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We study null geodesic congruences (NGCs) in the presence of spacetime torsion, recovering and
extending results in the literature. Only the highest spin irreducible component of torsion gives a proper
acceleration with respect to metric NGCs, but at the same time obstructs abreastness of the geodesics. This
means that it is necessary to follow the evolution of the drift term in the optical equations, and not just shear,
twist and expansion. We show how the optical equations depend on the non-Riemannian components of the
curvature, and how they reduce to the metric ones when the highest spin component of torsion vanishes.
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I. INTRODUCTION

Torsion plays an intriguing role in approaches to gravity
where the connection is given an independent status with
respect to the metric. This happens for instance in the first-
order Palatini and in the Einstein-Cartan versions of general
relativity (see [1–3] for reviews and references therein), and
in more elaborated theories with extra gravitational degrees
of freedom like the Poincaré gauge theory of gravity, see e.g.,
[4]. The presence of torsion modifies the geodesic and
geodesic deviation equations, so if the metric is invertible,
one has two notions of geodesics in spacetime: the metric
ones, defined by the Levi-Civita connection and which
extremize the path’s length; and the torsional ones, given
by the full connection and autoparallel with respect to it. In
general relativity, (timelike and null) geodesics play a
constructive role as the trajectories followed by test particles.
The physical relevance of torsional geodesics is on the other
hand unclear: unlike for themetric one, they donot arise from
the test particle approximation of the energy momentum
tensor conservation law, see [5–7] for results and discussions.
Furthermore, the example of the Papapetrou equation shows
that spinning testmatter, the simplest candidate as a source of
torsion, does not follow torsion-full geodesics.
In spite of these limitations, the geodesic deviation and

associated Raychaudhuri equations with torsion have been
studied in the literature, often motivated by applications to
modified theories of gravity, see e.g., [1,8] for early work
and more recently [9–12]. In this brief note we restrict
attention to null geodesic congruences (NGCs), rederive
results of [9] and extend the analysis to include the null
Raychaudhuri and the rest of Sachs’ optical equations with
torsion. We do so for a completely arbitrary torsion,
without specifying an action principle or matter coupling.
The main technical difficulty when studying geodesics

with torsion is that the orthogonality of a Lie-dragged

connecting vector is not preserved in general. Hence, one
cannot restrict attention to a bundle of ‘abreast’ null
geodesics, to use the terminology of [13], as it is customary
in the Riemannian case. This introduces the need to follow
not only the expansion, shear and twist, but also a drift
term, corresponding to two non-orthogonal components of
the displacement tensor. Furthermore, the drift term is not
frame-invariant already in the metric case, meaning it
depends explicitly on the choice of transverse vector used
to define the null congruence’s geometric quantities. In the
presence of torsion the situation is worse: also shear, twist
and expansion are not frame-invariant, since the displace-
ment tensor is given not just by the usual covariant gradient
of the geodetic vector field, but also by frame-dependent
torsion components. Therefore, different local Lorentz
observers will disagree on the transverse distance between
the rays of the NGC, as opposed to what happens for the set
for abreast metric geodesics. The optical equations we
derive are however frame-invariant, even though the
individual geometric quantities are not.
In spite of these limitations, computing the optical

equations in the presence of torsion is a simple exercise
carried out best with the use of the Newman-Penrose
formalism, and has the nice payoff of allowing one to
review some usually marginal aspects of metric null
geodesic congruences (NGCs), as well as technical proper-
ties of the curvature tensor in the presence of torsion. An
interesting aspect of the optical equations in the presence of
torsion is that they depend also on the irreducible compo-
nents of the curvature that are absent in the Riemannian
case, like the antisymmetric part of the Weyl and Ricci
tensors. This dependence however cancels out in the
Raychaudhuri equation.
As we show here, the obstruction to abreastness comes

only from the spin-2 irreducible component of torsion. For
the most common framework of fermions minimally or
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almost-minimally coupled to the first order Einstein-Cartan
action, there is no spin-2 part, and one can work with an
abreast bundle, and furthermore its shear, twist and expan-
sion are frame-invariant, as in the Riemannian case. The
torsional geodesics coincide in this case with the metric
ones up to a difference in inaffinity determined by the
vector (with spin 1 and spin 0 components) trace-part of
torsion. Accordingly, also the Raychaudhuri equation
coincides with the metric one, a result that was used in
[14], and so do the optical equations for the shear and twist
(up to gauge choice on the spacelike dyad used). The drift
equation on the other hand always differs, because the
notion of drift depends on the choice of transverse vector,
and its evolution is nongeodetic and feels even a completely
antisymmetric torsion.
We use spacetime metric with mostly plus signature,

which means that we have to reverse the sign in the
definitions of the NP scalars (see e.g., Appendix of [15]), in
order to maintain use of the various field equations and
identities. The complete list, together with geometric
interpretations, is reported in the Appendix for convenience
of the reader. For the notation, we use ∇;Γ for a generic

connection, and ∇g ;Γg when referring to the Levi-Civita one.
The spin coefficients and the other NP scalars refer always
to an arbitrary connection, so we extend their use in the
same way: e.g., σ, Ψ2 will refer to a torsion-full coefficient,

and σ
g
, Ψ
g

2 to the restriction to its Levi-Civita part. This with
the exception of Sec. II: since in that section we only review
Levi-Civita quantities, we avoid putting the superscript
everywhere for ease of reading.

II. METRIC NULL GEODESIC CONGRUENCES
AND OPTICAL EQUATIONS

In this preliminary section, we review familiar and less
familiar aspects of metric NGCs, in particular the reason
and interest of considering only abreast rays, and the
derivation of Sachs’ optical equations using the NP
formalism. All derivatives, connections and curvature terms
appearing in this Section are understood to be given with
respect to the Levi-Civita connection without additional
decorations, to avoid making the equations look unneces-
sarily like an italian baroque church.

A. Null geodesic congruences
and kinematical quantities

We denote by lμ a null, geodesic vector field, not
necessarily affinely parametrized,

l2 ¼ 0; Dlμ ¼ klμ; D ≔ lν∇ν: ð1Þ

To study the null geodesic congruence (NGC) generated by
l one first introduces a transverse null vector n such that
lμnμ ¼ −1, and defines the projector

⊥μν ≔ gμν þ 2lðμnνÞ ð2Þ

on 2d space-like surfaces S. It is convenient to introduce
also a (complex) dyad ðmμ; m̄μÞ such that

⊥μν ¼ 2mðμm̄νÞ; gμν ¼ −lðμnνÞ þmðμm̄νÞ: ð3Þ

The doubly-null tetrad ðl; n;m; m̄Þ allows us to use the
Newman-Penrose (NP) formalism. All components of the
connection are represented by (complex) spin coefficients
labelled by a greek letter, and endowed with a specific
geometric interpretation. For convenience of the reader
unfamiliar with the NP formalism, we summarize defini-
tions and geometric properties in the Appendix, referring to
the monographs [13,16] for more details.
Two technical remarks are useful at this point: first, the

2d surfaces identified by n are in general not integrable.
From the Lie bracket

½m; m̄�μ ¼ ðμ − μ̄Þlμ þ ðρ − ρ̄Þnμ
− ðα − β̄Þmμ þ ðᾱ − βÞm̄μ; ð4Þ

we see that their integrability requires ImðρÞ ¼ 0 ¼ ImðμÞ,
namely the vanishing of the twist of the lμ and nμ

congruences. Second, the transverse vector n is not unique.
There is a 2-parameter family of choices, corresponding to
l-preserving Lorentz transformations of the doubly-null
tetrad ðl; n;m; m̄Þ (called class I transformation in the
nomenclature of [16]), given by

nμ ↦ nμ þ āmμ þ am̄μ þ jaj2lμ;
mμ ↦ mμ þ alμ; a ∈ C: ð5Þ

If l is hypersurface orthogonal (namely its twist ImðρÞ
vanishes, since it is null and geodesic), then the gauge
freedom (5) can be used to achieve ImðμÞ ¼ 0, in which
case ðm; m̄Þ are integrable vector fields and span the 2d
surface of generators of null geodesics ruling the hyper-
surface of l. In general, a convenient gauge choice is to
require m (and thus m̄Þ to be parallel transported along l,
namely (see the Appendix)

Dmμ ¼ 0 ⇔ π ¼ 0 ¼ ImðϵÞ: ð6Þ

This can be achieved using first (5) to set π ¼ 0, and
then the freedom of O(2) rotations in the ðm; m̄Þ plane
(class III transformations) to set ImðϵÞ ¼ 0. It also implies
that Dnμ ¼ −knμ.1 We will consider this gauge further
below.

