¼ 0 and k ¼ 1.

B. Finslerian Reissner-Nordström solution

Instead of defining an inner product structure over the
tangent bundle in Riemann geometry, Finsler geometry is
based on the so-called Finsler structure F with the property
Fðx; λyÞ ¼ λFðx; yÞ for all λ > 0, where x ∈ M represents
position and y≡ dx

dτ represents velocity. The Finslerian
metric is given as [18]

gμν ≡ ∂
∂yμ

∂
∂yν

�
1

2
F2

�
: ð4Þ

In the Ref. [18], the Finslerian structure is positive definite.
In physics, the Finsler structure F is not positive definite
at every point of the Finsler manifold. A positive, zero,
or negative F corresponds to timelike, null, or spacelike
curves, respectively. Recently, Javaloyes and Sanch have
presented a well-defined definition on the Finsler structures
with Finsler metrics of Lorentzian signature [35].
Throughout this paper, all Finsler formula are valid for
discussing the Finsler structures with Finsler metrics of
Lorentzian signature. One can apply the approach used
in Weinberg’s book[36] for discussing the null particles.
It uses a nonvanishing Finsler structure L to derive all
formula and setting F ¼ EL where E ¼ 0 for discussing
the null particles.
Rutz has suggested that Finslerian vacuum gravitational

field equation is vanish of the Ricci scalar[31]. In our
previous research [34], we have obtained a solution of the
Finslerian vacuum field equation which was suggested by
Rutz. It is given as

F2 ¼ −
�
1 −

2GM
r

�
ytyt þ

�
1 −

2GM
r

�
−1
yryr þ r2F̄2;

ð5Þ
where F̄ is a two dimensional Finsler space with positive
constant flag curvature. The Ricci scalar is given as

Ric≡ Rμ
μ ¼

1

F2

�
2
∂Gμ

∂xμ − yλ
∂2Gμ

∂xλ∂yμ

þ 2Gλ ∂2Gμ

∂yλ∂yμ −
∂Gμ

∂yλ
∂Gλ

∂yμ
�
; ð6Þ
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where

Gμ ¼ 1

4
gμν

� ∂2F2

∂xλ∂yν y
λ −

∂F2

∂xν
�

ð7Þ

is called geodesic spray coefficients.
Now, we propose an ansatz that the Finsler structure is of

the form

F2 ¼ −fðrÞytyt þ fðrÞ−1yryr þ r2F̄2ðθ;φ; yθ; yφÞ: ð8Þ
Throughout the paper, the index labeled by Greek alphabet
denote the index of four-dimensional spacetime F, and the
index labeled by Latin alphabet denote the index of two-
dimensional subspace F̄. Plugging the Finsler structure (8)
into the formula (7), we obtain that

Gt ¼ f0

2f
ytyr; ð9Þ

Gr ¼ −
f0

4f
yryr þ ff0

4
ytyt −

r
2A

F̄2; ð10Þ

Gθ ¼ 1

r
yθyr þ Ḡθ; ð11Þ

Gφ ¼ 1

r
yφyr þ Ḡφ; ð12Þ

where the prime denotes the derivative with respect to r,
and the Ḡ is the geodesic spray coefficients derived by F̄.
Plugging the geodesic coefficients (9)–(12) into the for-
mula of Ricci scalar (6), we obtain that

F2Ric ¼
�
ff00

2
þ ff0

r

�
ytyt þ

�
−
f00

2f
−
f0

rf

�
yryr

þ ½R̄ic − f − rf0�F̄2 ð13Þ
where R̄ic denotes the Ricci scalar of Finsler structure F̄.
We have used the property of homogenous function

HðλyÞ ¼ λnHðyÞ, i.e., yμ ∂HðyÞ
∂yμ ¼ nHðyÞ, to derive the

geodesic spray coefficients Gμ and Ricci scalar. By
equation (13), we obtain the solution of Ric ¼ 0. It is of
the form

R̄ic ¼ k; ð14Þ
fS ¼ k − 2GM=r; ð15Þ

where k ¼ �1, 0. And the solution of constant Ricci scalar
(Ric ¼ 3b) is given as