1Which does not mean that n is geodesic. But only parallel
transported along l. The (orthogonal) acceleration of n is
measured by the spin coefficient ν, see the Appendix.
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To study the geodesic deviation, one introduces a
connecting vector η Lie dragged by l,

£lημ ¼ 0; ð7Þ

as to have local coordinates defined by l and η forming a
grid (or equivalently, that we have a smooth 1-parameter
congruence of geodesics connected by η). Thanks to this
condition, the displacement of η along l is η-independent,

Dημ ¼ Bμνη
ν; Bμν ≔ ∇νlμ; ð8Þ

and the displacement tensor B satisfies the properties

lμBμν ¼ 0; lνBμν ¼ klν: ð9Þ

Using (2) we project B on the surface S, and decompose it
in irreducible representations

B⊥
μν ≔ ⊥μρ⊥νσBρσ ¼ σμν þ ωμν þ

1

2
⊥μνθ; ð10Þ

where the symmetric-traceless, antisymmetric and trace
parts are given respectively by

σμν ≔
�
⊥ðμρ⊥νÞσ −

1

2
⊥μν⊥ρσ

�
Bρσ;

ωμν ≔ ⊥½μρ⊥ν�σBρσ; θ ≔ ⊥μνBμν: ð11Þ

These three quantities are captured by the two spin
coefficients

σ ≔ −mμmν∇νlμ ¼ −mμmνσμν; ð12aÞ

ρ ≔ −mμm̄ν∇νlμ ¼ −
1

2
θ −mμm̄νωμν: ð12bÞ

We also recall for later use that

B⊥
μνB⊥νμ ¼ σμνσ

μν − ωμνω
μν þ 1

2
θ2

¼ ρ2 þ ρ̄2 þ 2jσj2: ð13Þ

A word about the frame-invariance of these quantities:
under a class I transformation we have

ρ↦
I
ρþ āκ; σ↦

I
σ þ aκ; ð14Þ

where κ ≔ −mμDlμ ¼ 0 for a geodesic vector field. Hence,
the scalar description (12) is frame-independent for
geodesic congruences. This is one of the numerous
advantages of working with the NP formalism instead of
tensors, since σμν and ωμν in (11) are not frame-

independent. Only their squares or the further projections
along the complex dyad are. The squares are the only
quantities entering the Raychaudhuri equation, making it
frame-independent.
These three quantities have a precise geometric meaning,

respectively in terms of the shear, twist and expansion of
the congruence. It is immediate to see that the expansion θ
measures the variation of the area element of the 2d space-
like surfaces, since a standard calculation gives

θ¼−2ReðρÞ¼∇μlμ−k¼−
1

2
⊥μν£l⊥μν≕£l ln

ffiffiffi
γ

p
; ð15Þ

where in the last equality we introduced a shorthand
notation to remind us that if we take adapted coordinates
to the NGC (e.g., Bondi coordinates), then the projector
only has transverse components, and we denoted by
γ its 2 × 2 nonzero determinant. To visualize the geometric
meaning of σ and ImðρÞ, we follow [13] and parametrize
the connecting vector in terms of the doubly-null
tetrad,

ημ ¼ −glμ − hnμ þ ζ̄mμ þ ζm̄μ: ð16Þ

Inserting this decomposition on both sides of (8), and
projecting along the basis components, one derives the
propagating equations

Dg ¼ γhþ ðπ − α − β̄Þζ þ cc: ð17aÞ

Dh ¼ kh ð17bÞ

Dζ ¼ ðτ þ π̄Þh − ðρþ ϵ̄ − ϵÞζ − σζ̄ ð17cÞ

where we used k ¼ 2ReðϵÞ, see the Appendix. The quantity
g and its equation are of little interest: even once we have
entirely fixed our ðl; n;m; m̄Þ frame, the restriction to
a Lie-dragged connecting vector still leaves the freedom
to change ημ ↦ ημ þ blμ with £lb ¼ 0, thus making the
function g largely irrelevant.
In the second equation, h ¼ ημlμ measures the non-

orthogonality of the connecting vector with respect to l. Its
evolution (17b) (which can also be immediately derived
from the Lie-dragging of η) implies that h ¼ 0 is preserved
along the NGC. The set of null geodesics in the congruence
related by an orthogonal connecting vector are called
“abreast,”2 and play a privileged role in the study of the
NGC. In fact we see from (17c) that the deformation of a
bundle of rays with h ¼ 0 is self-contained in the complex
ζ plane, and it is easy to see writing ζ in polar decom-
position that σ produces a shear of the bundle, ReðρÞ a

2Namely one next to the other. This can be most easily
visualized if the twist vanishes, then the abreast null geodesics
are those lying in the same hypersurface.
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contraction or expansion depending on its sign,3 whereas
ImðρÞ − 2ImðϵÞ a twist. The twist introduced by ImðϵÞ is
due to the rotation of the complex dyad while propagated
along the NGC and thus a gauge artifact. Choosing a
parallel propagated complex dyad (6) the equation for
abreast rays reduces to the more familiar form

Dζ ¼ −ρζ − σζ̄: ð18Þ

For nonabreast geodesics, one has also a drift term
measured by τ þ π̄, or τ alone in the gauge (6). As a side
remark, we notice that this quantity coincides with the
nonintegrability of the timelike planes spanned by l and n,

mμ½l; n�μ ¼ τ þ π̄: ð19Þ

Hence, although it drops out from the optical equations if
one restricts to orthogonal connecting vectors, it plays an
important dynamical role when the full set of Einstein’s
equations is considered, since it is one of Sachs’ constraint-
free data at the 2d corner between two null hypersurfaces
[17] (see also [18] and references therein).
Apart from the simplicity of not having a drift term, there

is a related but more fundamental property of abreast
geodesics which is worth recalling. Under the change of
frame (5) we have

h↦
I
h; ζ↦

I
ζ − ha; ð20Þ

hence for abreast rays the function ζ is frame-independent. In
fact, since η2 ¼ −2ghþ jζj2, the transverse distances jζj2 of
abreast rays are invariant under all local Lorentz trans-
formations. We thus have a stronger frame-independent
property: all local observers agree on the transverse distances
among abreast rays. This property is spoiled for nonabreast
geodesics, because of (20), and further notice that although ρ
and σ are frame-invariant, the drift term is not:

τ↦
I
τ þ aρþ āσ þ jaj2κ; ð21Þ

which is not preserved even for geodesics.
As a final comment on the drift, we notice that it is given

by two nonorthogonal components of the displacement
tensor B,

τ ≔ −mμΔlμ ¼ −mμnνBμν; ð22Þ

showing explicitly the statement that for abreast bundles all
information is carried by the orthogonal part of B.

B. Dynamics: Raychaudhuri and optical equations

If one is interested in the Raychaudhuri equation alone,
the NP formalims is largely unnecessary, and it is custom-
ary to derive it using tensors. One computes first

lρ∇ρðgμνBμνÞ ¼ −Rμνlμlν − BμνBνμ þ∇μðklμÞ ð23Þ

from the commutator of two covariant derivatives. Using
then gμνBμν ¼ ∇μlμ ¼ θ þ k and

B⊥
μνB⊥νμ ¼ BμνBνμ − k2 ð24Þ

which follows from (9), one immediately arrives at the
familiar Raychaudhuri equation,

Dθ ¼ −
1

2
θ2 − σ2μν þ ω2

μν − Rμνlμlν þ kθ: ð25Þ

The NP formalism becomes on the other hand very
convenient to go beyond this equation and study the evolution
of shear and twist as well. To that end, we need first the
geodesic deviation equation. Acting with D on (8) one gets

D2ημ ¼ Rμ
λρνlλlρην þ ην∇νðklμÞ: ð26Þ

As before, we use the parametrization (16) and project this
vectorial equation along the basis components. To simplify
the equations without loss of geometric information, we
choose from now the partial internal gauge (6) as to have the
complex dyad parallel propagated along the NGC, a custom-
ary choice in both the NP [13] and tensorial [19] derivation of
the optical equations. One then finds

D2h ¼ kð2Dhþ hD ln k − hkÞ; ð27aÞ

D2ζ¼ðΨ1þΦ01Þh−Φ00ζ−Ψ0ζ̄þkðτh−ρζ−σζ̄Þ; ð27bÞ

where we used

mμη
ν∇νlμ ¼ τh − ρζ − σζ̄ ð28Þ

and Ψ and Φ are components respectively of the Weyl and
Ricci tensors, see the Appendix for definitions.4

3The geometric relevance of the ζ plane can be completed
recovering the interpretation of the expansion already given above.
Following again [13], we consider a small triangle in the ζ plane,
identified say by the origin and two points ζ1 and ζ2. Its area is
given by At ≔ i

2
ðζ1ζ̄2 − ζ2ζ̄1Þ, and (17c) for Dmμ ¼ 0 gives

DAt ¼ −2ReðρÞAt − h1Imðτζ̄2Þ þ h2Imðτζ̄1Þ:
Hence if h ¼ 0 (and only if) the (logarithmic) variation of the
triangle area is given by the expansion, θ ¼ D lnAt.

4For completeness, we report also the equation for g:

D2g ¼
�
2ReðΨ2Þ þ 2Φ11 −

1

12
R

�
h − 2ReððΨ̄1 þΦ10ÞζÞ

þ ðgDþ hΔ − ζ̄δ − ζδ̄Þkþ k½kgþ 2Reðγhþ ðαþ β̄ÞζÞ�:
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We now substitute (17) into (27) to derive relations
between the spin coefficients and curvature components.
The equation for D2h gives an identity, but equating the
D2ζ equations obtained from (17c) and (27b) one finds

Dðmμη
ν∇νlμÞ ¼ Rμνρσmμlνlρησ þ kmμη

ν∇νlμ: ð29Þ

Next, we use (28) on the left-hand side, and whenD acts on
the ðh; ζ; ζ̄Þ parameters we substitute again the right-hand
sides of (17). The result in NP language reads

hðDτ − ρτ − στ̄ −Ψ1 −Φ01Þ
þ ζð−Dρþ ρ2 þ jσj2 þΦ00 þ kρÞ
þ ζ̄ð−Dσ þ ðρþ ρ̄Þσ þ Ψ0 þ kσÞ ¼ 0: ð30Þ

Requiring the equation to be satisfied for all η’s, one finds
the following relations between the spin coefficients and
curvature components [13],

Dρ ¼ ρ2 þ jσj2 þΦ00 þ kρ; ð31aÞ

Dσ ¼ ðρþ ρ̄Þσ þ Ψ0 þ kσ; ð31bÞ

Dτ ¼ ρτ þ στ̄ þΨ1 þΦ01: ð31cÞ

These are Sachs’ optical equations, here written for an
arbitrary bundle of NGC with both k and h nonvanishing.
The set contains

Dθ ¼ −Dðρþ ρ̄Þ
¼ −ρ2 − ρ̄2 − 2jσj2 − 2ReðΦ00Þ þ kθ; ð32Þ

which using (13) we recognize to be the Raychaudhuri
equation in this language.
For abreast rays h ¼ 0, so the first equation in (31) is no

longer needed, and one recovers the usual basic set of
Sachs’ (31a), (31b). Which in particular shows that the
evolution of shear, twist and expansion is all that is needed
to characterize abreast rays in the NGC. For the nonabreast
ones, one has to include the evolution of τ.
Stated in other terms, projecting the Einstein’s equations

along a doubly-null basis ðl; n;m; m̄Þ has the nice feature
that if l is geodetic, the two equations for ρ and σ decouple
from the rest, giving the optical equations describing the
evolution of shear, twist and expansion of a null congru-
ence associated with l. The larger system including τ is also
closed if l is geodetic, however it depends also on n, and
describes not just the intrinsic properties of the NGC, but
also part of the dynamics of the nonorthogonal connecting
vector used.
This concludes our review of the optical equations for a

metric null geodesic congruence. The two possibly less
familiar aspects we highlighted are:

(i) Orthogonality of the connecting vector is preserved,
hence one can restrict attention to a bundle of abreast
geodesics, for which the evolution is captured by
shear, twist and expansion, and it is completely
frame-independent, meaning independent of the
choice of transverse vector n;

(ii) For nonabreast geodesics, one has to include the
evolution of the drift term, which is frame-dependent.

This background will be useful to appreciate the torsion-
full case, to which we now turn our attention.

III. CURVATURE, TORSION, AND THEIR
IRREDUCIBLE COMPONENTS

In the rest of the paper, we will use ∇μ, Γ
ρ
μν to denote a

generic connection carrying torsion. When needed,
the Levi-Civita connection or other quantities determined
by the metric g will be denoted by and apex, e.g.,

Γ
g
ρ
μν ≔ Γρ

μνðgÞ. The contorsion tensor C is defined by

Γρ
μν ¼ Γ

g
ρ
μν þ Cμ;

ρ
ν; ð33Þ

with the comma meant to separate the one-form index from
the pair of antisymmetric fiber indices. The torsion is most
elegantly defined using the tetrad formalism by TI ≔ dωeI,
and it is related to the contorsion by

Tρ
μν ≔ eρI T

I
μνðe; CÞ ¼ 2C½μ;ρν� ¼ 2Γρ

½μν�; ð34Þ

Cμ;νρ ¼
1

2
Tμ;νρ − T ½ν;ρ�μ; Cðμ;νÞρ ¼ Tðμ;νÞρ: ð35Þ

Both torsion and contorsion transform under the
slð2;CÞ ≅ suð2ÞC ⊕ suð2ÞC algebra representation
ð12;12Þ⊗ ½ð1;0Þ⊕ð0;1Þ�¼ð32;12Þ⊕ð12;32Þ⊕ð12;12Þ⊕ð12;12Þ. This
gives three irreducible components under Lorentz trans-
formations (since the latter includes parity), see e.g., [1],

Cμ;νρ ¼ C̄μ;νρ þ 2

3
gμ½ρČν� þ ϵμνρσĈσ; ð36Þ

gμνC̄μ;νρ¼0¼ ϵμνρσC̄μ;νρ; Čμ≔Cν;
μν; Ĉσ ≔

1

6
ϵσμνρCμ;νρ;

ð37Þ

and identically for the torsion. The irreps are related by

C̄μ;νρ ¼ T̄μ;νρ; Čμ ¼ Ťμ; Ĉμ ¼ −
1

2
T̂μ: ð38Þ

The bar used to denote the spin-2 irreps C̄ and T̄ should not
be at risk of confusion with complex conjugation, since
these fields are real.
In the presence of torsion, the commutator of two

connection gives
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½∇μ;∇ν�fρ ¼ Rρ
σμνðΓÞfσ − Tσ

μν∇σfρ; ð39Þ
and the curvature tensor RρσμνðΓÞ has 36 independent
components, and not just 20 as in the metric case. It
decomposes into six irreps with the following spins,

ð2; 0Þ ⊕ ð0; 2Þ ⊕ ð1; 1Þ ⊕ ð1; 1Þ ⊕ ð1; 0Þ
⊕ ð0; 1Þ ⊕ ð0; 0Þ ⊕ ð0; 0Þ:

One can obtain the irreps of this decomposition using the
original spinorial methods of [13] or self-dual projectors
(see e.g., the identitical decomposition of the Lagrange
multiplier ϕ in [20]). It is however simplest to use the
standard decomposition,

RμνρσðΓÞ¼CΓ
μνρσþRΓ

μ½ρgσ�ν−RΓ
ν½ρgσ�μ−

1

3
gμ½ρgσ�νRΓ; ð40Þ

and recognize that it is further reducible. In particular,

CΓ
μνρσ ¼ Cμνρσ þ CA

μνρσ

þ 1

4!
ϵμνρσCT ∈ ð2; 0Þ ⊕ ð0; 2Þ ⊕ ð1; 1Þ ⊕ ð0; 0Þ

Cμνρσ ≔
1

2
ðCΓ

μνρσ þ CΓ
ρσμνÞ −

1

4!
ϵμνρσCT

CA
μνρσ ≔

1

2
ðCΓ

μνρσ − CΓ
ρσμνÞ; CT ≔ −ϵμνρσCμνρσ ð41Þ

RΓ
μν ¼ RðμνÞ þ RA

½μν� ∈ ð1; 1Þ ⊕ ð0; 0Þ ⊕ ð1; 0Þ ⊕ ð0; 1Þ
ð42Þ

We keep the NP notation for the complex scalars built
out of the Weyl-like (“like,” because it is not purely
Riemannian but depends on torsion as well) tensor Cμνρσ

and Ricci-like RðμνÞ, see the Appendix. We refrain from
introducing an NP notation for the non-Riemannian parts,
since they will play a limited role in this short note,
although this is something interesting to explore, if it
has not yet been done in the literature.5