R̄ic ¼ k; ð16Þ
fSd ¼ k − 2GM=r − br2: ð17Þ

A Finsler spacetime with constant flag curvature K must
have constant Ricci scalar ðn − 1ÞK (n is the dimension of

the spacetime). However, the reverse statement is not true.
Now, we test whether the solution (17) is corresponded to
the Finsler spacetime with constant flag curvature or not. A
Finsler spacetime with constant flag curvature K is equiv-
allent to its predecessor of flag curvature possess the
following form [18]

F2Rμ
ν ¼ K

�
F2δμν −

yμ

2

∂F2

∂yν
�
; ð18Þ

where F2Rμ
ν is defined as

F2Rμ
ν ¼ 2

∂Gμ

∂xν − yλ
∂2Gμ

∂xλ∂yν þ 2Gλ ∂2Gμ

∂yλ∂yν −
∂Gμ

∂yλ
∂Gλ

∂yν :
ð19Þ

Plugging the ansazt into the formula (19), after tedious
calculation, we obtain

F2Rt
t ¼ −

f00

2f
yryr −

rf0

2
F̄2; ð20Þ

F2Rt
r ¼

f00

2f
ytyr; ð21Þ

F2Rt
i ¼

rf0

4
yt
∂F̄2

∂yi ; ð22Þ

F2Rr
r ¼

ff00

2
ytyt −

rf0

2
F̄2; ð23Þ

F2Rr
i ¼

rf0

4
yr

∂F̄2

∂yi ; ð24Þ

F2Ri
j ¼ F̄2R̄i

j þ
�
ff0

2r
ytyt −

f0

2rf
yryr − fF̄2

�
δij þ

f
2
yi
∂F̄2

∂yj :
ð25Þ

Plugging the solution (17) into the above formula (20)–
(25), it is obvious from the formula (18) that Finsler metric
(8) with the solution (17) does not have constant flag
curvature if the parametersM ≠ 0 and b ≠ 0. However, it is
Einstein metric since its Ricci scalar is constant. By making
use of the property Rμν ¼ Rνμ and noticing the F̄ is a
Finsler structure with constant Ricci scalar, we obtain that
the special case of the solution (17) with parameter M ¼ 0
and b ≠ 0 is corresponded to Finsler spacetime with
constant flag curvature, i.e., it satisfies the following
relation

F2Rμ
ν ¼ b

�
F2δμν −

yμ

2

∂F2

∂yν
�
: ð26Þ

It means that the flag curvature is constant and equals to b.
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Pfeifer et al. have studied the electromagnetic field in
Finsler spacetime [37]. However, no specific solution of
electromagnetic field equation, such as static electric field,
is discussed. Now, we study the solution of Finslerian
gravity with “electric charge.” Analogy to the Riemannian
Reissner-Nordström metric, we suggest that the Finsler
metric has the form of the ansatz (8) with fRN ¼
k − 2GM

r þ 4πFGQ2

r2 . Then, by formula (13), its Ricci scalar
is of the form

F2Ric ¼ 4πFGQ2

r4
ðfytyt − f−1yryr þ r2F̄2Þ: ð27Þ

In Finslerian gravity, there are various generalizations of
Einstein’s gravitational field equations. In general, there are
three types of generalizations of Einstein’s gravitational
field equations. Pfeifer et al. [33] have constructed gravi-
tational dynamics for Finsler spacetimes in terms of an
action integral on the sphere bundle. Miron et al. [30] have
constructed Finslerian gravitational field equations from
the second Bianchi identities in Finsler geometry. Vacaru
et al. [32] have constructed Finslerian gravitational field
equations by generalizing the Einstein gravitational field
equation in terms of Finslerian geometrical quantities, i.e.,
replacing the Riemannian Ricci tensor and scalar curvature
with the Finslerian Ricci tensor and scalar curvature.
However, these Finslerian gravitational field equations
are not equivalent to one another. At present, it is still
an open debate about which Finslerian generalizations of
gravitational field equations are physically relevant.
In Ref. [34], we have presented a Finslerian gravitational

field equation. A Finslerian Schwarzschild spacetime (5)
is the solution of the Finslerian vacuum gravitational
field equation, and the interior solution of the
Finslerian Schwarzschild spacetime is derived from the
Finslerian gravitational field equation. In the Finslerian
Schwarzschild spacetime, its geodesic equation returns to
its counterpart in Newtonian gravity in the weak-field
approximation. We proved that the Finslerian covariant
derivative of the Finslerian gravitational field equation for
the ansatz metric (8) is conserved. It should be noticed that
our Finslerian gravitational field equation is valid for a
special Finslerian spacetime (8). Because of the good
properties of our Finslerian gravitational field equation,
we expected that a general Finslerian gravitational field
equation should involve our Finslerian gravitational field
equation as its special case.
The specific form of our Finslerian gravitational field

equation is given as [34]