We will on the other hand often abridge the scalar
products as (complex) components of the tensors, e.g.,
Rlnlm ≔ Rμνρσlμnνlρmσ.
Finally, we recall that using (33),

RμνρσðΓÞ ¼ RμνρσðeÞ þ 2∇½ρCσ�;μν þ 2C½ρ;λσ�Cλ;μν

− 2C½ρj;μλCσ�;λν ð43Þ

¼ RμνρσðeÞ þ 2∇g ½ρCσ�;μν þ 2C½ρj;μλCσ�;λν; ð44Þ

RμνðΓÞ ¼ RμνðeÞ þ∇νCσ
μσ −∇σCν;μ

σ − Cν;μλCσ
λσ

þ Cσ;λνCλ;σ
μ; ð45Þ

so contorsion enters both the Riemannian ð2; 0Þ ⊕ ð0; 2Þ ⊕
ð1; 1Þ ⊕ ð0; 0Þ and non-Riemannian ð1; 0Þ ⊕ ð0; 1Þ ⊕
ð1; 1Þ ⊕ ð0; 0Þ components.

IV. TORSION-FULL NULL GEODESIC
CONGRUENCES

We consider a null geodesic vector field lμ, not neces-
sarily affinely parametrized,

l2 ¼ 0; Dlμ ¼ klμ; D ≔ lν∇ν: ð46Þ

This is the same setup as before, except that covariant
derivatives now carry torsion, therefore the trajectory and
the inaffinity differ from the metric case.6 To expose the
difference we use (33),

Dlμ ¼ D
g
lμ þ Cν;μρlνlρ ¼ D

g
lμ þ Tν;μρlνlρ: ð47Þ

If l is metric-geodetic and torsion is aligned with it in the
following sense,

Cν;μρlνlρ ¼ Tν;μρlνlρ ¼ clμ; c ¼ Tlln; ð48Þ

then the torsion-full geodesics collapse on top of the metric
ones, up to an inaffinity

k ¼ð48Þ k
g
þ c: ð49Þ

To visualize the meaning of this condition, we use the
decomposition (36), which gives

Tν;μρlνlρ ¼ T̄ν;μρlνlρ −
1

3
lμŤνlν ¼ clμ: ð50Þ

In particular,

T̄llm ¼ 0; c ¼ Tlln ¼ T̄lln −
1

3
Ťνlν; ð51Þ

or the same equations with the contorsion C. This shows
that (48) is a restriction only on the spin-2 part of torsion T̄.
We thus recover the well-known fact that geodesics are
unchanged by a completely antisymmetric torsion, and
observe that the trace part Ť introduces only an inaffinity

5One example we are aware of is [21], but the notation there
proposed for torsion simply mimics the one for the spin
connection and misses the irrep decomposition (36), making it
not particularly efficient. It further seems to miss the irrep CT of
the curvature, which is possibly inadvertently included in Ψ2.

6Since the connection without the metric defines an affine
structure, the torsion-full geodesics could also be called affine
geodesics. This would be however an unfortunate choice for the
guaranteed risk of confusion with an affinely parametrized
geodesic, therefore we will avoid it and always specify that
we are referring to torsion-full geodesics.

SIMONE SPEZIALE PHYS. REV. D 98, 084029 (2018)

084029-6



acceleration. It is only the spin-2 part that introduces a
proper (i.e., orthogonal) acceleration modifying the trajec-
tory of the metric geodesics. We can draw a qualitative
analogy with the Riemann tensor, whose most nontrivial
geometric content is carried by the highest spin component,
the Weyl tensor.7

A special case is when the spin-2 part of torsion
completely vanishes. In this case (48) is satisfied for any
null vector l, with trace-part Ť and completely antisym-
metric part T̂ left arbitrary, and we identify

c¼�2 −
1

3
Ťμlμ ¼ −

1

3
Čμlμ: ð52Þ

If one further requires c ¼ 0 for all l, namely the complete
matching of all metric and torsion-full geodesics including
the inaffinity, then torsion must be completely antisym-
metric. Here and in the following the symbol �2 means
T̄ ¼ 0.
The above considerations mean that whatever modified

Raychaudhuri and optical equations we find, they should
reduce to the metric ones (at most up to a Lorentz
transformation) when (48) holds. This will be proved
explicitly below, focusing mostly on the special case
T̄ ¼ 0. The more general aligned case (51) leads to longer
formulas without much further insight, and we will limit
ourselves to reporting them explicitly for the Raychaudhuri
equation.
To study the geodesic deviation equation, we introduce

as in the metric case a connecting vector η Lie dragged by l,

£lημ ¼ 0; ð53Þ

so to have local coordinates forming a grid associated with
a congruence of geodesics. Notice that the Lie derivative is
insensitive to torsion, and thus also this requirement.
However in the metric case this condition led to two useful
properties: conservation of orthogonality of η, and identi-
fication of the displacement tensor with Bμν ≔ ∇νlμ. Both
properties are lost in the torsion-full case.
For the orthogonality we have:

Dh ¼ lν£lην þ
1

2
ημ∇μl2 þ Tμ;νλlμlνηλ þ kh: ð54Þ

The first term vanishes if we take η Lie dragged and the
second since l is null everywhere. The third term however
means that orthogonality is not preserved in general, but
only in the special case (48).

For the displacement equation we have:

Dημ ¼ ην∇νlμ þ £lημ þ Tμ
λνlλην: ð55Þ

The deformation of the congruence with a Lie-dragged η is
not measured by Bμν ≔ ∇νlμ anymore, even if we are
including torsion in its covariant derivatives, but by the
modified tensor

Dημ ¼ B0
μνη

ν; ð56Þ

B0
μν ≔ Bμν þ Tμ;λνlλ ¼ Bμν − 2C½λ;ν�μlλ

¼ ∇g νlμ þ Cρ;μνlρ: ð57Þ

These two reasons can motivate choosing a deformation
vector that is not Lie dragged as in (7), but rather satisfies

£lημ ¼ −Tμ
λνlλην ¼ 2C½λ;ν�μlλην: ð58Þ

With this choice, orthogonality is preserved and Bμν alone
measures the displacement. However, it means that there is
no coordinate grid associated with our ðl; ηÞ frame, as one
would expect for a smooth congruence, and this makes it
less useful a priori. We leave further considerations on the
geometric meaning of (58) for future work, and keep (53) in
the following, which seems to us also supported by the
coordinate analysis performed in [9,11].

A. Kinematical quantities and the congruence’s
geometry

Wewill find it useful to work with both tensors B and B0,
that as we will see have complementary properties in the
presence of torsion: frame independence for the projections
of B, and describing the geometry of the NGC for the
projections of B0. We begin by noticing that

lμBμν ¼ 0; lνBμν ¼ klμ; ð59Þ

lμB0
μν ¼ Tμ;λνlμlλ; lνB0

μν ¼ klμ: ð60Þ

We introduce as in the metric case a transverse vector n, and
the projector (2), and define the projected tensors B⊥, B0⊥
and their symmetric-traceless, antisymmetric and trace
components as in (11).
We define the spin coefficients ρ and σ as before in (12),

this time using B⊥ which carries the torsion-full connec-
tion, as with the rest of the spin coefficients and curvature
scalars. They can be related through (57) to equivalent
quantities ρ0 and σ0 for B0⊥ (which should not be thought
of as spin coefficients), as well as to their Levi-Civita

correspondents for B
g⊥ (namely the spin coefficients deter-

mined by the Levi-Civita connection),

7This is different for timelike geodesics, where also the trace
part Ť contributes to a proper acceleration. We also point out that
the most commonly used source of torsion, fermions in a minimal
or almost-minimal coupling (see e.g., [22,23]) only generate
vector Ť and axial vector T̂ torsion, namely spins 1 and 0.
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σ0 ≔ −mμmνB0
μν ¼ σ − Tmlm ¼ σ

g
; ð61aÞ

ρ0 ≔ −mμm̄νB0
μν ¼ ρ − Tmlm̄ ¼ ρ

g
− Clmm̄; ð61bÞ

or as tensors,

θ0 ¼ θ
g
; σ0μν ¼ σ

g
μν; ω0

μν ¼ω
g
μν − 2m½μm̄ν�Cλ;ρσlλmρm̄σ:

Indulging a bit more on the traces, we have

θ0 ¼ −2Reðρ0Þ ¼ θ þ 2Tμ;νρlνmðμm̄ρÞ ¼ θ
g

¼ −
1

2
⊥μν£l⊥μν ≕ £l ln

ffiffiffi
γ

p
; ð62Þ

with

θ ¼ −2ReðρÞ ¼ ∇μlμ − k: ð63Þ

Having introduced this notation, we now look at the
displacement equation (56) projected along the basis
vectors using the parametrization (16), like in the metric
case. We fix from now on the gauge (6) for simplicity,
now referring to the torsion-full covariant derivatives.
Neglecting the irrelevant equation for g, we find the
following propagating equations, to be compared with (17):

Dh¼khþTμ;ρνlμlρην¼ðk−TllnÞh−Tllm̄ζ−Tllmζ̄; ð64aÞ

Dζ¼ τh−ρζ−σζ̄þTμ;ρνmμlρην¼ τ0h−ρ0ζ−σ0ζ̄: ð64bÞ

The first equation shows that orthogonality is not preserved
in the presence of generic spin-2 torsion, the key property
of torsion-full geodesics discussed previously. The second
confirms that it is the components of B0⊥ to carry the
correct geometric interpretation of shear, twist and expan-
sion, coherently with the fact that it is B0 that represents the
true displacement tensor (57); and also identifies the drift
coefficient as

τ0 ≔ τ − Tmln ¼ τ
g
− Clmn ¼ τ

g þ ¯
π
g
− π̄: ð65Þ

On the other hand, ρ0 and σ0 are not frame-independent,
unlike ρ and σ. The effect of the class I rotation (5)
preserves the B projections since κ ¼ 0,

θ↦
I
θ; ρ↦

I
ρ; σ↦

I
σ; ð66Þ

but not the B0 ones,

θ0 ↦
I
θ0−aTlm̄l− āTlml; ρ0 ↦

I
ρ0−aTllm̄;

σ0 ↦
I
σ0−aTllm: ð67Þ

Given that θ0 ¼ θ
g
and σ0 ¼ σ

g
, it may look surprising that

these quantities are not frame-independent, like in the
metric case. This is a consequence of the fact that we
are following torsion-full geodesics and not metric ones,
and frame-invariance of the projections depend on which of

the two acceleration vanishes, κ or κ
g ¼ κ − Cμ;νρlμlνmr. For

a torsion-full geodesic, κ ¼ 0 but not κ
g
, hence the projec-

tions of B⊥ are frame invariant but not those of B0⊥. As for
the drift, with κ ¼ 0 we have

τ0 ↦
I
τ0 þ aρ0 þ āσ0 − aTlln: ð68Þ

In summary, one can study dynamics for the frame-
invariant spin coefficients ρ and σ, but the geometric
content is carried by the non-frame-invariant coefficients
ρ0 and σ0; and the observed nonpreservability of orthogon-
ality makes us expect that we will need to include also the
drift coefficient.

B. Spin-2-less torsion

In this subsection we present the formulas for the special
case when the spin-2 component of torsion vanishes. In this
case (48) holds for all null vectors, and torsion-full NGCs
coincide with the metric ones. Accordingly, we recover the
familiar frame-invariance of shear, twist and expansion,
and the same propagation equation, of the metric case. The
first property follows from (67) once we observe that

Tllm ¼ T̄llm ¼�2 0. For the second, (67) reduces to

ρ0¼�2 ρg − i
2
T̂μlμ; σ0 ¼ σ

g
; τ0¼�2 τgþ 1

3
Ťμmμ þ i

2
T̂μmμ;

ð69Þ

which can also be expressed in terms of torsion recalling
that Ťμ ¼ Čμ and T̂μ ¼ −2Ĉμ. Hence,

Dh¼�2 k
g
h; ð70aÞ

Dζ ¼�2 ðτg þ ¯
π
gÞh −

�
ρ
g
−
i
2
T̂μlμ

�
ζ − σ

g
ζ̄; ð70bÞ

which coincide with the purely metric equations (17b) and
(17c), once we recall that the gauge-condition (6) refers
now to the torsion-full connection, and

π ¼�2 π
g
−
1

3
Ťμmμ þ i

2
T̂μmμ; 2iImðϵÞ ¼�2 2iImðϵgÞ þ i

2
T̂μlμ:

ð71Þ

Similar formulas and the same conclusions can be derived
for the more general case (51).
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V. RAYCHAUDHURI EQUATION
WITH TORSION

In the light of the relation between θ0 and θ of (62), the
simplest way to derive the Raychaudhuri equation for θ0 is
to first derive an equation for Dθ, which can be done
following the same procedure of the Levi-Civita case, and
then add the extra contribution from the torsion. We first
compute using (39)

lρ∇ρðgμνBμνÞ ¼ −RμνðΓÞlμlν − Tλ
μνlμ∇λlν

− BμνBνμ þ∇μðklμÞ: ð72Þ

Using gμνBμν ¼ ∇μlμ ¼ θ þ k, where k is now the torsion-
full inaffinity, we have

Dθ¼−RμνðΓÞlμlν−Tλ
μνlμ∇λlν−BμνBνμþk2þkθ: ð73Þ

If we want an equation in terms of the frame-invariant
quantities defined by B⊥, we can use (59) to derive
precisely the same relation as in the metric case,

B⊥
μνB⊥νμ ¼ Bμν⊥μσ⊥νρBρσ ¼ BμνBνμ − k2; ð74Þ

hence

Dθ ¼ −
1

2
θ2 − σμνσ

μν þ ωμνω
μν − RμνðΓÞlμlν

− Tλ
μνlμ∇λlν þ kθ: ð75Þ

However this equation should not be taken as the
Raychaudhuri equation in the presence of torsion, because
θ does not have the geometric interpretation of the
expansion of the congruence. This was discussed in [9]
(see also [10,11]), and starting from the observation that the
true displacement tensor is (57), the expansion was
identified with θ0. We have confirmed this by looking at
the propagation equations (64). To derive the equation for
θ0, we rewrite Bμν in terms of the true displacement tensor
B0⊥

μν. Using (60) we compute

B0⊥
μνB0⊥νμ ¼ B0

μν⊥νρ⊥μσB0
ρσ ¼ B0

μνB0νμ − k2

þ 2Tρ;αμlρlαB0μνnν þ ðTμ;νρlμnνlρÞ2
¼ BμνBνμ − k2 þ 2Tρ;αμlαðlρBμνnν þ BμρÞ
þ 4Tμ;νρTα;βγlνlβmðαm̄ρÞmðγm̄μÞ; ð76Þ

where in the last equality we used (57) to substitute B for
B0, and the fact that

Tμ;νρlνTρ;λμlλ þ 2Tρ;σμlρlσTμ;λνlλnν þ ðTμ;νρlμnνlρÞ2
¼ Tμ;νρTα;βγlνlβðgαρgγμ þ 2gαρlμnγ þ lαnρlμnγÞ
¼ 4Tμ;νρTα;βγlνlβmðαm̄ρÞmðγm̄μÞ: ð77Þ

The terms linear in B are clearly a novelty with respect to
the standard metric calculation. They could be compactly
written as

2Tρ;αμlαðlρBμνnν þ BμρÞ ¼ 2Tρ;αμlα⊥νρ∇νlμ; ð78Þ

however this is not useful since the factor 2 in the second
term above will cancel with a corresponding term in (73).
Plugging (62) and (76) in (73) we derive

Dθ0 ¼ B0⊥
μνB0⊥νμ þ kθ0 − RμνðΓÞlμlν þ 2ðDTμ;λνÞlλmðμm̄νÞ

þ Tρ;αμlαð2lρBμνnν þ BμρÞ
þ 4Tμ;νρTα;βγlνlβmðαm̄ρÞmðγm̄μÞ: ð79Þ

We now see from (77) that replacing B with B0 in the linear
terms of (76) has the simple effect of replacing the last term
of (76) with T2

lnl, therefore

Dθ0 ¼−B0⊥
μνB0⊥νμþkθ0−RμνðΓÞlμlνþ2ðDTμ;λνÞlλmðμm̄νÞ

þTρ;αμlαð2lρB0μνnνþB0μρÞþðTμ;νρlμnνlρÞ2: ð80Þ

It is not yet in the desired form, as we would like to single
out in the right-hand side the quantities describing the
geometry of the NGC, like ρ0 and σ0. This is immediately
done for the term quadratic in B using (13) as usual.
However we can expect from the discussion in the previous
sections that it will not be possible to express the linear
terms using the orthogonal components alone, but that the
parallel ones (22) will also appear. It is in our opinion
easiest and geometrically most transparent to work with the
NP formalism. Starting from the expression (79), we use
the spin coefficients to represent the gradient of l [see (A6)
in the Appendix], finding