Gμ
ν ¼ 8πFGT

μ
ν ; ð28Þ

where the modified Einstein tensor Gμν is defined as

Gμν ≡ Ricμν −
1

2
gμνS; ð29Þ

and 4πF denotes the volume of F̄. Here, the Ricci tensor we
used is first introduced by Akbar-Zadeh[38]

Ricμν ¼
∂2ð1

2
F2RicÞ

∂yμ∂yν ; ð30Þ

and the scalar curvature in Finslerian geometry is given as
S ¼ gμνRicμν. Then, by making use of the equations (27),
(29), (30), we obtain the nonvanishing components of the
Einstein tensor

Ricμν ¼ Gμν ¼
4πFGQ2

r4
diagff;−f−1; r2ḡijg: ð31Þ

One should notice that the scalar curvature S vanishes. It
means that the trace of the energy-momentum tensor
vanishes, and such a fact implies that the particle is
massless in physics. Plugging the result of the Einstein
tensor (31) into the field equation (28), we obtain the
energy-momentum tensor

Tμν ¼
Q2

2r4
diagff;−f−1; r2ḡijg: ð32Þ

In Ref. [34], we proved that the covariant derivative of
the modified Einstein tensor is conserved in the Finsler
spacetime (8), i.e., Gμ

νjμ ¼ 0, where “j” denotes the covar-
iant derivative. Since the Finslerian Schwarzschild-de Sitter
solution f ¼ fSd and the Finslerian Reissner-Nordström
solution f ¼ fRN both possess the same form as the
Finslerian Schwarzschild solution (8). Thus, following
the same process of Ref. [34], one can find that the
modified Einstein tensor and the energy-momentum tensor
corresponding to the solution are also conserved. The
energy-momentum tensor of the general electromagnetic
field in Finsler spacetime should reduce to the energy-
momentum tensor given above (32) if the Finsler spacetime
reduces to the Finslerian Reissner-Nordström solution, i.e.,
the ansatz metric (8) with f ¼ fRN .
It should be noted that we do not generate the energy-

momentum tensor (32) from a theory of electromagnetic
fields in Finsler spacetime. However, the energy-momentum
tensor of the Finslerian Reissner-Nordström spacetime will
inspire us to construct a theory of electromagnetic fields in
Finsler spacetime. This work will be done in our future
research.

C. Symmetry of Finslerian
Reissner-Nordström solution

In Riemannian geometry, spaces with a constant sec-
tional curvature are equivalent, and all of these spaces have
nðnþ 1Þ=2 independent Killing vectors. However, the
number of independent Killing vectors of an n-dimensional
non-Riemannian Finsler spacetime should be no more than
nðn−1Þ

2
þ 1, n ≠ 4 & n ≥ 3 [19], and a four-dimensional
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non-Riemannian Finsler spacetime has no more than eight
independent Killing vectors [39]. In general, the Finslerian
extension of a given Riemannian spacetime has less
symmetry than the Riemannian spacetime. For example,
the Finslerian Schwarzschild spacetime f ¼ fS only has
two independent Killing vectors [34]. The Kerr spacetime
has two independent Killing vectors. Thus, the Finslerian
extension of Kerr spacetime should only have an indepen-
dent Killing vector of one or zero. Furthermore, if we
require the Finslerian extensional spacetime to be static,
then an arbitrary static Finsler spacetime should be a
Finslerian extension of Kerr spacetime. This fact implies
that it is hard to find a Finslerian extension of Kerr
spacetime. In Ref. [34], we have shown that the Finsler
spacetime with the specific form (8) could form a horizon at
f ¼ 0. Therefore, at present, one can find from the
Finslerian Reissner-Nordström solution that a Finslerian
black hole has two properties, namely, mass and electric
charge.
The Killing equation KVðFÞ in Finsler spacetime is of

the form [20]