Tν;ρμlρ∇νlμ ¼ τTllm̄ − ρTmlm̄ − σTm̄lm̄ þ c:c: ð81Þ

2Tρ;αμlρlαnν∇νlμ ¼ −2τTllm̄ þ c:c: ð82Þ

4Tμ;νρTα;βγlνlβmðαm̄ρÞmðγm̄μÞ ¼ ðTmlm̄Þ2þTmlmTm̄lm̄þ c:c:

ð83Þ

whose sum gives

−ðτ0 þ TmlnÞTllm̄ − ρ0Tmlm̄ − σ0Tm̄lm̄ þ c:c: ð84Þ

in terms of the primed quantities which capture the geo-
metric properties of the torsion-full NGC. Using (84) and
the usual irrep decomposition (13) for the ðB0⊥Þ2 term we
land on the desired result,
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Dθ0 ¼ −2Reðρ02Þ − 2jσ0j2 þ kθ0 − RμνðΓÞlμlν
þ 2ðDTμ;λνÞlλmðμm̄νÞ

− 2Reððτ0 þ TmlnÞTllm̄ þ ρ0Tmlm̄ þ σ0Tm̄lm̄Þ: ð85Þ

This is the Raychaudhuri equation for a NGC with arbitrary
spacetime torsion. Notice the explicit presence of the
drift term, namely the nonorthogonal component (22) for
B0. Even though all geometric quantities are not frame-
invariant, but transform like (67) and (68), the resulting
formula is frame-invariant.

Since θ0 ¼ θ
g
, it may be of interest to rewrite the same

equation in terms of the Levi-Civita quantities through the
relations given by (61) and (65). This can be obtained
substituting in (85)

B0⊥
μνB0⊥νμ ¼ B

g⊥
μνB

g⊥νμ − 4iClmm̄ImðρgÞ þ 2ðClmm̄Þ2 ð86Þ
and expressing the curvature using (45). We refrain from
writing here the resulting expression since no significative
simplification occurs. The situation changes when torsion
satisfies the special condition (48) or T̄ ¼ 0.

A. Spin-2-less torsion

When T̄ ¼ 0, it is easy to compute

RμνðΓÞlμlν¼�2RμνðgÞlμlνþ
2

3
ðD−kÞðŤμlμÞ−

1

2
ðT̂μlμÞ; ð87Þ

B0⊥
μνB0⊥νμ¼�2 B

g⊥
μνB

g⊥νμ − 2ImðρgÞT̂μlμ −
1

2
ðT̂μlμÞ2; ð88Þ

2Reððτ0 þ TmlnÞTllm̄ þ ρ0Tmlm̄ þ σ0Tm̄lm̄Þ

¼�2 −
1

3
θ
g
Ťμlμ þ 2ImðρgÞT̂μlμ þ ðT̂μlμÞ2: ð89Þ

We see that various terms cancel out, and using θ0 ¼ θ
g
, (85)

reduces to

Dθ
g
¼�2 −2Reðρg2Þ − 2jσg j2 − RμνðgÞlμlν þ

�
kþ 1

3
Ťμlμ

�
θ
g
:

ð90Þ
This is exactly the Raychaudhuri equation for a metric

NGC with inaffinity k
g
¼ k − c, see (52), as expected from

the discussion below (48).

B. Special aligned torsion

Given the wide utility of the Raychaudhuri equation, let
us also provide explicit formulas showing that one recovers
exactly the metric one also in the more general case (51),
when the spin-2 part of torsion is not completely vanishing.
In this case the algebra is a bit more involved but the result
the same. We have

RμνðΓÞlμlν ¼ð51ÞRμνðgÞlμlν − 2ðDTμ;νρÞmμm̄νlρ − ðρþ ρ̄ÞT̄lln

þ ðρ − ρ̄ÞT̄lmm̄ − 2ReðρT̄m̄lm þ σ̄TmlmÞ
þ TllnðTmlm̄ þ Tm̄lmÞ þ C2

mlm̄ þ C2
m̄lm

þ 2TmlmTm̄lm̄: ð91Þ

In this expression and the following manipulations care is
needed to keep track of the full tensor T and its spin-2 part
T̄. The decomposition of the various projections are
reported in (A13), in particular Tmlm ≡ T̄mlm, and we also
notice that

Cmlm̄ ¼ Tmlm̄ þ 3

2
iT̂μlμ: ð92Þ

The DT term in (91) is immediately seen to cancel the
corresponding one in (85), but the rest is more tricky.
The terms linear in σ cancel those in (85), leaving only the
squared-torsion contribution 2TmlmTm̄lm̄ which cancels out
the last term in the second line of (91). The terms linear in ρ
coming from the second line of (85) minus the second line
of (91) give

− ρTmlm̄ − ρ̄Tm̄lm þ ρT̄m̄lm þ ρ̄Tmlm̄

¼ −ðρþ ρ̄Þ 1
3
Ťμlμ þ ðρ − ρ̄Þð−T̄lmm̄ þ iT̂μlmÞ; ð93Þ

where we used

T̄mlm̄ − T̄m̄lm ¼ T̄lmm̄: ð94Þ

Combining them with the real and imaginary parts of ρ
coming from (minus) the first line of (91), we get

ðρþ ρ̄Þ
�
T̄lln−

1

3
Ťμlμ

�
¼ðρþ ρ̄ÞTlln

¼−cθ
g
þTllnðTmlm̄þTm̄lmÞ; ð95Þ

with the squared-torsion terms cancelling the correspond-
ing ones in the second line of (91), and

ðρ− ρ̄Þð−2T̄lmm̄þ iT̂μlmÞ¼ðρg− ¯
ρ
g
−Tlmm̄Þð−2Clmm̄Þ; ð96Þ

with the ImðρgÞ term cancelling the corresponding one
coming from (86). After all these cancellations, we are
left with

Dθ0 ¼−B
g⊥
μνB

g⊥νμþðk−cÞθ0−R
g

ll−2ðClmm̄Þ2
þ2Tlmm̄Clmm̄−C2

mlm̄−C2
m̄lmþT2

mlm̄þT2
m̄lm: ð97Þ
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A little algebra using (92) or the irrep decomposition (36)
shows that the second line vanishes identically, and from
the first line we recover the metric Raychaudhuri equation

with k
g
¼ k − c, this time c given as in (51).

VI. OPTICAL EQUATIONS WITH TORSION

Proceeding like in the metric case, but taking into
account torsion through (39), the geodesic deviation
equation gives

D2ημ ¼ Rμ
λρνðΓÞlλlρην þ ην∇νðklμÞ þDðTμ

νρlνηρÞ; ð98Þ

with the mixed terms TB cancelling out. Using (16), the
gauge choice (6) and projecting along l and m̄ we find8

D2h ¼ 2kDhþ hDkþ hk2 þ lμDðTμ;νλlνηλÞ; ð99aÞ

D2ζ ¼ RμλρνðΓÞmμlλlρην þ kmμη
ν∇νlμ

þDðTμ;νλmμlνηλÞ: ð99bÞ

From the h equation [substituting (64a) in (99a)] we find
again an identity, and from the ζ equation the very same
relation (29) as in the metric case, except this time the
covariant derivatives and curvature tensor are torsion-full.
This similarity is an advantage of working with B at this
intermediate stage. In the next step however, when we use
again (64) to get rid of the first derivatives of h and ζ, we
introduce an explicit dependence on the torsion field.
Recalling that we cannot restrict to h ¼ 0 since orthogon-
ality is not preserved, we obtain a system of three
equations,

Dρ ¼ ρ2 þ jσj2 þ kρ − Rmllm̄ðΓÞ þ Aμm̄μ; ð100aÞ

Dσ ¼ ðρþ ρ̄Þσ þ kσ − RmllmðΓÞ þ Aμmμ; ð100bÞ

Dτ ¼ ρτ þ στ̄ − RmllnðΓÞ þ Aμnμ; ð100cÞ

where we defined

Aμ ≔ Tν;λμðτlν − ρmν − σm̄νÞlλ: ð101Þ

There are two important differences with the metric case.
First, we can not restrict to abreast geodesics, since as we
have seen h ¼ 0 is not conserved along the torsion-full
geodesic. Hence, all three equations have to be satisfied.
Second, the components of the curvature have additional
terms than just the Riemann tensor, as reviewed earlier in
(40). The relevant ones for (100) are