KVðFÞ≡ Vμ ∂F
∂xμ þ yν

∂Vμ

∂xν
∂F
∂yμ ¼ 0: ð33Þ

Plugging the formula (4) into the Killing equation (33), we
obtain

Vμ
∂gαβ
∂xμ þ gαλ

∂Vλ

∂xβ þ gλβ
∂Vλ

∂xα þ yν
∂Vμ

∂xν
∂gαβ
∂yμ ¼ 0: ð34Þ

The left side of Killing equation (34) is just the Lie
derivative of the Finsler metric gαβ [40]. From the equa-
tion (34), we investigate the symmetry of the Finsler
spacetime (8) with a constant flag curvature, i.e.,
f ¼ fd ¼ k − br2. It should be noted that the Killing
equation (34) differs from Riemannian Killing equation

in yν ∂Vμ

∂xν
∂gαβ
∂yμ , and the only component gij of the Finsler

metric of the Finsler spacetime (8) has y dependence. Also,
Finsler spacetime (8) with f ¼ fd reduces to Riemannian
spacetime with a constant sectional curvature if F̄ reduces
to a Riemannian surface with a constant sectional curva-
ture. Therefore, there are three independent Killing vectors
that have index t and r only, and these Killing vectors only
depend on coordinates t and r. We have also shown in
Ref. [34] that a Finslerian sphere with a constant positive
flag curvature admits one Killing vector Vφ ¼ Cφ, where
Cφ is a constant. It is obvious that Vφ ¼ Cφ is the Killing
vector of the Finsler spacetime (8) with a constant flag
curvature. Finally, we conclude that the Finsler spacetime

F2
d ¼ −ð1 − br2Þytyt þ ð1 − br2Þ−1yryr þ r2F2

FS ð35Þ

admits four independent Killing vectors. The specific form
of the Finslerian sphere will be given in the next section.

We have shown in Ref. [20] that a four-dimensional,
projectively flat Randers spacetime with a constant flag
curvature admits six independent Killing vectors. Thus,
Finsler spacetime (35) and projectively flat Randers space-
time with a constant flag curvature are not equivalent;
namely, after a coordinate transformation, one can change
into other. This fact is quite different from the one in
Riemannian geometry. Since each Riemannian spacetime
with a constant sectional curvature is equivalent.

III. FINSLERIAN LAPLACIAN OPERATOR
ON FINSLERIAN SPHERE

The eigenfunction of the Laplacian operator of a
Riemannian 2-sphere is spherical harmonics. Since our
Finslerian Reissner-Nordström solution in Finsler space-
time differs from Reissner-Nordström metric only in F̄,
the Laplacian operator of the Finslerian surface with a
positive constant flag curvature is worth investigating.
In the discussion of the above section, we have shown that
Finsler spaces with a constant flag curvature may not be
equivalent to each other. Thus, we adopt a specific form
of the Finsler surface with a positive constant flag
curvature to study its Laplacian operator, i.e., a two-
dimensional Randers-Finsler space with a constant pos-
itive flag curvature [41]

FFS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϵ2sin2θÞyθyθ þ sin2θyφyφ

p
1 − ϵ2sin2θ

−
ϵsin2θyφ

1 − ϵ2sin2θ
;

ð36Þ

where 0 ≤ ϵ < 1. We call it a Finslerian sphere.
In Riemannian geometry, the Laplacian operator can be

defined in several different ways [42], and these Laplacian
operators are equivalent to each other. However, the
Finslerian extension of these definitions will lead to dif-
ferent Laplacian operators. Various Finslerian Laplacian
operators are respectively defined by Bao and Lackey [43],
Shen [44], Barthelme [45]. In this paper, we will adopt the
Finslerian Laplacian operator defined by Barthelme. The
Finslerian Laplacian operator for the Finslerian sphere (36)
is of the form [45]

ΔFS ¼
2ð1 − ϵ2sin2θÞ3=2

sin2θð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2sin2θ

p
Þ
∂2

∂φ2

þ 2ð1 − ϵ2sin2θÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2sin2θ

p ∂2

∂θ2

þ 2 cos θðϵ2sin2θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2sin2θ

p
Þ

sin θð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2sin2θ

p
Þ

∂
∂θ : ð37Þ

While ϵ ¼ 0, the Finslerian Laplacian operator (37) reduces
to the Riemanian Laplacian operator for a 2-sphere, and its
eigenfunction is just spherical harmonics Ylmðθ;φÞ, which
satisfy
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ΔFSjϵ¼0Y
m
l ¼ −lðlþ 1ÞYm

l : ð38Þ

By using Eq. (38), one can find that Y0
0, Y0

1, Y�1
1 are

eigenfunctions of the Finslerian Laplacian operator ΔFS,
and they satisfy the following equations

ΔFSY0
0 ¼ 0; ΔFSY0

1 ¼ −2Y0
1;

ΔFSY�1
1 ¼ ð−2þ 2ϵ2ÞY�1

1 : ð39Þ

It is obvious that the eigenvalues corresponding to Y0
0, Y

0
1

remain the same with a Riemannian Laplacian operator and
the eigenvalues corresponding to Y�1

1 are different. This
fact just reflects the symmetry of the Finslerian sphere. As
for the symmetry of the Finslerian sphere, we showed that
z-axis rotational symmetry, which corresponds to Killing
vector Vφ ¼ Cφ, is preserved and other symmetry of the
Riemanian 2-sphere is broken [34].
The symmetry of the Finslerian sphere may account for

some specific physical phenomena, such as the power

asymmetry of CMB [46], and such phenomena can be
treated as a perturbation of standard physical theories.
Thus, we expand the Finslerian Laplacian operator ΔFS in
powers of ϵ. To the first order in ϵ2, the Finslerian Laplacian
operator (37) is given as

ΔFS ¼
4 − 5ϵ2sin2θ

4sin2θ
∂2

∂φ2
þ
�
1 −

3

4
ϵ2sin2θ

� ∂2

∂θ2

þ cos θ
sin θ

�
1þ 3

4
ϵ2sin2θ

� ∂
∂θ : ð40Þ

By making use of the recurrence formula of spherical
harmonics, to the first order in ϵ2, we obtain the eigen-
function of the Finslerian Laplacian operator (40)

Ȳm
l ¼ Ym

l þ ϵ2ðCm
lþ2Y

m
lþ2 þ Cm

l−2Y
m
l−2Þ; ð41Þ

where

Cm
lþ2 ¼ −

3lðl − 1Þ
8ð2lþ 3Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mþ 1Þðlþmþ 2Þðl −mþ 2Þ

ð2lþ 1Þð2lþ 5Þ

s
; ð42Þ

Cm
l−2 ¼

3ðlþ 1Þðlþ 2Þ
8ð2l − 1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mÞðlþm − 1Þðl −m − 1Þ

ð2lþ 1Þð2l − 3Þ

s
; ð43Þ

and the corresponding eigenvalue of the Finslerian Laplacian operator is given as

λ ¼ −lðlþ 1Þ þ ϵ2
�
3ðl − 1Þlðlþ 1Þðlþ 2Þ

2ð2l − 1Þð2lþ 3Þ þm2ð14l3 þ 21l2 þ 19lþ 6Þ
2ð2lþ 1Þð2l − 1Þð2lþ 3Þ

�
: ð44Þ

The spatial geometry of the Finslerian Schwarzschild
metric is

F2
3d ¼ yryr þ r2F̄2

FS; ð45Þ

while M ¼ 0. Since F̄FS does not depend on r, thus,
following the definition of Finslerian Laplacian operator
[45], we find that the Finslerian Laplace equation for the
three-dimensional space (45) is of the form

ΔW ¼ 1

r2
∂
∂r

�
r2
∂W
∂r

�
þ ΔFSW ¼ 0: ð46Þ

The solution of the Finslerian Laplace equation (46) is of
the form

W ¼ ðArn1 þ Brn2ÞȲm
l ; ð47Þ

where A and B are constants that depend on the boundary
condition of the Finslerian Laplace equation, and

n1 ¼
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4λ
p

2
; ð48Þ

n2 ¼
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ

p

2
: ð49Þ

Two facts for the solution (47) should be noticed. One is the
index n1 and n2 depend not only on l but also on m.
Another fact is that the monopolar and dipolar term of the
multipole expansion of gravitational potential is unchanged
in a Finsler spacetime with a Finslerian sphere. It is
consistent with our previous research given in Ref. [34]
where we showed that the gravitational potential for the
Schwarzschild-like spacetime is the same as the Newtonian
gravity in a weak field approximation. However, due to the
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Finslerian modification of the eigenvalue λ (44), other
multipole terms are changed.