Rmllm̄ðΓÞ ¼ CA
mllm̄ −

1

2
Rll ¼ CA

mllm̄ −Φ00; ð102Þ

RmllmðΓÞ ¼ Cmllm ¼ −Ψ0; ð103Þ

RmllnðΓÞ ¼ Cmlln þ CA
mlln −

1

2
Rml

¼ −Ψ1 −Φ01 þ CA
mlln þ

1

2
RA
lm: ð104Þ

Finally, reexpressing the spin coefficients in terms of the
geometric primed coefficients through (61), we arrive at

Dρ0 ¼ ρ02þjσ0j2þkρ0 þΦ00−CA
mllm̄ðΓÞ− ðDTμ;νρÞmμlνm̄ρ

þ τ0Tllm̄þρ0Tmlm̄þ σ̄0TmlmþTmlnTllm̄; ð105aÞ

Dσ0 ¼ ðρ0 þ ρ̄0Þσ0 þ kσ0 þΨ0 þ τ0Tllm̄ − ðDTμ;νρÞmμlνmρ

þ ρ̄0Tmlm þ σ0Tmlm̄ þ TmlnTllm; ð105bÞ

Dτ0 ¼ ρ0τ0 þ σ0τ̄0 þ Ψ1 þΦ01 − CA
mlln − ðDTμ;νρÞmμlνnρ

þ τ0ðTlln þ Tmlm̄Þ þ τ̄0Tmlm þ TmlnTlln: ð105cÞ

We can also use this system to rederive the Raychaudhuri
equation,

Dθ0 ¼−2DReðρ0Þ
¼−ρ02− ρ̄02−2jσ0j2þkθ0−2Φ00þ2ðDTμ;νρÞlνmðμm̄νÞ

−2Reððτ0 þTmlnÞTllm̄þρ0Tmlm̄þσ0Tm̄lm̄Þ; ð106Þ

which coincides with (79) derived earlier. Notice in
particular that the non-Riemannian part CA

mllm̄ðΓÞ disap-
pears from the Raychaudhuri equation because of its
antisymmetry.
The optical equations (105) in the presence of torsion are

the main result of this paper. All quantities, spin coef-
ficients and curvature scalars, contain torsion, and we
notice the presence of non-Riemannian components of
the curvature. We also remark that even thought the shear,
twist, expansion and drift are explicitly n-dependent in the
torsion-full case, the optical equations are invariant under
the freedom of changing n while keeping l fixed, namely
under class-I Lorentz transformations of the adapted tetrad.

A. Spin-2-less torsion

As before, we conclude the section proving equivalence
with the metric case for the special case with no spin-2
component of torsion. Starting from (43) we compute

Rmllm̄ðΓÞ¼�2Rmllm̄ðgÞ −
1

3
ðD − kÞŤμlμ þ

1

4
ðT̂μlμÞ2

þ i
2
ðD − kÞT̂μlμ; ð107Þ8Projecting along n gives the uninteresting equation for g,

which we stop writing at this point.
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RmllmðΓÞ¼�2RmllmðgÞ; ð108Þ

RmllnðΓÞ¼�2RmllnðgÞ −
1

3
DŤμmμ þ i

2
DT̂μmμ þ i

3
ŤμlμT̂νmν

−
i
6
ŤμmμT̂νlν þ

1

4
T̂μlμT̂νmν: ð109Þ

Using these together with (61), (65) and the torsional
projections listed in (A13) in the Appendix, (105) reduce to

Dρ
g ¼�2 ρg2 þ jσg j2 þ k

g
ρ
g þΦ

g

00 þ
i
6
ŤμlμT̂μlμ; ð110Þ

Dσ
g ¼�2 2ReðρgÞσg þ k

g
σ
g þΨ

g

0; ð111Þ

Dτ
g¼�2 ρg τgþσ

g ¯
τ
gþΨ

g

1 þΦ
g

01 þ ρ
g
�
1

3
Ťμmμ þ i

2
T̂μmμ

�

þ σ
g
�
1

3
Ťμm̄μ −

i
2
T̂μm̄μ

�

− iT̂μlμ
�
τ
g þ 1

3
Ťνmν þ i

2
T̂νmν

�
: ð112Þ

We see that we recover the same metric equation for the
expansion (as already proved in Sec. V) as well as for the
shear. The equations for the twist has an additional term,
which has a gauge interpretation: Since we have imposed

Dmμ ¼ 0

¼D
g
mμ−

�
1

3
Ťνmν−

i
2
T̂νmν

�
lμþ i

2
T̂νlνmμ; ð113Þ

there are additional drift and twist contributions introduced
by the nonparallel transport of the complex dyad with
respect to the Levi-Civita connection. The last term in the
twist equation can in fact be interpreted as

i
6
ŤμlμT̂μlμ ¼ 2iðk − k

g
ÞImðϵg − ϵÞ: ð114Þ

Finally we notice that for a completely antisymmetric
torsion, the equations for shear and twist match the metric
ones, as expected from the fact that the geodesic equations
completely coincide. The optical equation for the drift term
still differs on the other hand, since this depends on the
(nongeodetic) evolution of n as well, which feels even a
completely antisymmetric torsion.

VII. COMMENTS AND CONCLUSIONS

In this paper we derived the optical equations for NGCs
in the presence of torsion, extending previous results in
the literature on the Raychaudhuri equation. Unlike the
Raychaudhuri equation, the full set depends also on non-
Riemannian components of the curvature. We further

noticed that one must include the evolution of the drift
term, because along a torsion-full geodesic orthogonality of
the connecting vector is not preserved, and thus one cannot
restrict attention to abreast bundles. Deriving this result
provided us with the opportunity to review some less
familiar aspects of metric NGCs, and the utility of the NP
formalism to study them.
It is well known that for completely antisymmetric

torsion, the geodesic equation coincides with the metric
one. A characteristic of null geodesic congruences, unlike
timelike ones, is that also the trace-part of torsion only
contributes to an inaffinity difference, without changing the
direction of the metric geodesics. Accordingly, we have
provided explicit formulas for the case of spin-2-less
torsion, and showed that the Ryachaudhuri and optical
equations reduce to the metric ones. Therefore the consid-
erations of this paper are of little relevance for the most
common framework for torsion, namely fermions coupled
to first-order Einstein-Cartan theory, in which case spin-2
torsion is not generated.
Having established these equations, future work could

explore their explicit solutions and the structure of the
torsion components entering, and their relation to the
Noether identities and field equations of the specific
theory considered. It would be also interesting to further
elaborate on the geometric possibility of the alternative
Lie dragging (58). Finally, even though torsion-full geo-
desics do not arise from the conservation law of test
matter in Einstein-Cartan of Poincaré gauge theory of
gravity [7], it could be interesting to explore what
happens with the conserved energy momentum tensor
used for instance in [14].
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APPENDIX: NEWMAN-PENROSE NOTATION

For the tetrad derivatives we have

D¼ lμ∇μ; Δ¼ nμ∇μ; δ¼mμ∇μ; δ̄¼mμ∇μ: ðA1Þ

For the spin coefficients and curvature scalars we use the
standardnotation consistentwithmostly plus signature,which
carries an opposite sign as to the notation with mostly minus
signature, see e.g., the Appendix of [15]. The connection
components are represented by twelve complex scalars,

α≔−
1

2
ðnμδ̄lμþmμδ̄m̄μÞ β≔−

1

2
ðnμδlμþmμδm̄μÞ ðA2Þ

γ ≔ −
1

2
ðnμΔlμ þmμΔm̄μÞ ϵ ≔ −

1

2
ðnμDlμ þmμDm̄μÞ

ðA3Þ
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κ ≔ −mμDlμ τ ≔ −mμΔlμ
σ ≔ −mμδlμ ρ ≔ −mμδ̄lμ ðA4Þ