IV. DISCUSSIONS AND CONCLUSIONS

Besides the definition of the Ricci tensor, introduced by
Akbar-Zadeh, Shen introduced another definition [47]

Ricμν ¼ ðRμ
λ
λν þ Rν

λ
λμÞ=2; ð50Þ

where Rμ
λ
λν denotes the Riemann curvature tensor of the

Berwald connection. The two definitions are equivalent if
the Finsler spacetime has a constant flag curvature.
However, one can check that the two definitions are not
equivalent for the ansatz metric with fS ¼ k − 2GM

r , i.e., the
Ricci flat case. Since the Ricci tensor introduced by Akbar-
Zadeh corresponds to the Finslerian gravitational field
equation (28) with exact solutions, such as f ¼ fS, f ¼
fSd and f ¼ fRN , the Ricci tensor introduced by Akbar-
Zadeh is therefore preferred in physics.
In Finsler geometry, there are two types of volume

forms; namely, the Busemann-Hausdorff volume form and
Holmes-Thompson volume form [44]. We have shown in
Ref. [34] that the volume of the Finslerian sphere in terms
of the Busemann-Hausdorff volume form is 4π. The
Finslerian Laplacian operator for the Finslerian sphere
(37) is defined on a fiber bundle, and its definition is
related to the Holmes-Thompson volume form [45]. The
volume of the Finslerian sphere in terms of the Holmes-
Thompson volume form is given as

VolFS ¼
Z

sin θ

ð1 − ϵ2sin2θÞ3=2 dθ ∧ dφ ¼ 4π

1 − ϵ2
: ð51Þ

The two definitions of volume form will slightly alter the
Finslerian gravitation field equation (28), for the term 8πF
is double the surface volume of Finsler space F̄. In general
relativity, black hole entropy depends on the surface
volume of the black hole. Thus, studying black hole
thermodynamics in Finsler spacetime will help us find
which volume form is preferred in physics. It will be
discussed in our future work.

In this paper, we have obtained the Finslerian Reissner-
Nordström solution where it is asymptotic to a Finsler
spacetime with a constant flag curvature while r → ∞ (35).
The covariant derivative of a modified Einstein tensor in a
Finslerian gravitational field equation for this solution is
conserved. It should be noted that the covariant derivative in
Finsler geometry is directly dependent on the connection. In
Finsler geometry, there are types of connections, such as the
Chern connection, the Cartan connection, and the Berwald
connection [18]. In this paper, the covariant derivative we
used is defined by the Chern connection, which is the same
as in Ref. [34]. The symmetry of the special Finslerian
Reissner-Nordström spacetime (35) has been investigated.
It admits four independent Killing vectors. The Finslerian
Reissner-Nordström solution only differs from the Reissner-
Nordström metric in two-dimensional subspace F̄. The
Finslerian Reissner-Nordström could form horizons at
fRN ¼ 0. At present, we can conclude that the Finslerian
black hole has at least two properties, namely, mass and
electric charge. Our solutions show that two-dimensional
subspace F̄ has a constant flag curvature. The eigenfunction
of the Laplacian operator of the Riemannian 2-sphere is
spherical harmonics. We have obtained the eigenfunction of
the Finslerian Laplacian operator, introduced by Barthelme
[45], of the Finslerian sphere (36). The eigenfunction (41) is
just a combination of spherical harmonics in powers of the
Finslerian parameter ϵ. However, the eigenvalue depends on
both l and m. The eigenvalues corresponding to Y0

1 remain
the same with the Riemannian Laplacian operator, and the
eigenvalues corresponding to Y�1

1 are different. This fact just
reflects the symmetry of the Finslerian sphere, which admits
a Killing vector Vφ ¼ Cφ and breaks other symmetry of the
Riemannian sphere. The eigenfunction (41) of the Finslerian
Laplacian operator implies that monopolar and dipolar terms
of a multipole expansion of gravitational potential are
unchanged and other multipole terms are changed.
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