π ≔ m̄μDnμ ν ≔ m̄μΔnμ
λ ≔ m̄μδ̄nμ μ ≔ m̄μδnμ ðA5Þ

whose geometric interpretation is as follows: κ measures
the (orthogonal) acceleration of l (hence it vanishes when l
is geodesic), and 2ReðϵÞ its parallel acceleration (or the
inaffinity); σ its shear and ρ its expansion and twist. ImðϵÞ
is the twisting of ðm; m̄Þ in S while transported along l, and
π its component along n. Finally ᾱ − β ¼ −m̄μδmμ is the 2d
connection coefficient. The corresponding quantities for n
are ν, 2ReðγÞ, λ and μ, ImðγÞ and τ.
In terms of these coefficients we have the general

decomposition

∇μlν ¼ −ϵnμlν þ κnμm̄ν − γlμlν þ ðᾱþ βÞm̄μlν

þ τlμm̄ν − σm̄μm̄ν − ρmμm̄ν þ cc; ðA6Þ

which is used in the main text to derive (81)–(83).
If l is geodesic, then

κ ¼ 0; ϵþ ϵ̄ ¼ k;

Dnμ ¼ −knμ; Dmμ ¼ π̄lμ þ ðϵ − ϵ̄Þmμ: ðA7Þ

If it is furthermore hypersurface orthogonal, e.g., lμ ¼
N∂μΦ, then ImðρÞ ¼ 0, and if N ¼ 1 then τ ¼ ᾱþ β.
For the curvature components, we have

Ψ0 ≔ Clmlm; Ψ1 ≔ Clnlm;

Ψ2 ≔ −Clmnm̄ ¼ 1

2
ðClnln − Clnmm̄Þ; ðA8aÞ

Ψ3 ≔ −Clnnm̄; Ψ4 ≔ Cnm̄nm̄ ðA8bÞ

and

Φ00 ≔
1

2
Rll; Φ01 ≔

1

2
Rlm; Φ10 ≔

1

2
Rlm̄;

Φ02 ≔
1

2
Rmm; Φ20 ≔

1

2
Rm̄ m̄; ðA9Þ

Φ12 ≔
1

2
Rnm; Φ22 ≔

1

2
Rnn;

Φ21 ≔
1

2
Rnm̄; Φ11 ≔

1

4
Rln þ

1

4
Rmm̄: ðA10Þ

Notice that the above quantities, introduced by Newman
and Penrose for the Levi-Civita connection and Riemann
curvature, can be immediately extended to a connection
and curvature with torsion, and in this in this sense that they
are used in the present paper. In that case there are also
additional components to the curvature than (A8) and (A9),
see (40). For these, as well as for torsion itself, we are not
aware of a consensual NP notation. We refrain from
investigating the issue in details here, as it would go
beyond the scope of this paper. We merely point out the
contributions of the three irreps to the various (complex)
projections, since this was used in the main text. With the
following convention for the area 2-form on S and the NP
tetrad determinant,

ð2Þϵ ≔ im ∧ m̄; ð2Þϵμν ≔ 2im½μm̄ν�;

iϵμνρσlμnνmρm̄σ ¼ 1; ðA11Þ

where ϵμνρσ are the components of the spacetime volume
form (with conventions ϵ0123 ¼ ffiffiffiffiffiffi−gp

), we have

ϵμνρσlμnνmρ ¼ −imσ; ϵμνρσlμmνm̄ρ ¼ ilσ;

ϵμνρσnμmνm̄ρ ¼ −inσ; ðA12Þ

and

Tlln ¼ T̄lln −
1

3
Ť · l; Tllm ¼ T̄llm;

Tlnm ¼ T̄lnm þ 1

3
Ť ·m − iT̂ ·m; ðA13aÞ

Tnnl ¼ T̄nnl −
1

3
Ť · n; Tnnm ¼ T̄nnm;

Tnlm ¼ T̄nlm þ 1

3
Ť ·mþ iT̂ ·m; ðA13bÞ

Tlmm̄¼ T̄lmm̄þ iT̂ · l; Tnmm̄¼ T̄nmm̄− iT̂ ·n; ðA13cÞ

Tmln¼ T̄mln− iT̂ ·m; Tmmm̄¼ T̄mmm̄þ1

3
Ť ·m; ðA13dÞ

Tmlm ¼ T̄mlm; Tmnm ¼ T̄mnm;

Tmml ¼ T̄mml; Tmmn ¼ T̄mmn; ðA13eÞ

Tmlm̄ ¼ T̄mlm̄ þ 1

3
Ť · l − iT̂ · l;

Tmnm̄ ¼ T̄mnm̄ þ 1

3
Ť · nþ iT̂ · n: ðA13fÞ
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gauge theory of gravity, its equations of motion, and gravity
probe B, Phys. Lett. A 377, 1775 (2013).

[8] J. B. Griffiths, Neutrino fields in Einstein-Cartan theory,
Gen. Relativ. Gravit. 13, 227 (1981).

[9] P. Luz and V. Vitagliano, Raychaudhuri equation in space-
times with torsion, Phys. Rev. D 96, 024021 (2017).

[10] R. Dey, S. Liberati, and D. Pranzetti, Spacetime thermo-
dynamics in the presence of torsion, Phys. Rev. D 96,
124032 (2017).

[11] D. Puetzfeld and Y. N. Obukhov, Deviation equation in
Riemann-Cartan spacetime, Phys. Rev. D 97, 104069
(2018).

[12] S. Akhshabi, Light propagation and optical scalars in torsion
theories of gravity, arXiv:1805.07534.

[13] R. Penrose and W. Rindler, in Spinors and Space-Time,
Spinor and Twistor Methods in Space-Time Geometry Vol. 2
(Cambridge University Press, Cambridge, England, 1986).

[14] T. De Lorenzo, E. De Paoli, and S. Speziale, Spacetime
thermodynamics with contorsion, Phys. Rev. D 98, 064053
(2018).

[15] A. Ashtekar, S. Fairhurst, and B. Krishnan, Isolated hori-
zons: Hamiltonian evolution and the first law, Phys. Rev. D
62, 104025 (2000).

[16] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Clarendon, Oxford, 1985).

[17] R. Sachs, On the characteristic initial value problem in
gravitational theory, J. Math. Phys. (N.Y.) 3, 908 (1962).

[18] E. De Paoli and S. Speziale, Sachs’ free data in real
connection variables, J. High Energy Phys. 11 (2017) 205.

[19] R. M. Wald, General Relativity (University of Chicago
Press, Chicago, 2010).

[20] S. Speziale, Bi-metric theory of gravity from the non-chiral
Plebanski action, Phys. Rev. D 82, 064003 (2010).

[21] J. Griffiths and S. Jogia, A spin-coefficient approach to
Weyssenhoff fluids in Einstein-Cartan theory, Gen. Relativ.
Gravit. 14, 137 (1982).

[22] S. Alexandrov, Immirzi parameter and fermions with non-
minimal coupling, Classical Quantum Gravity 25, 145012
(2008).

[23] D. Benedetti and S. Speziale, Perturbative quantum gravity
with the Immirzi parameter, J. High Energy Phys. 06 (2011)
107.

SIMONE SPEZIALE PHYS. REV. D 98, 084029 (2018)

084029-14

https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/10.1016/S0370-1573(01)00030-8
https://doi.org/10.1103/PhysRevD.26.3327
https://doi.org/10.1103/PhysRevD.26.3327
https://doi.org/10.1103/PhysRevD.21.2081
https://doi.org/10.1016/j.physleta.2008.09.041
https://doi.org/10.1016/j.physleta.2013.04.055
https://doi.org/10.1007/BF00758550
https://doi.org/10.1103/PhysRevD.96.024021
https://doi.org/10.1103/PhysRevD.96.124032
https://doi.org/10.1103/PhysRevD.96.124032
https://doi.org/10.1103/PhysRevD.97.104069
https://doi.org/10.1103/PhysRevD.97.104069
http://arXiv.org/abs/1805.07534
https://doi.org/10.1103/PhysRevD.98.064053
https://doi.org/10.1103/PhysRevD.98.064053
https://doi.org/10.1103/PhysRevD.62.104025
https://doi.org/10.1103/PhysRevD.62.104025
https://doi.org/10.1063/1.1724305
https://doi.org/10.1007/JHEP11(2017)205
https://doi.org/10.1103/PhysRevD.82.064003
https://doi.org/10.1007/BF00756919
https://doi.org/10.1007/BF00756919
https://doi.org/10.1088/0264-9381/25/14/145012
https://doi.org/10.1088/0264-9381/25/14/145012
https://doi.org/10.1007/JHEP06(2011)107
https://doi.org/10.1007/JHEP06(2011)107

